

BUSHFIRE ASSESSMENT REPORT

Harris-May Residential Subdivision

173 McFarlanes Road & 507 Raymond Terrace Road, Chisholm

Prepared for Allam Development No 1 Pty Ltd

Bushfire Planning Australia

Stuart Greville Accredited Bushfire Practitioner BPAD-26202 ○ 0400 917 792

Stuart@bfpa.com.au

Reference: 2179 Harris-May

Disclaimer and Limitation

This report is prepared solely for Allam Development No 1 Pty Ltd (the 'Client') for the specific purposes of only for which it is supplied (the 'Purpose'). This report is not for the benefit of any other person; either directly or indirectly and is strictly limited to the purpose and the facts and matters stated in it and will not be used for any other application.

This report is based on the site conditions surveyed at the time the document was prepared. The assessment of the bushfire threat made in this report is made in good faith based on the information available to Bushfire Planning Australia at the time.

The recommendations contained in this report are considered to be minimum standards and they do not guarantee that a building or assets will not be damaged in a bushfire. In the making of these comments and recommendations it should be understood that the focus of this document is to minimise the threat and impact of a bushfire.

Finally, the implementation of the adopted measures and recommendations within this report will contribute to the amelioration of the potential impact of any bushfire upon the development, but they do not and cannot guarantee that the area will not be affected by bushfire at some time.

Document Status: 2179 - Residential Subdivision

Version	Status	Purpose	Author	Review Date
1	Draft	Draft for Review	Katrina Mukevski	1 May 2023
2	Draft	Draft for Client Review	Stuart Greville	5 May 2023
3	Final Final for Submission		Stuart Greville	23 May 2023

Certification

As the author of this Bushfire Assessment Report (BAR), I certify this BAR provides the detailed information required by the NSW Rural Fire Service under Clause 44 of the Rural Fires Regulation 2013 and Appendix 2 of Planning for Bushfire Protection 2019 for the purposes of an application for a bush fire safety authority under section 100B(4) of the Rural Fires Act 1997.

Stuart Greville Accredited Bushfire Practitioner BPAD-26202

Date: 23 May 2023

In signing the above, I declare the report is true and accurate to the best of my knowledge at the time of issue.

Table of Contents

Term	s and	Abbreviations	v
Exec	utive S	Summary	1
1.	Intro	duction	3
2.	Site [Description	4
	2.1.	Background	6
	2.2.	Bushfire Prone Land	
	2.3.	Proposed Development	9
	2.4.	Aims and Objectives	10
3.	Bush	fire Hazard Assessment	11
	3.1.	Vegetation Assessment	11
	3.2.	Slope Assessment	19
	3.3.	Results	22
	3.4.	Significant Environmental Features	25
	3.5.	Threatened Species, populations or ecological communities	
	3.6.	Aboriginal Objects	
	3.7.	Bushfire Planning - Urban Release Area	25
4.	Bush	fire Protection Measures	27
	4.1.	Asset Protection Zones	27
		4.1.1. Determining the Appropriate Setbacks	29
	4.2.	Access	31
	4.3.	Services - water, electricity and gas	33
		4.3.1. Water	
		4.3.2. Electricity	33
		4.3.3. Gas	
	4.5.	Emergency Services	34
	4.6.	Construction Standards - Bushfire Attack Level	
	4.7.	Landscaping and Vegetation Management	41
5.	Conc	lusion and Recommendations	42
6.	Refer	ences	44

Figures

Figure 1: Land Use Zone	4
Figure 2: Site Locality Plan	5
Figure 3: Thornton North Master Plan (Maitland City Council 2003)	6
Figure 4: Bushfire Prone Land Map (NSW RFS 2022)	8
Figure 5: Proposed Development	9
Figure 6: NSW State Vegetation Type Mapping (DPIE 2022)	18
Figure 7: Slope Survey Plan (LiDAR)	20
Figure 8: Slope Survey Plan (DEM)	21
Figure 9: Slope and Vegetation Assessment	24
Figure 10: Bushfire Planning - Urban Release Area Map (Maitland LGA)	25
Figure 11: Bushfire Planning - Urban Release Area: Thornton North	26
Figure 12: Explanation of an Asset Protection Zone	
Figure 13: Asset Protection Zone profile	
Figure 14: Thornton North URA – road network	
Figure 15: NSW Rural Fire Brigade - Thornton	
Figure 16: NSW Fire & Rescue - East Maitland	. 34
Figure 17: BAL example	35
Figure 18: Subdivision BAL Plan (Temporary)	39
Figure 19: Subdivision BAL Plan (Permanent)	40

Tables

Table 1: Site Details	4
Table 2: Slope and Vegetation Assessment Results	23
Table 3: Required APZ setback - FDI @ 100	30
Table 4: Required Bushfire Attack Level	37

Plates

Plate 1: Subject site looking south across Thornton North Urban Release Area	12
Plate 2: Subject site currently adjoins remnant vegetation – looking south	12
Plate 3: Looking north west across site and adjoining grassland towards Waterford County	13
Plate 4: Looking south-east over 505 Raymond Terrace Road across to subject site	13
Plate 5: Subject site is covered by an open grassy forest and adjoins 2 cleared properties	14
Plate 6: All vegetation outside riparian corridor on 523 Raymond Terrace Road will be removed.	14

Plate 7: Looking northeast across Raymond Terrace Road towards 505 and 507 Raymond Terra Road	
Plate 8: Typical grassy forest northeast of the site (T3)	. 15
Plate 9: T4 looking southeast into 523 Raymond Terrace Road (subject to DA)	. 16
Plate 10: Looking southwest across T10 (forest) into land zoned C2 Environmental Conservatio	
Plate 11: T11 transitions through forest into wetland and onto managed lands	. 17
Plate 12: Proposed development provides a new road connection to the adjoining residential development (between T1 and T11)	. 17

Appendices

Appendix A: Proposed Plan of Subdivision Appendix B: AHIMS Search Results Appendix C: Planning for Bushfire Protection 2019 - Compliance Table Appendix D: NBC Bushfire Attack Assessor V4.1 Results Appendix E: Subdivision BAL Plan

Terms and Abbreviations

Abbreviation	Meaning		
APZ	Asset Protection Zone		
AS2419-2005	Australian Standard – Fire Hydrant Installations		
AS3959-2018	Australian Standard – Construction of Buildings in Bush Fire Prone Areas		
BAR	Bushfire Assessment Report		
BCA	Building Code of Australia		
BC Act	NSW Biodiversity Act 2016		
BMP	Bush Fire Management Plan		
BPA	Bush Fire Prone Area (Also Bushfire Prone Land)		
BPL	Bush Fire Prone Land		
BPLM	Bush Fire Prone Land Map		
BPM	Bush Fire Protection Measures		
BFSA	Bush Fire Safety Authority		
BURA	Bush Fire Urban Release Area		
DoE	Commonwealth Department of the Environment		
DPI Water	NSW Department of Primary Industries – Water		
EP& A Act	NSW Environmental Planning and Assessment Act 1979		
EP&A Regs	NSW Environmental Planning and Assessment Regulation 2000		
EPBC Act	Commonwealth Environment Protection and Biodiversity Conservation Act 1999		
FDI	Fire Danger Index		
FMP	Fuel Management Plan		
ha	hectare		
IPA	Inner Protection Area		
LGA	Local Government Area		
MCC	Maitland City Council		
OPA	Outer Protection Area		
OEH	NSW Office of Environment and Heritage		
PBP 2019	Planning for Bushfire Protection 2019		
RF Act	Rural Fires Act 1997		
RF Regulation	Rural Fires Regulation		
RFS	NSW Rural Fire Service		
TSC Act	NSW Threatened Species Conservation Act 1995 (as repealed)		

Executive Summary

Bushfire Planning Australia (BPA) has been engaged by Allam Development No 1 Pty Ltd (the 'Client') to undertake a Bushfire Assessment Report (BAR) for the proposed residential subdivision known as the 'Harris-May site' located at 173 McFarlanes Road and 507 Raymond Terrace Road, Chisholm; legally referred to as Lot 32 and Lot 31 DP778111 respectively.

The proposed development comprises a 264 Torrens title residential subdivision to be constructed in several stages. The proposed subdivision is consistent with the Thornton North Master Plan prepared by Maitland City Council. As the plan of subdivision is consistent with the Master Plan, the proposed subdivision does not currently have access to an existing public road. Consequently, development of the subject site cannot be completed until the subdivision of one or more of the adjoining properties has been completed. With this in mind, in addition to assessing the existing bushfire hazard, the BAR designed a series of recommendations relevant to the proposed subdivision of the adjoining properties.

This BAR found the site was currently exposed to high bushfire hazard located to the west of the subject site. The predominant vegetation surrounding the site in unmanaged conditions is consistent with a *forest*, specifically *Hunter Macleay Dry Sclerophyll Forest* vegetation formation as described in the NSW Rural Fire Service document Planning for Bushfire Protection 2019 (PBP 2019).

The bushfire hazard will be substantially reduced over the next 2-5 years as a significant area of land surrounding the subject site that is currently zoned for residential use will be subdivided and the remaining hazardous vegetation removed.

The remaining vegetation presenting a long-term bushfire hazard is located immediately west of the site. A smaller portion of vegetation to be retained is located along the northern portion of the eastern boundary. A narrow bushfire hazard (<30m wide) is contained within the riparian corridor that bisects the subject site. The entire development is separated from all adjacent hazards by perimeter roads.

As the site is identified as the Thornton North Urban Release Area in the Maitland Local Government Area Bush Fire Planning - Urban Release Area Map, a Subdivision BAL Plan has been prepared and is contained in **Appendix E**. As part of the application for a Bush Fire Safety Authority (BFSA) under section 100b of the Rural Fires Act 1997 (RF Act), we are also seeking endorsement of the Subdivision BAL Plan prior to the registration of the subdivision.

The BAR concludes the bushfire hazard the proposed development is exposed to can be successfully mitigated by applying a combination of bushfire mitigation measures including temporary and permanent Asset Protection Zones (APZs).

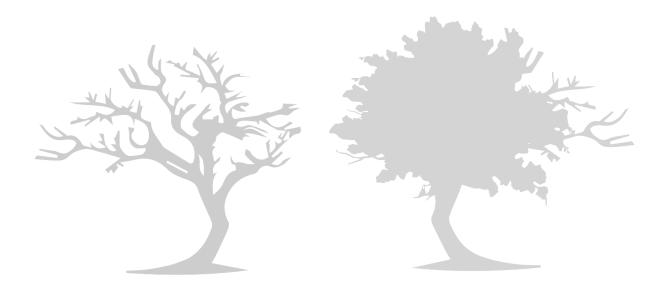
The following key recommendations have been designed to enable the proposed development to achieve the aims and objectives of PBP 2019:

- All land within the development site; excluding the riparian corridor and the lot identified for open space, is to be managed as an inner protection area (IPA) as outlined Appendix 4 of PBP 2019 and the RFS document *Standards for asset protection zones*;
- 2. The APZs shown in **Figure 19 Subdivision BAL Plan** shall be maintained in perpetuity in accordance with the requirements of Appendix 4 of PBP 2019;
- Access shall be provided in accordance with the Performance Criteria detailed in Table 5.3b of PBP 2019. This will require the provision of a minimum of twelve (12) separate road access points provided from the development site to the east and west to ensure safe evacuation for all residents;
- 4. Non-perimeter roads shall be 8m wide (including provision for on-street parking);
- 5. Perimeter roads shall be 10.5m wide (including provision for on-street parking);

- 6. On-street vehicle parking may be permitted within road carriageways on roads with a minimum 8m wide carriageway;
- 7. All temporary turning heads shall be constructed in accordance Appendix A3.3 of PBP 2019;
- 8. Vegetation within road verges (including swales) to be consistent with a grassland vegetation classification with tree canopy less than 10% at maturity (and considered unmanaged);
- 9. The Bushfire Attack Level (BAL) ratings identified in Figure 19 Subdivision BAL Plan apply to all future dwellings to be constructed on the proposed lots. All future dwellings to be constructed on the proposed lots shall have due regard to the specific considerations given in the National Construction Code: Building Code of Australia (BCA) which makes specific reference to Australian Standard AS3959-2018 Construction of buildings in bushfire prone areas (AS3959-2018) and the NASH Standard Steel Framed Construction in Bushfire Prone Areas;
- **10.** All new lots are to be connected to a reliable water supply network and that suitable fire hydrants are located throughout the development site that are clearly marked and provided for the purposes of bushfire protection. Fire hydrant spacing, sizing and pressure shall comply with AS2419.1 2005 and section 5.3.3 of PBP 2019;
- 11. Consideration should be given to landscaping and fuel loads on site to decrease potential fire hazards on site; and
- 12. The Rural Fire Service endorse the Subdivision BAL Plan contained in Appendix E.

This assessment has been made based on the bushfire hazards observed in and around the site at the time of inspection and production (May 2023).

Should the above recommendations be implemented, the existing bushfire risk should be suitably mitigated to offer an acceptable level of protection to life and property for those persons and assets occupying the site but they do not and <u>cannot</u> guarantee that the area will <u>not</u> be affected by bushfire at some time.

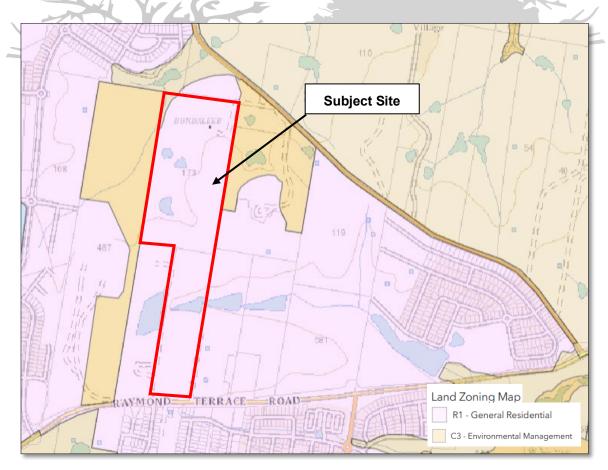


1. Introduction

Bushfire Planning Australia (BPA) has been engaged by Allam Development No 1 Pty Ltd (the 'Client') to undertake a Bushfire Assessment Report (BAR) for the proposed residential subdivision known as the 'Harris-May site' located at 173 McFarlanes Road and 507 Raymond Terrace Road, Chisholm; legally referred to as Lot 32 and Lot 31 DP778111 respectively and hereafter referred to as the 'site' (**Figure 2**).

The proposed development will create 264 residential lots and associated infrastructure including 3 public reserve lots and 1 residue lot across six stages.

The assessment aims to consider and assess the bushfire hazard and associated potential bushfire threat relevant to the proposed development, and to outline the minimum mitigative measures which would be required in accordance with the provisions of the New South Wales Rural Fire Service (RFS) publication *Planning for Bushfire Protection 2019* (PBP 2019) that has been released and adopted through the *Environmental Planning and Assessment Amendment* (Planning for Bushfire Protection) *Regulation 2007* and the *Rural Fires Regulation 2013*.



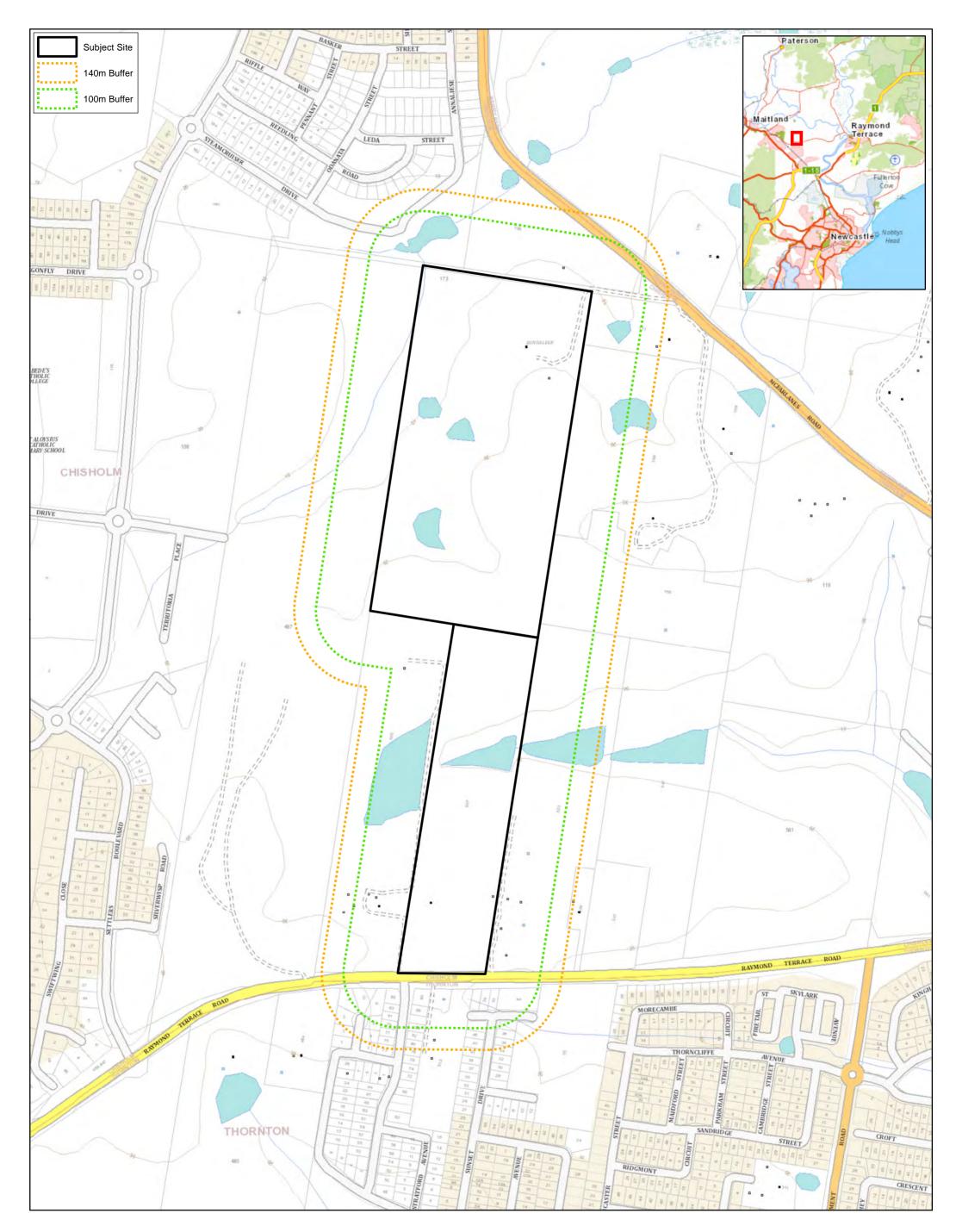

2. Site Description

Table 1: Site Details

Address	507 Raymond Terrace Road & 173 McFarlanes Road, Chisholm			
Title	Lot 31 & Lot 32 DP778111			
LGA	Maitland City Council			
Site Area	30.28 ha			
Land Use Zone	R1 General Residential			
Bushfire Prone Land	Vegetation Category 1, Vegetation Category 3 and Vegetation Buffer			
Context	The site is north of Raymond Terrace Road and south of McFarlanes Road and consists of two dams and two dwellings, one on each development lot.			
	There is some mature vegetation scattered throughout the site, lining the site boundaries otherwise the remainder of the site is managed.			
Topography	Majority of the site is flat with exception of a small portion of the site surrounding the northern dam.			
Fire History	The site lies within a local government area with a Fire Danger Index (FDI) rating of 100.			

Figure 1: Land Use Zone

BUSH	IFIRE Source:	Base Map © Department of Customer Service 2020	À	Project: 173 McFarlanes	Figure 2: Site
AUSTR	RALIA Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no lability is accepted (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 200 Meters A3 Scale: 1:600,000	Road, Chisholm	Location
	File:	File: McFarlanesRd-Fig1-SiteLocation-230301 Date: 1/03/2023	Coordinate System: GDA 1994 MGA Zone 56		

2.1. Background

The subject site is located within the Thornton North Urban Release Area which was designed to ensure urban growth takes place in a co-ordinated and sustainable manner. Maitland City Council prepared the master plan to provide a logical framework for the progressive development of the urban release area. In some instances, the development of certain parcels of land relied on adjoining landowners to provide public road connections to facilitate the orderly development.

The proposed development relies on public road connections to the north, east and west that currently do not exist. Apart from the vegetation to be retained within the site; all surrounding land is zoned for residential use and development applications have been submitted, or in the process of being submitted for many of the properties to the north and east of the site.

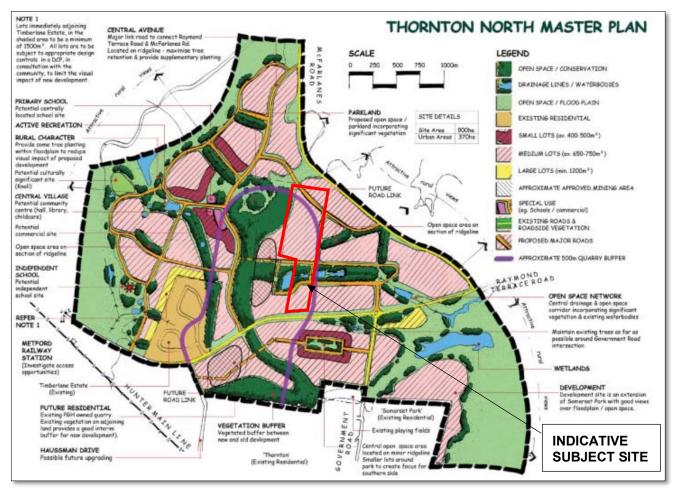
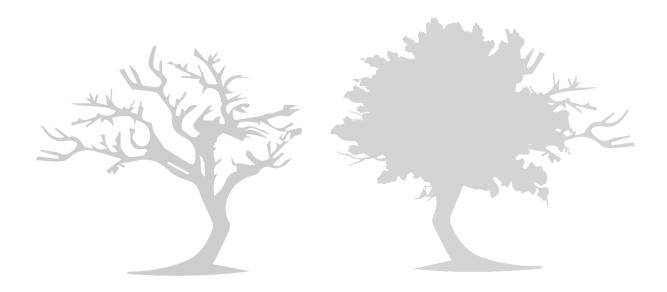


Figure 3: Thornton North Master Plan (Maitland City Council 2003)


2.2. Bushfire Prone Land

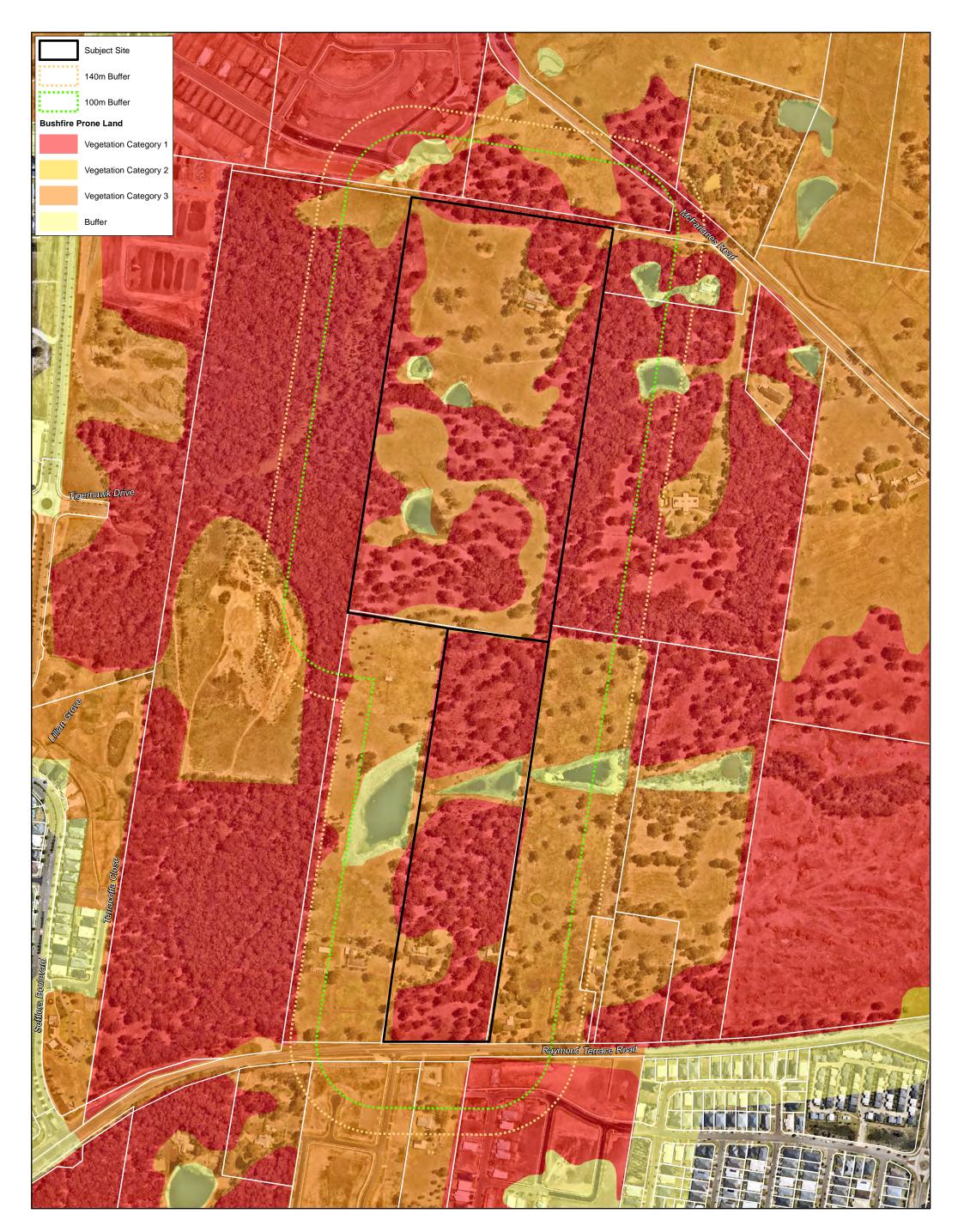

Bushfire activity is prevalent in landscapes that carry fuel and the two predominant bushfire types are grassland and forest fires. Factors such as topographic characteristics and quantity of fuel loads influence the intensity and spread of fire. The scale of a bushfire hazard is tailored to the characteristics of the hazard, the size and characteristics of the affected population, types of land use exposed to bushfire, predicted development growth pressures and other factors affecting bushfire risk.

Figure 4 demonstrates the entire majority of site is mapped as bushfire prone land.

A large portion of the southern development site (Lot 31) is mapped as Vegetation Category 1 bushfire prone land with exception of the land surrounding the existing dam which is mapped as Vegetation Buffer. Similarly, the northern development site is largely mapped as Vegetation Category 3 and whilst the lid section of the site is mapped as Vegetation Category 1 which extends to and beyond 140m north, east and west of the site boundary.

The primary bushfire hazard within and beyond 140m of the site is located to the west. An additional bushfire hazard also exists to the north-west of the site.

BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021 Aerial photo: NearMap 03/01/2023 NSW bush Fine Prone Lanck NSW Rural Fire Service 2022	À	Project: 173 McFarlanes	Figure 4:
PLANNING	Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no liability is accepted (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 200	Road, Chisholm Job no: 2179	NSW Bush Fire Prone Land
	File:	File: 2179-McFarlanesRd-Fig2-BFPL-230502 Date: 3/05/2023	Coordinate System: GDA 1994 MGA Zone 56		

2.3. Proposed Development

The proposed development will create 264 residential lots and associated infrastructure including 3 public reserve lots, and 1 residue lot. This will occur over the following six stages:

- □ Stage 1: 41 lots and 1 public reserve lot
- □ Stage 2: 54 lots
- □ Stage 3: 46 lots and 1 public reserve lot
- □ Stage 4: 55 lots
- □ Stage 5: 36 lots and 1 public reserve lot
- □ Stage 6: 32 lots and 1 public reserve lot

A plan of the proposed subdivision is contained in **Appendix A** and shown in **Figure 5**.

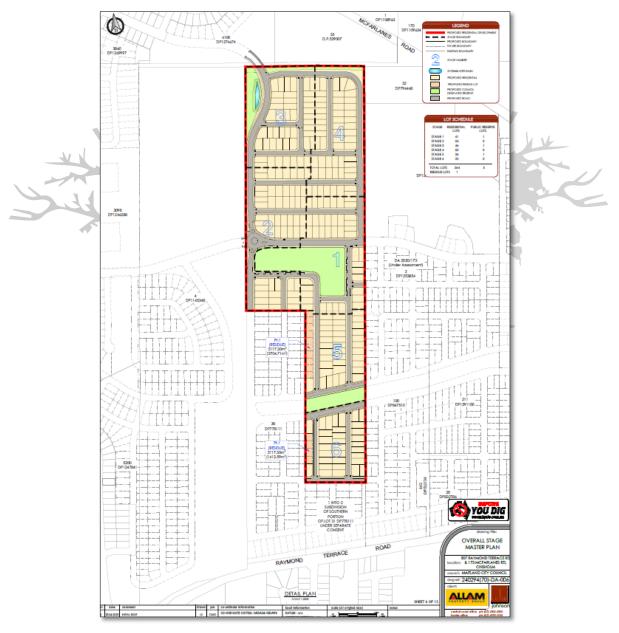
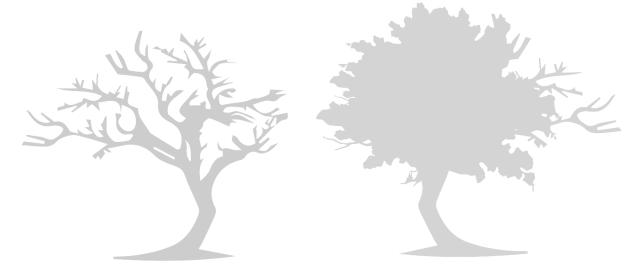


Figure 5: Proposed Development

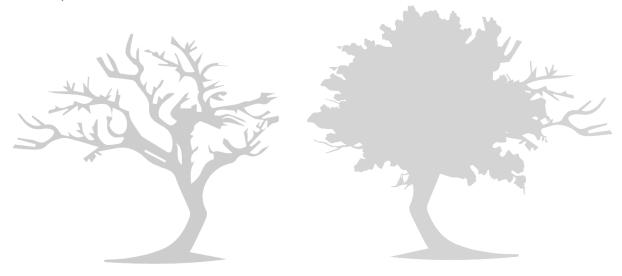


2.4. Aims and Objectives

This BAR aims to assess the bushfire threat and recommends a series of bushfire protection measures that aim to minimise the risk of adverse impact of bush fires on life, property and the environment.

This assessment has been undertaken in accordance with Appendix 2 of *Planning for Bushfire Protection 2019* and clause 44 of the *Rural Fires Regulation 2013*. This assessment also addresses the aim and objectives of PBP 2019, being:

- □ Afford buildings and their occupants protection from exposure to a bushfire;
- Provide a defendable space to be located around buildings;
- Provide appropriate separation between a hazard and buildings which, in combination with other measures, prevent the likely fire spread to buildings;
- Ensure that appropriate operational access and egress for emergency service personnel and occupants is available;
- Provide for ongoing management and maintenance of bushfire protection measures (BPMs); and
- Ensure that utility services are adequate to meet the needs of firefighters.


3. Bushfire Hazard Assessment

3.1. Vegetation Assessment

Vegetation classification over the site and surrounding area has been carried out as follows:

- Aerial Photograph Interpretation to map the vegetation classification and extent;
- Review of LiDAR point cloud data (NSW LPI);
- Reference to NSW State Vegetation Type, NSW Department of Planning, Industry and Environment 2022 (Figure 6); and
- Site inspection completed by Stuart Greville on 18 November 2021 and 29 March 2023.

In accordance with PBP 2019, an assessment of the existing vegetation over a distance of 140m in all directions from the site was undertaken. Vegetation that may be considered a bushfire hazard was identified to the north-east and west of the proposed development and identified as a *forest*, namely *Hunter Macleay Dry Sclerophyll Forest* according to both PBP 2019 and Keith vegetation classifications. The findings of the site inspection were compared to the NSW State Vegetation Type mapping (**Figure 6**) and any inconsistencies between the mapping sources were quantified during the site inspection and are discussed within this assessment.

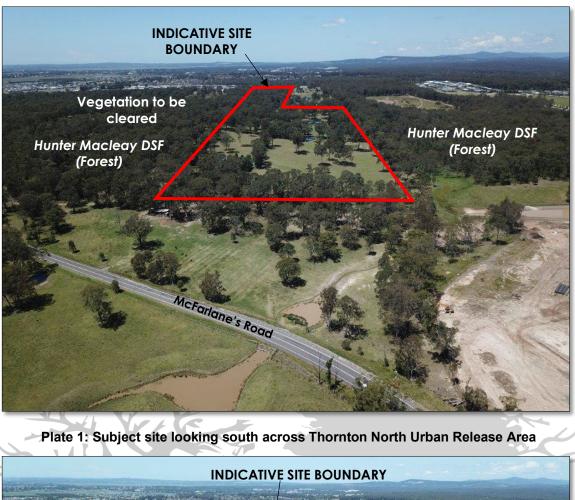


Plate 2: Subject site currently adjoins remnant vegetation - looking south

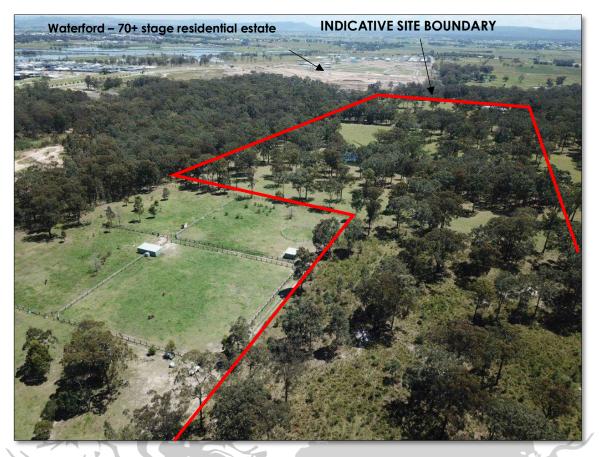


Plate 3: Looking north west across site and adjoining grassland towards Waterford County

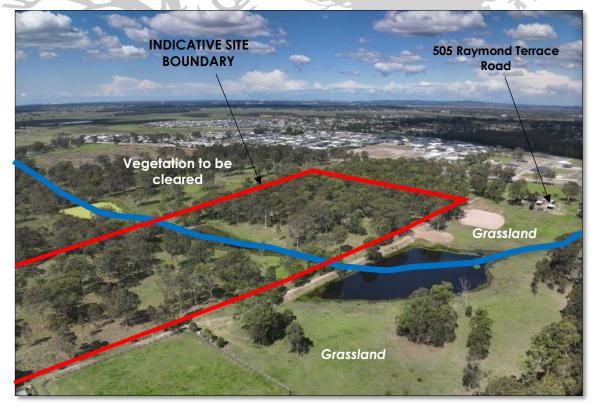


Plate 4: Looking south-east over 505 Raymond Terrace Road across to subject site

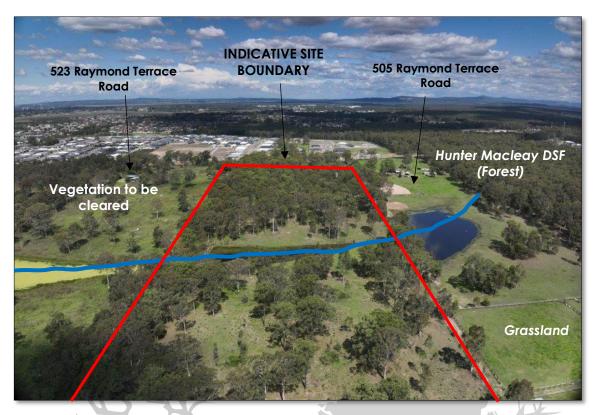


Plate 5: Subject site is covered by an open grassy forest and adjoins 2 cleared properties

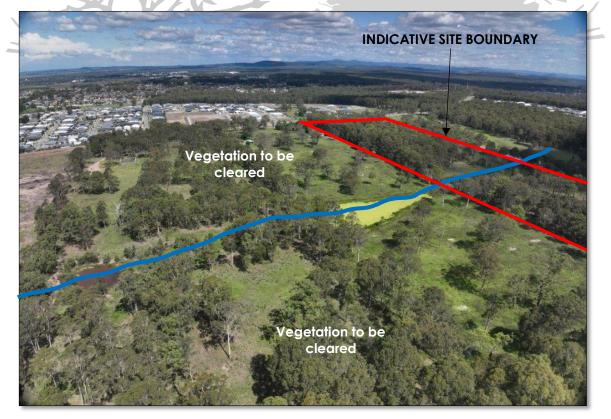


Plate 6: All vegetation outside riparian corridor on 523 Raymond Terrace Road will be removed

Plate 7: Looking northeast across Raymond Terrace Road towards 505 and 507 Raymond Terrace Road

Plate 8: Typical grassy forest northeast of the site (T3)

Plate 9: T4 looking southeast into 523 Raymond Terrace Road (subject to DA)

Plate 10: Looking southwest across T10 (forest) into land zoned C2 Environmental Conservation

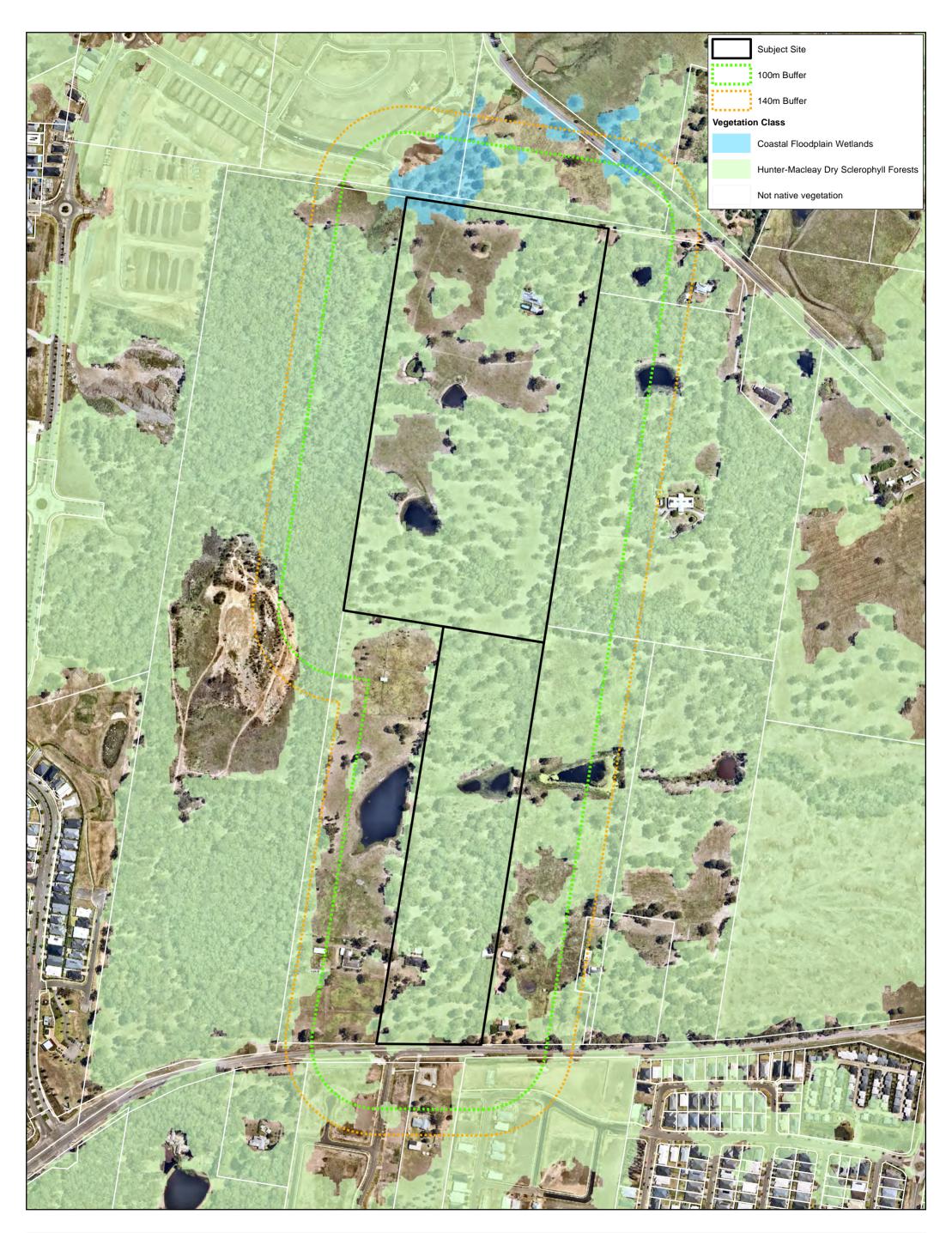
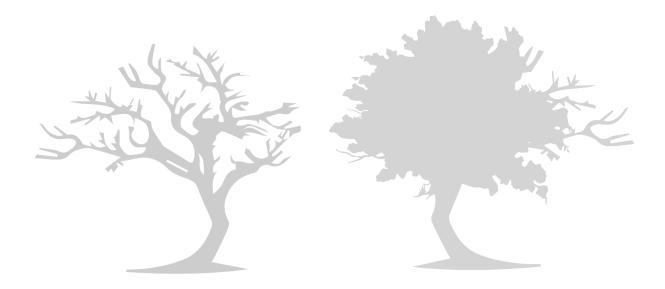
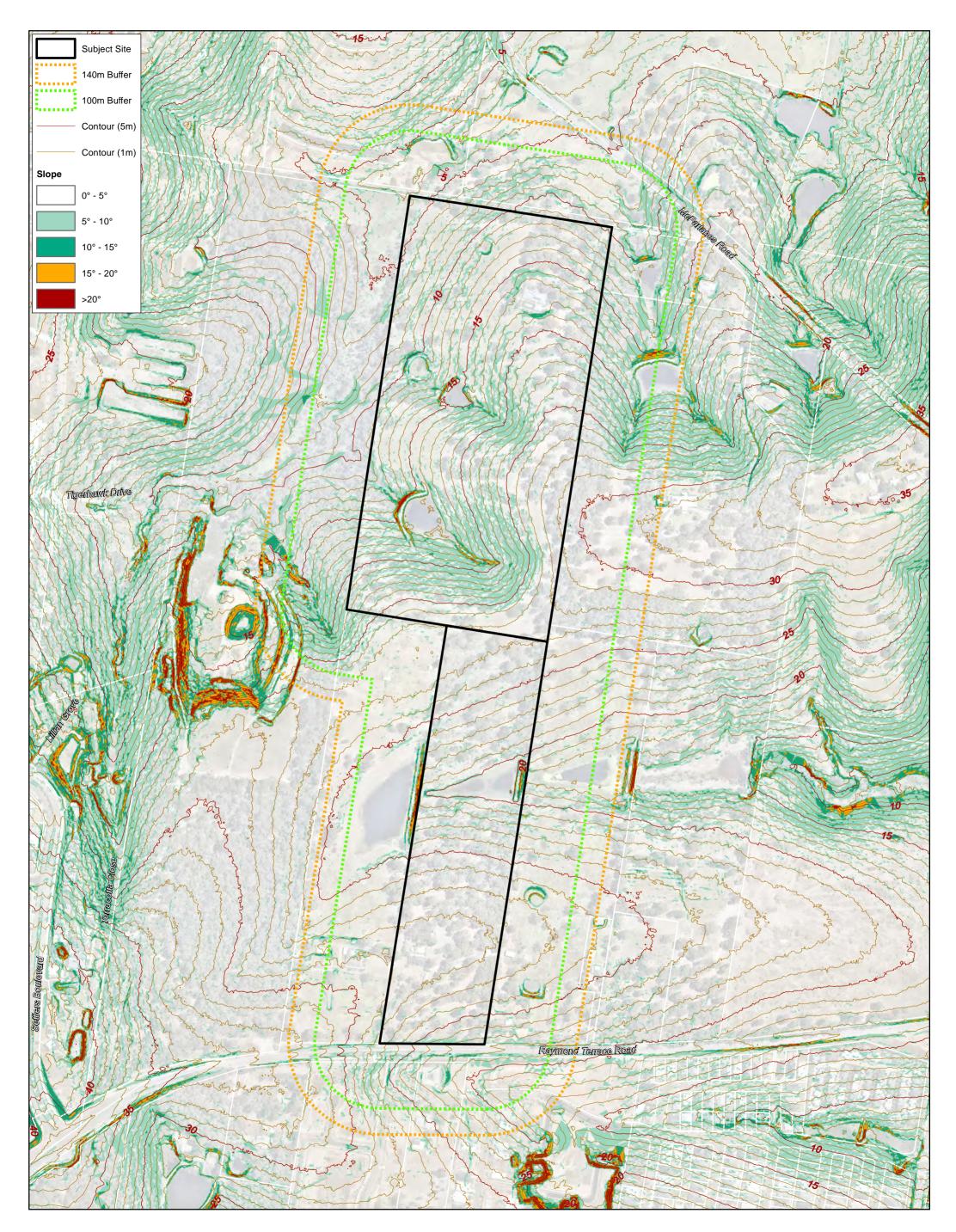


Plate 11: T11 transitions through forest into wetland and onto managed lands

Plate 12: Proposed development provides a new road connection to the adjoining residential development (between T1 and T11)

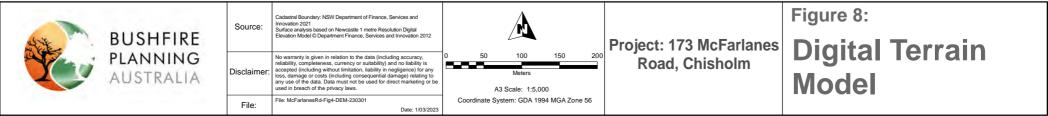
ALL .	BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2022 Aerial Photo: NearMap 0301/2023 Vegetation: © Sala Government of NSW and Department of Planning and Environment 2022	À	Project: 173 McFarlanes	Figure 6:
	PLANNING AUSTRALIA	Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no lability is accepted (including without limitaton, lability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 200 Meters A3 Scale: 1:5,000	Road, Chisholm	Vegetation Type
		File:	File: McFarlanesRd-Fig3-Vegetation-NSW-SVT-230301 Date: 1/03/2023	Coordinate System: GDA 1994 MGA Zone 56		5


3.2. Slope Assessment


The slope assessment was undertaken as follows:

- Review of LiDAR point cloud data including DEM (NSW LPI),
- Detail survey of existing contours; and
- Site inspection by Stuart Greville (Bushfire Planning Australia) on 18 November 2021 and 28 March 2023.


An assessment of the slope over a distance of 140m in the hazard direction from the site boundary was undertaken. The effective slope was then calculated under the classified vegetation where there was a fire run greater than 50m. The topography of the site has been evaluated to identify both the average slope and by identifying the maximum slope present. These values help determine the level of gradient which will most significantly influence the fire behaviour of the site.


The effective slope in all directions is shown in Figure 7, Figure 8 and Table 2.

ATT .	BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021 Ansial Proc. Nearmap 0301/2023 Surface analysis based on Newcastla 1 metro Resolution Digital Elevation Model © Department Finance, Services and Innovation 2012	A	Project: 173 McFarlanes	Figure 7: Slope Analysis:
	PLANNING AUSTRALIA	Disclaimer:	No waranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no accepted (including without limitaton, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	Meters	Road, Chisholm	LiDAR
		File:	File: McFarlanesRd-Fig5-SlopeLiDAR-230301 Date: 1/03/2023	Coordinate System: GDA 1994 MGA Zone 56		

3.3. Results

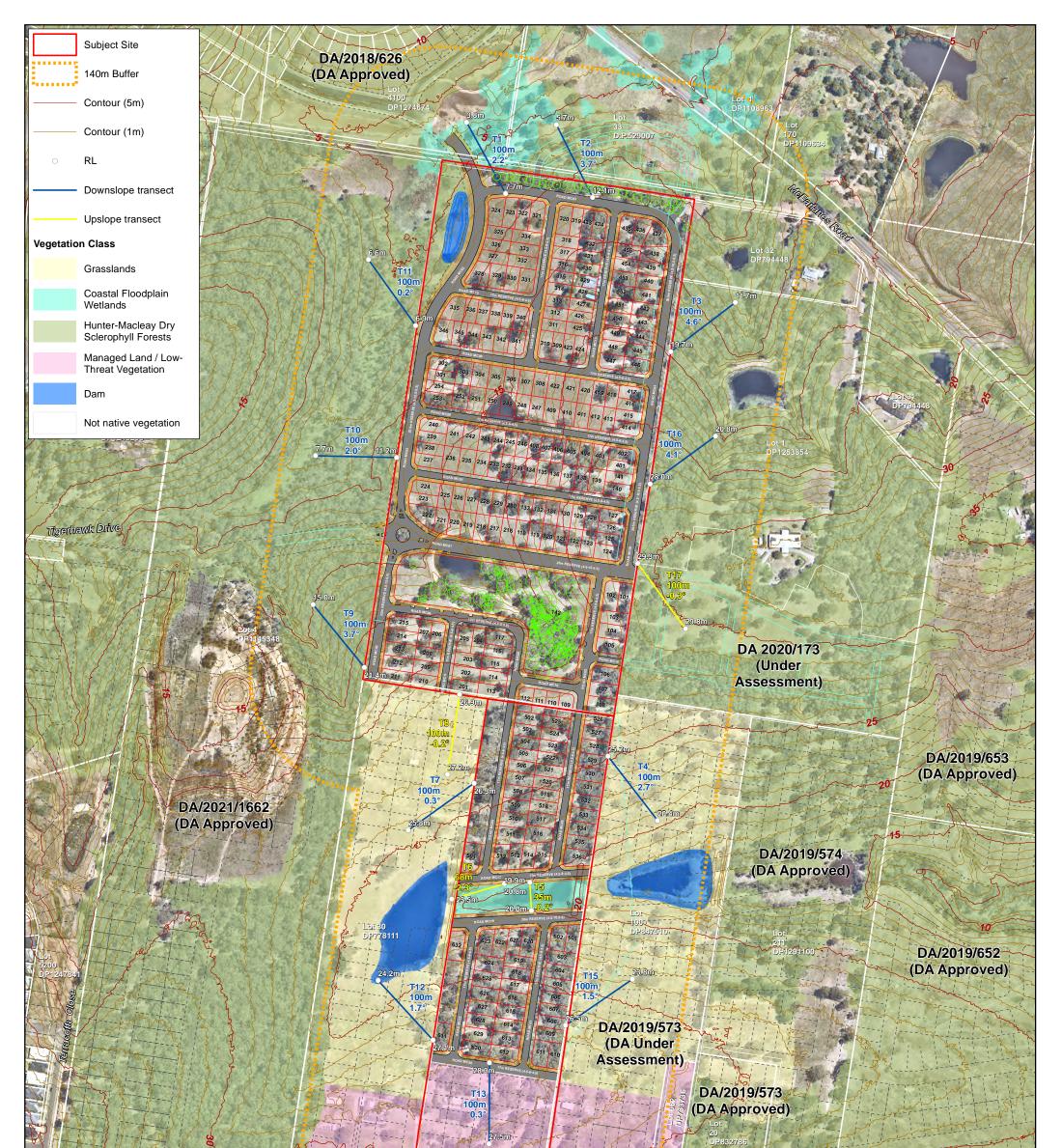
The site inspection formed part of a reliability assessment to determine whether the site's mapped characteristics were consistent with the actual slope and vegetation characteristics observed on the site.

It was confirmed during the site inspection, the predominant vegetation classification within and surrounding the site to the north, east and west is a *forest;* specifically, *Hunter Macleay Dry Sclerophyll Forest* vegetation formation in accordance with the descriptions contained in Keith. The primary bushfire hazard is the forest vegetation located to within and beyond 140m to the west of the northern portion (Lot 32) of the proposed development.

Managed land also exists to the west within 140m of the southern portion (Lot 31) of the proposed development site and north of Raymond Terrace Road, before transitioning to the *forest* vegetation and primary bushfire hazard.

Whilst acknowledging there are multiple development applications lodged (or being prepared) with Maitland City Council seeking approval for future development of all adjoining lots to the east and south of the proposed site, until these future developments are approved and the vegetation is cleared, it remains the primary bushfire hazard and is therefore assessed for the purposes of this BAR.

The vegetation that exists to the south, south-east and south-west of the site is deemed low-threat vegetation as it is part of managed land surrounding the adjoining rural residential dwellings or cleared land for an approved future residential subdivision (southern side of Raymond Terrace Road). This type of vegetation is not required to be considered for the purposes of PBP 2019.


As part of the proposed development, vegetation will also exist on site as part of the proposed Council dedicated reserve located in the mid-section of the site. Vegetation will also be regenerated as part of the drainage reserve located in place of the existing dam which will consist of *Forested Wetlands* along the drainage batters and has been assessed accordingly.

The final bushfire hazard assessment defining vegetation classifications and effective slope is shown in **Table 2** and **Figure 9**.

Transect	Vegetation Description	Vegetation Classification (PBP 2019)	Slope
T1 North	Managed land within the proposed development transitioning to forested wetland vegetation immediately located external to the site's northern boundary	Forested Wetland (Coastal Floodplain Wetland)	2.2° Downslope
T2 North	Forest vegetation from the site's northern boundary	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	3.3° Downslope
T3 East	Forest vegetation from the site's eastern boundary	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	4.6° Downslope
T4 East	Managed land on the eastern neighbouring lot assessed as a grassland - within future development site	Grassland	-0.5° Upslope
T5 On-site	An existing dam within the development site to be revegetated as forested wetland	Forested Wetland (Coastal Floodplain Wetland)	-0.2° Upslope
T6 On-site	An existing dam within the development site to be revegetated as forested wetland	Forested Wetland (Coastal Floodplain Wetland)	-2.3° Upslope
T7 West	Managed land on the western neighbouring lot assessed as a grassland - within future development site	Grassland	-2.3° Upslope
T8 West	Managed land on the western neighbouring lot assessed as a grassland - within future development site	Grassland	-0.2° Upslope
T9 West	Forest vegetation from the site's western boundary	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	3.7° Downslope
T10 West	Forest vegetation from the site's western boundary	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	2.0° Downslope
T11 West	Forest vegetation from the site's western boundary	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	0.2° Downslope
T12 West	Managed land on the western neighbouring lot assessed as a grassland - within future development site	Grassland	1.7° Downslope
T13 South	Managed land within the subject site for future development under a separate consent	Excluded (Managed Land)	0.3° Downslope
T14 South-east	Managed land on the southern side of Raymond Terrace Road	Excluded (Managed Land)	2.6° Downslope
T15 East	Managed land on the eastern neighbouring lot assessed as a grassland	Grassland	1.5° Downslope

Table 2: Slope and Vegetation Assessment Results

BUSHFIRE PLANNING AUSTRALIA	Source: Disclaimer:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021 Available 2011/2023 Available 2011/2023 Available 2011/2023 Available 2011/2023 Available 2011/2011/2011/2011/2011/2011/2011/2011	0 50 100 150 Meters A3 Scale: 1:4,500	Joh nov 9170	Figure 9: Slope & Vegetation Assessment
	File:	File: 2179-McFarlanesRd-Fig6-Slope Veg-230519 Date: 19/05/2023	Coordinate System: GDA 1994 MGA Zone 56		

3.4. Significant Environmental Features

There are no known environmental features of significance within the development footprint or the balance of the site.

3.5. Threatened Species, populations or ecological communities

The area of the site to be affected by the proposed development has been identified to minimise impact on any threatened species, population or EEC. All bushfire mitigation measures; including APZs have considered the existing and potential biodiversity values to minimise impact where possible.

3.6. Aboriginal Objects

A search of the AHIMS database (results contained in **Appendix B**) revealed there are no Aboriginal sites or places recorded in or near the subject site within a 50 metre buffer.

3.7. Bushfire Planning - Urban Release Area

The subject site is identified within a Bushfire Planning - Urban Release Area (URA) as indicated on **Figure 10** and **11**. As a subdivision of land within an URA, the assessment undertaken as part of the preparation of the BAR may exempt the proposed lots from reassessment of bushfire matters when future land owners are ready to construct a dwelling on their lot/s. For the future landowners to benefit from the available exemptions, a Post-Subdivision Bush Fire Attack Level Certificate (PSBC) must be obtained to allow for the streamlined process. To facilitate the PSBC, a Subdivision BAL Plan is required that demonstrates the location of APZs and that all new lots can suitably accommodated a dwelling envelope achieving BAL-29 or less.

A **Subdivision BAL Plan** has been prepared and contained in **Appendix E**. As part of the application for a Bushfire Safety Authority (BFSA) it is requested the RFS endorse the included **Subdivision BAL Plan**.

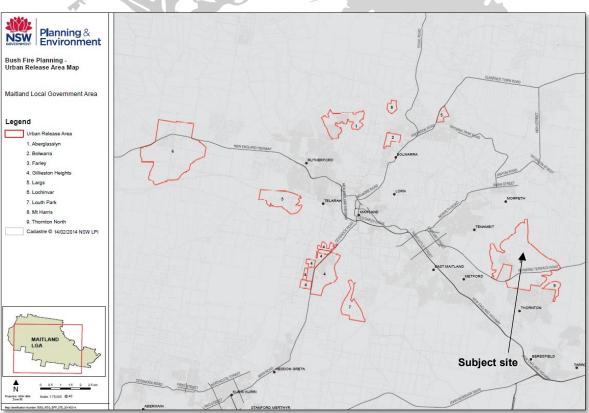


Figure 10: Bushfire Planning - Urban Release Area Map (Maitland LGA)

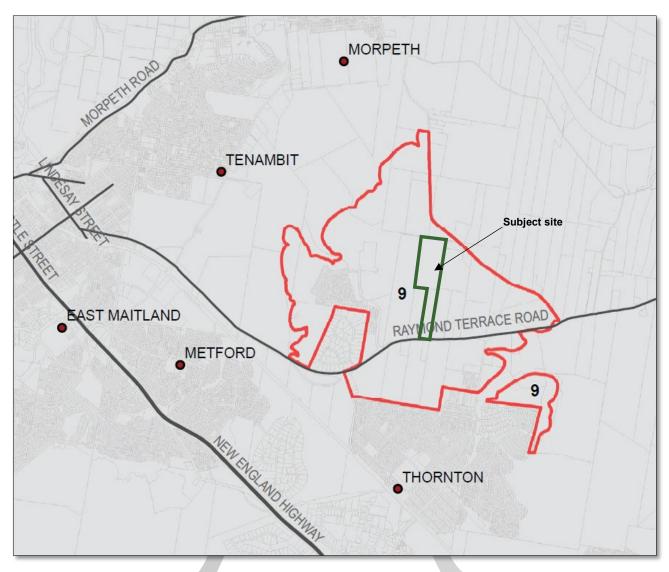


Figure 11: Bushfire Planning - Urban Release Area: Thornton North

4. Bushfire Protection Measures

This BAR has adopted the methodology to determine the appropriate Bushfire Protection Measures (BPMs) detailed in PBP 2019. As part of the BAR, the recommended BPMs demonstrate the aims and objectives of PBP 2019 have been satisified; including the matters considered by the RFS necessary to protect persons, property and the environment from the danger that may arise from a bushfire.

4.1. Asset Protection Zones

An APZ is an area surrounding a development that is managed to reduce the bushfire hazard to an acceptable level to mitigate the risk to life and property. The required width of the APZ varies with slope and the type of hazard. An APZ can consist of both an inner protection area (IPA) and an outer protection area (OPA).

An APZ can include the following:

- Lawns;
- Discontinuous gardens;
- Swimming pools;
- □ Roads, driveways and managed verges;
- Unattached non-combustible garages with suitable separation from the dwelling;
- Open space / parkland; and
- Car parking.

The presence of a few shrubs or trees in the APZ is acceptable provided that they:

- Do not touch or overhang any buildings;
- Are well spread out and do not form a continuous canopy;
- Are not species that retain dead material or deposit excessive quantities of ground fuel in a short period or in a danger period; and
- Are located far enough away from any dwelling so that they will not ignite the dwelling by direct flame contact or radiant heat emission.

Woodpiles, wooden sheds, combustible material storage areas, large areas / quantities of garden mulch, stacked flammable building materials etc. are not recommended in the APZ.

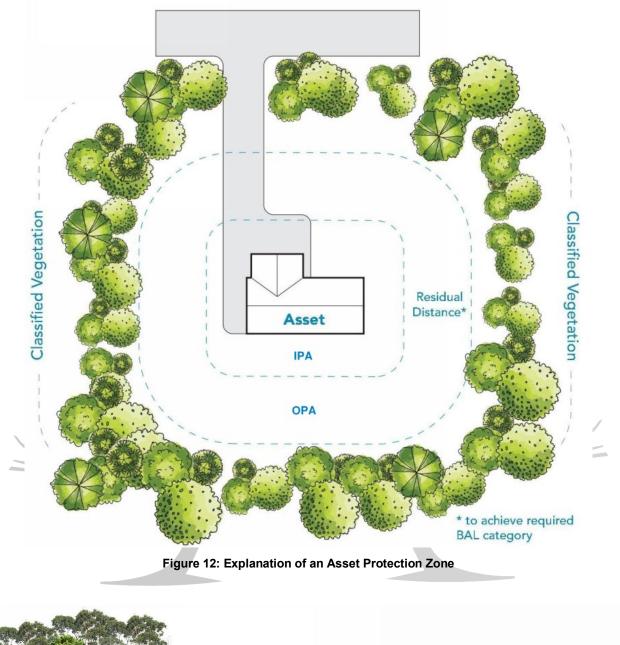


Figure 13: Asset Protection Zone profile

4.1.1. Determining the Appropriate Setbacks

To achieve compliance with the performance criteria for APZs (Table 5.3a), the Acceptable Solutions outlined in Table A1.12.2 of PBP 2019 may be adopted as a deemed-to-satisify solution.

Alternatively, the appropriate APZ setback may be determined to achieve the Performance Criteria by adopting a performance-based solution. Based on the unique site characteristics identified by the BAR, the intensity of a bushfire event presented as the radiant heat exposure was calculated at several locations throughout the development site using the NBC Bushfire Attack Assessor V4.1. The nominated fuel loads for the respective vegetation classifications as published by the RFS in March 2019 have been used to determine the APZs and the effective slope obtained from the Digital Elevation Model (DEM) for each transect.

As the site lies within the Maitland City Council LGA, it is assessed under a FDI rating of 100. The Detailed Method (Method 2) outlined in Australian Standard *AS3959-2018 Construction of buildings in bushfire prone areas* was used to calculate the potential level of radiant heat flux generated at the nominated locations (see transects T1-T15). To ensure the APZs achieve the intent of Section 5.3 of PBP 2019, the APZs have been determined to ensure all lots are able to accomomodate a dwelling that will not be exposed to radiant heat levels exceeding 29kW/m². The NBC Bushfire Attack Assessor report detailing the inputs used is contained in **Appendix C**.

Refer to **Table 3** for the recommended APZs. **Figure 18** and **Figure 19** presents the APZs for the proposed development based on the existing bushfire hazard, noting there are both temporary and permanent APZs based on existing and future adjoining developments. The permananent APZs are required on the northern and southern sides of the environmental corridor. The temporary APZs are required along both sides of the environmental corridor and the eastern and western boundaries of both the northern and southern development sites. Additionally a temporary APZ is also required along the northern boundary of the northern development site, until adjoining developments are completed. It is noted the proposed development cannot be completed until public road access is provided following completion of the residential subdivision on the eastern boundary; being 523 Raymond Terrace Road, Chisholm.

Refer to **Table 3** and **Figure 18** and **Figure 19** for the required and recommended APZs for each transect.

2179 BUSHFIRE ASSESSMENT REPORT: HARRIS-MAY RESIDENTIAL SUBDIVISION, CHISHOLM

Transect	Vegetation Classification (PBP 2019)	Slope	PBP 2019 (Table A1.12.2)	Recommended APZ (Method 2 <29kW/m²)
T1 North	Forested Wetland (Coastal Floodplain Wetland)	2.2° Downslope	12m	11m
T2 North	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	3.3° Downslope	29m	19m
T3 East	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	4.6° Downslope	29m	20m
T4 East	Grassland	-0.5° Upslope	10m	10m
T5 On-site	Forested Wetland (Coastal Floodplain Wetland)	-0.2° Upslope	10m	10m
T6 On-site	Forested Wetland (Coastal Floodplain Wetland)	-2.3° Upslope	10m	9m
T7 West	Grassland	-2.3° Upslope	10m	10m
T8 West	Grassland	-0.2° Upslope	10m	10m
T9 West	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	3.7° Downslope	29m	19m
T10 West	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	2.0° Downslope	29m	18m
T11 West	<i>Forest</i> (Hunter Macleay Dry Sclerophyll Forest)	0.2°* Downslope	24m	16m
T12 West	Grassland	1.7° Downslope	12m	11m
T13 South	Excluded (Managed Land)	0.3° Downslope	N/A	N/A
T14 South-east	Excluded (Managed Land)	2.6° Downslope	N/A	N/A
T15 East	Grassland	1.5° Downslope	12m	11m

Table 3: Required APZ setback - FDI @ 100

* T11 slope has been assessed as 'flat' given 0.2 downslope is considered marginal and associated results are negligible.

The recommended APZs detailed in **Table 3** are considered to be acceptable in this instance and satisfies the Performance Criteria for APZs outlined in Table 5.3a of PBP 2019.

4.2. Access

In the unlikely event of a serious bushfire, it will be essential to ensure that adequate ingress/ egress and the provision of defendable space are afforded in the subdivision layout for all future dwellings.

The proposed road network consists of perimeter and non-perimeter roads which have been designed in accordance with Table 5.3b of PBP 2019. Refer to **Appendix A** for the development plans indicating the proposed access arrangements. Ten (10) new road connections are provided offering public road connections from the northern precinct (north of the riparian corridor) into the adjoining residential developments. Four (4) public road connections are proposed to be constructed to connect the southern precinct into the adjoining future road network.

All roads have been designed either in accordance with or exceed the minimum required for an Acceptable Solution under PBP 2019 including minimum 10.5m (up to 12.0m) wide road carriageways for all perimeter roads and 8m wide non-perimeter roads. **Figure 14** indicates the connectivity between the internal road network and the surrounding Thornton North Urban Release Area – within which the subject site is entirely surrounded by.

Upon completion of the surrounding subdivisions, the remaining bushfire risk will be contained to the vegetation to be retained within the land to the west zoned E2 Environmental Conservation and a smaller area of vegetation to be retained to the northeast. Both of these bushfire hazards ha e an area greater than 1 hectares, but are contained by surrounding residential development and are not connected to any other large areas of bushfire hazardous vegetation. A marginal bushfire hazard is confined to the narrow riparian corridor; which is less than 40m wide. Operational firefighting can occur from both sides of the 40m wide vegetated riparian corridor (*forested wetland*).

All new perimeter roads and non-perimeter roads are required to be designed in accordance with Maitland City Council development control plan and engineering specifications. The proposed 8m wide internal local streets (non-perimeter roads) are considered sufficiently wide enough to accommodate parking for light vehicles on both sides of road, outside of the primary vehicle carriageway. It is noted the standard for on-street parking required by Australian Standard *AS2890.5:2020 Parking facilities On-street parking* for roads with a speed limit of 50km/hr or less is to be between 2.0m and 2.3m. It is also noted that a RFS Category 1 Firefighting vehicle is 2.4m wide. Furthermore, applying the option of permitting short constrictions where the width of the access road may be reduced for sections less than 30m, an 8m wide road is considered wide enough to provide a continuous unobstructed carriageway with parking on both sides of the road. The combination of double width driveways along a typical residential local street will prevent a continuous line of parked cars on both sides of the local street. It is also unlikely that on-street parking demand in the locality would result in vehicles parked along both sides of non-perimeter (or perimeter) roads.

The bushfire hazards to the east and west will both be completely contained and separated by perimeter roads from each adjoining residential development. Accordingly, direct access and defendable space is available to wherever a bushfire is spreading. Furthermore, the network of public roads throughout the site provide road connections in every available direction. Accordingly, where ever a bushfire may occur, multiple evacuation routes are available for use be residents evacuating the area.

In summary, it is considered the proposed road network provides safe, all-weather two-way through roads and safe operational access for emergency service personnel and evacuation purposes; complying with the relevant provisions contained in Section 5.3.2 of PBP. Accordingly, the access requirements can be achieved by meeting the Performance Criteria under Table 5.3b of PBP 2019.

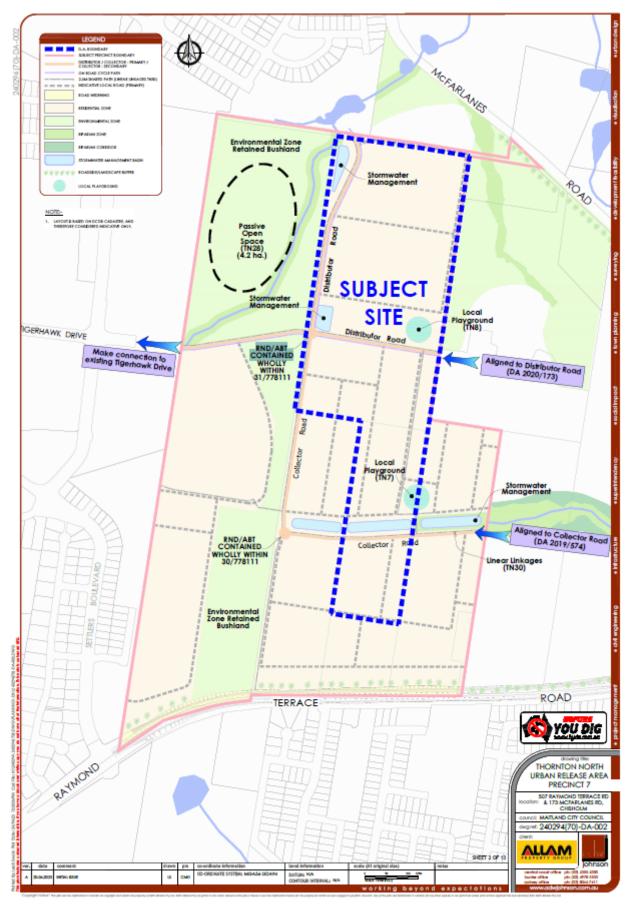
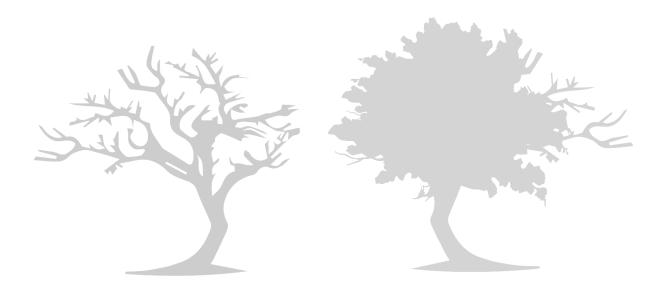


Figure 14: Thornton North URA – road network

4.3. Services - water, electricity and gas

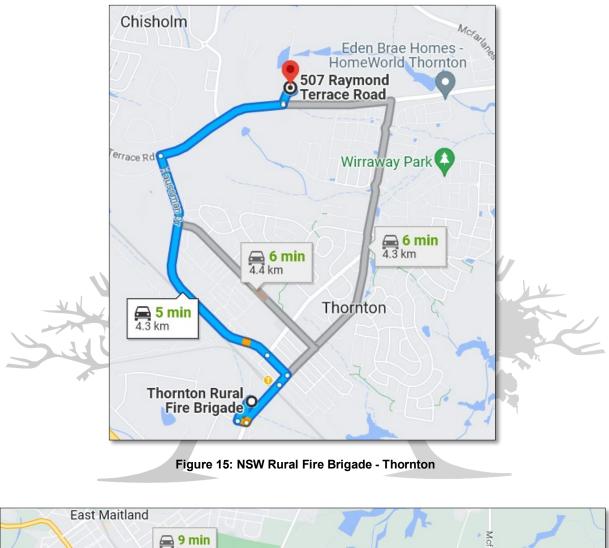
4.3.1. Water


A reticulated water supply is able to be connected to both new lots in accordance with Table 5.3c of PBP 2019.

4.3.2. Electricity

Any new electricity services will be supplied and located underground.

4.3.3. Gas


Any reticulated or bottled gas will be installed and maintained according to the requirements of the relevant authorities and AS 1596-2002. It is expected that the location of gas services will not lead to ignition of surrounding bushland or the fabric of buildings.

4.5. Emergency Services

There is a NSW Rural Fire Brigade is located at Kooralbyn Street, Thornton within 4.3km (approximately 5 minutes from the site (**Figure 15**). A second NSW Fire and Rescue Service Fire Station located at 1 Chelmsford Drive, Metford within 5.9km (approximately 8 minutes) from the site (**Figure 16**).

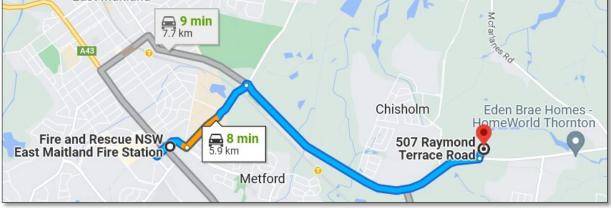


Figure 16: NSW Fire & Rescue - East Maitland

4.6. Construction Standards - Bushfire Attack Level

All buildings must satisfy the Performance Requirements of the National Construction Code: Building Code of Australia (BCA). Part 2.3 of Volume 2 of the BCA applies to dwellings located within designated bushfire areas, which are defined as:

Land which has been designated under a power in legislation as being subject, or likely to be subject to, bushfires.

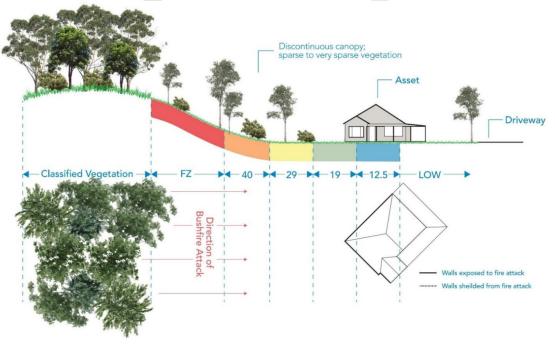
Accordingly, any forthcoming habitable buildings must satisfy the requirements of Part 3.7.4 of the BCA. The *Deemed-to-Satisfy* (DTS) provision of the BCA can only be achieved if dwellings in bushfire prone areas are constructed in accordance with Australian Standard *AS3959-2018 Construction of buildings in bushfire prone areas*. Alternatively, the DTS provisions can also be achieved if the habitable building is constructed in accordance with the NASH Standard 'Steel Framed Construction in Bushfire Areas'.

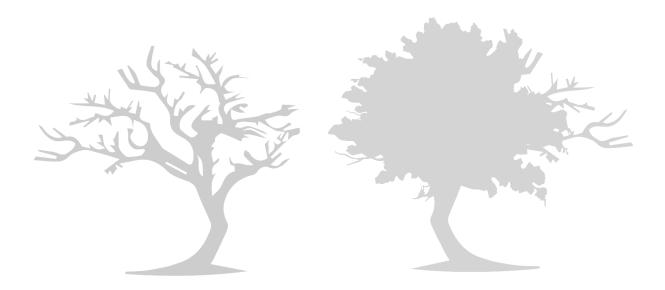
Building design and the materials used for construction of future dwellings should be chosen based on the information contained within AS3959-2018, and accordingly the designer/architect should be made aware of this recommendation.

The determinations of the appropriate bushfire attack level (BAL) is based on the maximum potential radiant heat exposure. BALs are based upon parameters such as weather modelling, fire-line intensity, flame length calculations, as well as vegetation and fuel load analysis. The determination of the BAL is derived by assessing the:

- □ Relevant GFDI = 100;
- □ Flame temperature = 1090K;
- □ Slope = *variable*;
- Vegetation classification = forest; and
- Building location.

The greatest bushfire hazard was found to the west of the site being a forest.




Figure 17: BAL example

The existing bushfire hazard was found to the west of the proposed development site and identified as a *forest (Hunter Macleay Dry Sclerophyll Forest)*. Vegetation to the east is considered a temporary hazard as all adjoining lots are in the process of being developed, however, until the vegetation is cleared it is considered a hazard it requires temporary BALs and is assessed accordingly (**Figure 18**). Vegetation to the west will therefore remain the closest and primary bushfire hazard which requires permanent BALs and is assessed accordingly (**Figure 19**).

The proposed drainage reserve corridor separating the northern and southern development sites will become the primary bushfire hazard once the neighbouring developments commence. The drainage reserve will consist of a planting schedule commensurate with *Forested Wetlands* and *Freshwater Wetlands*, requiring permanent BALs and assessed accordingly (**Figure 19**).

The recommended BALs are shown in **Table 4** and **Figure 18** and **Figure 19**.

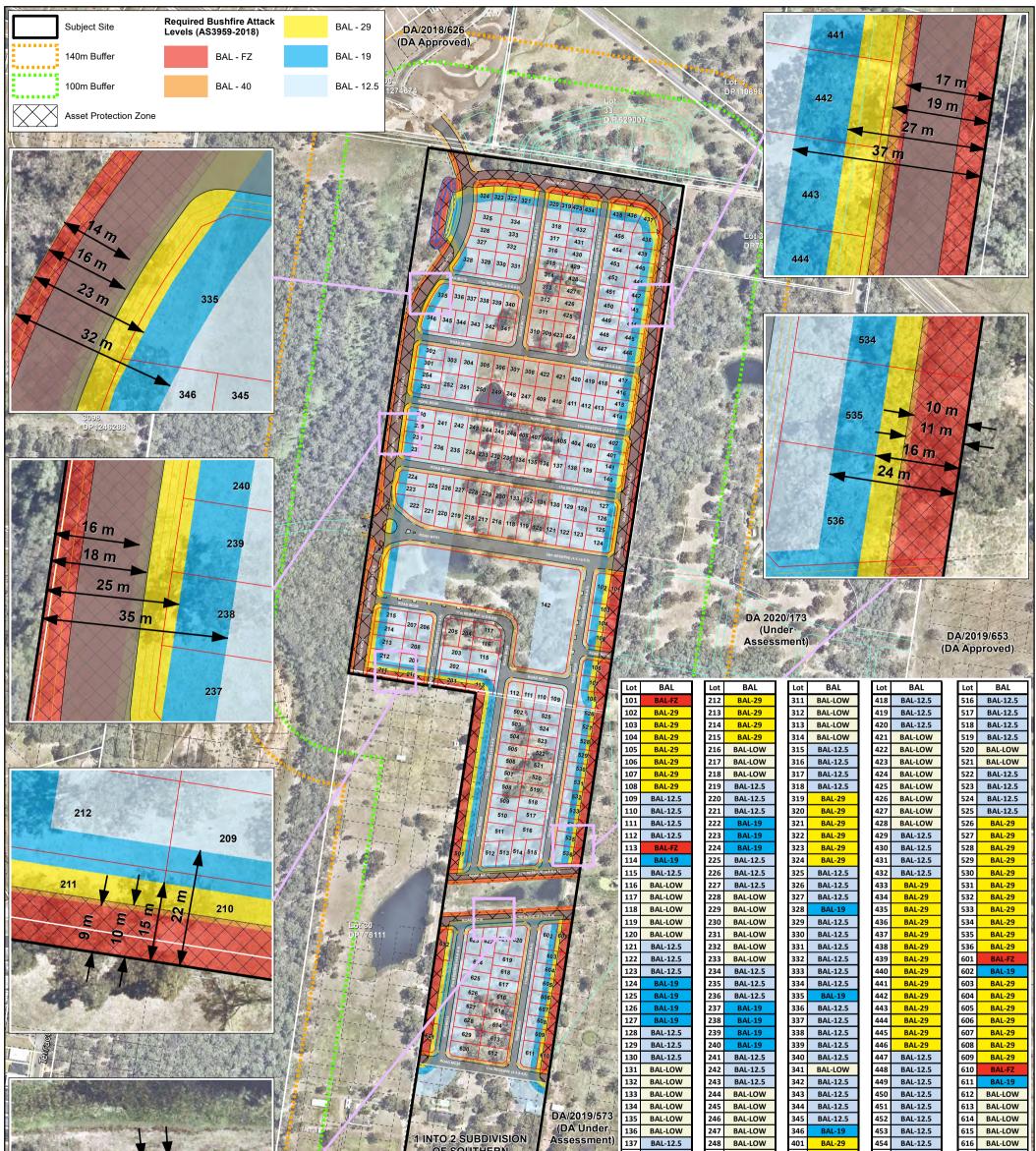
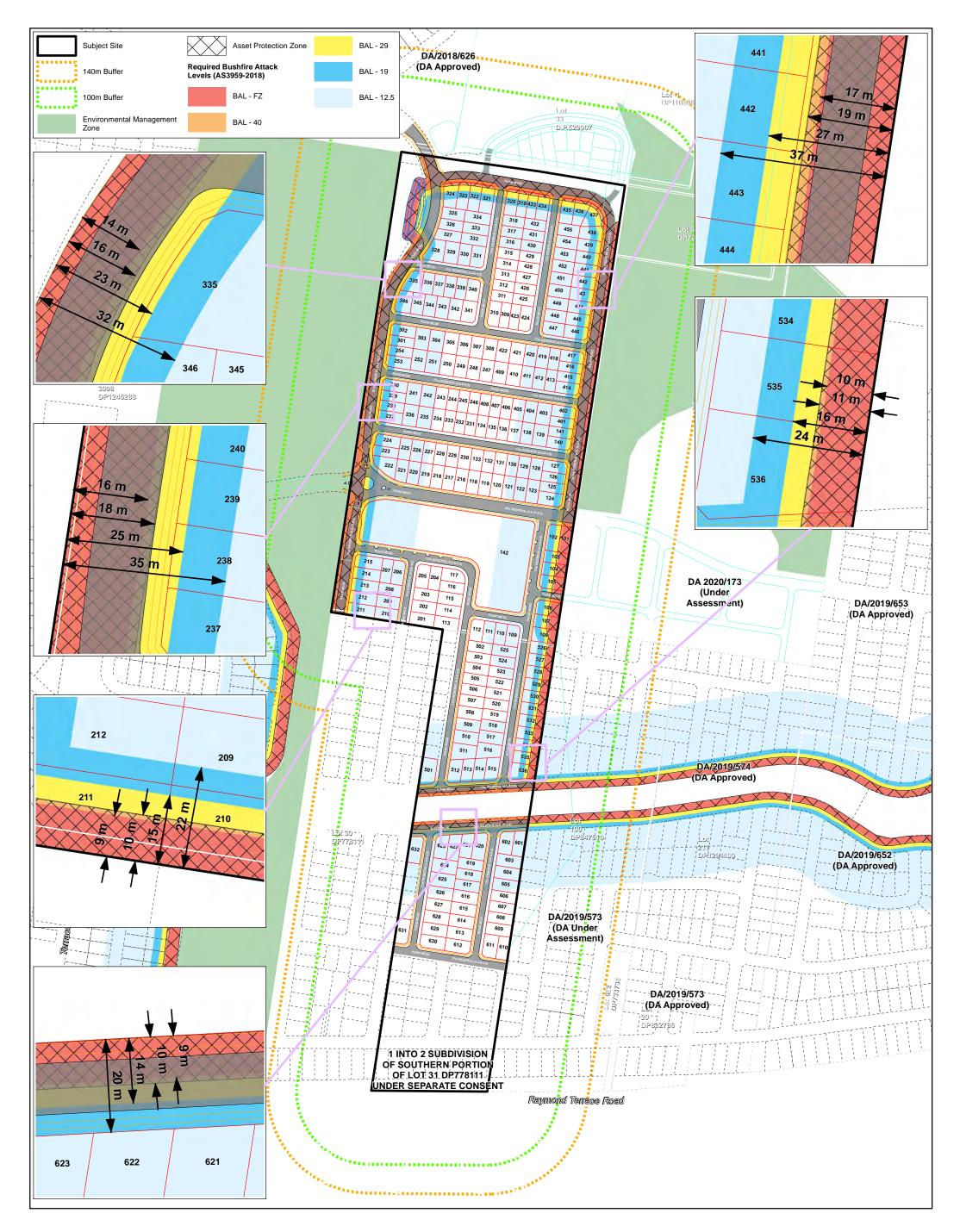
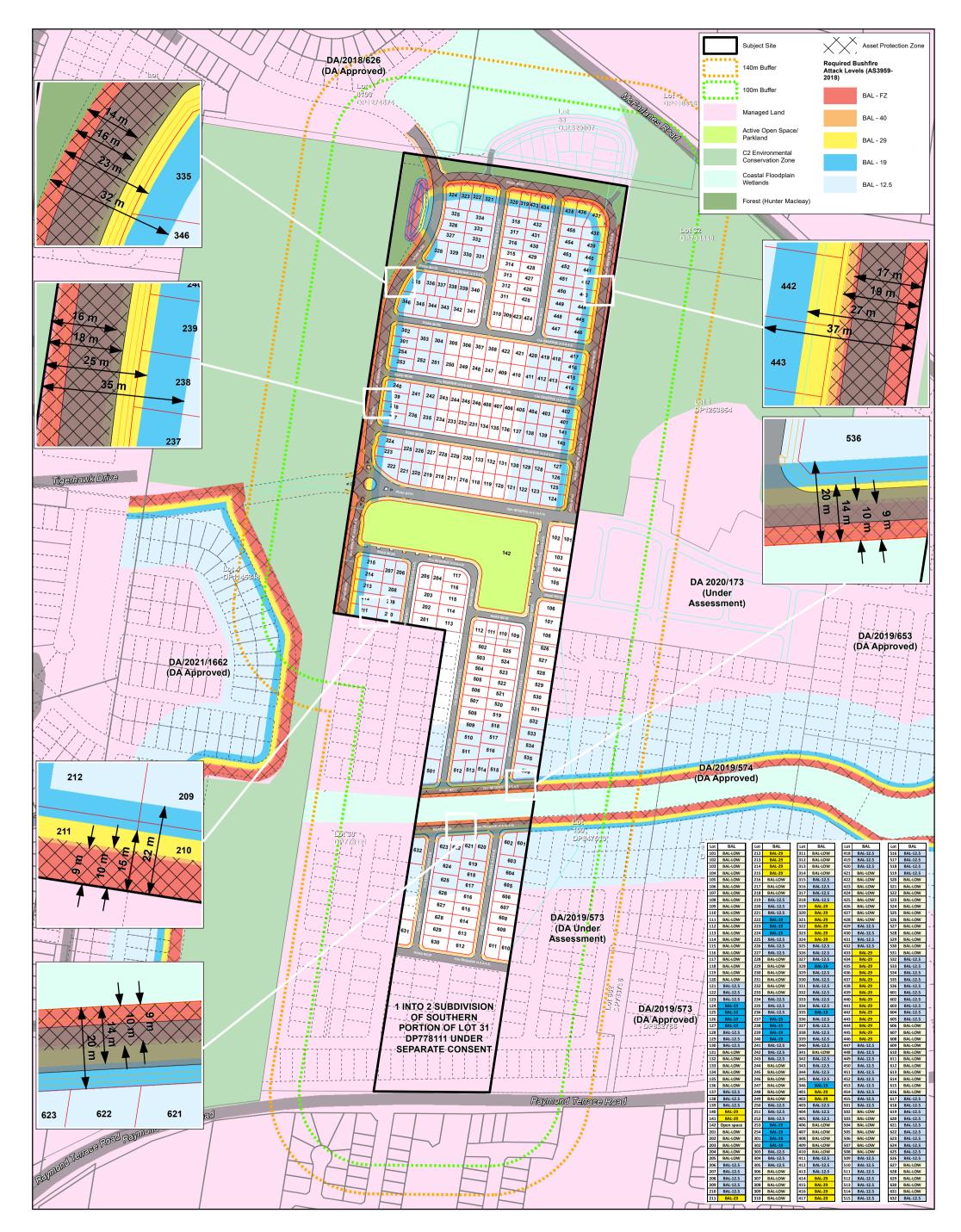

Transect	Vegetation Classification (PBP 2019)	Slope	Recommended APZ (<29kW/m²)	Distance from Hazard	Bushfire Attack Level (BAL)
				0m-<10m	BAL-FZ
T1	Forested Wetland	2.2°		10m-<11m	BAL-40
North	(Coastal Floodplain	2.2 Downslope	11m	11m-<16m	BAL-29
	Wetlands)	•		16m-<23m	BAL-19
				23m-<100m	BAL-12.5
				0m-<17m	BAL-FZ
T2	Forest	2.08		17m-<19m	BAL-40
⊺∠ North	(Hunter Macleay	3.3° Downslope	19m	19m-<27m	BAL-29
	DSF)	Demiciepe		27m-<37m	BAL-19
				37m-<100m	BAL-12.5
				0m-<18m	BAL-FZ
To	Forest	1.00	and the second second	18m-<20m	BAL-40
T3 East	(Hunter Macleay	4.6° Downslope	20m	20m-<28m	BAL-29
Last	DSF)	Downsiope		28m-<39m	BAL-19
1				39m-<100m	BAL-12.5
33				0m-<9m	BAL-FZ
				9m-<10m	BAL-40
T4 East	Grassland	-0.5° Upslope	10m 🎾	10m-<15m	BAL-29
Last		Opsiope		15m-<22m	BAL-19
				22m-<50m	BAL-12.5
		~		0m-<9m	BAL-FZ
	Forested Wetland			9m-<10m	BAL-40
T5 On-site	(Coastal Floodplain	-0.2° Upslope	10m	10m-<14m	BAL-29
Oll-site	Wetlands)	Opsiope		14m-<20m	BAL-19
				20m-<100m	BAL-12.5
				0m-<8m	BAL-FZ
	Forested Wetland			8m-<9m	BAL-40
T6 On site	(Coastal Floodplain	-2.3°	9m	9m-<12m	BAL-29
On-site	Wetlands)	Upslope		12m-<18m	BAL-19
				18m-<100m	BAL-12.5
				0m-<8m	BAL-FZ
				8m-<10m	BAL-40
T7	Grassland	-2.3°	10m	10m-<15m	BAL-29
West		Upslope		15m-<22m	BAL-19
				22m-<50m	BAL-12.5

Table 4: Required Bushfire Attack Level


Transect	Vegetation Classification (PBP 2019)	Slope	Recommended APZ (<29kW/m²)	Distance from Hazard	Bushfire Attack Level (BAL)
				0m-<9m	BAL-FZ
				9m-<10m	BAL-40
T8 West	Grassland	-0.2°	10m	10m-<15m	BAL-29
west		Upslope		15m-<22m	BAL-19
				22m-<50m	BAL-12.5
				0m-<18m	BAL-FZ
	Forest			18m-<19m	BAL-40
T9	(Hunter Macleay	3.7°	19m	19m-<27m	BAL-29
West	DSF)	Downslope		27m-<38m	BAL-19
				38m-<100m	BAL-12.5
			-	0m-<16m	BAL-FZ
	Forest			16m-<18m	BAL-40
T10 West	(Hunter Macleay	2.0°	18m	18m-<25m	BAL-29
west	DSF)	Downslope	2	25m-<35m	BAL-19
V				35m-<100m	BAL-12.5
				0m-<14m	BAL-FZ
	Forest	L'e	2	14m-<16m	BAL-40
T11 West	(Hunter Macleay	Flat*	16m	16m-<23m	BAL-29
WESI	DSF)		J.	23m-<32m	BAL-19
				32m-<100m	BAL-12.5
				0m-<10m	BAL-FZ
					DAL 40
				10m-<11m	BAL-40
T12	Grassland	1.7° Downslope	11m	10m-<11m 11m-<17m	BAL-40 BAL-29
T12 West	Grassland	1.7° Downslope	11m	<u></u>	
	Grassland		11m	11m-<17m	BAL-29
	<i>Grassland</i> Excluded (Managed Land)		11m N/A	11m-<17m 17m-<25m	BAL-29 BAL-19
West T13 & T14	Excluded	Downslope <5.0°		11m-<17m 17m-<25m 25m-<50m	BAL-29 BAL-19 BAL-12.5
West T13 & T14 South	Excluded	Downslope <5.0° Downslope		11m-<17m 17m-<25m 25m-<50m N/A	BAL-29 BAL-19 BAL-12.5 BAL-LOW
West T13 & T14 South T15	Excluded	Downslope <5.0° Downslope 1.5°		11m-<17m 17m-<25m 25m-<50m N/A 0m-<10m	BAL-29 BAL-19 BAL-12.5 BAL-LOW BAL-FZ
West T13 & T14 South	Excluded (Managed Land)	Downslope <5.0° Downslope	N/A	11m-<17m 17m-<25m 25m-<50m N/A 0m-<10m 10m-<11m	BAL-29 BAL-19 BAL-12.5 BAL-LOW BAL-FZ BAL-40

* T11 slope has been assessed as 'flat' given 0.2 downslope is considered marginal and associated results are negligible.



	OF SOUTHERN PORTION OF LOT 31	138	BAL-12.5	249	BAL-LOW	402	BAL-29	455	BAL-12.5	617	BAL-12.5
XXXXWXXX		139	BAL-12.5	250	BAL-12.5	403	BAL-12.5	501	BAL-FZ	618	BAL-12.5
XXXXXX	DP778111 UNDER	140	BAL-29	251	BAL-12.5	404	BAL-12.5	502	BAL-12.5	619	BAL-12.5
4 3 7	SEPARATE CONSENT	141	BAL-29	252	BAL-12.5	405	BAL-12.5	503	BAL-12.5	620	BAL-12.5
ES		142	Open space	253	BAL-19	406	BAL-LOW	504	BAL-12.5	621	BAL-12.5
		201	BAL-FZ	254	BAL-19	407	BAL-LOW	505	BAL-12.5	622	BAL-12.5
	Raymond	202	BAL-19	301	BAL-19	408	BAL-LOW	506	BAL-12.5	623	BAL-12.5
Table Transfer To La		203	BAL-12.5	302	BAL-19	409	BAL-LOW	507	BAL-12.5	624	BAL-12.5
		204	BAL-LOW	303	BAL-12.5	410	BAL-LOW	508	BAL-12.5	625	BAL-12.5
		205	BAL-LOW	304	BAL-12.5	411	BAL-12.5	509	BAL-12.5	626	BAL-12.5
The Art Art Market Art Art Art Art Art Art Art Art Art Ar		206	BAL-12.5	305	BAL-12.5	412	BAL-12.5	510	BAL-12.5	627	BAL-12.5
		207	BAL-12.5	306	BAL-LOW	413	BAL-12.5	511	BAL-12.5	628	BAL-12.5
623 622 621		208	BAL-12.5	307	BAL-LOW	414	BAL-29	512	BAL-12.5	629	BAL-12.5
A REAL PROPERTY AND A REAL		209	BAL-19	308	BAL-LOW	415	BAL-29	513	BAL-12.5	630	BAL-12.5
		210	BAL-FZ	309	BAL-LOW	416	BAL-29	514	BAL-12.5	631	BAL-FZ
		211	BAL-FZ	310	BAL-LOW	417	BAL-29	515	BAL-12.5		
A REPART A REPORT AND A				(Antonia in	Service and a service of the service	AND ADDRESS	And	A COMPANY OF A	WWW/		

AST	BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021 Aerial Photo: Nearmap 03/01/2023	À	Project: 173 McFarlanes	Figure 18: Subdivision BAL
	PLANNING AUSTRALIA	Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no liability is accepted (including without limitaton, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 Meters A3 Scale: 1:4,500		Plan - Temporary
		File:	File: 2179-McFarlanesRd-Fig7-BALs-TEMPORARY-230519 Date: 19/05/2023	Coordinate System: GDA 1994 MGA Zone 56		

ATTE .	BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021		Project: 173 McFarlanes	Figure 19: Subdivision BAL
	PLANNING AUSTRALIA	Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no liability is accepted (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 Meters A3 Scale: 1:4,500		Plan - Permanent
		File:	File: 2179-McFarlanesRd-Fig8-BALs-PERMANENT-230519 Date: 19/05/2023	Coordinate System: GDA 1994 MGA Zone 56		

the second	BUSHFIRE	Source:	Cadastral Boundary: NSW Department of Finance, Services and Innovation 2021	R	Figure 8: Subdivision BAL
	PLANNING AUSTRALIA	Disclaimer:	No warranty is given in relation to the data (including accuracy, reliability, completeness, currency or suitability) and no liability is accepted (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data. Data must not be used for direct marketing or be used in breach of the privacy laws.	0 50 100 150 Meters A3 Scale: 1:4,500	Plan - Permanent
		File:	File: 2179-McFarlanesRd-Fig8-BALs-PERMANENT-230525 Date: 25/05/2023	Coordinate System: GDA 1994 MGA Zone 56	

4.7. Landscaping and Vegetation Management

In APZs and IPAs, the design and management of the landscaped areas in the vicinity of buildings have the potential to improve the chances of survival of people and buildings. Reduction of fuel does not require the removal of all vegetation. Trees and plants can provide some bushfire protection from strong winds, intense heat and flying embers (by filtering embers) and changing wind patterns.

Generally landscaping in and around a bushfire hazard should consider the following:

- Priority given to retaining species that have a low flammability;
- Priority given to retaining species which do not drop much litter in the bushfire season, and which do not drop litter that persists as ground fuel in the bush fire season;
- Priority given to retaining smooth barked species over stringy bark; and
- Create discontinuous or gaps in the vegetation to slow down or break the progress of fire towards the dwellings.

Landscaping within APZs and IPAs should give due regard to fire retardant plants and ensure that fuel loads do not accumulate as a result of the selected plant varieties.

The principles of landscaping for bushfire protection aim to:

- Prevent flame impingement on dwellings;
- Provide a defendable space for property protection;
- Reduce fire spread;
- Deflect and filter embers;
- Provide shelter from radiant heat; and
- □ Reduce wind speed.

Plants that are less flammable have the following features;

- □ High moisture content and / or high levels of salt;
- Low volatile oil content of leaves;
- Smooth barks without 'ribbons' hanging from branches or trunks; and
- Dense crown and elevated branches.

Avoiding understorey planting and regular trimming of the lower limbs of trees also assists in reducing fire penetration into the canopy. Rainforests species such as Syzygium and figs are preferred to species with high fine fuel and/or oil content.

Trees with loose, fibrous or stringy bark should be avoided. These trees can easily ignite and encourage ground fire to spread up to, and then through the crown of trees.

Consideration should be given to vegetation fuel loads present on site with particular attention to APZs.

Careful thought must be given to the type and physical location of any proposed site landscaping. Inappropriately selected and positioned vegetation has the potential to 'replace' any previously removed fuel load.

Whilst it is recognised that fire-retardant plant species are not always the most aesthetically pleasing choice for site landscaping, the need for adequate protection of life and property requires that a suitable balance between visual and safety concerns be considered.

It is reiterated again that it is <u>essential</u> that any landscaped areas and surrounds are subject to ongoing fuel management and reduction to ensure that fine fuels do not build up.

5. Conclusion and Recommendations

Bushfire Planning Australia prepared a Bushfire Assessment Report for the proposed residential subdivision known as the 'Harris-May site' located at 173 McFarlanes Road and 507 Raymond Terrace Road, Chisholm; legally referred to as Lot 32 and Lot 31 DP778111 respectively.

The proposed development comprises a 264 Torrens title residential subdivision to be constructed in several stages. The design and layout (including roads) of the proposed subdivision is consistent with the Thornton North Master Plan prepared by Maitland City Council. As the plan of subdivision is consistent with the Master Plan, the proposed subdivision is not provided with direct to an existing public road. Consequently, development of the subject site cannot be completed until the subdivision of one or more of the adjoining properties has been completed. With this in mind, in addition to assessing the existing bushfire hazard, the BAR designed a series of recommendations relevant to the proposed subdivision following subdivision of the adjoining properties.

This BAR found the site was currently exposed to high bushfire hazard located to the west of the subject site. The predominant vegetation surrounding the site in unmanaged conditions is consistent with a *forest*, specifically *Hunter Macleay Dry Sclerophyll Forest*.

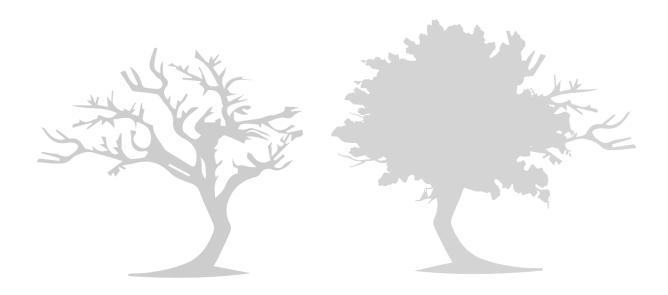
The bushfire hazard will be substantially reduced over the next 2-5 years as the remaining land surrounding the subject site zoned for residential use is subdivided and the remaining hazardous vegetation removed.

As the site is identified as the Thornton North Urban Release Area in the Maitland Local Government Area Bush Fire Planning - Urban Release Area Map, a Subdivision BAL Plan has been prepared and is contained in **Appendix E**. As part of the application for a Bush Fire Safety Authority under section 100b of the *Rural Fires Act 1997*, we are also seeking endorsement of the Subdivision BAL Plan prior to the registration of the subdivision.

The BAR concludes the bushfire hazard the proposed development is exposed to can be successfully mitigated by applying a combination of bushfire mitigation measures including temporary and permanent Asset Protection Zones (APZs).

The following key recommendations have been designed to enable the proposed development to achieve the aims and objectives of PBP 2019:

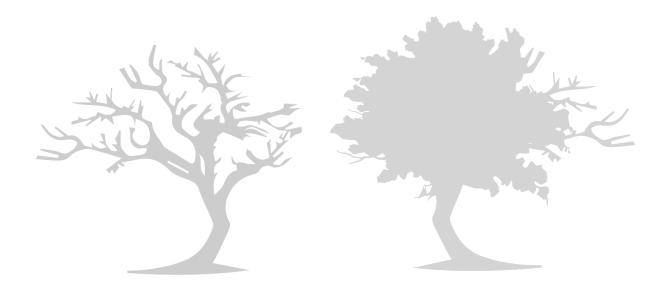
- 1. All land within the development site; excluding the riparian corridor, is be managed as an inner protection area (IPA) as outlined Appendix 4 of PBP 2019 and the RFS document *Standards for asset protection zones*;
- 2. The APZs shown in **Figure 19 Subdivision BAL Plan** shall be maintained in perpetuity in accordance with the requirements of Appendix 4 of PBP 2019;
- 3. Access shall be provided in accordance with the Performance Criteria detailed in Table 5.3b of PBP 2019. This will require the provision of a minimum of twelve (12) separate road access points provided from the development site to the north, east and west to ensure safe evacuation for all residents;
- **4.** On-street vehicle parking may be permitted within road carriageways as all roads are a minimum 8m wide;
- 5. All temporary turning heads shall be constructed in accordance Appendix A3.3 of PBP 2019;
- 6. Vegetation within road verges (including swales) to be consistent with a grassland vegetation classification with tree canopy less than 10% at maturity (and considered unmanaged);
- 7. The Bushfire Attack Level (BAL) ratings identified in Figure 19 Subdivision BAL Plan apply to all future dwellings to be constructed on the proposed lots. All future dwellings to be constructed on the proposed lots shall have due regard to the specific considerations given in the National Construction Code: Building Code of Australia (BCA) which makes specific reference to Australian Standard AS3959-2018 Construction of buildings in bushfire prone

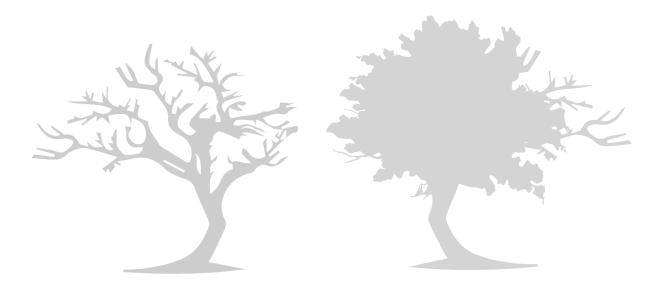


areas (AS3959-2018) and the NASH Standard Steel Framed Construction in Bushfire Prone Areas;

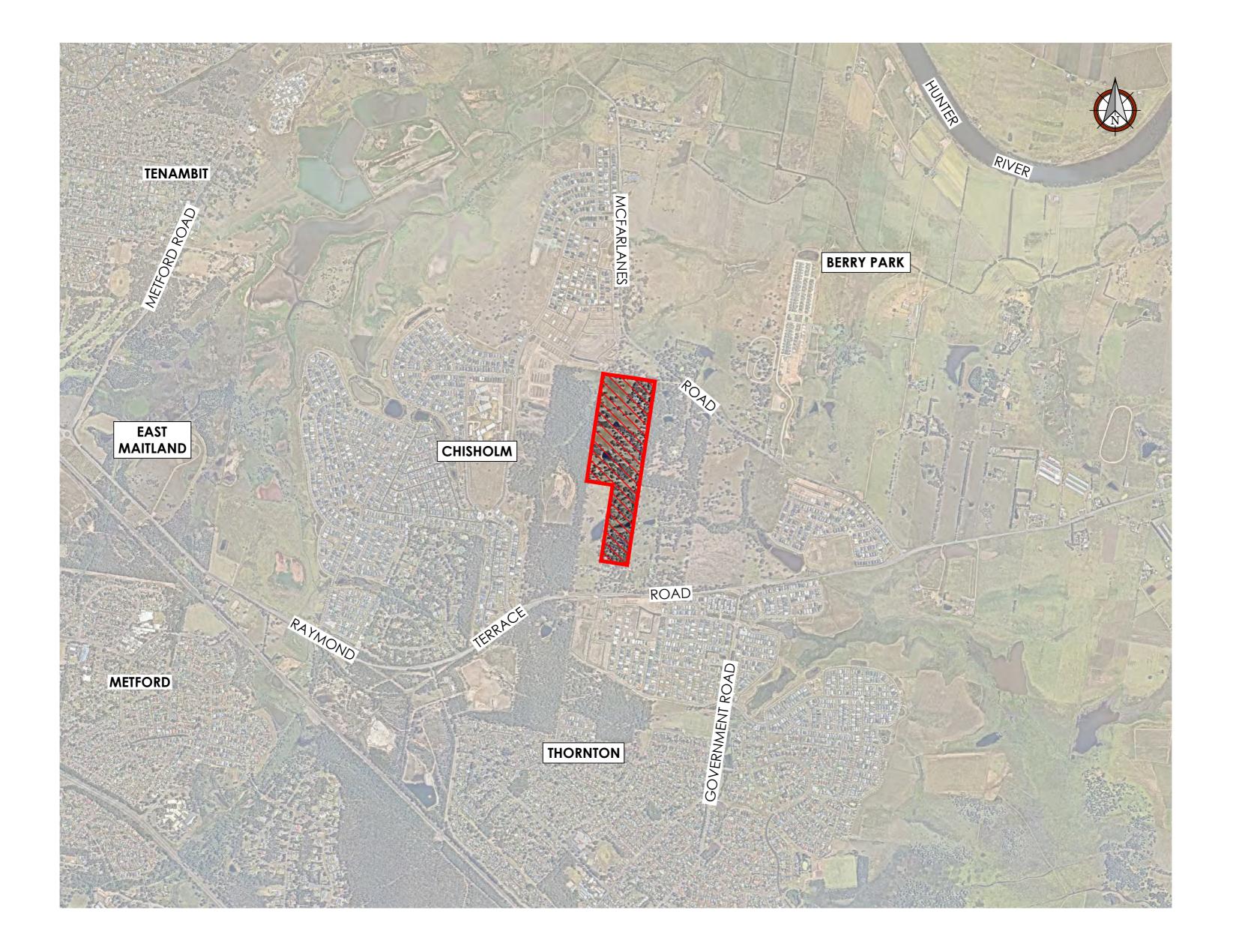
- 8. All new lots are to be connected to a reliable water supply network and that suitable fire hydrants are located throughout the development site that are clearly marked and provided for the purposes of bushfire protection. Fire hydrant spacing, sizing and pressure shall comply with AS2419.1 2005 and section 5.3.3 of PBP 2019;
- 9. Consideration should be given to landscaping and fuel loads on site to decrease potential fire hazards on site; and
- 10. The Rural Fire Service endorse the Subdivision BAL Plan contained in Appendix E.

This assessment has been made based on the bushfire hazards observed in and around the site at the time of inspection and production (May 2023).

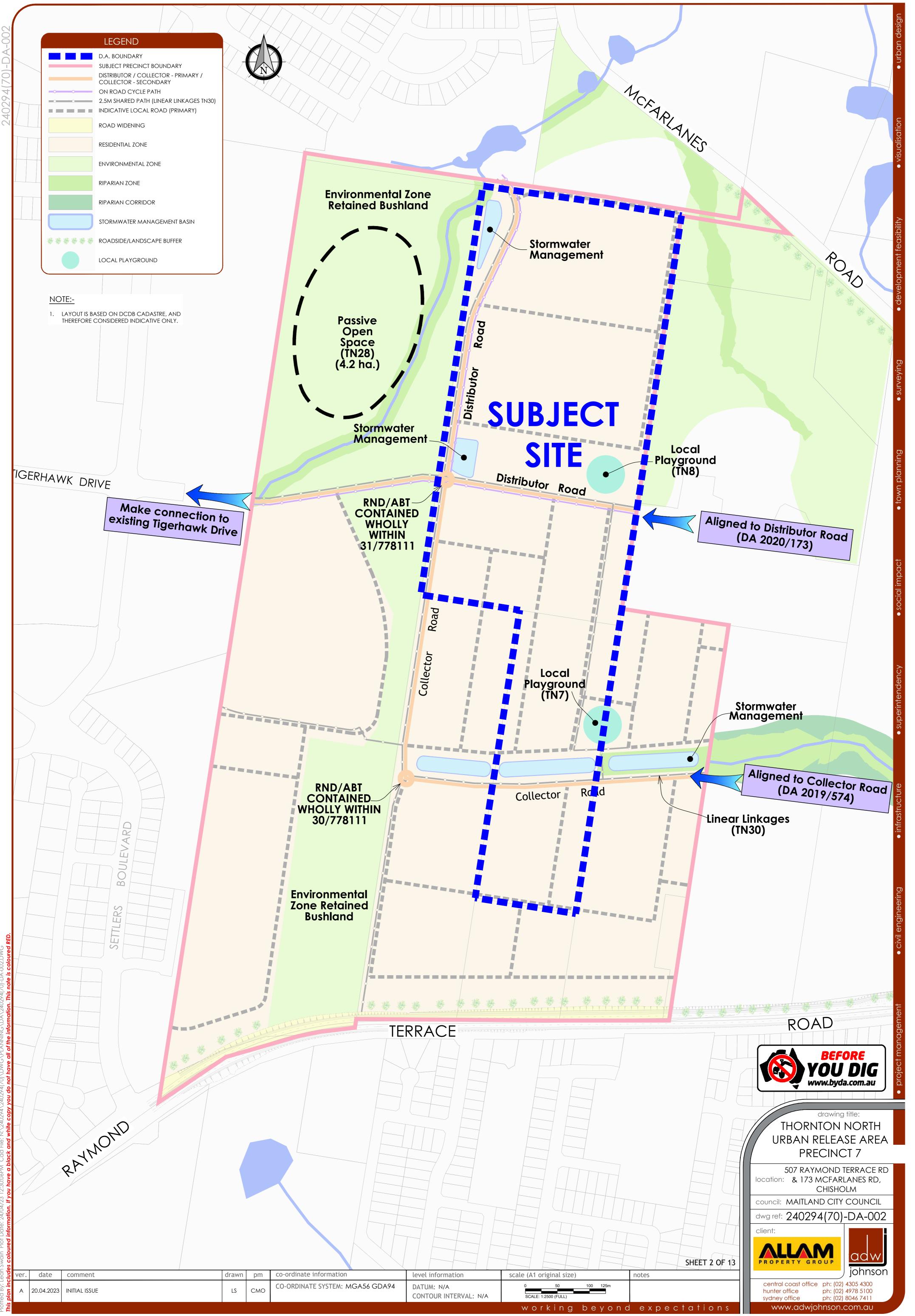

Should the above recommendations be implemented commensurate to the low threat hazard, the nominal bushfire risk can be suitably mitigated to offer an acceptable level of protection to life and property for those persons and assets occupying the site but they do not and <u>cannot</u> guarantee that the area will <u>not</u> be affected by bushfire.

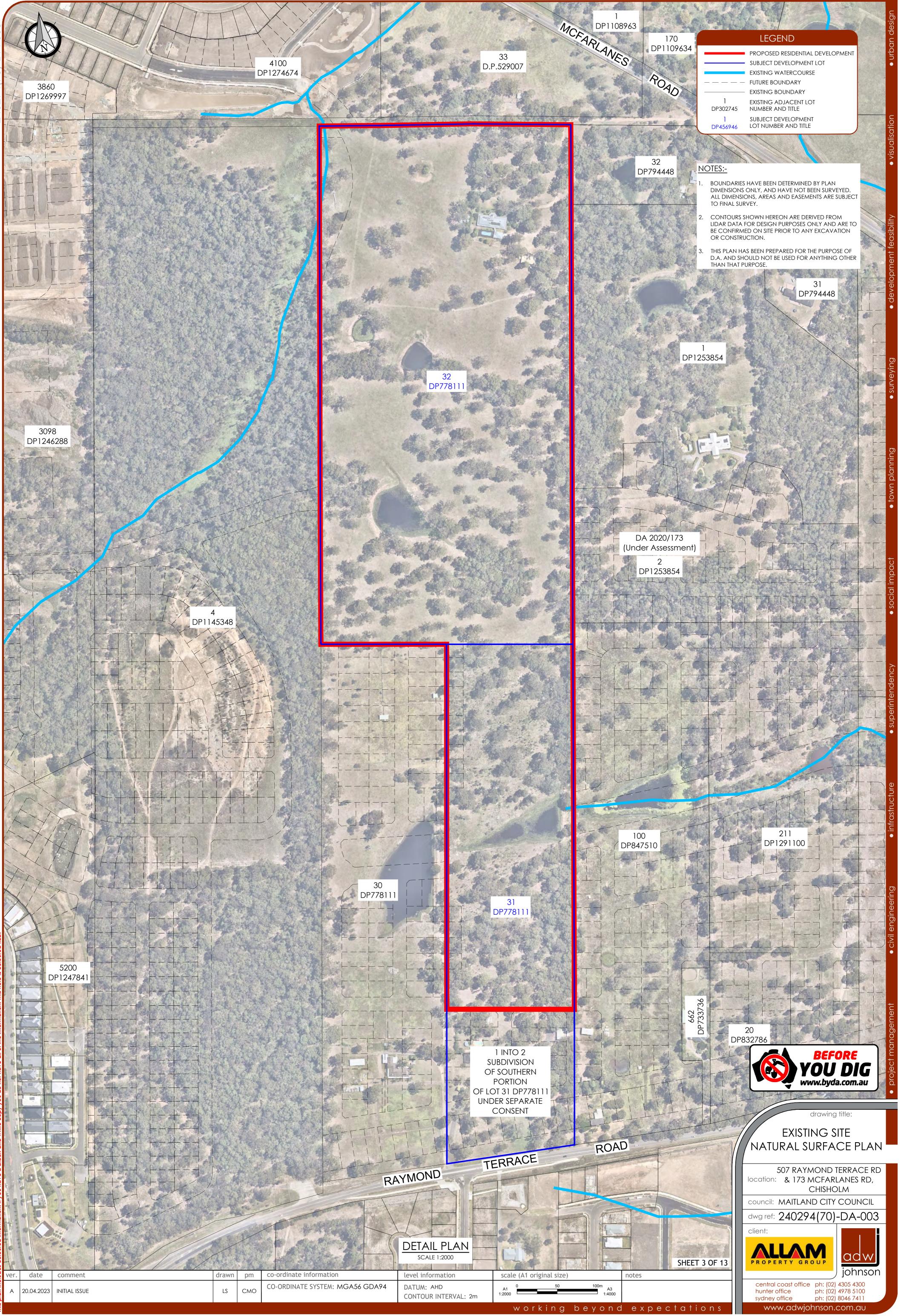

6. References

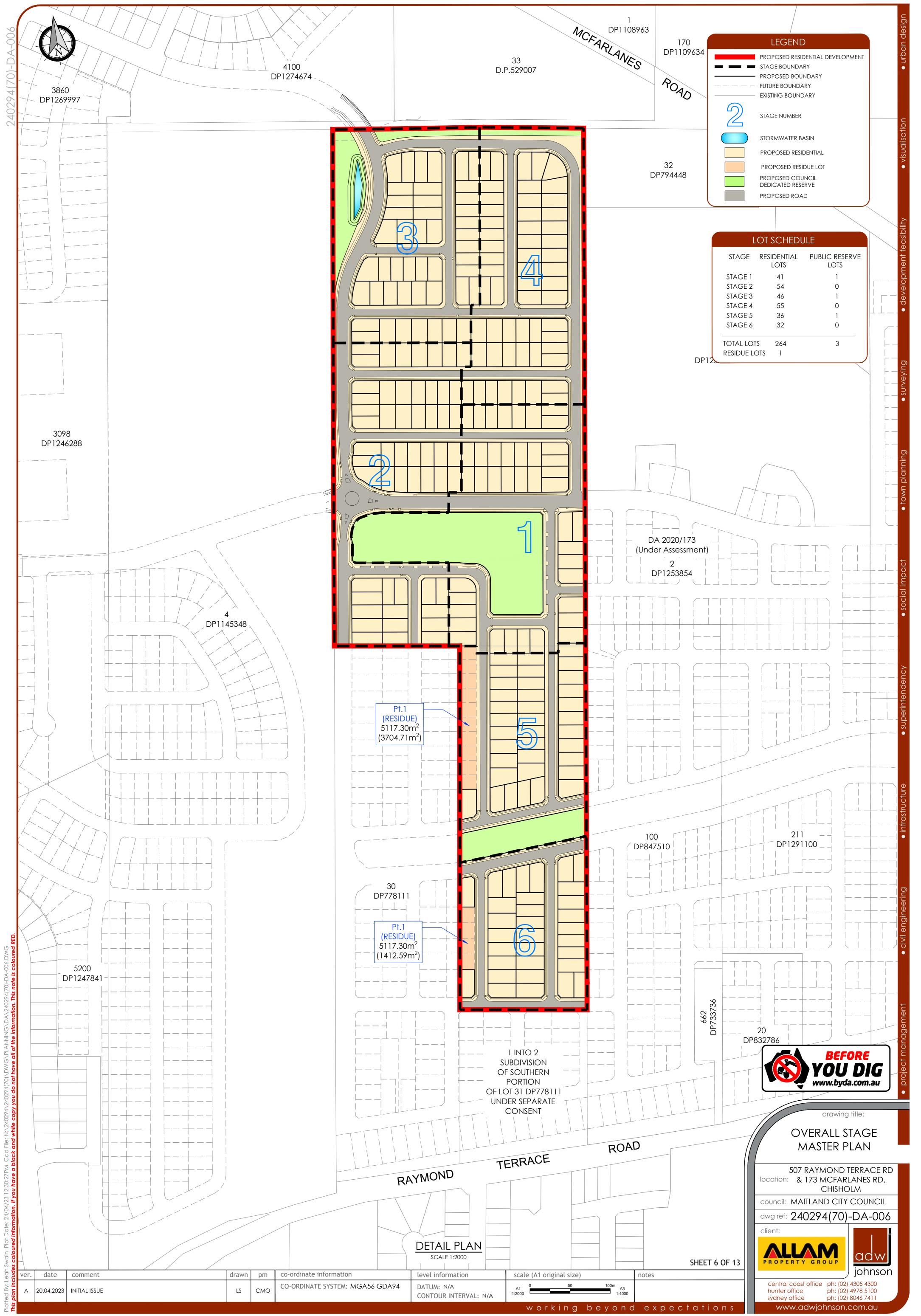
- NSW Rural Fire Service (2005). Standards for Asset Protection Zones. NSW Rural Fire Service.
- NSW Rural Fire Service (2019). Planning for Bushfire Protection A Guide for Councils, Planners, Fire Authorities, Developers and Home Owners.
- Ramsay, GC and Dawkins, D (1993). Building in Bushfire-prone Areas Information and Advice. CSIRO and Standards Australia.
- **Q** Rural Fires and Environmental Assessment Legislation Amendment Act 2002.
- Standards Australia (2018). AS 3959 2018: Construction of Buildings in Bushfire-prone Areas.

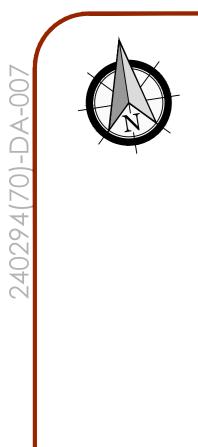


Appendix A: Proposed Plan of Subdivision

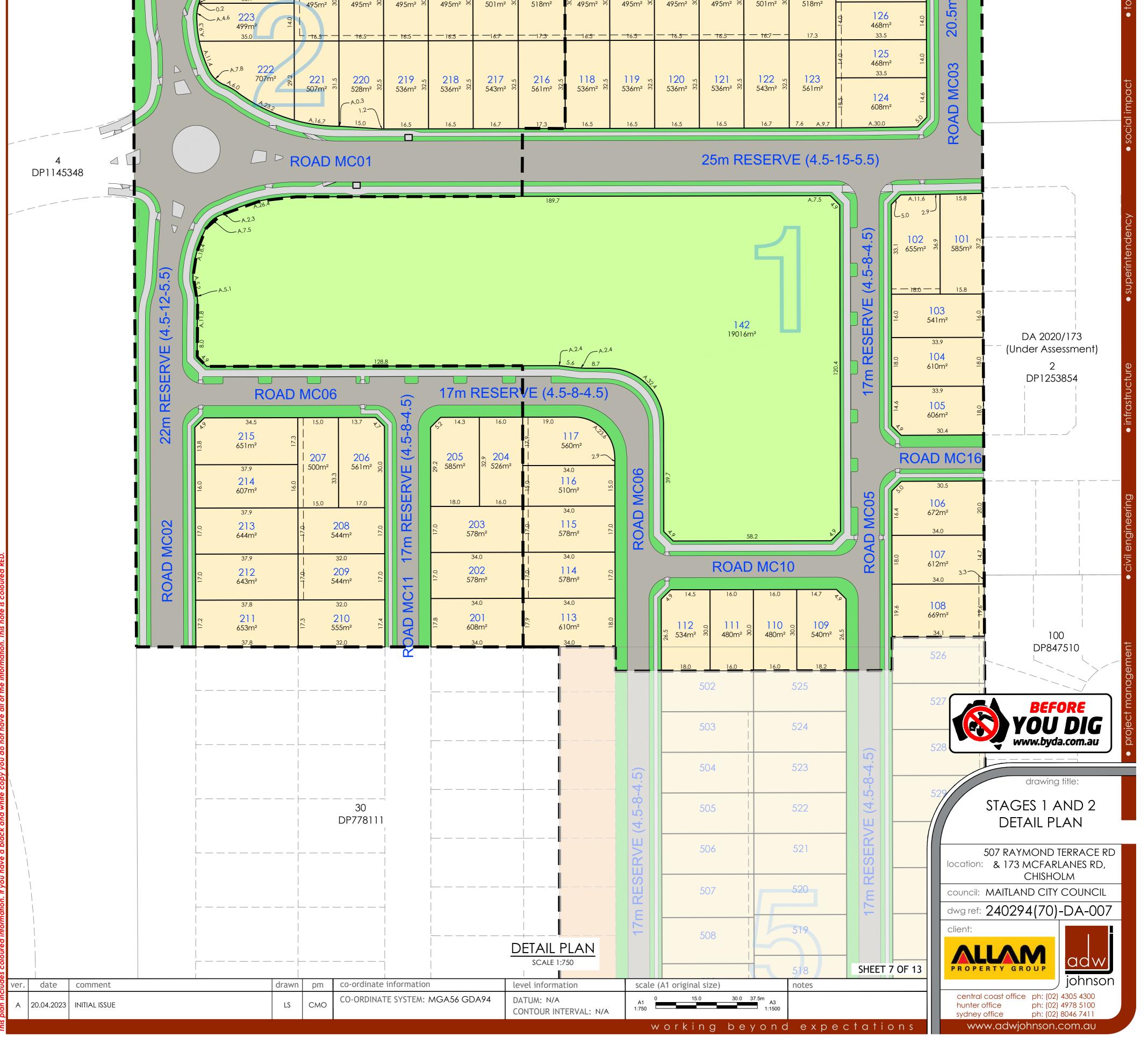



DEVELOPMENT APPLICATION LOTS 31 & 32 D.P. 778111 507 RAYMOND TERRACE ROAD & 173 MCFARLANES ROAD, CHISHOLM




INDEX OF DRAWINGS

4(70)- is not					Sheet Title Sł	neet De	escription						
14029 Dn. Th					DA-001 C	over shi	EET AND DRAWING INI	DEX					
DA\2 matic					DA-002 PR	RECINCT	PLAN						
NG/I infor					DA-003 EX	(ISTING SI	TE NATURAL SURFACE	PLAN					
ANNI fthe					DA-004 LE	P ZONING	G						
3\PL/ all o					DA-005 LE	P MINIMU	JM LOT SIZE					BEF	ORE
DWC have					DA-006 O	verall s	TAGE MASTER PLAN					YOU	Ja.com.au
not I					DA-007 ST	AGES 1 A	AND 2 DETAIL PLAN					www.byd	fa.com.au
0294 U do					DA-008 ST	AGES 3 A	AND 4 DETAIL PLAN						
4\24 yy yo					DA-009 ST	AGES 5 A	AND 6 DETAIL PLAN						
4029					DA-010 LC	DT MIX PL	AN 1					drawing	g title:
N:\2 white					DA-011 LC	DT MIX PL	AN 2					OVER SHE	ET AND
File: and					DA-012 M	OBILITY P	LAN (PATHWAYS, CYC	LEWAYS, SHARED PATHS)				RAWING	
Cac				l	DA-013 VI	EGETATIC	ON REMOVAL/RETENTIC	ON PLAN)				
2:29:56PM ou have a b												7 RAYMOND & 173 MCFAR CHISH(
1/23											council: M	AITLAND CITY	Y COUNCIL
24/04 nation.											dwg ref: 2	40294(70))-DA-001
ain Plot Date: <mark>Joured inforn</mark>											client:		
es co										SHEET 1 OF 13	PROPER	Y GROUP	iobiosoit
ver	. date	comment	drawn	pm	co-ordinate information		level information	scale (A1 original size)	notes				johnson
tted By: plan in	20.04.2023	INITIAL ISSUE	LS	СМО	CO-ORDINATE SYSTEM: MGA5	6 GDA94	DATUM: N/A CONTOUR INTERVAL: N/A				central con hunter office sydney office		2) 4305 4300 2) 4978 5100 2) 8046 7411
Ploi								working bey	ond exp	ectations	www.	adwjohnson	com.au



		346	345	344	343	342	341		KOAD MC12	310	309 42	23 424	ROAD MC13		448		STAGE STAGE 1 STAGE 2	LOT SCHEI RESIDENTIAL LOTS 41 54	
		302			MC09								17m	RESE	RVE (4.	5-8-4		verge Road Bus stop	
		301		303	304	305	308		807	308	422	421	420	419	418			EASEMENT TO D	ORAIN WATER
(4.5-12.5-5.5)	64 12.5 14.0	34.6 254 484m ² 34.6 253 547m ² 31.1	16.0 14.0	<u>20.0</u> 252 600m ² 20.0	<u>20.0</u> <u>20.0</u> <u>20.0</u> <u>20.0</u>	a. 20.0 ∞. 250 ∞. 600m ² 20.0	<u>18.0</u> o. 249 8 540n 18.0	n² ⁸ 54		<u>- 18.0</u> <u>- 18.0</u> _ _ 18.0	409	410	411	412	413	415			
RESERVE (4		ROAD 31.1	MC0			n RESE					OAD M	C08		I7m RE	SERVE	(4.5-8-4 .	.5)		
22.5m RE	12.0 12.5	240 547m ² 34.6 239 484m ² -A.2.0	14.0	241 600m ²	e. 242 8 600m²	e 243 510m ²		o. 245 8 450m ²	<mark>ු 246</mark> ෆ් 450m²	408	407	406	405	404	403	401			1 DP1253854
ROAD MC02	A.12.5 A.14.0	^{34.6} 238 483m ² 34.4 237 539m ²	16.0 14.0	<u>20.0</u> 236 600m ²	- <u> </u>	o. 234 ∞ 510m²	1 5.0 o. 233 g 450m ²	o. 232 8 450m²		o. 134		o. <mark>136</mark> ^{සි} 450m² දි	2 137 535m²	138 510m ²	000111	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.4 I4	(c.c-c.UI-c	
ROA		30.2		20.0		17.0	15.0	15.0	15.0	15.0	15.0	15.0	17.8 17m	17.0 RESER	20.0 VE (4.5 17.3	29.6 -8-4.5) 29.9			
	A.7.6 7	- 4.5 224 542m ² - 0.6 35.1	C	16.5	16.5 226 ○. 495m ² ♡	16.5 227 o. 495m ² o.	16.5 228 o. 495m ² o.	229 o. 501m ² o.	230 518m ²	o. 133			0. 130 0. 9. 495m ² 8	100	12.3 128 518m ²	0. 127. 2 528m ² 33.4	12.5 0'5		

		A.15.5	34.2 327 539m ²	. 3	36.0 332 40m²	RESER/	15.0	30.0 316 450m ²		430 450m ²	RESER	0.71	30.0 453 510m ²	32.2 0. 440 2- 548m ²	IT:0
	COOM ORON	328 710m ² 3.6 27.4	0.1 0.1 0.1 0.1 0.1		이 19.0 이 331 영 564m ²	17m RE	15.0 15.0	30.0 315 450m ² 30.0 314 450m ² 30.0 313) — — <u>— 15.0 — — 15.0 — -</u>	30.0 429 450m ² 30.0 428 450m ² 30.0 427	0 15.0 15.0 17m RE	17.0	30.0 452 510m ² 30.0 451 510m ²	$\begin{array}{c} 32.2 \\ 0.2 \\ 1.2 $	17.0 17.0 20.5m RE
	ROAD	15.5	17m RES 15.5 15.5 337 e 338 465m ² e 338	15.0	14.5	P.	15.0 15.0 15.0	450m ² 30.0 312 450m ² 30.0 311 450m ²	15.0 1 5 .	450m ² 30.0 426 450m ² 30.0 425 450m ²	15.0 15.0 15.	17.5 17.5	30.0 450 525m ² 30.0 449 525m ²	32.3 <u>52</u> <u>443</u> 566m ² 32.3 <u>566m²</u> <u>444</u> <u>566m²</u>	17.5 17.5
A.26.9	$\frac{28.8}{18.3} \frac{17.0}{17.0} - \frac{346}{629m^2} \stackrel{\circ}{\underset{\text{m}}{\overset{345}{_{510m^2}}} 345}$	- <u>+</u> <u>-</u> 17.0 <u>-</u> 9. 344	15.5 15.5 18.0 o. 343 g 540m ²	- <u>18.0</u>	18.0 20.0 ⊙ 341 ∞ 594m²	26.5 ROAD MC12	31.5	-1 6.5 — — -	13.5 1 309 4 72m ² 47		0 MC	14.5 17.5	30.0 448 525m ² 30.0 447 534m ²	32.4 <u>5</u> <u>445</u> <u>567m²</u> <u>32.4</u> <u>32.4</u> <u>446</u> <u>578m²</u>	14.5 17.5
	31.1	17.0 ROAD N 20.0	18.0 VCO9 20.0	20.0	16.5	18.0		13.0	13.5 1	20.0		RESE 17.0	26.5 ERVE (4. 15.0	28.9 5-8-4.5)	WC03
14.0 12.5	302 547m ² ⁹ 34.6 301 0 484m ² ¹	303 600m ²	o. 304 8 600m ²	o. 305 8 600m ²	ං 306 ෆි 540m ²	o. 30 8 540r	7 o. m²	308 540m ²	9 422 571m ²	o. 421 8 600m ²	o. 420 ∞ 510m ²	o. 419 8 510m ²	^න 450m ²	 417 517m² 32.7 416 458m² 32.7 416 458m² 	14.0 12.5 ROAD
(4.5-12.5-5.5)	254 253	252	251	250	249	24	8	247 g	2 409 571m ² 19.0	e. 410 600m ² 20.0	e. 411 8 510m² 17.0	o. 412 ⊗ 510m ²	e 413 8 450m ² 15.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^Ψ . 12.5 14.0
	ROAD MC0)8	17m	RESER	VE (4.5	5-8-4.5	5)	R		1C08	1	7m RI	ESERVE	E (4.5-8-4.5	5)
A RESERVE	240	241	242	243	244	245	246	15.0 ••••••••••••••••••••••••••••••••••••	15.0 o 407 o 450m ²	15.0 o. 406 o. 450m ² o. o.	17.8 405 535m ²	17.0 404 510m ²	20.0 o. 403 ^{gg} 600m ²	29.7 402 1 523m ² 33.1	12.7 1.4

4 DP1145348

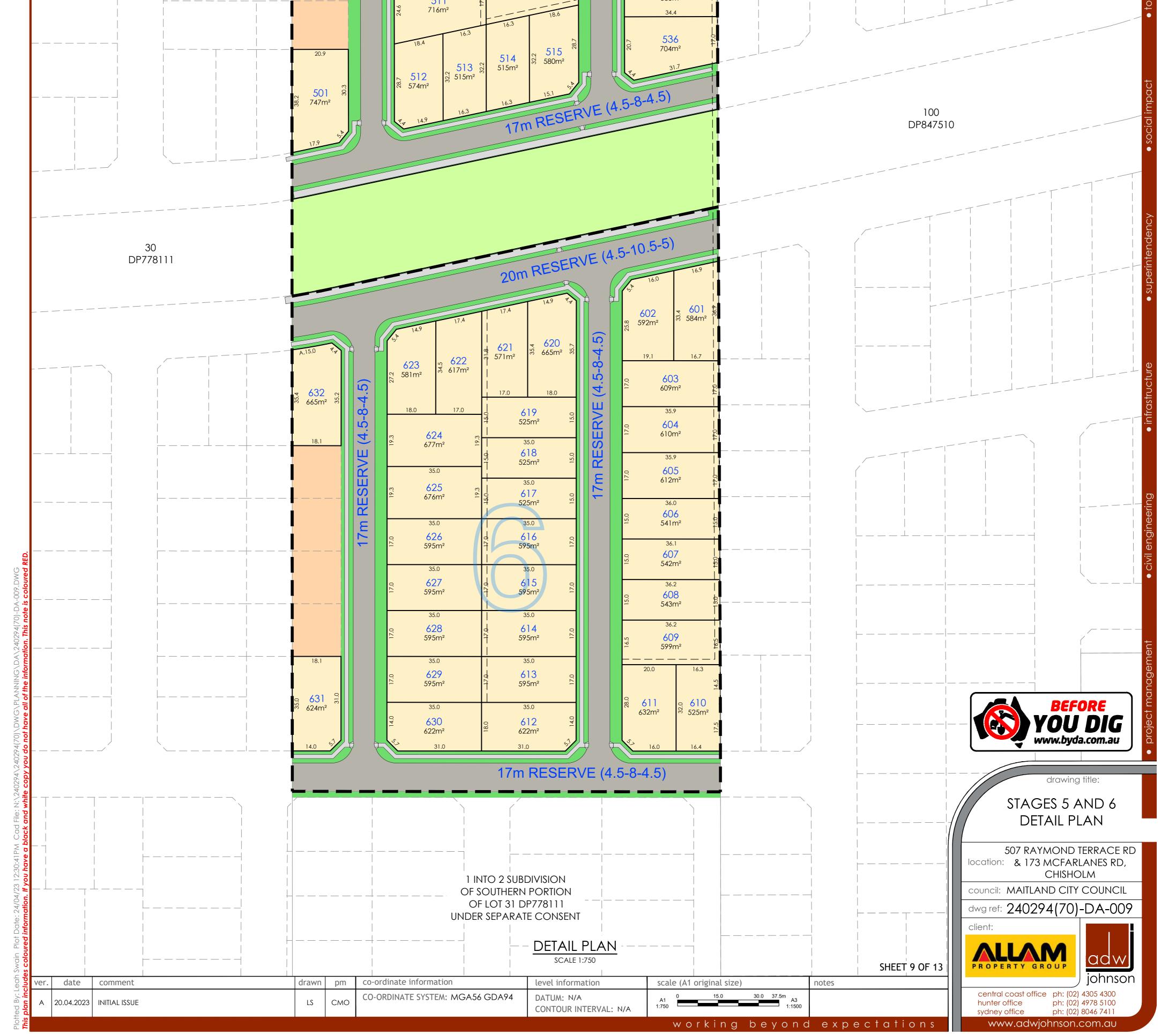
4(70)-DA-008.DWG

social imp

erintendency

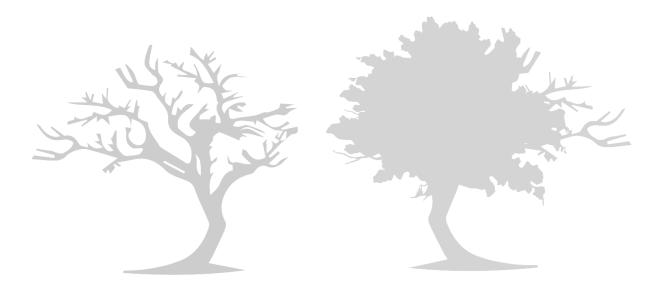
Jre

astructu


ieering

DP1253854

civil engine



	203	116 115					106	DA 2020/173 (Under Assessment)	STAGE	LOT SCHED	PUBLIC RESERVE
209	202	114					107	DP1253854	STAGE 5 STAGE 6		LOTS 1 0
210	201	113	112	111	110 109		108			VERGE ROAD EASEMENT TO DI	RAIN WATER
			S S S S S S S S S S S S S S S S S S S	2 0	525 513m ²		0. 526 ∑ 580m ² 34.1				
			510n 34.0 9 9 10 10 10		513m ² ² 34.2 524 <u>9</u> 513m ² ²		o. 527 └────────────────────────────────────				
			² 510n 34.0 2 2 2 510n	 	513m ² ²² 34.2 523 <u>9</u> 513m ² ²²	-4.5)	0. 528 581m ² 34.2				
 			4.0 500 510 510	5 5	34.2 522 513m ²	E (4.5-8	0: 529 581m ² 34.2		 		
 	 		34.0 34.0 510n 34.0 34.0 34.0	5 þ.	34.2 521 0 513m ²	SERVE	0: 530 - 582m ² 34.2				
 			₩ 9.07 ² 544n	7	34.2 520 513m ²	7m RE	o 531 583m² 34.3				
	 		34.0 0.508 22 578n		34.2 0.519 0.55 513m ² 51	-	o. 532 └ 583m ² 34.3				
			34.0 0. 509 12 578n	9 6.	34.2 518 513m ² ⁹		o. 533 └───────────────────────────────────		 		
			34.0 0 510 ≝ 612n	1	34.2 0. 517 0. 2. 581m ²		34.4 0. 534 2. 584m ²				
 			34.0 511)	34.2 516 52 681m ²		34.4 0 535 12 585m ²				

Appendix B: AHIMS Search Results

AHIMS Web Services (AWS) Search Result

Katrina Greville

21 Costata Crescent Adamstown New South Wales 2289 Attention: Katrina Greville Email: klmukevski@bigpond.com

_____C = -8F

Dear Sir or Madam:

AHIMS Web Service search for the following area at Address : 173 MCFARLANES ROAD CHISHOLM 2322 with a Buffer of 50 meters, conducted by Katrina Greville on 02 May 2023.

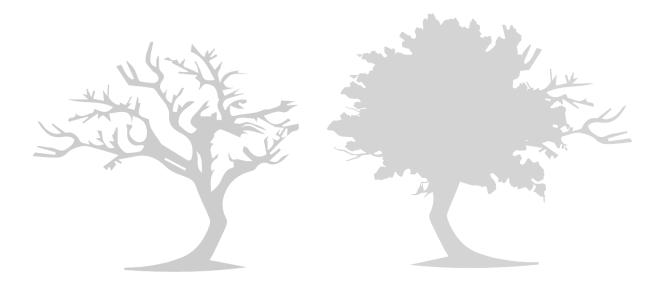
The context area of your search is shown in the map below. Please note that the map does not accurately display the exact boundaries of the search as defined in the paragraph above. The map is to be used for general reference purposes only.

A search of Heritage NSW AHIMS Web Services (Aboriginal Heritage Information Management System) has shown that:

0 Aboriginal sites are recorded in or near the above location.
0 Aboriginal places have been declared in or near the above location. *

Date: 02 May 2023

If your search shows Aboriginal sites or places what should you do?


- You must do an extensive search if AHIMS has shown that there are Aboriginal sites or places recorded in the search area.
- If you are checking AHIMS as a part of your due diligence, refer to the next steps of the Due Diligence Code of practice.
- You can get further information about Aboriginal places by looking at the gazettal notice that declared it. Aboriginal places gazetted after 2001 are available on the NSW Government Gazette (https://www.legislation.nsw.gov.au/gazette) website. Gazettal notices published prior to 2001 can be obtained from Heritage NSW upon request

Important information about your AHIMS search

- The information derived from the AHIMS search is only to be used for the purpose for which it was requested. It is not be made available to the public.
- AHIMS records information about Aboriginal sites that have been provided to Heritage NSW and Aboriginal places that have been declared by the Minister;
- Information recorded on AHIMS may vary in its accuracy and may not be up to date. Location details are recorded as grid references and it is important to note that there may be errors or omissions in these recordings,
- Some parts of New South Wales have not been investigated in detail and there may be fewer records of Aboriginal sites in those areas. These areas may contain Aboriginal sites which are not recorded on AHIMS.
- Aboriginal objects are protected under the National Parks and Wildlife Act 1974 even if they are not recorded as a site on AHIMS.
- This search can form part of your due diligence and remains valid for 12 months.

Appendix C: Planning for Bushfire Protection 2019 -Compliance Table

	Objectives	Satisfied	Comment
>	Afford buildings and their occupants protection from exposure to a bush fire	\checkmark	All lots within the proposed development are provided with sufficient separation from the nearest bushfire hazard by public perimeter roads or adequate APZs and are provided with up to 12 different evacuation routes (for both the north and south precincts).
>	Provide for a defendable space to be located around buildings	\checkmark	Defendable space by way of an APZ is provided between all new lots and the bushfire hazard to ensure radiant heat levels are below critical limits (29kW/m²).
>	Provide appropriate separation between a hazard and buildings, which, in combination with other measures, prevent the likely fire spread to buildings	\checkmark	Appropriate APZs are provided between the proposed lots and the hazard, which in addition to other mitigation measures such as suitable construction, will provide an acceptable level of protection to the buildings, and prevent the spread of fire to the buildings and onto adjoining buildings.
>	Ensure that safe operational access and egress for emergency service personnel and residents is available	\checkmark	Public road access will be provided from newly constructed roads connected to the northern, eastern and western adjoining developments.
>	Provide for ongoing management and maintenance of BPMs	\checkmark	All owners will be responsible for the management and maintenance of the private property.
>	Ensure that utility services are adequate to meet the needs of firefighters	\checkmark	The development includes all essential utility services to meet the needs of firefighters; including a reliable water supply.

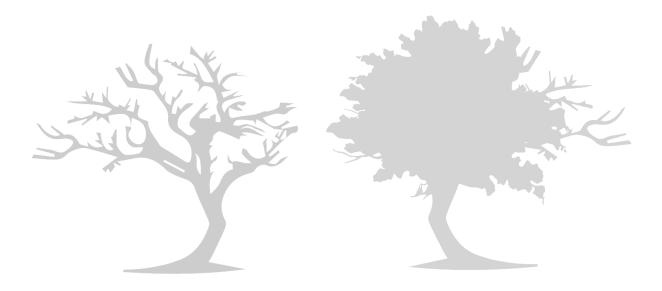
Table 1: Aims and Objectives of Planning for Bushfire Protection 2019

Intent of Measure	Performance Criteria	Acceptable Solution	Complies	Comment
			🗸 = Ac	ceptable Solution
			PS - Pei	formance Solution
5.3.1	Potential building footprints must not be exposed to radiant heat levels exceeding 29kW/m ² on each proposed lot.	APZs are provided in accordance with Tables A1.12.2 and A1.12.3 based on the FFDI.	PS	All new lots are able to accommodate a building envelope that ensures future dwellings are exposed to BAL-29 or less; thereby ensuring no dwellings are exposed to radiant heat levels greater than 29kW/m ² . The APZs were calculated using Method 2 (AS39590-2018) to demonstrate the minimum required APZ.
ASSET PROTECTION ZONES Table 5.3a To provide sufficient space and maintain reduced fuel loads, so as to ensure radiant heat levels at buildings	APZs are managed and maintained to prevent the spread of a fire towards the building.	The APZ is managed in accordance with the requirements of Appendix 4	✓	All new landowners will be required to manage their respective lot as an IPA.
are below critical limits and to prevent direct flame contact with a building.	The APZ is provided in perpetuity.	APZs are wholly within the boundaries of the development site.	\checkmark	There are no exceptional circumstances that would require an APZ to be located external to the development site.
	APZ maintenance is practical, soil stability is not compromised and the potential for crown fires is negated.	The APZ is not located on lands with a slope exceeding 18°	\checkmark	The maximum slope of the site is 5.0° downslope or less.
LANDSCAPING	Landscaping is designed and managed to minimise flame contact and radiant heat to buildings, and the potential for wind-driven embers to cause ignitions.	Landscaping is in accordance with APZ standards (see Appendix 4). Fencing is constructed in accordance with section 7.6.	\checkmark	All new landscaping has considered the requirements of APZs per Appendix 4. All new fencing will be colorbond or similar non-combustible material.
5.3.2 ACCESS	Fire fighters are provided	Property access roads are two-wheel drive, all- weather roads	\checkmark	All new roads are a minimum 8m wide (including non-perimeter roads) and satisfy
(General Requirements) Table 5.3b To provide safe	with safe all weather access to structures.	Perimeter roads are provided for residential subdivisions of three or more allotments		PBP 2019 and Maitland City Council engineering standards. A minimum of four (4) access routes will be provided to the subdivision following completion of the first stage. Ultimately
operational access for emergency services personnel in suppressing a bush fire, while residents are		Subdivisions of three or more allotments have more than one access in and out of the development	V	twelve (12) access routes will be available for residents within the proposed subdivision.

Table 2: Performance Criteria and Acceptable Solutions for residential subdivisions (Chapter 5 PBP 2019)

Intent of Measure	Performance Criteria	Acceptable Solution	Complies	Comment
				ceptable Solution
accessing or egressing an area.		Traffic management devices are constructed to not prohibit access by emergency services vehicles.	\checkmark	
		Access roads must provide suitable turning areas in accordance with Appendix 3.	\checkmark	
ACCESS ROAD CAPACITY	The capacity of access roads is adequate for firefighting vehicles.	The capacity of road surfaces and any bridges/ causeways is sufficient to carry fully loaded firefighting vehicles (up to 23 tonnes); bridges and causeways are to clearly indicate load rating.	~	All new roads are designed in accordance with MCC engineering specifications. The proposed roads will have sufficient load capacity for all firefighting vehicles.
	There is appropriate access to water supply.	Hydrants are located outside of parking reserves and road carriageways to ensure accessibility to reticulated water for fire suppression.	~	_
ACCESS TO WATER		Hydrants are provided in accordance with AS2419.1:2005	\checkmark	All proposed lots are able to be connected to a reticulated water supply.
		There is suitable access for Category 1 fire appliance to within 4m of the static water supply where no reticulated supply is available.	~	
		There are two-way sealed roads.	\checkmark	The entire development is protected by a
	Perimeter access roads are designed to allow	8m carriageway width kerb to kerb.	\checkmark	Perimeter road. All perimeter roads are a minimum 10.5m and up to 12m wide and are designed in
	safe access and egress for medium rigid firefighting vehicles while occupants are	Parking is provided outside of the carriageway.	PS accordance with the relevant PB design requirements. It is recommended the RFS do n	It is recommended the RFS do not impose
PERIMETER ROADS	evacuating as well as providing a safe operational environment	Hydrants are to be located clear of parking areas.	\checkmark	a condition requiring parking to be provided outside of the carriageway as the proposed development has a combination
	for emergency service personnel during firefighting and emergency management on the interface.	There are through roads, and these are linked to the internal road system at an interval of no greater than 500m.	1	of 10.5m -12m wide perimeter roads. The contained bushfire hazard and the multiple evacuation routes result in a reduced risk of obstructions occurring to emergency services accessing the site.
		Curves of roads have a minimum inner radius of 6m.	\checkmark	

Intent of Measure	Performance Criteria	Acceptable Solution	Complies	Comment
	_			ceptable Solution
		The maximum grade road is 15° and average grade is 10°.	\checkmark	
		The road crossfall does not exceed 3°.	\checkmark	
		A minimum vertical clearance of 4m to any overhanging obstructions, including tree branches; and	~	
		Minimum 5.5m width kerb to kerb.	\checkmark	
	Non-perimeter access roads are designed to allow safe access and	Parking is provided outside of the carriageway.	PS	
		Hydrants are to be located clear of parking areas.	\checkmark	All non-perimeter roads are 8m wide will
NON-PERIMETER		There are through roads, and these are linked to the internal road system at an interval of no greater than 500m.	\checkmark	be constructed in accordance with PBP 2019. It is recommended the RFS do not impose a condition requiring parking to be provided outside of the carriageway as there evacuation routes in numerous
ROADS	egress for medium rigid firefighting vehicles while occupants are evacuating.	Curves of roads have a minimum inner radius of 6m.	\checkmark	directions allowing for a route away from a bushfire always in the opposite direction. The lower risk bushfire hazard and the
	g.	The maximum grade road is 15° and average grade is 10°.	\checkmark	multiple evacuation routes result in a reduced risk of obstructions occurring to emergency services accessing the site.
		The road crossfall does not exceed 3°.	\checkmark	
		A minimum vertical clearance of 4m to any overhanging obstructions, including tree branches; and	\checkmark	
5.3.3 SERVICES Table 5.3c		Reticulated water is to be provided to the development, where available	\checkmark	
To provide adequate services for water for the protection of buildings	Adequate water supplies is provided for firefighting purposes.	A static water supply is provided where no reticulated water is available	N/A	A reticulated water supply is provided.
during and after the passage of a bushfire, and not to locate gas and electricity so as not		Static water supplies shall comply with Table 5.3d	N/A	


Intent of Measure	Performance Criteria	Acceptable Solution	Complies	Comment
				ceptable Solution
to contribute to the risk of fire to a building.	Water supplies are	Fire hydrant spacing, design and sizing comply with AS2419.1:2005;	√ V	A reticulated water supply is provided.
WATER	located at regular intervals.	Hydrants are not located within any road carriageway;	\checkmark	A reliculated water supply is provided.
	The water supply is accessible and reliable for firefighting operations.	Reticulated water supply to urban subdivisions uses a ring main system for areas with perimeter roads.	~	
	Flows and pressures are appropriate.	Fire hydrant flows and pressures comply with AS2419.1:2005.	\checkmark	A reticulated water supply is provided.
	The integrity of the water supply is maintained.	All above ground water service pipes are metal, including and up to any taps.	Able to comply	
		Where practicable, electrical transmission lines are underground.	\checkmark	The proposed new lots will be connected to the existing underground electricity service.
ELECTRICITY	Location of electricity services limits the possibility of ignition of surrounding bushland or the fabric of buildings.	Where overhead electrical transmission lines are proposed as follows: → lines are installed with short pole spacing (30 metres), unless crossing gullies, gorges or riparian areas; and → no part of a tree is closer to a power line	N/A	
		than the distance set out in accordance with the specifications in ISSC3 Guideline for Managing Vegetation Near Power Lines		
GAS	Location of gas services will not lead to ignition of surrounding bushland or the fabric of buildings.	Reticulated or bottled gas is installed and maintained in accordance with AS 1596:2014 and the requirements of relevant	~	Any new gas connections will be underground and will be unlikely to create an additional hazard risk to surrounding bushland.

Intent of Measure	Performance Criteria	Acceptable Solution	Complies	Comment
			🗸 = Acc	ceptable Solution
			PS - Per	formance Solution
		authorities, metal piping is to be used.		
		All fixed gas cylinders are kept clear of all flammable materials to a distance of 10 metres and shielded on the hazard side;		
		Connections to and from gas cylinders are metal:		
		Polymer-sheathed flexible gas supply lines are not used; and		
		Above-ground gas service pipes are metal, including and up to any outlets.		

Appendix D: NBC Bushfire Attack Assessor V4.1 Results

	Print Da		B - Detailed Met 9/05/2023	Assessment Da	ite:	9/05/2023
Site Street Addre	ss:	2179 Harris	s Site (McFarla	anes Rd), Chisholm		
Assessor:	Stuart Greville; Bushfire F			-		
Local Governmer	nt Area:	Maitland	,	Alpine Area:		No
Equations Used						
Transmissivity: Fu Flame Length: RFS Rate of Fire Sprea Radiant Heat: Dry Peak Elevation of I Peak Flame Angle	S PBP, 20 d: Noble e vsdale, 198 Receiver:	01/Vesta/Ca et al., 1980 35; Sullivan e Tan et al., 20	atchpole et al., 2003; Ta	n et al., 2005		
Run Description	: Т	1 North				
Vegetation Infor	mation					
Vegetation Type:			plain Wetland	S		
Vegetation Group): Fo	orested Wet	lands			
Vegetation Slope:	2	.2 Degrees		Vegetation Slope Type	: Down	slope
Surface Fuel Load	l(t/ha): 8	.2		Overall Fuel Load(t/ha)	: 15.1	
Vegetation Height		9		Only Applicable to Shru	b/Scrub	and Vesta
Site Information						
Site Slope:		Degrees		Site Slope Type:	Down	slope
Elevation of Rece	iver(m): L	Jefault		APZ/Separation(m):	11	
Fire Inputs				Flame Temp(K):	1090	
<u>Fire Inputs</u> Veg./Flame Width	. ,	100				
Fire Inputs Veg./Flame Width Calculation Para	. ,	00				
<u>Fire Inputs</u> Veg./Flame Width	ameters	95		Relative Humidity(%):	25	
<u>Fire Inputs</u> Veg./Flame Width <u>Calculation Para</u> Flame Emissivity:	ameters	95		Relative Humidity(%): Ambient Temp(K):	25 308	
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustie	ameters on(kJ/kg	95		Relative Humidity(%):	25	
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustio Moisture Factor: Program Output	on(kJ/kg	95 18600 5		Relative Humidity(%): Ambient Temp(K): FDI:	25 308 100	
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustic Moisture Factor: Program Output Level of Construc	on(kJ/kg <u>s</u> stion: BAL	95 18600 5		Relative Humidity(%): Ambient Temp(K): FDI: Peak Elevation of Rece	25 308 100	
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustio Moisture Factor: Program Output Level of Construc Radiant Heat(kW/	ameters on(kJ/kg s ction: BAL m2): 29	95 18600 5		Relative Humidity(%): Ambient Temp(K): FDI: Peak Elevation of Rece Flame Angle (degrees)	25 308 100 iver(m)	64
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustic Moisture Factor: Program Output Level of Construc Radiant Heat(kW/ Flame Length(m):	ameters on(kJ/kg <u>s</u> ction: BAl m2): 29 9.29	95 18600 5 _ 29 9		Relative Humidity(%): Ambient Temp(K): FDI: Peak Elevation of Rece Flame Angle (degrees) Maximum View Factor:	25 308 100 siver(m)	64 0.439
Fire Inputs Veg./Flame Width Calculation Para Flame Emissivity: Heat of Combustic Moisture Factor: Program Output Level of Construc Radiant Heat(kW/ Flame Length(m):	ameters on(kJ/kg <u>s</u> ction: BAl m2): 29 9.29	95 18600 5 _ 29 9		Relative Humidity(%): Ambient Temp(K): FDI: Peak Elevation of Rece Flame Angle (degrees) Maximum View Factor: Inner Protection Area(r	25 308 100 siver(m) : n):	64
Fire Inputs Veg./Flame Width Calculation Para	ameters on(kJ/kg <u>s</u> ction: BAl m2): 29 9.29	95 18600 5 L 29 9 5 59		Relative Humidity(%): Ambient Temp(K): FDI: Peak Elevation of Rece Flame Angle (degrees) Maximum View Factor:	25 308 100 siver(m) : n):	64 0.439

Run Description:	T10 Wes	t					
Vegetation Informatio	on						
Vegetation Type:	Hunter M	lacleay DS	SF				
Vegetation Group:	Dry Scler	ophyll For	ests (Shru	ıb/Grass)			
Vegetation Slope:	2 Degree	s		Vegetation	Slope Type:	: Dowr	nslope
Surface Fuel Load(t/ha)	: 14			Overall Fue	l Load(t/ha)	: 24.6	
Vegetation Height(m):	0.9			Only Applica	able to Shrut	o/Scrub	and Vesta
Site Information							
Site Slope:	0 Degree	es		Site Slope T	ype:	Dow	nslope
Elevation of Receiver(n	n): Default			APZ/Separa	tion(m):	18	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	o(K):	1090)
Calculation Paramete	ers						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	iver(m): 6.84
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees):	:	62
Flame Length(m):	15.5			Maximum V	iew Factor:		0.448
Rate Of Spread (km/h):	1.93			Inner Protec	ction Area(n	n):	0
Transmissivity:	0.852			Outer Prote	ction Area(m):	0
Fire Intensity(kW/m):	24512						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Eleva	tion of Recei
Asset Protection Zone(r	n): 13	18	25	35	54		6

Run Description:	T11 West	t					
Vegetation Information	on						
Vegetation Type:	Hunter M	acleay DS	SF				
Vegetation Group:	Dry Sclere	ophyll For	ests (Shru	ıb/Grass)			
Vegetation Slope:	0 Degree	s		Vegetation	Slope Type:	: Leve	I
Surface Fuel Load(t/ha)	: 14			Overall Fue	l Load(t/ha)	: 24.6	
Vegetation Height(m):	0.9			Only Applica	able to Shrul	o/Scrub	o and Vesta
Site Information							
Site Slope:	0 Degree	s		Site Slope T	ype:	Dow	nslope
Elevation of Receiver(m	ı): Default			APZ/Separa	tion(m):	16	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	p(K):	1090)
Calculation Paramete	rs						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	iver(m): 6.18
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees)		63
Flame Length(m):	13.87			Maximum V	iew Factor:		0.446
Rate Of Spread (km/h):	1.68			Inner Protec	ction Area(r	n):	0
Transmissivity:	0.856			Outer Prote	ction Area(m):	0
Fire Intensity(kW/m):	21353						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Eleva	tion of Rece
Asset Protection Zone(n	n): 12	16	23	32	50		6

Run Description:	T12 West			
Vegetation Informati	on			
Vegetation Type:	Grassland			
Vegetation Group:	Grassland			
Vegetation Slope:	1.7 Degrees	Vegetation Slope Type:	Downs	slope
Surface Fuel Load(t/ha): 6	Overall Fuel Load(t/ha):	6	
Vegetation Height(m):	0	Only Applicable to Shrub	/Scrub	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Down	slope
Elevation of Receiver(n): Default	APZ/Separation(m):	11	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramete	ers			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ	/ kg 18600	Ambient Temp(K):	308	
Noisture Factor:	5	FDI:	130	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Recei	ver(m):	: 4.11
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		64
Flame Length(m):	9.15	Maximum View Factor:		0.438
Rate Of Spread (km/h):	: 19	Inner Protection Area(m	n):	0
	0.87	Outer Protection Area(n	n):	0
Transmissivity:	0.07	•	,	

			B/(L IV)			
Asset Protection Zone(m	ו: 0	0	0	0	0	0

Run Description:	T13 & T14 South		
Vegetation Information	<u>on</u>		
Vegetation Type:	Non-Hazard		
Vegetation Group:	Non-Hazard		
Vegetation Slope:	2 Degrees	Vegetation Slope Type	Downslope
Surface Fuel Load(t/ha)	: 0	Overall Fuel Load(t/ha)	: 0
Vegetation Height(m):	0	Only Applicable to Shrul	b/Scrub and Vesta
Site Information			
Site Slope:	0 Degrees	Site Slope Type:	Downslope
Elevation of Receiver(n	ı): Default	APZ/Separation(m):	1
Fire Inputs			
Veg./Flame Width(m):	100	Flame Temp(K):	1090
Calculation Paramete	rs		
Flame Emissivity:	95	Relative Humidity(%):	25
Heat of Combustion(kJ/	kg 18600	Ambient Temp(K):	308
Moisture Factor:	5	FDI:	100
Program Outputs			
Level of Construction:	BAL 29	Peak Elevation of Rece	i ver(m): 0
Radiant Heat(kW/m2):	29	Flame Angle (degrees)	0
Flame Length(m):	0	Maximum View Factor:	0
Rate Of Spread (km/h):	0	Inner Protection Area(r	n): 0
Transmissivity:	0.905	Outer Protection Area(m): 0
Fire Intensity(kW/m):	0		
BAL Thresholds			
	BAL-40: BAL-29: B	AL-19: BAL-12.5: 10 kw/m2:	Elevation of Red

Asset Protection Zone(m):	0	0	0	0	0	6
---------------------------	---	---	---	---	---	---

Due Description:	T15 Foot			
Run Description:	T15 East			
Vegetation Informatio				
Vegetation Type:	Grassland			
Vegetation Group:	Grassland			
Vegetation Slope:	1.5 Degrees	Vegetation Slope Type:	Downs	slope
Surface Fuel Load(t/ha)	: 6	Overall Fuel Load(t/ha):	6	
Vegetation Height(m):	0	Only Applicable to Shrub	/Scrub a	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Downs	slope
Elevation of Receiver(n	n): Default	APZ/Separation(m):	11	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramete	ers			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ/	'kg 18600	Ambient Temp(K):	308	
Moisture Factor:	5	FDI:	130	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Recei	ver(m):	4.08
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		64
Flame Length(m):	9.09	Maximum View Factor:		0.438
Rate Of Spread (km/h):	18.74	Inner Protection Area(m	ı):	0
Transmissivity:	0.87	Outer Protection Area(n	n):	0
Fire Intensity(kW/m):	58103			
BAL Thresholds				
	BAL-40: BAL-29: BAL-19	: BAL-12.5: 10 kw/m2:	Elevati	on of Re

Asset Protection Zone(m): 0 0 0 0 0 0 0	ı): 0 0 0 0 0	0
--	----------------------	---

Run Description:	T2 North			
Vegetation Information	on			
Vegetation Type:	Hunter Macleay DSF			
Vegetation Group:	Dry Sclerophyll Forests (Shr	ub/Grass)		
Vegetation Slope:	3.3 Degrees	Vegetation Slope Type:	Downs	slope
Surface Fuel Load(t/ha)	: 14	Overall Fuel Load(t/ha):	24.6	
Vegetation Height(m):	0.9	Only Applicable to Shrub	/Scrub a	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Downs	slope
Elevation of Receiver(m	ı): Default	APZ/Separation(m):	19	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramete	rs			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ/	kg 18600	Ambient Temp(K):	308	
Moisture Factor:	5	FDI:	100	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Recei	ver(m):	7.36
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		62
Flame Length(m):	16.67	Maximum View Factor:		0.45
Rate Of Spread (km/h):	2.11	Inner Protection Area(m	n):	0
Transmissivity:	0.848	Outer Protection Area(n	n):	0
Fire Intensity(kW/m):	26813			
BAL Thresholds				
	BAL-40: BAL-29: BAL-19	: BAL-12.5: 10 kw/m2:	Elevati	ion of Re

Asset Protection Zone(n	n): 14	19	27	37	57	6

Run Description:	T3 East						
Vegetation Information	on						
Vegetation Type:	Hunter N	/lacleay DS	SF				
Vegetation Group:	Dry Scle	rophyll For	ests (Shru	ıb/Grass)			
Vegetation Slope:	4.6 Degi	rees		Vegetation	Slope Type:	: Dowr	nslope
Surface Fuel Load(t/ha)	: 14			Overall Fue	l Load(t/ha)	: 24.6	
Vegetation Height(m):	0.9			Only Applica	able to Shrul	b/Scrub	and Vesta
Site Information							
Site Slope:	0 Degre	es		Site Slope T	ype:	Dow	nslope
Elevation of Receiver(m	ı): Default			APZ/Separa	tion(m):	20	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	p(K):	1090)
Calculation Paramete	rs						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	eiver(m): 7.93
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees)	:	62
Flame Length(m):	17.97			Maximum V	iew Factor:		0.451
Rate Of Spread (km/h):	2.31			Inner Protec	ction Area(r	n):	0
Transmissivity:	0.845			Outer Prote	ction Area(m):	0
Fire Intensity(kW/m):	29329						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Eleva	tion of Recei
Asset Protection Zone(r	n): 15	20	28	39	60		6

Run Description:	T4 East			
Vegetation Information	on			
Vegetation Type:	Grassland			
Vegetation Group:	Grassland			
Vegetation Slope:	0.5 Degrees	Vegetation Slope Type:	Upslo	ре
Surface Fuel Load(t/ha)): 6	Overall Fuel Load(t/ha):	6	
Vegetation Height(m):	0	Only Applicable to Shrub	/Scrub	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Dowr	nslope
Elevation of Receiver(n	n): Default	APZ/Separation(m):	10	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramete	ers			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ	/kg 18600	Ambient Temp(K):	308	
Moisture Factor:	5	FDI:	130	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Recei	ver(m)	: 3.81
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		64
Flame Length(m):	8.48	Maximum View Factor:		0.437
Rate Of Spread (km/h):	16.33	Inner Protection Area(m	າ):	0
Transmissivity:	0.872	Outer Protection Area(n	n):	0
Fire Intensity(kW/m):	50613			
BAL Thresholds				
	BAL-40: BAL-29: BAL	-19: BAL-12.5: 10 kw/m2:	Elevat	tion of Re

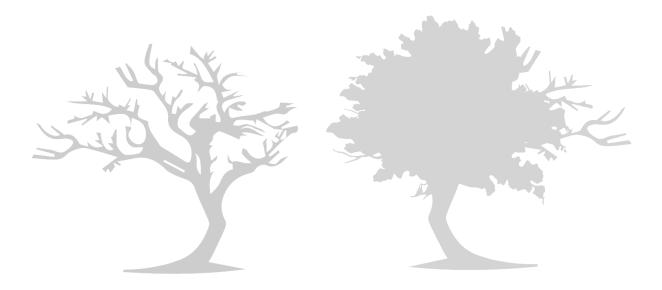
Asset Protection Zone(n	n): 0	0	0	0	0	0

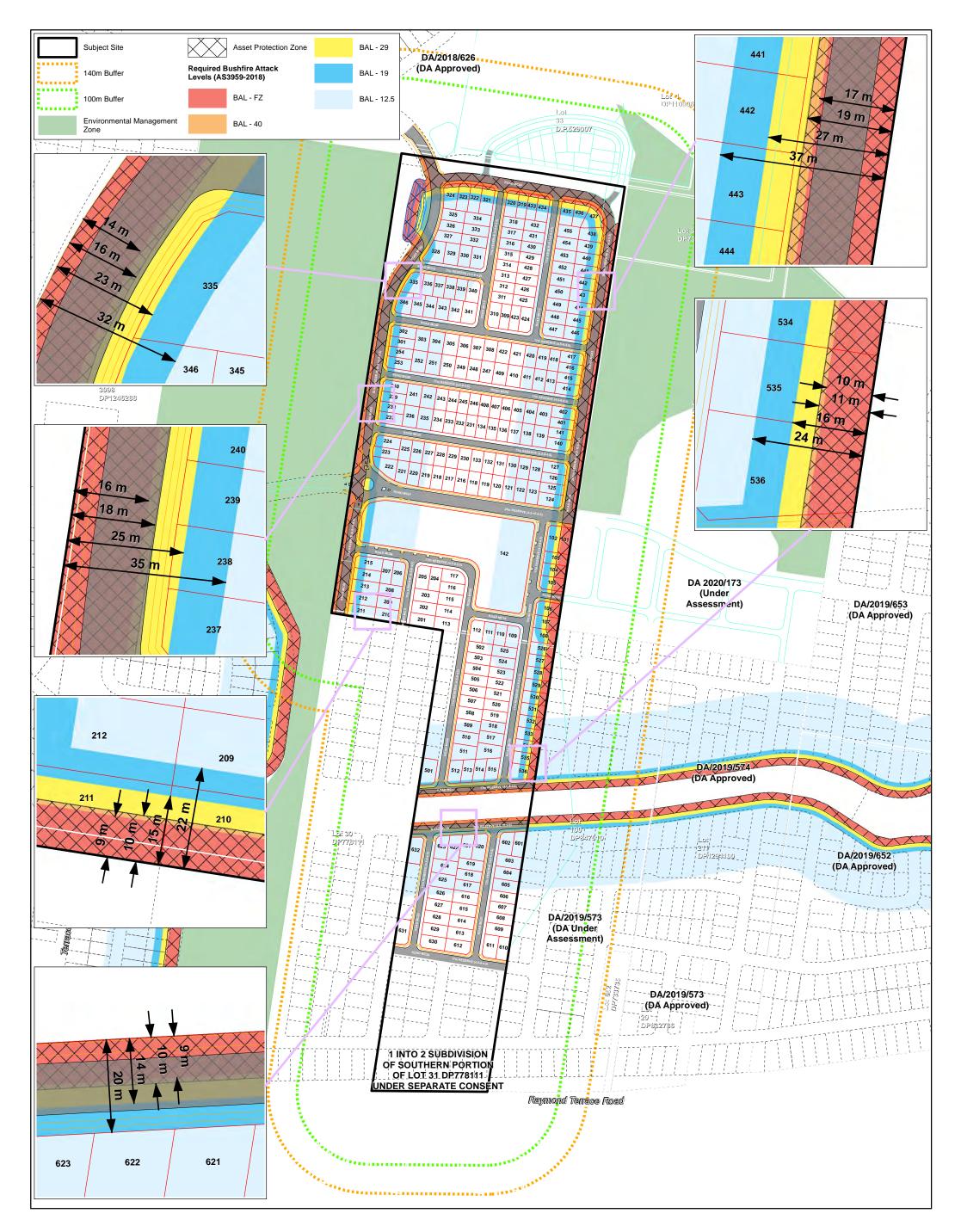
Run Description:	T5 On-Sit	te					
Vegetation Informatio	on						
Vegetation Type:	Coastal F	loodplain	Wetlands				
Vegetation Group:	Forested	Wetlands					
Vegetation Slope:	0.2 Degre	ees		Vegetation	Slope Type:	: Upsl	оре
Surface Fuel Load(t/ha)	: 8.2			Overall Fue	l Load(t/ha)	: 15.1	
Vegetation Height(m):	0.9			Only Applica	able to Shrul	b/Scrub	o and Vesta
Site Information							
Site Slope:	0 Degree	es		Site Slope 1	ype:	Dow	nslope
Elevation of Receiver(n	n): Default			APZ/Separa	tion(m):	10	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	p(K):	1090)
Calculation Paramete	ers						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	iver(m): 3.65
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees)	:	64
Flame Length(m):	8.12			Maximum V	iew Factor:		0.437
Rate Of Spread (km/h):	0.97			Inner Prote	ction Area(r	n):	0
Transmissivity:	0.873			Outer Prote	ction Area(m):	0
Fire Intensity(kW/m):	7572						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Eleva	tion of Rece
Asset Protection Zone(r	n): 6	9	14	20	34		6

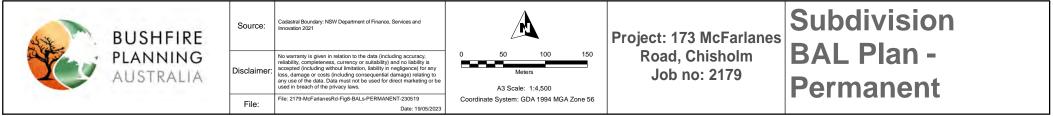
Run Description:	T6 On-sit	e					
Vegetation Informatio	<u>on</u>						
Vegetation Type:	Coastal F	loodplain	Wetlands				
Vegetation Group:	Forested	Wetlands					
Vegetation Slope:	2.3 Degre	ees		Vegetation	Slope Type:	Upslo	оре
Surface Fuel Load(t/ha)	8.2			Overall Fue	Load(t/ha)	: 15.1	
Vegetation Height(m):	0.9			Only Applica	able to Shrub	o/Scrub	o and Vesta
Site Information							
Site Slope:	0 Degree	es		Site Slope 1	ype:	Dow	nslope
Elevation of Receiver(m	i): Default			APZ/Separa	tion(m):	9	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	o(K):	1090)
Calculation Paramete	<u>rs</u>						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	iver(m): 3.27
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees):		64
Flame Length(m):	7.27			Maximum V	iew Factor:		0.435
Rate Of Spread (km/h):	0.84			Inner Prote	ction Area(n	n):	0
Transmissivity:	0.876			Outer Prote	ction Area(ı	n):	0
Fire Intensity(kW/m):	6550						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Eleva	tion of Recei
Asset Protection Zone(n	n): 5	8	12	18	31		6

Run Description:	T7 West			
Vegetation Information	on			
Vegetation Type:	Grassland			
Vegetation Group:	Grassland			
Vegetation Slope:	2.3 Degrees	Vegetation Slope Type:	Upslo	ре
Surface Fuel Load(t/ha)): 6	Overall Fuel Load(t/ha):	6	
Vegetation Height(m):	0	Only Applicable to Shrub	/Scrub	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Down	slope
Elevation of Receiver(r	n): Default	APZ/Separation(m):	10	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramete	ers			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ	/kg 18600	Ambient Temp(K):	308	
Moisture Factor:	5	FDI:	130	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Recei	iver(m)	: 3.58
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		64
Flame Length(m):	7.97	Maximum View Factor:		0.436
Rate Of Spread (km/h):	14.42	Inner Protection Area(m	า):	0
Transmissivity:	0.874	Outer Protection Area(r	n):	0
Fire Intensity(kW/m):	44702			
BAL Thresholds				
	BAL-40: BAL-29: BAL-1	9: BAL-12.5: 10 kw/m2:	Elevat	ion of Re

Asset Protection Zone(m):	0	0	0	0	0	0


Run Description:	T8 West			
Vegetation Informati	on			
Vegetation Type:	Grassland			
Vegetation Group:	Grassland			
Vegetation Slope:	0.2 Degrees	Vegetation Slope Type:	Upslo	ре
Surface Fuel Load(t/ha	ı): 6	Overall Fuel Load(t/ha):	6	
Vegetation Height(m):	0	Only Applicable to Shrub	o/Scrub	and Vesta
Site Information				
Site Slope:	0 Degrees	Site Slope Type:	Dowr	nslope
Elevation of Receiver(m): Default	APZ/Separation(m):	10	
Fire Inputs				
Veg./Flame Width(m):	100	Flame Temp(K):	1090	
Calculation Paramet	ers			
Flame Emissivity:	95	Relative Humidity(%):	25	
Heat of Combustion(kJ	I/kg 18600	Ambient Temp(K):	308	
Moisture Factor:	5	FDI:	130	
Program Outputs				
Level of Construction:	BAL 29	Peak Elevation of Rece	iver(m)	: 3.85
Radiant Heat(kW/m2):	29	Flame Angle (degrees):		64
Flame Length(m):	8.57	Maximum View Factor:		0.437
Rate Of Spread (km/h)	: 16.67	Inner Protection Area(n	n):	0
Transmissivity:	0.872	Outer Protection Area(n):	0
Fire Intensity(kW/m):	51672			


Asset Protection Zone(m	ı): 0	0	0	0	0	0


Run Description:	T9 West						
Vegetation Information	on						
Vegetation Type:	Hunter N	lacleay DS	SF				
Vegetation Group:	Dry Scler	ophyll For	ests (Shru	ıb/Grass)			
Vegetation Slope:	3.7 Degr	ees		Vegetation	Slope Type:	Down	slope
Surface Fuel Load(t/ha)): 14			Overall Fue	Load(t/ha)	24.6	
Vegetation Height(m):	0.9			Only Applica	able to Shrub	o/Scrub	and Vesta
Site Information							
Site Slope:	0 Degree	es		Site Slope T	уре:	Dowr	islope
Elevation of Receiver(n	n): Default			APZ/Separa	tion(m):	19	
Fire Inputs							
Veg./Flame Width(m):	100			Flame Tem	p(K):	1090	
Calculation Paramete	ers						
Flame Emissivity:	95			Relative Hu	midity(%):	25	
Heat of Combustion(kJ/	/ kg 18600			Ambient Te	mp(K):	308	
Moisture Factor:	5			FDI:		100	
Program Outputs							
Level of Construction:	BAL 29			Peak Elevat	ion of Rece	iver(m)	: 7.53
Radiant Heat(kW/m2):	29			Flame Angle	e (degrees):		62
Flame Length(m):	17.06			Maximum V	iew Factor:		0.45
Rate Of Spread (km/h):	2.17			Inner Protec	ction Area(n	n):	0
Transmissivity:	0.847			Outer Prote	ction Area(ı	m):	0
Fire Intensity(kW/m):	27563						
BAL Thresholds							
	BAL-40:	BAL-29:	BAL-19:	BAL-12.5:	10 kw/m2:	Elevat	ion of Rece
Asset Protection Zone(r	m): 15	19	27	38	58		6

Appendix E: Subdivision BAL Plan

