Report on Earthworks Strategy

457-527 Cessnock Road, Gillieston Heights

304100964-002

Prepared for Walker Gillieston Heights Pty Ltd

15 June 2023

Contact Information

Document Information

Registered Name Stantec Australia Pty Ltd ABN 17 007 820 322	Prepared for	Walker Gillieston Heights Pty
Suite 2, Level 2, 22 Honeysuckle Drive	Project Name File Reference	457-527 Cessnock Road, Gillieston Heights 304100964-002.2
Newcastle NSW 2300 Australia	Job Reference	304100964-002
www.cardno.com www.stantec.com Phone +61 2 4965 4555 Fax +61 2 4965 4666	Date Version Number	15 June 2023 2
Author(s):		
Dimce Stojanovski Senior Scientist	Effective Date	15/06/2023
Approved By:		

A-

Ian Piper Technical Services Manager

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	13/12/2022	First Issue	DS	IGP
2	15/06/2023	Second Issue including additional lots	JH	IGP

Date Approved

15/06/2023

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introduc	tion	1
	1.1	Purpose and Objectives	1
	1.2	Scope	1
	1.3	Relevant Guidelines	2
2	Previou	s Investigation and Site History	3
	2.1	Douglas Partners - Preliminary Site Investigation and Detailed Site Investigation	n 3
	2.2	Practical Environmental Solutions (PES) - Preliminary Site Investigation	4
	2.3	Stantec – Geotechnical Investigation	4
3	Site Ins	pection	6
4	Earthwo	orks Strategy	8
	4.1	General	8
	4.2	Earthworks and Existing Filling	8
	4.3	Existing Structures and Former Demolition Areas	9
	4.4	Anthropogenic Materials	9
	4.5	Microbiological Impacts	9
	4.6	Unexpected Finds Protocol	10
	4.7	Reporting	10
5	Conclus	ions and Recommendations	11
	5.1	Recommendations	11
6	Limitatio	ons	12
7	Referen	ces	13

Appendices

- Appendix A Figures
- Appendix B Stantec Logs
- Appendix C Unexpected Finds Protocol
- Appendix D Douglas Partners Report
- Appendix E Practical Environmental Solutions Report

1 Introduction

Cardno now Stantec Australia Pty Ltd (Stantec) have been engaged by Walker Gillieston Heights Pty Ltd to undertake a review of the contamination status of the proposed development based on available data including previous environmental assessments for the proposed residential development at 457-527 Cessnock Road, Gillieston Heights (the "Site"). It is understood that the proposed development comprises the creation of a residential subdivision, internal subdivision roads, and several open space areas.

Following initial investigation and inspection at the site, Stantec were engaged to undertake additional geotechnical investigation within Lots 457 & 463 Cessnock Road, Gillieston Heights to incorporate the lots into the overall development.

In addition to the geotechnical investigation, additional site inspection was conducted by a Principal from Stantec to record salient site features and any potential sources of contamination for inclusion in this revision of the Earthworks Strategy. The results from these investigations are included herein.

For the purpose of the review Stantec were provided with the following previous reports:

- Douglas Partners (DP) assessment of the 501-527 Cessnock Road Site referenced "Report on Preliminary Site Investigation and Detailed Site Investigation (Contamination) – Proposed Residential Subdivision, 501-527 Cessnock Road, Gillieston Heights, Project 204921.00, dated May 2022" [1]; and
- Practical Environmental Solutions (PES) assessment of the 457-463 Cessnock Road site referenced "Preliminary Site Investigation for Contamination 457-463 Cessnock Road, Gillieston Heights NSW", dated 14 February 2020 [2].

The review comprised assessment of the previous reports, and subsequent inspection to assess the site for potential sources of contamination following the reports.

Geotechnical investigation undertaken by Stantec has been reported under separate cover "Report on Geotechnical Investigation – 457-527 Cessnock Road, Gillieston Heights" referenced: 304100964-002.2, dated: 15/06/2023 [3]. The intrusive testing undertaken for the geotechnical investigation has been used to supplement the desktop review and subsequent Site inspection.

1.1 Purpose and Objectives

The purpose of the review was to provide comment on areas of identified environmental concern such that an assessment could be made on the need for further qualification, or whether a earthworks strategy could be produced for the management of any identified potential environmental concerns outlined in the DP and PES reports [1] & [2] with respect to the proposed residential development.

The DP report [1] identified that the Site has remained a rural residential and agricultural property with no evidence of major earthworks. Agricultural activity onsite consisted of dairy farming and grazing. The report [1] identified some minor localised areas of environmental concern (AEC) and the presence of uncontrolled filling.

The PES report [2] identified the Site as a residential and agricultural property with no indication of intensive agricultural practices or major earthworks. Agricultural activity on site consisted of equine and chicken breeding which was later revealed through historical imagery. The PES report [2] identified two isolated areas of environmental concern (AEC) relating to Asbestos Containing Materials (ACMs). It was noted that no filling materials at or below surface level were encountered during the limited investigation.

The report findings of the DP and PES reports are detailed in Section 0. It is considered that an earthworks strategy could be developed to address previous identified issues which can be included in the design bulk earthworks during development. As such an earthworks strategy has been proposed.

1.2 Scope

This earthworks strategy is not intended to be a detailed Sampling Analysis and Quality Plan (SAQP) or Remediation Action Plan (RAP). The intent of this document is to communicate an approach to adequately manage the identified potential environmental concerns outlined in the supplied DP [1] & PES [2] reports. The scope for the Earthworks Strategy comprised of:

> A current Site inspection.

- > Review of the existing documentation and analytical data collected on Site.
- > Identify the Site assessment criteria.
- > Outline the approach to the management of any identified or known impacts.
- > The preparation of a earthworks strategy to render the Site suitable for the proposed residential development.

1.3 Relevant Guidelines

The relevant guidelines applicable to the development of the Earthworks Strategy are as follows:

- > NEPM (1999) National Environment Protection (Assessment of Site Contamination) Measure 1999 [4].
- > NSW EPA (2022) Contaminated land Guidelines: Sampling Design Part 1 Application [5].
- > NSW EPA, "Waste Classification Guidelines Part 1: Classifying Waste," NSW Environment Protection Authority, Sydney, November 2014 [6].
- NSW EPA, Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW Environment Protection Authority, 2015 [7].
- > NSW EPA, "Consultants reporting on contaminated land Contaminated land guidelines, NSW Environment Protection Authority, Sydney, April 2020 [8].
- > NSW, "Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3ed Edition)," Department of Environment Protection Authority NSW, 2017 [9]
- > NSW EPA (2014) Excavated Natural Material Order [10].

2 **Previous Investigation and Site History**

2.1 Douglas Partners - Preliminary Site Investigation and Detailed Site Investigation

Douglas Partners (DP) have previously undertaken an assessment of the Site reported under cover "Report on Preliminary Site Investigation and Detailed Site Investigation (Contamination) – Proposed Residential Subdivision, 501-527 Cessnock Road, Gillieston Heights, Project 204921.00, dated May 2022" [1]. The report is attached in **Appendix D**.

The objective of the PSI and DSI was to identify and investigate the potential for contamination at the Site from the previous and current land uses. The scope of works comprised desktop review (Site history, published data, NSW EPA data bases, aerial photographs, tittle deeds and council searches), intrusive field investigation, logging of subsurface profile and laboratory analysis of selected soil samples for a range of analytes.

Based on the information provided, the Site history suggests that the Site has remained a residential and agricultural property with no evidence of major earthworks. Agricultural works onsite consisted of dairy farming and grazing. The aerial review indicated that structures were constructed onsite and were generally associated with residential dwellings and sheds. Evidence of the demolition of some structures and ground disturbances were noted.

The intrusive field investigation comprised the excavation of 58 test pits to depths ranging from 0.4-2.7 m below ground level (BGL). Sampling was undertaken to facilitate laboratory testing for a range of analytes.

The natural subsurface profile encountered during the field investigation comprised of silty soils with varying fractions of clay and sand, clay and sandstone. Fill was also encountered and generally comprised of soils with fragments of brick, glass, metal and plastic and were predominately located within the previous dairy farm area. No apparent records or olfactory evidence (staining, odours or free phase product) were noted to suggest the presence of contamination within the soils during the field investigation.

The report [1] concluded that the analytical results for all contaminates were below the adopted Site criteria with the exception of the following:

- Lead in sample Pit 13/0.0-0.1 at 350 mg/kg which exceeded the HIL-A of 300 mg/kg. This exceedance was within fill and building rubble within the former dairy area.
- > Zinc in four samples (Pit 7/0.0-0.1, Pit 8/0.3, Pit 12/0.3, Pit 13/0.0-0.1) which exceeded the conservative EIL for urban residential and public open space. These exceedances were within fill within the former dairy area; and
- > Asbestos containing materials within surface soils (i.e., fibro fragment >7 mm in size in soil) and fibro fragment at the surface at test location 301.
- Elevated E. Coli and faecal coliforms in surface samples within the vicinity of the former dairy (Pit 302) and downslope of the adjacent hobby farm, north -western portion of the Site (Pit 305).

Based on the results of previous assessment by others and the current assessment, potential contamination sources included the use of fill within the Site, former agricultural activities, possible storage and use of chemicals and demolition of structures. The results of the investigation indicated the general absence of gross contamination across the Site.

On the basis of the above, DP [1] recommended the following:

- > Hazardous building material assessment of buildings proposed to be demolished.
- Demolition of existing structures, including management of existing hazardous building materials, including asbestos. Demolition and remediation of asbestos impacts should be conducted by an appropriately licensed asbestos contractor.
- > Further assessment of building footprints once demolished.
- Excavation, removal and waste classification of uncontrolled fill in the vicinity of the former dairy in the central-southern portion of the site, and any other localised areas of soil contamination; and
- > Localised aeriation, liming and spelling of microbiological-impacted soils in the vicinity of the former dairy structure and in areas adjacent to upgradient agricultural activities.

DP [1] concluded that the Site is suitable for the proposed residential development following the implementation of the recommendations outlined above.

2.2 Practical Environmental Solutions (PES) - Preliminary Site Investigation

Practical Environmental Solutions (PES) have previously undertaken an assessment of the 457-463 Cessnock Road site referenced "*Preliminary Site Investigation for Contamination 457-463 Cessnock Road, Gillieston Heights NSW*", dated 14 February 2020 [2]. The report is attached in **Appendix D**.

The objective of the PSI was to identify and investigate the potential for contamination at the Site from the previous and current land uses. The scope of works comprised desktop review (Site history, published data, NSW EPA data bases, aerial photographs, tittle deeds and council searches), limited intrusive field investigation, logging of subsurface profile and laboratory analysis of selected soil samples for a range of analytes.

Based on the information provided, Site history has remained consistent with Lots 507-527 Cessnock Road, being a residential and agricultural property with no evidence of major earthworks. Agricultural activity on site consisted of equine and chicken breeding which was later revealed through historical imagery. The aerial review indicated that structures were constructed onsite and were generally associated with residential dwellings and sheds. Evidence of the demolition of some structures and ground disturbance were noted.

During the field investigation, the natural subsurface profile encountered comprised of silty topsoils with varying fractions of gravels overlying gravelly clays. It was noted that no filling materials at or below surface level were encountered during the limited investigation. No apparent records or olfactory evidence (staining, odours or free phase product) to suggest the presence of contamination within the soils during the field investigation. However, PES observed small isolated areas containing materials identified as Asbestos Containing Materials (ACMs) in two locations across the Site.

Eight (8) boreholes were excavated using hand augers with samples collected for subsequent laboratory analysis. The analytical results for all contaminates were below the adopted Site criteria. It should be noted that no confirmatory testing of the ACMs was undertaken, only visual observations. Two empty 44-gallon drums were located near the rear stables/shed in the central portion of site however, no evidence of spillage was recorded. PID sampling was conducted within this area to confirm that no volatiles were present at the time of investigation.

Based on the results of previous assessment by others and the current assessment, potential contamination sources included the use of ACM within the Site, former agricultural activities, possible storage and use of chemicals and demolition of structures. The results of the investigation indicated the general absence of gross contamination across the Site.

On the basis of the above, PES [2] recommended the following:

- Demolition of existing structures, including management of existing hazardous building materials, including asbestos. Demolition and remediation of asbestos impacts should be dealt with under an Unexpected Finds Protocol developed for the site and conducted by an appropriately licensed asbestos contractor.
- > Removal of the 44-gallon drums.
- > Excavation, removal and waste classification of any surplus material generated by construction activity.
- > Any material being imported to the site should be classified as VENM or ENM in accordance with NSW EPA Resource Recovery Orders and Exemptions.

PES [2] concluded that the Site is suitable for the proposed residential development following the implementation of the recommendations outlined above.

2.3 Stantec – Geotechnical Investigation

Stantec have undertaken geotechnical investigations at the Site referenced *"Report on Geotechnical Investigation, 457-527 Main Road, Gillieston Heights", ref 304100964-001.2, dated June 2023* [11]. The purposed of the investigation was to obtain geotechnical information on the subsurface conditions for design and/ or commentary on preliminary acid sulfate soil & salinity assessment, earthworks procedures, founding conditions for residential structures, pavement thickness design and basin construction procedures.

The investigation comprised the excavation of forty (40) test pits and logging of subsurface conditions within the proposed allotment areas and future road alignments. The location of the test pits are shown on **Figure**

1, attached in **Appendix A**. Subsurface conditions are summarised below and detailed in the engineering logs attached in **Appendix B** with explanatory notes.

The subsurface conditions encountered across the site have been characterised and summarised as follows:

- > FILL: Surficial filling comprising Silty CLAY / Clayey SILT with varying minor components of sand and gravel were encountered within several the test pits to depths in the range of 0-0.5 m BGL.
- > TOPSOIL: Sandy SILT or Silty SAND of low plasticity and fine to medium grain size, dark brown in colour, with varying fractions of gravel encountered to depths in range of 0.1-0.30m below ground level (BGL).
- > COLLUVIUM SOILS: Silty SAND / Sandy SILT / Silty CLAY generally pale brown to brown in colour, encountered in majority of the test locations. Colluvial materials generally ranged from moist to wet (due to inclement weather) and were predominantly loose to medium-dense (based on the results of DCP testing). It should be noted colluvial soils noted in overland flow paths were virtually saturated due to inclement weather at the time of investigation and ranged from soft to stiff (based on the results of DCP testing).
- > RESIDUAL SOILS: Silty / Gravelly / Sandy CLAYs of predominantly a mottling of orange, dark red and brown colour were encountered in all test pits to depths. Residual clays were typically of medium to high plasticity and ranged from firm to hard consistency (based on DCP testing). Moisture condition was observed to range from above to below plastic limit across the site.
- EXTREMELY WEATHERED MATERIAL (EWM): Extremely weathered SANDSTONE / Pebbly SANDSTONE and or SILTSTONE countered at all test locations (excluding TP022, TP024 & TP111). Extremely weathered materials were generally consistent with very stiff to hard Silty / Gravelly / Sandy CLAY and medium dense to very dense Silty / Clayey SAND. EWM clay materials were noted to be low to medium plasticity and predominantly below the plastic limit in moisture condition. Sands were generally observed to be in a dry to moist condition.
- > WEATHERED ROCK: Fine to coarse grained SANDSTONE / Pebbly SANDSTONE, CONGLOMERATE and or SILTSTONE encountered at majority of the test locations (excluding TP003, TP005, TP009, TP011, TP014-TP017, TP019-TP023, TP025, TP027, TP028, TP105-TP107 &TP109). Encountered weathered rock was generally observed to be highly weathered with inferred very low to low strength. Practical bucket refusal on generally low strength (or stronger) rock was encountered at majority of the test locations.

The natural subsurface profile is generally consistent with the regional geological expectations at the Site.

Site Inspection 3

The subject site is identified as 457-527 Cessnock Road, Gillieston Heights . The proposed development incorporates the lots summarised in Table 3-1 below.

Table 3-1 South Gillieston Heights Locality.

Lot & DP	Address
Lot 1 & 2 DP302745	457-463 Cessnock Road, Gillieston Heights
Lot 1 DP 311179	501 Cessnock Road, Gillieston Heights
Lot 1 & 2 DP601226	507-527 Cessnock Road, Gillieston Heights

The site is an irregular shaped parcel of land and is bounded by:

- > Stages 10-12 of the Wallis Creek Residential Development to the north of site;
- Rural parcels of land to the west of site, separated by Main Road/Cessnock Road; >
- Wallis Creek along the eastern boundary of site; and >
- > Rural parcels of land to the south.

Topographically the site is located within a regionally undulating terrain, characterised by a north-south trending ridgeline traversing the northern portion of the site, and adjacent low-lying alluvial flood plains to the south and east.

Slopes within the northern and central portion of site generally fall to the east towards Wallis Creek and to the west from the ridgeline typically in the order of 5-10 degrees. Slopes in the southern portion of the site fall to the south towards Testers Hollow. It is expected surface flows follow this trend with a series of farm dams and channels observed for water retention to the west of the ridgeline. Vegetation across the site at the time of fieldwork comprised large areas of open thick grazing pasture with isolated mature trees. These features have been highlighted on Figure 1 attached in Appendix A.

Observations noted during the investigation for specific lots has been summarised in Table 3-2 below.

Table 3-2	Specific lot site observations.	
Lot	חח 🛛	

Lot & DP	Observations
Lot 1 & 2 DP302745	 Rural residential weatherboard and brick house within the central of site with evidence of animal holding areas.
	 Verdant nature of the pasture, potentially reflecting pasture improvement of fertilizer application. This has the potential to impact trafficability as the surficial soil is more prone to waterlogging.
	 Evidence of localised slumping around upstream edge within existing farm dam within the eastern portion of site. Southern embankment wall appeared to be constructed using localised surplus material from the impoundment area of the basin.
	 A gully line was noted downstream of the farm dam in the eastern portion of the Site, trending south west through Lot 2 DP601226 before discharging offsite via Cessnock Road culvert crossing.
	 Several stockpiles, with several stockpiles noted to contain foreign materials, within the north-western and central portion of site surrounding existing dwellings and sheds.
	 Evidence of localised cut and fill within areas associated with effluent disposal, dams, pavements and structures.
	 Retaining walls observed along northern boundary, abutting Stage 11 & 12 of the Wallis Creek residential development.
	 In-ground concrete pool located within central portion of site, with retaining walls on eastern boundary of pool observed to be failing.
Lot 1 DP 311179	 Rural residential housing within the site with evidence of animal holding areas.
	Filling noted within driveways/access tracks typically comprised quarry gravel product.Due to presence of livestock it is anticipated the site has been used for grazing.
Lot 1 & 2 DP601226	 Rural residential housing within the site with evidence of animal holding areas.

Lot & DP	Observations
Lot & DP	 Ponded water was observed localised at the base of the north-south trending gully line in the western portion of site due to inclement weather prior and during the initial field investigation. Four gully lines were noted at the Site: A gully line was noted in close proximity to the northern site boundary, trending offsite north-east towards Wallis Creek. A gully line was noted along the central western boundary of the site, trending southwest before discharging offsite via Cessnock Road culvert crossing. A gully was noted in the southern portion of the Site, traversing offsite to the south-west towards Testers Hollow. A gully line was noted within the central eastern portion of site generally trending eastwest discharging flows towards Wallis Creek. Surficial softening of the topsoil material was noted through rutting across the site, with trafficability issues encountered at the time of the initial fieldwork. Rock outcropping in the southern portion of site and along the ridgeline on the eastern
	 Rock outcropping in the southern portion of site and along the ridgeline on the eastern boundary of site where the break in grade is located. General refuse was noted in both the western and eastern gully, typically comprising scrap metal, masonry units and bricks.
	 A farm dam with general refuse typically comprising scrap metal was noted in central- western portion of site as noted on Figure 1 in Appendix A.
	 Demolition of existing agricultural structures within the southern portion of site with scrap timber and metal sheeting covering site surfaces.
	 Several paddocks cordoning off sections of the central and southern portion of site were noted. Gates and fences for the paddocks were damaged due to livestock with the area likely used for livestock grazing.
	 Vegetation comprised predominately grazing grasses, with an increased density of mature trees noted along the eastern portion of the site associated with steepening slopes along the eastern boundary of the site.
	The site was noted to slope along the eastern boundary toward a 3 m vertical face.

4 Earthworks Strategy

4.1 General

Based on the previous investigations, current Site inspection and existing conditions of the Site, Stantec have outlined and developed an earthworks strategy framework for the management of the previously identified issues below.

It is understood, that the dominate issues are associated with existing filling and the presence of potential hazardous materials associated within existing and former structures. It is envisaged that an earthworks strategy can address the identified issues and can be managed during the construction phase of the proposed residential development.

4.2 Earthworks and Existing Filling

The Site inspection and previous investigations indicated the presence of uncontrolled filling onsite. The filling was generally associated with building materials / fill within the vicinity of the former dairy, the construction of access tracks / driveways, leveling of building pads, dam formation and other minor typical rural surficial disturbance such as trenching works to redirect surface runoff for water retention. The locality of the dairy is presented on **Figure 1**, and the encountered filling and approximate area is detailed in **Figure 2** attached in **Appendix A**.

From a geotechnical perspective, any uncontrolled fill materials are required to be excavated, recondition, and replaced. Both geotechnical and environmental assessment of the uncontrolled fill material may need to be undertaken to identify suitability for re-use on Site. Where suitable, the fill materials shall be placed as controlled filling in general accordance with Australian Standard 3798-2007 Guidelines on earthworks for commercial and residential developments.

During this process, the fill materials will be separated, stockpiled and will be visually assessed by a suitably qualified environmental consultant to determine whether additional testing of the fill materials will be required. Additional testing will be based on observations such as material origin (i.e. site won filling) or any olfactory indications of potential contamination i.e., staining, fibro fragments and odour. If the material is proposed to be utilised onsite, it will also need to be assessed for geotechnical suitability.

Should the visual assessment identify the presence of any anthropogenic materials, it is recommended that onsite monitoring of the screening / segregation, recycling of these materials should be undertaken by an experienced environmental scientist to the extent practicable to address any aesthetic issues at the Site.

Assessment of stockpiles may be required for onsite reuse and any stockpiles for offsite disposal will need to be undertaken in accordance with NSW EPA Waste Classification Guidelines [6]. Stockpiles and other material proposed for off-site reuse must comply with an appropriate Resource Recovery Order and Resource Recovery Exemption (i.e. Excavated Natural Material Order 2014 [10]) or must comply with the definition of Virgin Excavated Natural Material (VENM) set out in Schedule 1 of the Protection of the Environment Operations Act 1997 (POEO Act).

An isolated HIL A [4] exceedance within Pit 13 was encountered within the previous DP [1] assessment and several EIL exceedances of the NEPM [4] conservative threshold limits for Zinc were noted. It is considered that in absence of EIL calculations that the concentrations are likely attributed to degradation of galvanised sheeting or existing background concentration levels. Given the area was supporting verdant pasture, it is considered that the measured Zinc levels are not detrimental to flora and fauna.

As such, it is recommended that during the earthworks process that the isolated one location of HIL A exceedance (Pit 13) to be excavated on a 5m x 5m grid with the excavated material to be disposed offsite to a licence waste facility and assessed in accordance with the NSW EPA Waste Guidelines 2014 [6]. The excavation base is to be validated by the collection of one (1) base and four (4) side wall samples with samples analysed for 8 heavy metals. The excavation area of Pit 13 is shown on **Figure 2**, attached in **Appendix A**

4.3 Existing Structures and Former Demolition Areas

Existing structures were noted across the Site. The aerial review indicated that structures consisted of residential dwellings and sheds, predominately associated with the former diary operation. Evidence of the demolition of some structures and ground disturbance were noted. The potential of asbestos containing materials (ACM) were noted within existing structures, mainly within the dairy area. It is also noted that the existing residential properties fronting Cessnock Road are also proposed to be demolished and removed offsite along with the existing shed structures.

The following measures shall be implemented for the management of the removal of existing structures and areas of former structures:

- > All existing structures and dwellings that are proposed to be demolished will require a HAZMAT survey to be undertaken prior to the demolishing and removal offsite.
- > All building waste and refuse shall be disposed offsite to a licenced waste facility, legally able to accept the waste.
- > Following the removal of the existing structures, a visual clearance and walkover shall be undertaken to confirm the removal of all building refuse and potential ACM and assess the underlying soils.
- > It is recommended that a visual clearance and walkover shall be undertaken in areas of former structures, following the removal of any debris or fill materials.
- Sampling and analysis of the underlying soils following removal of any structure may be required based on any olfactory or visuals signs of contamination.

The DP report [1] and PES report [2] identified asbestos containing materials within surface soils (i.e., fibro fragment >7 mm in size in soil) and a fibro fragment at the surface at DP test location 301. Refer to **Figure 2**, for locality, noting PES asbestos locations are denoted as "AEC 1" & "AEC 2" within this drawing. It is recommended that the isolated area to be excavated, disposed offsite to a licenced waste facility with underlying soils to be validated. The excavation base to be validated by the collection of one (1) base and four (4) side wall samples with samples analysed for asbestos identification in soils. The works can be undertaken during the construction phase of the development.

4.4 Anthropogenic Materials

During the inspection and previous assessment, anthropogenic materials such as galvanised tin sheeting, bricks, building remnants, treated timber, steel and metal fragments, concrete and household refuse were present onsite.

Most of the anthropogenic materials were present within the dairy area of the Site and north western dwelling surroundings, with other refuse scattered across the Site. It was also noted that anthropogenic materials were present within an existing gully line located within the central portion of the Site. It is not uncommon for rural / farming practice, for materials to be placed in drainage lines to prevent erosion and scouring.

For aesthetic reasons, all foreign material) will need to be removed from the Site, including but not limited to, concrete, metal scraps, timber, building material and demolition waste and disused/abandoned equipment and machinery. It is recommended that the screening / segregation, recycling of anthropogenic materials should be undertaken to the extent practicable to address any aesthetic issues at the Site

It is considered that minor works such as the removal of isolated stockpiles and anthropogenic materials can be managed. A visual clearance and walkover shall be undertaken to confirm the removal of all anthropogenic materials and any potential ACM.

It is also noted removal of anthropogenic material would include removal of the 44-gallon drums noted in the PES report [2]. Based on inspection undertaken by Stantec, no visual or olfactory evidence of contamination was noted, and the drums can be removed offsite as general solid waste.

It recommended that any existing filling with anthropogenic inclusion should be addressed prior to bulk earthworks avoid any blending of waste with general earthworks.

4.5 Microbiological Impacts

Based on the information provided, the Site has remained a rural residential and agricultural property. Agricultural works onsite consisted of dairy farming and grazing and as such, it is expected that to some degree that micro bacteria such as E. Coli and thermotolerant coliforms will likely be present within areas of agricultural use.

The previous DP reported elevated E. Coli and faecal coliforms in surface samples within the vicinity of the former dairy (Pit 302) - and downslope of the adjacent hobby farm, north -western portion of the Site (Pit 305). Refer to the attached **Figure 1** for the nominated AEC.

While not identified as a significant concern, these areas can be dealt with during the construction utilising soil improving techniques such as localised aeriation, liming and spelling of microbiological-impacted soils.

4.6 Unexpected Finds Protocol

The Site is considered low risk of gross contamination based on the review of Site history, geotechnical works and investigation findings. As there is a low risk for contamination and areas that were inaccessible (soils beneath existing structures), an unexpected finds protocol (UFP should be implemented and managed during construction and development at the Site.

The purpose of the UFP is to evaluate any unexpected situations that could occur during the project, and to specify measures that can be implemented to manage such circumstances. The UFP refers subcontractors to inform authorities and consultants if there is unexpected find (skeletal, archaeological, asbestos etc.) after documentation and remediate if required. An Unexpected Finds Protocol is attached in **Appendix C**.

4.7 Reporting

At the completion of the earthworks, a report shall be prepared to confirm the above recommendations have been implemented which would include the following:

- > A description of any remedial works undertaken.
- > Clearance and documentation of the removal of the existing structures and materials disposed offsite
- > A presentation of the laboratory analytical data where undertaken.
- > Recommendations for further investigation and/or remediation works required at the Site (if required).

5 **Conclusions and Recommendations**

Stantec have prepared an earthworks strategy for the proposed residential development at 457-467 & 501 – 527 Cessnock Road, Gillieston Heights. The purpose of this earthworks strategy is to outline and development the framework for the management of any identified potential environmental concerns outlined in the DP report [1] and PES report [2] with respect to the proposed residential development.

Historically, the Site has remained a residential and agricultural property with no evidence of major earthworks. Agricultural works onsite consisted of dairy farming and grazing. The potential contamination sources included the use of fill within the Site, former agricultural activities, possible storage and use of chemicals and demolition of structures.

An isolated HIL A [4] exceedance within Pit 13 was encountered within the previous DP [1] assessment and several EIL exceedances of the NEPM [4] conservative threshold limits for Zinc were noted. It is considered that in absence of EIL calculations that the concentrations are likely attributed to degradation of galvanised sheeting or existing background concentration levels. Given the area was supporting verdant pasture, it is considered that the measured Zinc levels were not detrimental to flora and fauna.

As such, it is recommended that during the earthworks process that the isolated one location of HIL A exceedance (Pit 13) and the isolated asbestos detections (DP Pit 301 & PES AEC 1 & 2) to be excavated on a 5m x 5m grid with the excavated material to be disposed offsite to a licence waste facility and assessed in accordance with the NSW EPA Waste Guidelines 2014 [6]. The excavation base to be validated by the collection of one (1) base and four (4) side wall samples.

From a geotechnical perspective, any uncontrolled fill materials are required to be excavated, reconditioned, and re-used as filling. Further geotechnical and environmental assessment of the uncontrolled fill material may need to be undertaken to identify suitability for re-use and application on Site.

A HAZMAT survey of the existing structures is recommended with subsequent inspections and / or sampling will be required.

Based on the previous investigations undertaken by DP [1] and PES [2], Site inspections and intrusive geotechnical investigations undertaken by Stantec, no signs of gross contamination were observed at the Site. The Site, although not considered to be grossly contaminated, will require minor works and Site preparation to accommodate the proposed residential development. It is considered that it can be managed as part of this earthworks strategy during the construction phase.

Stantec considers that following the implementation of the earthworks strategy documented above and the preparation of a report confirming the strategy has been implemented, the Site can be made suitable for the proposed residential development in accordance with the *State Environmental Planning Policy (resilience and Hazards) 2021*. It is envisaged that the recommendations can be undertaken during the construction phase of the development.

5.1 Recommendations

Given the results of this assessment, Stantec recommends the following:

- > The implementation of the Earthworks Strategy presented in Section 4.
- > HAZMAT survey of existing structures and subsequent inspections and / or sampling.
- > Assessment of existing areas of uncontrolled filling for either incorporation within the bulk earthworks or off-site disposal
- > Removal of a nominal portion of soil in proximity to DP pits 13 and 301.
- Soil improving techniques to address microbiological concerns for areas in the vicinity of DP pits 302 and 305
- > The implementation of an unexpected finds protocol to address any potential issues that may be uncovered during the course of the development.
- > Any soil to be excavated and transported off Site for disposal require classification in accordance with the NSW EPA Waste Classification Guidelines or relevant guidelines
- Presence of any sundry items to be assessed for offsite disposal or recycled. This can be undertaken during the construction phase.

> Preparation of report detailing the recommended works undertaken.

Where these recommendations

6 Limitations

Stantec has performed investigation and consulting services for this project in general accordance with current professional and industry standards. The extent of testing was limited to discrete test locations and variations in ground conditions can occur between test locations that cannot be inferred or predicted.

A geotechnical / environmental consultant or qualified engineer shall provide inspections during construction to confirm assumed conditions in this assessment. If subsurface conditions encountered during construction differ from those given in this report, further advice shall be sought without delay.

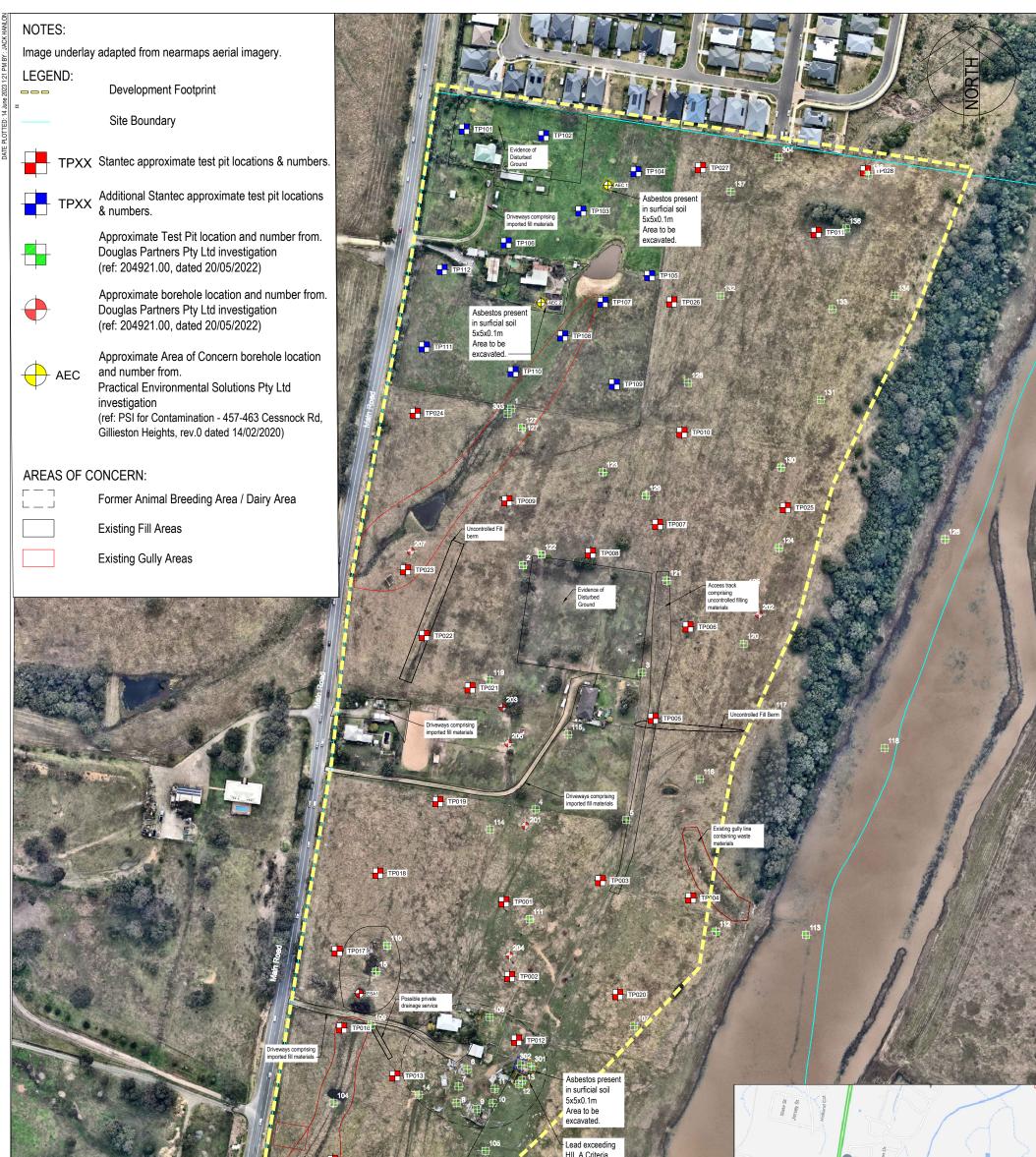
Stantec, or any other reputable consultant, cannot provide unqualified warranties nor does it assume any liability for the site conditions not observed or accessible during the investigations. Site conditions may also change subsequent to the investigations and assessment due to ongoing use.

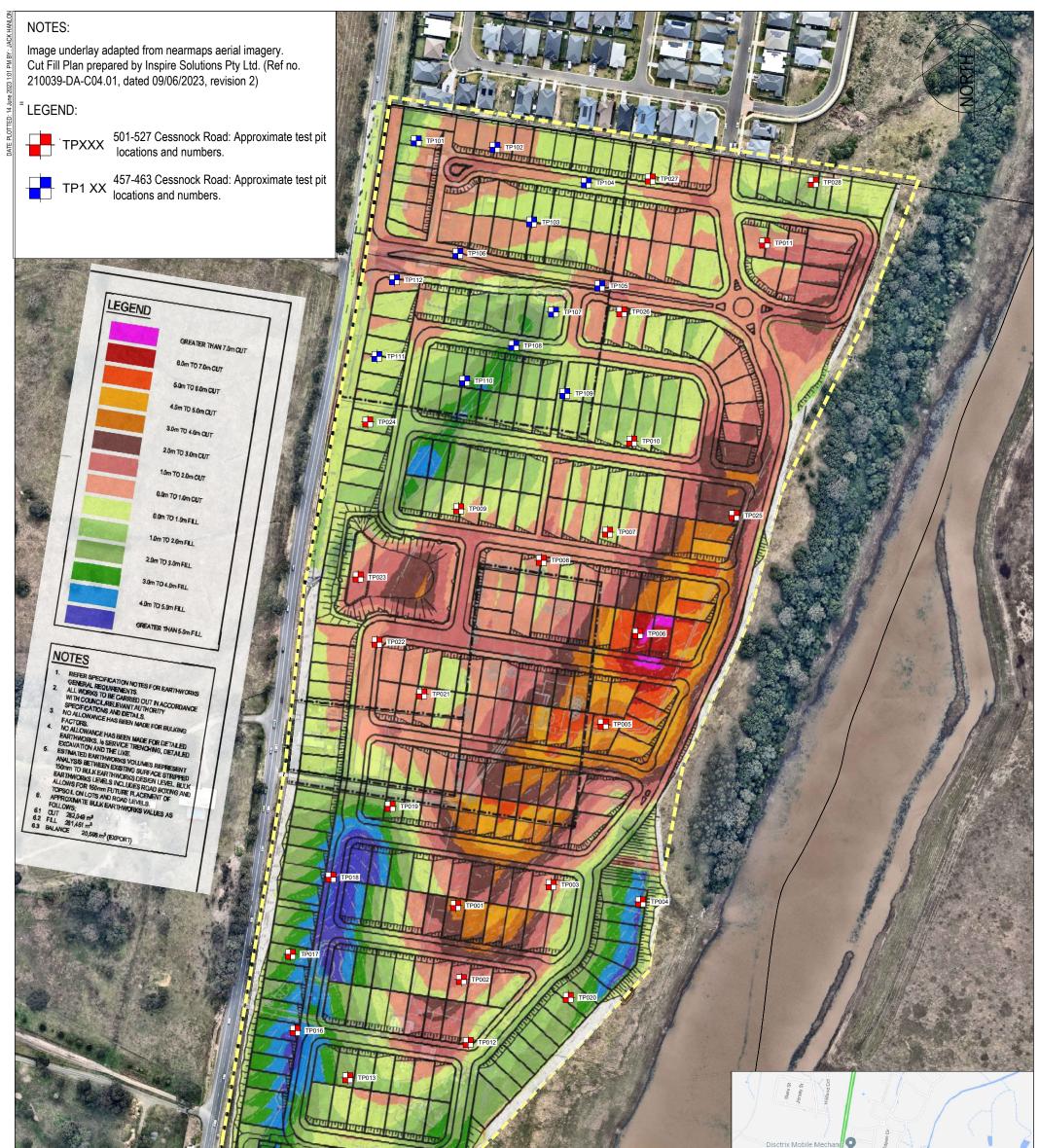
This report and associated documentation was undertaken for the specific purpose described in the report and shall not be relied on for other purposes. This report was prepared solely for the use by Walker Gillieston Heights Pty Ltd and any reliance assumed by other parties on this report shall be at such parties own risk.

7 References

- Douglas Partners, ""Report on Preliminary Site Investigation and Detailed Site Investigation (Contamination) – Proposed Residential Subdivision, 501-527 Cessnock Road, Gillieston Heights, Project 204921.00," May 2022.
- [2] Practical Environmental Solutions Pty Ltd, "Preliminary Site Investigation for Contamination 457-463 Cessnock Road, Gillieston Heights NSW," February 2020.
- [3] Stantec Australia Pty Ltd, "Report on Geotechnical Investigation 457-527 Cessnock Road, Gillieston Heights," June 2023.
- [4] National Environment Protection (Assessment of Site Contamination) Measure 1999, "Schedule B1 Guidelines on Investigation Levels For Soil and Groundwater," National Environment Protection Council (NEPC), Amended 16 May 2013.
- [5] NSW EPA, "Contaminated land Guidelines: Sampling Design Part 1 Application," 2022.
- [6] NSW EPA, "Waste Classification Guidelines Part 1: Classifying Waste," NSW Environment Protection Authority, Sydney, November 2014.
- [7] NSW EPA, Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW Environment Protection Authority, 2015.
- [8] NSW EPA, "Consultants reporting on contaminated land guidelines"," NSW Environmental Protection Authority, 2020.
- [9] NSW EPA, "Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (3rd Edition)," Environment Protection Authority NSW, 2017.
- [10] NSW EPA, "The Excavated Natural Material Order 2014," NSW Environment Protection Authority, 2014.
- [11] Stantec, ""Report on Geotechnical Investigation, 501-527 Main Road, Gillieston Heights", ref 304100964-001," 16/06/2023.

APPENDIX


FIGURES



NOTES: Image underlay adapted from nearmaps aerial imagery. LEGEND: **Development Footprint** June 2023 ____ Site Boundary TPXX Stantec approximate test pit locations & numbers. TPXX Additional Stantec approximate test pit locations & numbers. Approximate Test Pit location and number from. Douglas Partners Pty Ltd investigation (ref: 204921.00, dated 20/05/2022) Approximate borehole location and number from. Douglas Partners Pty Ltd investigation (ref: 204921.00, dated 20/05/2022) \bigcirc TP1 TP024 Approximate Area of Concern borehole location and number from. Practical Environmental Solutions Pty Ltd investigation (ref: PSI for Contamination - 457-463 Cessnock Rd, Gillieston Heights, rev.0 dated 14/02/2020) T Slate St

ing\South Gillo Site Plan - Erthwx Strat (JH).dwg		rec soil	troid bato be conditioned via limproving thriques.	HL A Criteria Sx5x0.1m Area to be excavated.	Disctrix Mobile	Construction	ΤΕ
outh Gillieston Heights GI\Drawi	0 50 100m SCALE 1:3000 @A3	±101	±102	A sub	INOT TO SCA	LE	
XREF's: CAD File: N:\Projects\810\FY23 - 3041\00964_S	© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.	Stantec Australia Pty Ltd ABN 17 007 820 322 Level 2 Suite 202, 22 Honeysuckle Drive Newcastle, NSW 2300 Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.stantec.com	Drawn Date JH 14/06/2023 Checked Date KS 14/06/2023 Designed Date Verified Date Approved	GEOTECHNICAL INVESTIGATION	IESTON HEIGHTS	Status FOR INFORMATION OF NOT TO BE USED FOR CONSTRUCTION Project Number 304100964-002 Scale Figure Number F3	

tth Gilleston Heights G\Drawing\South Gillo Site Plan (JH) dwg	0 50 100m SCALE 1:3000 @A3		PIL		Disctrix Mobile Mechanic
23 - 3041\00964_S	© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by	Stantec	Checked Da KS 14/06/20		
rojects/810/FY.	the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability	Stantec Australia Pty Ltd ABN 17 007 820 322 Level 2 Suite 202, 22 Honeysuckle Drive	Verified Da	ate GEOTECHNICAL INVESTIGATION	NOT TO BE USED FOR CONSTRUCTION PURPOSES Project Number 304100964 Scale Size 1:3000m A3
XREF's: CAD File: N:\P	whatsoever to any third party arising out of any use or reliance by third party on the content of this document.	Newcastle, NSW 2300 Tel: 02 4965 4555 Fax: 02 4965 4666 Web: www.stantec.com	Approved	GEOTECHNICAL TESTING LOCATIONS WITH CUT FILL PLAN	Figure Number Revision 2

XREF's:

APPENDIX

STANTEC LOGS

Calification Edit Normal Job No: 3040084 Starting Office Starting Office <thstarting office<="" th=""> Starting Office<th>Clie Proj</th><th>nt: ject:</th><th>(</th><th>Geot</th><th>er Gillieston He</th><th>igation</th><th></th><th></th><th></th><th></th><th></th><th>H</th><th>ole No: TP00</th></thstarting>	Clie Proj	nt: ject:	(Geot	er Gillieston He	igation						H	ole No: TP00
Bischine Type: 5: Borne Excevator Excevator Method: 600m Toothed Bucket Exevation Dimensionitie Concerce: States PM (unit) Exevation Dimensionitie Concerce: States PM (unit) Exevation Dimensionitie Concerce: States PM (unit) Exevation Dimensionitie Sampling & Toming Exercise Matched Discontinion Exevation Dimensionitie Sampling & Toming Exercise Matched Discontinion Exercise Image: Sampling & Toming Sampling & Toming Exercise Sampling & Toming Exercise Sampling & Toming Exercise Image: Sampling & Toming Exercise Sampling & Toming	.oc	ation	1: 4	57-5	27 Cessnock F	Road, Gill	iestor	n Heigh	nts				Sheet: 1 o
Scavelin Dimension: Scavelin Dimension: Beneroted SV102 Description & Tructure Sampling & Texting Sampling & Texting Sam													e Elevation:
International Security of UR22 Logged By: JH Checked By: KS Description Samping a Testing Security of Testing Barging a gradient of the Security of Security of Park Testing Barging a gradient of Security of Security of Park Testing Barging a gradient of Security of Security of Park Testing Barging a gradient of Security of Security of Park Testing Barging a gradient of Security of Security of Security of Park Testing Barging a gradient of Security of Securit						r				Excavation Method: 600mm To			stern Otentes Dtaltal
Excernation Sumpling & Testing Sumpling & Tes	-		-	-						Lawred Day 10			•
Image: Provide in the second secon				ed: 5	-		1					Checke	ed By: KS
S D Fill Comment	Ex	cavat	ion		Sampling &	Testing				Material Description	on	1	1
E State	Method	Resistance	Stability	Water		(AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	
E FIGURE EXTEMPLY WEATHERED 000000000000000000000000000000000000	A								×				FILL
B F <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>L</td> <td></td> <td>×</td> <td></td> <td>M (<pl)< td=""><td></td><td></td></pl)<></td>							L		×		M (<pl)< td=""><td></td><td></td></pl)<>		
E FLL Care device WVEL, the to constrain plate to constrain					ES 0.10 - 0.20 m).15m			
B 100								>>>>		FILL: Clayey GRAVEL, fine to coarse, angular to sub angular, dark brown, trace rootlets			
B Sity CLAY. metaling pauking, dait is a metaling pauking pauking, dait is a metaling pauking pauking, dait is a metaling pauking pauking pauking, dait is a metaling pauking pa		_				3	ſ	\otimes		-	M		
Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds Bit Holds		E			ES 0.25 - 0.35 m		-			Silty CLAY, medium plasticity, dark red mottled orange and grey, trace rootlets, trace fine grained	Ŀ		RESIDUAL SOIL
METHOD PENETRATION FILD TESTS SANDSTONE. If we be medium grained. SAND. low is planting and the burned in the same of	ied bucket		<u>0</u>	loountered				As above, Orange mottled dark red	M (>PL)				
METHOD PENETRATION FILD TESTS SANDSTONE. If we be medium grained. SAND. low is planting and the burned in the same of	nm toothed		Stabl	Not En								н	
METHOD PENETRATION FILD TESTS SANDSTONE. If we be medium grained. SAND. low is planting and the burned in the same of	000	F-H			50.0.05 0.00	13	5						
Method Plasticity CLAY D/M D/M </td <td>9</td> <td></td> <td></td> <td>ES 0.85 - 0.90 m</td> <td></td> <td>L</td> <td></td> <td></td> <td>orange, fine to medium grained SAND, low</td> <td></td> <td></td> <td>EXTREMELY WEATHERED</td>	9				ES 0.85 - 0.90 m		L			orange, fine to medium grained SAND, low			EXTREMELY WEATHERED
Methodo ES 1.00 - 1.15 m I I I I I I I I I I I I I I I I I I I										plasticity CLAY	D / M (<pl)< td=""><td>D</td><td></td></pl)<>	D	
METHOD FILD TESTS METHOD Var Jason (Network) METHOD Var Jason (Network) METHOD FILD TESTS Short Spiral auger Var Jason (Network) Method au										.00m			
METHOD FS 1.25 - 1.30 m 1.20 m SANDSTONE, fine to medium grained, brown motifed orange, low strength, highly weathered WEATHERED ROCK H 1.10 m 1.10 m 1.20 m SANDSTONE, fine to medium grained, brown motifed orange, low strength, highly weathered WEATHERED ROCK H 1.10 m 1.10 m 1.10 m 1.20 m SANDSTONE, fine to medium grained, brown motifed orange, low strength, highly weathered WEATHERED ROCK H 1.10 m 1.10 m 1.50 m 1.50 m TeRMINATED AT 1.50 m FENDION FENDION FELD TESTS SAMPLES SOL CONSISTENCY K Ripper File Test Standard Penetration Test Michard Standard Standar					ES 1.00 - 1.15 m		- 1.0			Clayey SAND, fine to medium grained, pale brow	'n		
METHOD PENETRATION 120m SANDSTONE. fine to medium grained, brown motiled orange, low strength, highly weathered WEATHERED ROCK H Image: Sandbard and s											I.		
H Image: Same of the second of the secon							-				D	D	
H Image: Same of the second of the secon													
H H							-						WEATHERED ROCK
H H					ES 1 25 - 1 30 m								
METHOD PENETRATION FIELD TESTS Standard Penetration Test Handingger PT Push tube SON Sonic drilling AH Air hammer RS Sprot sprial auger NDT Solid flight auger: V-Bit ADT Solid fligh					201.201.0011		-						
METHOD PENETRATION FIELD TESTS Standard Penetration Test Handingger PT Push tube SON Sonic drilling AH Air hammer RS Sprot sprial auger NDT Solid flight auger: V-Bit ADT Solid fligh		н											
METHOD PENETRATION TERMINATED AT 1.50 m METHOD FILD TESTS SAMPLES SAMPLES SAMPLES SOIL CONSISTENCY METHOD Very Vary Easy (No Resistance) FILD TESTS FF Film SPT NA Air hand auger Film YH Very Vary Easy (No Resistance) FILD TESTS Sonic drilling YH Very Vary Easy (No Resistance) SPT FF Film SPT Standard Penetration Test B NA Air hand memer PSP Perth Sand Penetrometer Disture Content DCP Dynamic Cone Penetrometer Disture Content PSP PSP Perth Sand Penetrometer Disture Content MOISTURE DADY Solid flight auger: V-Bit Water cuvel on Date MOIS TURE MA Dri handmer Water cuvel now Water cuvel on Date MOIS URE Disture Content MD B oreholoinisation Detector VG Very Loose MOIS URE MD Water cuvelow VS Vary Coose MOI Moist VL Very Loose Noreholoinisation Detector VG							_						
METHOD PENETRATION FIELD TESTS METHOD PENETRATION FIELD TESTS METHOD PENETRATION SPT - Standard Penetration Test I I I I I I I I I I I I I I I I I I I													
METHOD PENETRATION FIELD TESTS SAMPLES Solit Consistency METHOD IIIIII IIIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							4.5			.50m			
METHOD FILL DESTS METHOD FILL DESTS METHOD FILL DESTS Status Status METHOD FILL DESTS Status FILL DESTS Status Status METHOD Very Easy (No Resistance) F Fill Manner PAH Ard auger Very Easy (No Resistance) F Fill Manner SON Sonic drilling Very Hard (Refusal) VH Very Hard (Refusal) VH Very Hard (Refusal) VATER Percussion sampler AS Short spiral auger PAD/T Solid flight auger: V-Sit AD/T Solid flight auger: V-Sit MADT Solid flight auger: V-Sit MADT Solid flight auger: V-Sit MFHA Arhannmer PS Photoionisation Detector VS Very Vorg VG Very Core VS Very Stati VG Very Loose VG Very Vorg VG Very Vorg VG Very Loose							-1.5-			TERMINATED AT 1.50 m			
METHOD PENETRATION FIELD TESTS METHOD Fill Short spiral auger Solid Consistence) METHOD Fill Fill Fill Method VE Very Easy (No Resistance) SPT Standard Penetration Test Method Very Very Easy (No Resistance) FIELD TESTS B B Bulk disturbed sample DN Solid colliling Very Very Easy (No Resistance) Field Test B B B B B B B B Sublk disturbed sample VS Very Soft SON Soid colliling Water Level on Date PSP Perth Sand Penetrometer D D D Thin wall tube 'undisturbed' St Stift VS Very Sift Water Level on Date MOSTURE D D D Dy Noisit VD/T Solid flight auger: V-Bit Water inflow VS Very Loose Very Loose Very Loose L Loose MOX Solid flight auger: TC-Bit Water outflow Resedual (uncorrected RPa) Restriction timit L Loosee WB Washbore drill										raiger deput			
METHOD PENETRATION FIELD TESTS SAMPLES METHOD IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							F						
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY METHOD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII													
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY METHOD VE Very Easy (No Resistance) FIELD TESTS SAMPLES SOIL CONSISTENCY R Ripper Hand auger Film Hand/Pocket Penetrometer D. D. Disturbed sample VS Very Soft SON Sonic drilling H Hard (Refusal) WATER SPP - Perth Sand Penetrometer D. D. Disturbed sample VS VS Very Soft AD/T Solid flight auger: V-Bit Abore drilling Water Level on Date shown Water liftlow Water liftlow Water liftlow WS Value Very Loose L - Loose						1	F						
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY METHOD VE Very Easy (No Resistance) SPT Standard Penetration Test B B Bulk disturbed sample VS Very Soft R Ripper Hand auger F Firm PCP Pynamic Cone Penetrometer DCP Dynamic Cone Penetrometer D D Disturbed sample VS Very Soft S S S oft S S oft S													
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Build disturbed sample VS - Very Soft R Ripper Easy Firm Hard PCP Dynamic Cone Penetrometer DCP Dynamic Cone Penetrometer D - Disturbed sample S S Soft SON Sonic drilling VH Very Hard (Refusal) VH Very Hard (Refusal) VC - Moisture Content D - Disturbed Sample St S toft SAMPLES Sonorn spiral auger VH Very Hard (Refusal) VK - Notisture Content D - Disturbed Sample St S tiff AD/V Solid flight auger: V-Bit Water Level on Date shown Shown PBT - Plate Bearing Test D - Dry Moist VL - Very Loose L - Loose L - Loose L - Loose L -							F						
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Build disturbed sample VS - Very Soft R Ripper Easy Firm Hard PCP Dynamic Cone Penetrometer DCP Dynamic Cone Penetrometer D - Disturbed sample S S Soft SON Sonic drilling VH Very Hard (Refusal) VH Very Hard (Refusal) VC - Moisture Content D - Disturbed Sample St S toft SAMPLES Sonorn spiral auger VH Very Hard (Refusal) VK - Notisture Content D - Disturbed Sample St S tiff AD/V Solid flight auger: V-Bit Water Level on Date shown Shown PBT - Plate Bearing Test D - Dry Moist VL - Very Loose L - Loose L - Loose L - Loose L -													
METHOD PENETRATION FIELD TESTS SAMPLES SOIL CONSISTENCY EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Build disturbed sample VS - Very Soft R Ripper Easy Firm Hard PCP Dynamic Cone Penetrometer DCP Dynamic Cone Penetrometer D - Disturbed sample S S Soft SON Sonic drilling VH Very Hard (Refusal) VH Very Hard (Refusal) VC - Moisture Content D - Disturbed Sample St S toft SAMPLES Sonorn spiral auger VH Very Hard (Refusal) VK - Notisture Content D - Disturbed Sample St S tiff AD/V Solid flight auger: V-Bit Water Level on Date shown Shown PBT - Plate Bearing Test D - Dry Moist VL - Very Loose L - Loose L - Loose L - Loose L -							F						
EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Bulk disturbed sample VS - Very Soft R Ripper Had auger F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) VH PCP Dynamic Cone Penetrometer U - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) VH PCP Dynamic Cone Penetrometer U - Thin wall tube 'undisturbed' St - Stiff YS Percussion sampler MA Air hammer PDP - Pottorent MOISTURE WATER PBT - Plate Bearing Test D - Dry RELATIVE DENSITY AD/T Solid flight auger: V-Bit MAter inflow VL - Very Loose PID - Photoionisation Detector W - L - Loose L - Lo													
EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Bulk disturbed sample VS - Very Soft R Ripper Had auger F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) VH PCP Dynamic Cone Penetrometer U - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) VH PCP Dynamic Cone Penetrometer U - Thin wall tube 'undisturbed' St - Stiff YS Percussion sampler MA Air hammer PDP - Pottorent MOISTURE WATER PBT - Plate Bearing Test D - Dry RELATIVE DENSITY AD/T Solid flight auger: V-Bit MAter inflow VL - Very Loose PID - Photoionisation Detector W - L - Loose L - Lo	N4				 								
R Ripper VL Verty Lasy (No Nesistance) HP + Hand/Pocket Penetrometer D - Disturbed sample S - Soft HA Hand auger F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S - Soft SON Sonic drilling VH Very Hard (Refusal) PSP - Poths and Penetrometer U - Thin wall tube 'undisturbed' VSt - Very Stiff AA Air hammer VH Very Hard (Refusal) PSP - Peth Sand Penetrometer MOISTURE U Thin wall tube 'undisturbed' VSt - Very Stiff AD/V Solid flight auger: V-Bit WATER PBT - Plate Bearing Test D - Dry RELATIVE DENSITY AD/V Solid flight auger: TC-Bit Water Inflow VS Vater Stander VL - Very Loose HFA Hollow flight auger: Water outflow VS Vater Schader PEResdual (uncorrected kPa) LL - Liquid limit MD Medium Den WB Washbore drilling Water outflow Recedual (uncorrected kPa) W Misture content D	ME EX		cavato	r buck	at l		o Rosist-	nce)		T - Standard Penetration Test B -	Bulk disturbe		VS - Very Soft
PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AD/V Solid flight auger: V-Bit AD/V Solid flight auger: TC-Bit HFA Hollow flight auger WW WB Washbore drilling Water utflow Water utfl	R HA	Rip	oper		E	Easy	U NESISIA		н	- Hand/Pocket Penetrometer D -	Disturbed sa	imple	S - Soft
WATER MC Moisture Content MOISTURE H H PBT Plate Bearing Test D D Dry AD/V Solid flight auger Water Level on Date shown Shown PBT Plate Bearing Test D D Dry MD/V Solid flight auger: V-Bit AD/T Solid flight auger: TC-Bit HFA Hollow flight auger Water inflow Water inflow VL VL VL VL VL VL L Loose WB Washored drilling water outflow water outflow R=Resdual (uncorrected kPa) LL Liquid limit w MD Medium Den	PΤ	Pu	sh tube	9	н	Hard	efueal						irbed' St - Stiff
AS Short spiral auger AD/T Solid flight auger: V-Bit HFA Hold water utiflow Water utiflow WB Washbore drilling	AH	Air	hamm	er			cruadí)		м	C - Moisture Content MOISTU	RE		
AD/V Solid hight auger: V-bit AD/T Solid flight auger: TC-Bit HFA Hollow flight auger WB Washbore drilling water outflow PID - Photoionisation Detector W - Wet L - Very Losse VS - Vane Shear, P=Peak, PL - Plastic limit WB Washbore drilling D - Dense	AS	Sh	ort spir	al aug	er 🗸	✓ Water L	evel on	Date					
hrrA molicie inglitatiger – water outflow Resedual (uncorrected kPa) – Liquid limit D - Dense D - Dense	AD,	/T So	lid fligh	t auge	r: TC-Bit	shown			PI	D - Photoionisation Detector W -	Wet		L - Loose
										- Valle Silear, F-Feak, D-Deadual (uncomposited L/Da)	Liquid limit	tont	D - Dense
	RR									· · · · · · · · · · · · · · · · · · ·	woisture cor	nent	VD - Very Dense

0	S	tan	tec							TE	ST PIT LOG SHEET
	ent: ject: atio	(Geote	er Gillieston He echnical Invest 27 Cessnock F	igation	n Hoigh	nte			Η	ole No: TP002
				Site Plan	toau, Gimesto	neigi	11.5	Job No: 304100964 Angle from Horizontal: 90°		Surfac	Sheet: 1 of 1 e Elevation:
		-		onne Excavato	r			Excavation Method: 600mm To			
				sions:	1						ctor: Stantec Pty Ltd
				/10/22				Logged By: JH			ed By: KS
	cava			Sampling & 1	Footing			Material Descriptio		CHECK	su by. No
				Sampling &		0	tion	SOIL TYPE, plasticity or particle characteristic,		CA	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Graphic Log	Classification	colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
Î				ES 0.05 - 0.10 m				FILL: Clayey SILT, dark brown, trace rootlets, trace plastic rope fragments	M (≈ PL)		FILL
				ES 0.20 - 0.30 m				0.20m Silty SAND, fine to medium grained, pale brown,			COLLUVIUM
	E							trace fine to medium, rounded to sub-rounded gravel	м	MD	
				B 0.40 - 0.60 m	-			Silty CLAY, medium plasticity, orange mottled dari red, trace fine to medium grained sand, trace rootlets			RESIDUAL SOIL
bucket		-	untered						M (<pl)< td=""><td>VSt</td><td></td></pl)<>	VSt	
600mm toothed bucket		Stable	Not Encountered		9 - 			0.75m Clayey SAND, fine to coarse grained, orange mottled brown, with fine to coarse, angular to			EXTREMELY WEATHERED
9	F-H				9 			sub-angular sandstone gravels, trace cobble			
					9 13				D	D	
	н	-		ES 1.20 - 1.40 m	/25npm/VR 			1.20m SANDSTONE, fine to medium grained, mottled pale grey and brown			WEATHERED ROCK
<u> </u>								1.40m TERMINATED AT 1.40 m Refusal on Weathered Rock			
					-1.5 - - 						
EX R HA PT SC AH PS	R H Pr N Si I Ai	xcavato ipper and aug ush tube onic dril ir hamm ercussio	jer e ling er on sam	et VE E F H VH	ETRATION Very Easy (No Resist Easy Firm Hard Very Hard (Refusal)	ance)	SI HI D' P' M	P - Hand/Pocket Penetrometer D - E CP - Dynamic Cone Penetrometer U - T SP - Perth Sand Penetrometer U - T C - Moisture Content MOISTURE	ulk disturbe isturbed sa nvironmen hin wall tub E	ample tal sample	S - Soft F - Firm
AS AD AD HF WI RF	SI 0/V So 0/T So 7A H 3 W	hort spiı olid fligh	al aug t auge t auge ght aug e drillin	er r: V-Bit r: TC-Bit jer	Water Level or shown water inflow water outflow	Date	IN PI V:	IP - Borehole Impression Test M - N D - Photoionisation Detector W - V S - Vane Shear, P=Peak, PL - F D - Product (uncorrected kDp) LL - L	ry loist /et lastic limit iquid limit loisture cor	ntent	RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
Ret abb	fer to ex previatio	planatory ns and ba	notes fo	or details of escriptions		STAN	N TE	C AUSTRALIA PTY LTD			

Clien Proje				r Gillieston He chnical Invest		Ltd						Н	ole No	: TP00
_oca				7 Cessnock F		estor	n Heigh	ts	Job No: 304100964					Sheet: 1 of
				Site Plan					Angle from Horizontal: 9				e Elevation:	
				nne Excavato	r				Excavation Method: 600	0mm Tooth				
			mens										ctor: Stante	c Pty Ltd
		1	ed: 5/*						Logged By: JH		(Checke	ed By: KS	
Exc	avati	on	_	Sampling & T	lesting	_			Material D	Description				
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle charac colour, secondary and minor compor ROCK TYPE, grain size and type, co fabric & texture, strength, weatherin defects and structure	nents blour,	Moisture Condition	Consistency Relative Density		RUCTURE r Observations
						_			FILL: Clayey SILT, dark brown, trace ro		M (≈ PL)		FILL	
									15m				0011110/0104	
						-			Silty SAND, fine to medium grained, pa with fine to medium sub-rounded grave		М	L	COLLUVIUM	
600mm toothed bucket	E	Stable	Not Encountered			- - 0.5 - -			30m Silty CLAY, medium plasticity, mottled d dark red -brown, trace rootiets, trace fir sand	ne grained	M (<pl)< td=""><td>St</td><td>RESIDUAL SOI</td><td>L</td></pl)<>	St	RESIDUAL SOI	L
	F-H					- 1.0 -			20m Sandy CLAY, low plasticity, orange bro red, fine to medium grained sand		M (<pl)< td=""><td>VSt</td><td>EXTREMELY W</td><td>/EATHERED</td></pl)<>	VSt	EXTREMELY W	/EATHERED
v						- 1.5			As above, Orange brown mottled pale of	grey	WI (<pc)< td=""><td></td><td></td><td></td></pc)<>			
					/125mm YR 	-			TERMINATED AT 1.60 m Target depth					
EX R HA PT SON AH PS AD/A AD/T HFA WB RR	Ex Rip Ha Pu So Air Pe Sh So Ho Wa	oper nd aug sh tube nic drill hamm rcussio ort spir lid fligh lid fligh llow flig	e ing n sampl al auger t auger: t auger: ht auge e drilling	er WAT	ETRATION Very Easy (No Easy Firm Hard Very Hard (Re TER Water Le shown water influ water out	^{fusal)} vel on ow		SF HF DC PS MC	 Perth Sand Penetrometer Moisture Content Plate Bearing Test 	SAMPLES B - D - Distu - ES - ENVIR - MOISTURE D - Dry Moist W - Moist - LL - LL - W -	rbed sar onmenta wall tube t t ic limit d limit	nple al sample e 'undistu	rbed' VS S rbed' St VSt H	- Hard LATIVE DENSITY - Very Loose - Loose - Medium Dense - Dense

\mathbf{O}) St	tant	tec					TEST PIT LOG SHEET
	ent: ject: atior	(Geot	er Gillieston H echnical Inves 527 Cessnock F	tigation		shte	Hole No: TP004
				Site Plan		II Heių	JIIIS	Job No: 304100964 Sheet: 1 of 1 Angle from Horizontal: 90° Surface Elevation:
				onne Excavato	\r			Excavation Method: 600mm Toothed Bucket
				isions:	/			Contractor: Stantec Pty Ltd
		-	-	5/10/22				Logged By: JH Checked By: KS
			<u></u>	Sampling &	Tosting			Material Description
				Sampling &				
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Graphic	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure
				ES 0.05 - 0.10 m		عليا عليا ير عليا عا عليا عليا ير عليا ع عليا عليا	ىلىد خا	TOPSOIL: Silty SAND, fine to medium grained, dark brown, trace organics
								0.25m D Silty SAND, fine to medium grained, pale brown, with fine to medium sub-rounded gravel COLLUVIUM
	E-F							0.45m MD
600mm toothed bucket		Stable	Not Encountered	B 0.50 - 0.65 m	- 0.5			Silty Sandy CLAY, medium plasticity, brown motified orange and grey, trace organics, fine to medium grained sand, trace medium to coarse sub-rounded gravel RESIDUAL SOIL M (=PL) St - VSt
600mm too		St	Not		7 - -			0.80m Sandy CLAY, low plasticity, orange brown mottled EXTREMELY WEATHERED
	F				/100mmh VR - 1.0			red, fine to medium grained sand M (<pl)< td=""> H 1.00m NCATUSEED DOOK</pl)<>
	н	-						SANDSTONE, medium to coarse grained, orange mottled brown and red, highly weathered, very low strength
V		<u> </u>				:::::	:	1.30m
								TERMINATED AT 1.30 m Refusal on Weathered Rock
ME	THOD) Kcavato	r buck	ot		2000)		FIELD TESTS SAMPLES SOIL CONSISTENCY SPT - Standard Penetration Test B - Bulk disturbed sample VS - Very Soft
R HA PT SC AF PS AS AE HF WI RF	Ri Ha Pu N So Ain Pe Sh VV So VV So VT So A Ho 3 W	ipper and aug ush tube onic drill r hamm ercussic nort spir olid fligh	ler e er on sam al aug t auge t auge ght aug ght aug ght aug	pler WA er ▼ r: V-Bit − r: TC-Bit ▼	Very Easy (No Resist Easy Firm Hard Very Hard (Refusal) TER Water Level o shown water inflow water outflow			NP - Hand/Pocket Penetrometer D - Disturbed sample S - Soft DCP - Dynamic Cone Penetrometer D - Disturbed sample S - Soft PSP - Perth Sand Penetrometer U - Thin wall tube 'undisturbed' St - Stiff VS - Moisture Content D - Disturbed sample S - Soft PBT - Plate Bearing Test D - Dry H - Hard PID - Photoionisation Detector W - Wet VL - Very Loose VS - Vane Shear, P=Peak, R=Resdual (uncorrected kPa) W - Moisture content Moisture content
Re abl	er to exp reviation	planatory ns and ba	notes f asis of d	or details of lescriptions		STA	NT	EC AUSTRALIA PTY LTD

	nt: ect:	(Geote	er Gillieston He echnical Invest	igation						He	ole No: TP00
.oc	ation	1: 4	57-5	27 Cessnock F	Road, Gillie	stor	Heigh	ts	Job No: 304100964			Sheet: 1 of
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				onne Excavato	r				Excavation Method: 600mm 1			
				sions:					Lawred Day, 111			ctor: Stantec Pty Ltd
			ea: 5/	/10/22	Testing				Logged By: JH		Спеске	ed By: KS
EX	cavat			Sampling &	_			_	Material Descrip			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							بلد علد علد علد علد علد للد علد علد علد علد علد للد علد علد	0.10m	TOPSOIL: Silty SAND, fine to medium grained, dark brown, trace organics	D		TOPSOIL
								0.10m	Sandy SILT, low plasticity, dark brown, fine grained sand, trace organics	M (<pl)< td=""><td>F</td><td>COLLUVIUM</td></pl)<>	F	COLLUVIUM
				ES 0.20 - 0.40 m				0.20m	Sandy SILT, low plasticity, pale grey mottled pa brown	M (<pl)< td=""><td>St</td><td></td></pl)<>	St	
	F									(- L)		
				ES 0.50 - 0.60 m		0.5		0.50m	Silty Sandy CLAY, medium plasticity, brown mottled red and pale grey, trace organics, fine medium grained sand, trace medium to coarse	to		RESIDUAL SOIL
ucket			itered						sub-rounded gravel		St	
		Stable	Not Encountered							M (>PL)		_
					9 9 			0.90m			VSt	
	F-H					1.0			Sitly CLAY, low plasticity, orange mottled red a pale grey, trace medium to coarse sandstone fragments, trace sandstone cobble	nd M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
									As above, Lenses of Gravelly SAND (very low strength rock)			
,	н			ES 1.40 - 1.50 m				1.50m				
						-1.9-			TERMINATED AT 1.50 m Target depth			
ME EX R HA	Rij		r bucke		IETRATION Very Easy (No F Easy Firm	Resistar	nce)	HP -	Standard Penetration Test B - Hand/Pocket Penetrometer D -	_ES Bulk disturbe Disturbed sa Environment	mple	S - Soft
PT SO AH PS AD AD HF WE	N So Air Pe Sh /V So /T So A Ho & Wa	sh tube nic drill hamm rcussic ort spir lid fligh lid fligh	e ing er on samp al auge t auger t auger ght aug e drilling	bler ₩AT er V-Bit :: TC-Bit = er	Hard Very Hard (Refu	vel on	Date	MC - PBT - IMP - PID -		Thin wall tub TURE Dry Moist Wet Plastic limit	e 'undistu	

0	S	tan	tec								TE	ST PIT LOG SHEET
	ent: ject: atior	(Geote	er Gillieston H echnical Inves 27 Cessnock	stigation		Hoigh	te			H	ole No: TP006
					Road, Gill	lestor	i neign	us	Job No: 304100964			Sheet: 1 of 1
		-		Site Plan					Angle from Horizontal: 90°			e Elevation:
				onne Excavat	or				Excavation Method: 600mm Too			stem. Otentes Dhultd
				isions:					Lawred Day, III			ctor: Stantec Pty Ltd
			ed: 5	5/10/22		1			Logged By: JH		Checke	ed By: KS
Ex	cava	tion		Sampling 8	Testing				Material Descriptior	۱ 		
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						_	لك علد علد ع علد علد عد علد علد علد علد علد عد علد علد عد عد عد عد		TOPSOIL: Sandy SILT, low plasticity, brown, trace gravel	M (<pl)< td=""><td></td><td>TOPSOIL</td></pl)<>		TOPSOIL
						-			0.15m Silty SAND, fine to medium grained, pale brown, with gravel	M (<pl)< td=""><td>L</td><td>COLLUVIUM</td></pl)<>	L	COLLUVIUM
	F					-			0.30m Silty CLAY, medium to high plasticity, mottled orange and dark red -brown, trace rootlets, trace fine grained sand			RESIDUAL SOIL
ucket			tered			- 0.5 - -					St	
- 600mm toothed bucket	E-F	Stable	Not Encountered			-				M (>PL)		
				B 1.10 - 1.40 m	/50mm HB	- 1.0			1.20m		VSt	
	F			ES 1.20 - 1.30 m		-			Silty Sandy CLAY, low plasticity, orange brown, mottled red and pale grey, fine to medium grained sand As above, Brown orange mottled pale grey 1.45m	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
						- 1.5			SANDSTONE, fine to medium grained, brown mottled pale grey and orange, very low strength, highly weathered 1.60m			WEATHERED ROCK
						-			TERMINATED AT 1.60 m Target depth			
ME EX R HA PTO AH PSO AD AD HF WE RR	Ri Pr N So Ai Si VV So VT So A Hi 3 W	xcavato ipper and aug ush tube onic dril ir hamm ercussio hort spii olid fligh	ger e ling ler on sam ral aug at auge ght auge ght aug ght aug	et ve F H VH er r: V-Bit r: TC-Bit Jer	Easy Firm Hard	^{efusal)} evel on flow		F F	IP - Hand/Pocket Penetrometer D - D ICP Dynamic Cone Penetrometer U - TI SP - Perth Sand Penetrometer U - TI IC - Moisture Content MOISTUR D - D BT - Plate Bearing Test D - D - D ID - Photoionisation Detector W - W W S - Vane Shear, P=Peak, L - Li - Li - Li	ulk disturbe sturbed sa nvironment nin wall tub E y oist	mple al sample e 'undistu	S - Soft F - Firm
				or details of lescriptions		ç	STAN		EC AUSTRALIA PTY LTD			I

0	ć	tan										ST PIT LOG SHEET
	nt: ject: atior	(Geot	er Gillieston He echnical Invest 527 Cessnock F	igation		Heigh	ts	Job No: 304100964		He	Ole No: TP007 Sheet: 1 of 1
Pos	ition			Site Plan	,				Angle from Horizontal: 90°		Surface	e Elevation:
		-		onne Excavato	r				Excavation Method: 600mm Toot			
				nsions:	-							ctor: Stantec Pty Ltd
				/10/22					Logged By: JH			ed By: KS
	cavat			Sampling &	Testing				Material Description			
		1	ł			_		-		1		
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.05 - 0.10 m			لك على على على على على على		TOPSOIL: Silty SAND, fine to medium grained, dark brown, trace organics, trace fine to medium, sub-rounded to rounded gravel	м		TOPSOIL
									0.20m Silty SAND, fine to medium grained, brown mottled pale brown, with fine to coarse, sub-rounded to rounded gravel	м	L	COLLUVIUM
et			q			1.5			0.35m Silty CLAY, medium plasticity, mottled orange and dark red -brown, trace rootlets, trace fine grained sand	M (>PL)	F - St	RESIDUAL SOIL
600mm toothed bucket	F	Stable	Not Encountered	ES 0.65 - 0.80 m					0.70m Silty Sandy CLAY, medium plasticity, mottled red orange and pale grey, fine to medium grained sand, trace medium to coarse rounded gravel	M (~ PL)	VSt	
						.0			1.00m Sitty Clayey SAND, medium to coarse grained, brown-orange mottled pale grey and red	D	D - VD	EXTREMELY WEATHERED
	н			ES 1.30 - 1.40 m					1.30m SILTSTONE, grey mottled pale grey and purple, interbedded with SANDSTONE, fine to medium grained, brown mottled pale grey and orange, very			WEATHERED ROCK
<u> </u>						.5			1.40m Iow strength, highly weathered TERMINATED AT 1.40 m Refusal on Weathered Rock			
ME EX HA PTO APS AD AD HF WE RR	Ri Ha Pu Ai Sh V So V So V So A Ho S W	xcavato ipper and aug ush tube onic dril ir hamm ercussio hort spii olid fligh	ger e ling ler on sam ral aug at auge ght aug ght aug ght aug	et VE F H VH VH er r: V-Bit F: TC-Bit Per	ETRATION Very Easy (No Res Easy Firm Hard Very Hard (Refusa Very Hard (Refusa FER Very Hard inflow water inflow water outflow	^{al)} I on [S F P I	P - Hand/Pocket Penetrometer D - Dis CP - Dynamic Cone Penetrometer U - Thi SP - Perth Sand Penetrometer U - Thi CC - Moisture Content MOISTURE BT - Plate Bearing Test D - Dry ID - Photoionisation Detector W - We S - Vane Shear; P=Peak, LL - Lig	turbed sa vironment n wall tub ist ist stic limit	al sample e 'undistu	S - Soft F - Firm
Refe	er to ex	planatory	notes f	or details of lescriptions		S	STAN	 T	EC AUSTRALIA PTY LTD			

\bigcirc) St	tant	ec								TE	ST PIT LOG SHEET
	ect:	C	Geote	er Gillieston H chnical Inves	tigation			4-			Н	ole No: TP008
	atior			27 Cessnock	Road, Gill	lestor	1 Heigh	Its	Job No: 304100964			Sheet: 1 of 1
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				onne Excavat	or				Excavation Method: 600mm Too			stem. Otentes Divided
				sions: /10/22								ctor: Stantec Pty Ltd
	cava		3u. 5/		Testing				Logged By: JH		SHECKE	ed By: KS
EX	cava	uon		Sampling &	Tesung				Material Descriptior		1	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.10 - 0.25 m		-	لله عله عله عله عله ع عله عله عله عله عله عله عله عله عله عله عله ع عله عله ع عله عله ع عله عله ع عله عله ع		TOPSOIL: Silty SAND, fine to medium grained, dark brown, trace organics, trace fine to medium, sub-rounded to rounded gravel	м		TOPSOIL
						-			0.20m Sandy SILT, low plasticity, dark brown, fine to medium grained sand			COLLUVIUM
:ket			.ed			-			As above, Pale grey, trace rootlets	M (<pl)< td=""><td>L</td><td></td></pl)<>	L	
600mm toothed bucket	F	Stable	Not Encountered			- 0.5			0.50m Silty CLAY, medium plasticity, brown mottled grey and red, trace rootlets, trace fine to medium grained sand			RESIDUAL SOIL
90						-			As above, Red mottled pale grey and orange, with sand As above, Grey mottled brown, trace sub-rounded	M (>PL)	F	
					/50mlml HB	-			cobble 0.90m Clayey SAND, medium to coarse grained, orange brown mottled pale grey with fine to coarse angular sandstone fragments, with lenses of sity	D	D	EXTREMELY WEATHERED
	н					- 1.0			1.00m sandy CLAY SANDSTONE, medium to coarse grained, orange mottled brown, fine to medium, rounded to sub-rounded gravel clasts			WEATHERED ROCK
						_			TERMINATED AT 1.10 m Refusal on Weathered Rock			
						- 15						
						-						
						-						
ME EX HA PT SO AH PS AD AD HF	Ri Hi Pu Si Ai Pe Si Si Si Si Si Si Si	Accavator ipper and aug ush tube onic drill ir hamm ercussic hort spir bild fligh olld fligh ollow flig	er ing er n samp al auge t auger t auger	t VE F H VH Ser : V-Bit - : TC-Bit	NETRATION Very Easy (N Easy Firm Hard Very Hard (R ATER Water L shown water in	^{efusal)} evel on		F F F	IP - Hand/Pocket Penetrometer D - D ICP - Dynamic Cone Penetrometer U - T ISP - Perth Sand Penetrometer U - T ICC Moisture Content MOISTUR PBT Plate Bearing Test D - D D I/D - Plate Bearing Test M - M I/D - Photoionisation Detector W - W	Ilk disturbed sa sturbed sa nvironment in wall tub E y pist et astic limit	mple al sample	S - Soft F - Firm
	Re er to ex		r notes fo	g - or details of escriptions	water ou		STAN	 T		quid limit oisture con	itent	D - Dense VD - Very Dense

0) s	tan	tec									TE	ST PIT LOG SHEET
	ent: ject: atio	: (Geote	er Gillieston H echnical Inves 27 Cessnock	tigation		Hoigh	.to				H	ole No: TP009
				Site Plan	Roau, Gill	lestor	i neigi	115	Job No: 304100964	n°		Surface	Sheet: 1 of 1 e Elevation:
				onne Excavate	or				Angle from Horizontal: 90 Excavation Method: 600n				e Elevation:
				sions:	51				Excavation Method. 0001				ctor: Stantec Pty Ltd
				/10/22					Logged By: JH				ed By: KS
	cava			Sampling &	Testing				Material De	escription			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characte colour, secondary and minor componer ROCK TYPE, grain size and type, colo fabric & texture, strength, weathering defects and structure	ents our,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
•					3 6 9 12	-	على على على على على على على على على على على على على على على على على على	0	TOPSOIL: Silty SAND, fine to medium gr dark brown, trace organics, trace fine to r sub-rounded to rounded gravel		м		TOPSOIL
				B 0.30 - 0.60 m		-			20m Silty CLAY, medium to high plasticity, bro mottled grey, trace fine to medium rounde trace fine grained sand, trace rootlets	rown ded gravel,			RESIDUAL SOIL
600mm toothed bucket		Stable	Not Encountered			-			As above, High plasticity, mottled pale gr red	grey and	M (≻PL)	F	
900						- 1.0			90m Silty CLAY, low to medium plasticity, mot orange brown	ottled		St	EXTREMELY WEATHERED
	F					-			As above, Pale grey, mottled red orange, coarse angular sandstone fragments	e, trace	M (≈ PL)	VSt	
						- 2 			50m TERMINATED AT 1.50 m Target depth				
						-							
ME EX R HA PTC AH PSC AD AD HF WE RF	R PN S I A S S V/T S S A V/T H B	Excavato Ripper Hand aug Push tubo Conic dril Sonic dril Percussio Short spii Solid fligh	jer e er on sam ral auge tt auge ght auge ght auge ght auge e drillin	et VE E F H VH vH er T r: V-Bit - r: TC-Bit er I	NETRATION Very Easy (N Easy Firm Hard Very Hard (F TER Water L Shown water in Water o	Refusal) Level on		SF HF DC PS MC	Image: Standard Penetration Test Image: Standard Penetrometer Image: Hand/Pocket Penetrometer Image: Standard Penetrometer Image: Perth Sand Penetrometer Image: Standard Penetrometer Image: Penetrometer Image: Standard Penetrometer Image: Penetrometer Image: Standard Penetrometer Image: Penetrometer Image: Penetrometer	SAMPLES B - Bulk D - Distr ES - Envi U - Thin MOISTURE D - Dry M - Mois W - Wet W - Wet PL - Plas LL - Liqui w - Mois	urbed sai ronmenta wall tube st tic limit	mple al sample e 'undistu	S - Soft F - Firm
Ret	fer to ex previatio	xplanatory	notes fo	or details of escriptions		ç	STAN	ITE	C AUSTRALIA PTY LT	TD			1

		tant		n Cillianton I	laisebéa Dhuil	4-1						ST PIT LOG SHEE
	ect:	(Geote	er Gillieston H echnical Inves	stigation						H	ole No: TP010
	ation			27 Cessnock Site Plan	Road, Gilles	ston	Heigh	ts	Job No: 304100964 Angle from Horizontal: 90°		Surfac	Sheet: 1 of e Elevation:
		-		onne Excavat	or				Excavation Method: 600mm To			
				sions:	0.							ctor: Stantec Pty Ltd
				/10/22					Logged By: JH			ed By: KS
	cava			Sampling 8	Testing				Material Descripti			
Method	Resistance	Stability	Water	Sample or Field Test	150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					3 6 9 12 1 				FILL: Silty SAND, fine to medium grained, dark brown trace gravel, trace organics, trace glass fragments	м		FILL
								0.	5m Sandy SILT, low plasticity, dark brown, fine to medium grained sand, trace organics	M (<pl)< td=""><td>S</td><td>COLLUVIUM</td></pl)<>	S	COLLUVIUM
		_				0.5		0.	Sity CLAY, medium plasticity, mottled orange ar dark red -brown, trace rootlets, trace fine grained sand			RESIDUAL SOIL
600mm toothed bucket —	F	Stable	Not Encountered	B 0.60 - 0.80 m					As above, High plasticity, trace fine to medium, sub-rounded to sub-angular gravel	M (>PL)	St	
	F					1.0		1.	95m			
	F-H	_			/1/00/min (HB				Silty Sandy CLAY, low to medium plasticity, mottled pale grey orange and red, fine to mediur grained sand		VSt to H	EXTREMELY WEATHERED
V	н								SANDSTONE, medium to coarse grained, grey orange brown, fine to medium, rounded to sub-rounded gravel clasts 0m			WEATHERED ROCK
						1.5			TERMINATED AT 1.40 m Refusal on Weathered Rock			
EX R HA PT	Ri Hi Pu	kcavato ipper and aug ush tube	jer e	et VE E F H	NETRATION Very Easy (No Re Easy Firm Hard		nce)	SPT HP DCF	- Hand/Pocket Penetrometer D - - Dynamic Cone Penetrometer U -	ES Bulk disturbe Disturbed sa Environment Thin wall tub	imple al sample	S - Soft F - Firm urbed' St - Stiff
SO AH PS AD AD HF WB RR	Ai Pe SI V So /T So /T So A Ho S W	onic drill r hamm ercussic nort spir olid fligh olid fligh ollow flig 'ashbor ock rolle	er on sam al auge t auge t auge ght aug e drillin	er ∵V-Bit ∵TC-Bit er	Very Hard (Refus	el on [w	Date	PSF MC PBT IMP PID VS	- Moisture Content MOISTL - Plate Bearing Test D - - Borehole Impression Test M - - Photoionisation Detector W - - Vane Shear; P=Peak, P=Peak(u) (uncertant (Re))		ntent	VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
				or details of escriptions		S	STAN	ITE	C AUSTRALIA PTY LTD			I

\mathbf{O}) St	ant	ec								TE	ST PIT LOG SHEET
Clie Proj	ect:	(Geot	er Gillieston H echnical Inves	tigation	-	. Usiah	4.0			Η	ole No: TP011
	ation			27 Cessnock	Road, Gil	lestor	i neign	is	Job No: 304100964		0	Sheet: 1 of 1
		-		Site Plan onne Excavat	or				Angle from Horizontal: 90° Excavation Method: 600mm To			e Elevation:
				isions:								ctor: Stantec Pty Ltd
				/10/22					Logged By: JH			ed By: KS
	cavat			Sampling &	Testing				Material Descript			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
-	Å				3 6 9 12			Cla	defects and structure FILL: Silty clayey SAND, fine grained, brown		0	FILL
				ES 0.05 - 0.10 m					orange 0.10m	М		
						_			Sandy SILT, low plasticity, dark brown, fine to medium grained sand, trace organics	M (<pl)< td=""><td>F</td><td>COLLUVIUM</td></pl)<>	F	COLLUVIUM
				ES 0.45 - 0.55 m		- - 0.5			0.25m Silty CLAY, medium plasticity, brown orange mottled red , trace rootlets, with fine grained sar	d M (>PL)) F to St	RESIDUAL SOIL
at				B 0.60 - 0.90 m		-			0.60m Silty Sandy CLAY, low to medium plasticity, mottled pale grey brown orange red, fine to			EXTREMELY WEATHERED
bucke			Intered		l le				mottled pale grey brown orange red, fine to medium grained sand, trace organics			
600mm toothed bucket	E	Stable	Not Encountered			-					VSt	
9					1	7-1.0				M (<pl)< td=""><td>)</td><td></td></pl)<>)	
					2	1					н	
						-			1.25m Silty Clayey SAND, fine to medium grained sand brown to orange mottled pale grey, with fine to coarse angular pebbly sandstone fragments	, м	D - VD	
						- -			1.50m TERMINATED AT 1.50 m Target depth			
						-						
ME EX RA PT SO AH PS AD AD HF RR	Rij Ha Pu N Sc Ain Pe Sh V Sc V T Sc A Ho S	cavato pper and aug ish tube onic drill r hamm ercussic nort spir blid fligh	er ing er on sam al aug t auge t auge ght aug ght aug o drillin	et VE E F H VH Pler WV er T-V-Bit r: TC-Bit ger J	NETRATION Very Easy (f Easy Firm Hard Very Hard (f NTER Water I shown water ir water o	Refusal) Level on		S H D P N P IN P	IP - Hand/Pocket Penetrometer D - ICP - Dynamic Cone Penetrometer U - SP - Perth Sand Penetrometer U - IC - Moistrue Content MOISTI BT - Plate Bearing Test D - ID - Photoionisation Detector W - ID - Photoionisation Detector W - S - Vane Shear; P=Peak, LL -	Bulk disturb Disturbed sa Environmen Thin wall tub	ample tal sample be 'undistu	S - Soft F - Firm
Ref	er to exp	planatory	notes f	or details of escriptions		ę	STAN	1 1 T E	EC AUSTRALIA PTY LTD			

	nt: ect:	0	Geote	r Gillieston He chnical Invest	igation							He	ole No:	TP01
.oc	ation	: 4	57-52	27 Cessnock F		ton	Heigh	Its	Job No: 304100964					Sheet: 1 o
				Site Plan					Angle from Horizontal				e Elevation:	
				nne Excavato	r				Excavation Method: 6	00mm Toot				.
				sions:					Lowerd Day, 10				ctor: Stantec I	Pty Ltd
			ed: 12	2/10/22					Logged By: JH		(Checke	ed By: KS	
Ex	cavat	on		Sampling &		_			Materia	al Description			1	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	nepur (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type fabric & texture, strength, weath defects and structure	oonents colour,	Moisture Condition	Consistency Relative Density		CTURE oservations
									FILL: Silty SAND, fine to medium gr brown, with lenses of clay, trace roc	ained, dark tlets	м		FILL	
									FILL: Clayey Sandy SILT, low plasti pale brown trace gravel, fine to coal sand, trace medium sub-rounded gr	se grained	M (<pl)< td=""><td></td><td>-</td><td></td></pl)<>		-	
									.30m Sandy CLAY, medium to high plasti orange-brown and grey, fine to med sand	city, mottled ium grained	M (>PL)	St	RESIDUAL SOIL	
ed bucket		Ū.	Not Encountered			.5			.45m Silty CLAY, medium plasticity, orang brown and red, with fine grained sai	le mottled nd				
600mm toothed bucket		Stable	Not En								M (≈ PL)	St to VSt		
						.0			.90m Clayey SAND, fine to medium grain mottled pale grey, with medium to c to sub-angular gravel	ed, orange barse, angular	D	D	EXTREMELY WEA	THERED
	F				/50mm HB				.10m SANDSTONE, fine to medium grain	ed, orange			WEATHERED ROC	ĸ
	н								mottled pale grey, highly weathered strength	, very low				
¥									.30m TERMINATED AT 1.30 m Refusal on Weathered Rock					
					 	.5								
	THOD				 ETRATION				LD TESTS	SAMPLES				ONSISTENCY
EX R HA PT SO AH PS AD AD HF	Rip Ha Pu N So Air Pe Sh V So T So A Ho	oper nd aug sh tube nic drill hamm rcussic ort spir lid fligh lid fligh llow flig	e ing er on samp al auger t auger: t auger: ght auge	ler WA r V-Bit TC-Bit	Water Level shown water inflow	^{al)} on E		H D P: M	P Dynamic Cone Penetrometer P Perth Sand Penetrometer Moisture Content T T Plate Bearing Test P Borehole Impression Test O Photoionisation Detector Vane Shear; P=Peak,	D - Dist ES - Env	turbed sa rironment n wall tube st st t stic limit	d sample mple al sample e 'undistu	e S irbed' St - VSt - H - RELAT VL - L - MD	 Very Soft Soft Firm Stiff Very Stiff Hard TVE DENSITY Very Loose Loose Medium Densi
WB RR		ashbore ck rolle	e drilling er	-	water outflow	v			R=Resdual (uncorrected kPa)		sture con	tent		 Dense Very Dense

0	S	tant	ec						TEST PIT LOG SHEE
Clie Pro	ent: ject: atio	(Geote	er Gillieston H echnical Inves 27 Cessnock	tigation		Hoigh	te	Hole No: TP01
				Site Plan	Ruau, Gille	5101	neign	15	Job No: 304100964 Sheet: 1 of Angle from Horizontal: 90° Surface Elevation:
				onne Excavate	or				Excavation Method: 600mm Toothed Bucket
				sions:					Contractor: Stantec Pty Ltd
				2/10/22					Logged By: JH Checked By: KS
E>	cava	tion		Sampling &	Testing				Material Description
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure
					3 6 9 12			0	FILL: Silty CLAY, low to medium plasticity, dark FILL: brown, with fine to coarse angular to sub-angular gravel, trace rootlets, trace metal fragments FILL
600mm toothed bucket		Stable	Not Encountered			- 0.5			0.25m RESIDUAL SOIL Sitty CLAY, medium to high plasticity, orange brown mottled grey, trace fine sub-rounded to angular gravel, trace rootlets RESIDUAL SOIL
	F	_				- 1.0			0.95m Sandy CLAY, low plasticity, pale orange mottled pale grey, fine to medium grained sand EXTREMELY WEATHERED
	н				/25mm HB 				1.10m M (<pl)< td=""> H SANDSTONE, fine to medium grained, grey WEATHERED ROCK</pl)<>
									mottled red orange, fine to medium, rounded to sub-rounded gravel clasts
						- 1.5			TERMINATED AT 1.20 m Refusal on Weathered Rock
ME EX R PT SC AH PS AD AD HF WE RF	R Pi N Si I Ai Si Si Si N/V Si N/V Si N/V Si Si A H 3 W	xcavato ipper and aug ush tube onic drill ir hamm ercussic hort spir olid fligh	er er on samp al auge t auger t auger ght auge ght auge	tt VE E F H VH St ∵V-Bit - er ■	Very Easy (No I Easy Firm Hard Very Hard (Refu Very Hard (Refu Very Hard (Refu Water Lev shown water inflo	usal) vel on l ow		S H D M P M P	Signal Sample SPT Standard Penetration Test B HP Hand/Pocket Penetrometer D DCP Dynamic Cone Penetrometer D DCP Dynamic Cone Penetrometer U PSP Perth Sand Penetrometer U PBT Plate Bearing Test D PID Photoionisation Detector W VS Very Suff WV Wet PID Photoionisation Detector VS Vary Loose LL Liquid limit w Moisture content
Ref abb	fer to ex previatio	planatory ns and ba	notes fo	or details of escriptions		5	STAN	ITE	EC AUSTRALIA PTY LTD

	nt: ect: ation	0	Geote	er Gillieston H echnical Inves 27 Cessnock I	tigation		n Heiat	nts	Job No: 304100964		H	ole No: TP01 Sheet: 1 of
				Site Plan	toau, onn	03101	Theigh	113	Angle from Horizontal: 90°		Surfac	e Elevation:
				onne Excavato	or				Excavation Method: 600mm Too			
				isions:								ctor: Stantec Pty Ltd
				2/10/22					Logged By: JH			ed By: KS
	cavati			Sampling &	Testing				Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
				ES 0.05 - 0.10 m	3 6 9 12	_			FILL: Clayey Sandy SILT, low plasticity, dark brown, fine to medium grained sand, trace organics, trace fine to medium, sub-rounded to angular gravel	M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
				ES 0.25 - 0.35 m		-			0.25m FILL: Clayey GRAVEL, fine to coarse, sub-rounded to sub-angular, yellow brown	M - W		
	E			ES 0.45 - 0.60 m		-			0.40m Silty CLAY, high plasticity, orange brown mottled grey, trace fine sub-rounded to angular gravel, trace rootlets			RESIDUAL SOIL
						-0.5						
ed bucket		le	Not Encountered	B 0.60 - 0.70 m		-				M (≈ PL)	St to VSt	
		Stable	Not E	ES 0.90 - 1.00 m		-						
	F			B 1.00 - 1.20 m	14	- 1.0			1.00m Silty CLAY, medium to high plasticity, red mottled pale grey and orange, trace fine grained sand,		н	-
				ES 1.10 - 1.20 m	/100mm HB 15	-			trace rootlets	M (<pl)< td=""><td>н</td><td></td></pl)<>	н	
	F-H					-						
V				ES 1.40 - 1.50 m					1.40m Silty CLAY, low to medium plasticity, pale grey mottled orange	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
						-			TERMINATED AT 1.50 m Target depth			
	THOD				IETRATION	-			ELD TESTS SAMPLES			SOIL CONSISTENCY
EX R HA PT SOI AH PS AD/ AD/ HF/ WB	Rip Ha Pu N So Air Pe Sh V So T So A Ho	lid fligh llow flig	er ing er al auge t auge t auge jht aug	v∈ F H VH er ∇ r:V-Bit − r:TC-Bit ↓	Very Easy (Ne Easy Firm Hard Very Hard (Re TER Water Le shown water inf water ou	^{efusal)} evel on low		H D P M I	P - Hand/Pocket Penetrometer D - Director CP - Dynamic Cone Penetrometer U - Tr SP - Perth Sand Penetrometer U - Tr C - Moisture Content MOISTURI BT - Plate Bearing Test D - Dir ID - Photioninsation Detector W W S - Vane Shear, P=Peak, L - L	iin wall tub E oist et astic limit	imple al sample	S - Soft F - Firm
RR	Ro	shbore ck rolle	r	or details of				<u> </u>		oisture cor	ntent	VD - Very Dense

Geot 457-5 Refer to ype: 5 t n Dimer		igation coad, Gillies r Cesting DCP TEST (AS 1289.6 3.2-1997) Blows/ 150 mm 3 6 9 12 I			Classification	Job No: 304100964 Angle from Horizontal: 90° Excavation Method: 600mm Logged By: JH Material Descr SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootilets 30m Silty CLAY, medium to high plasticity, mottlee red and grey, with fine to medium grained sa	ription c, Moistrue with	Contract Contract Contract Checke Deusity	Elevation: Control Stantec Pty Ltd Control S
Caper to ype: 5 t n Dimer vated: 1	o Site Plan tonne Excavato msions: 12/10/22 Sampling & T Sample or Field Test	DCP TEST (AS 1280.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 I I I I	Depth (m)		Classification	Angle from Horizontal: 90° Excavation Method: 600mm Logged By: JH Material Descr SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets	ription ic, any solution with avel,	Constremcy Constremcy Relative Density	e Elevation: ctor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations
Xapilità Nated: 1 Mateurica Strapilità Mateurica Strapilità	tonne Excavato insions: 12/10/22 Sampling & T Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 I		Graphic Log		Excavation Method: 600mm Logged By: JH Material Descr SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets 30m Silty CLAY, medium to high plasticity, mottlet	ription ic, any solution with avel,	Constremcy Constremcy Relative Density	STRUCTURE & Other Observations
Mater Mater	nsions: 12/10/22 Sampling & T Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 I		Graphic Log		Logged By: JH Material Descr SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets	ription c, anysion With avel,	Contract Consistency Relative Density Density	STRUCTURE & Other Observations
Vater Water	Sampling & T Sample or Field Test	DCP TEST (AS 1289.6. 3.2.1997) Blows/ 150 mm 3 6 9 12 1		Graphic Log		Material Descr SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets 30m Silty CLAY, medium to high plasticity, mottlet	ription ic, Woision with avel,	Consistency Relative Density	STRUCTURE & Other Observations
Stability Vater	Sample or Field Test	DCP TEST (AS 1289.6. 3.2.1997) Blows/ 150 mm 3 6 9 12 1		Graphic Log		SOIL TYPE, plasticity or particle characteristi colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets	with avel,		& Other Observations
		150 mm 3 6 9 12 1 1 1 1 1 1 1 1 1 1 1 1		Graphic Log		colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Sandy SILT, low plasticity, dark brown, medium to coarse, angular to sub-angular gr trace rootlets 30m Silty CLAY, medium to high plasticity, mottler	with avel,		& Other Observations
table L Encountered			0.5		0.3	medium to coarse, angular to sub-angular gr trace rootlets 30m Silty CLAY, medium to high plasticity, mottler	avel,		FILL
table LEncountered			·0.5		0.3	Silty CLAY, medium to high plasticity, mottled			
table t Encountered						trace roollets	d dark Ind, M (>PL)	St	RESIDUAL SOIL
v ē		- 17	, , , , , , , , , , , , , , , , , , ,		0.7	^{75m} Silty Sandy CLAY, medium plasticity, mottled grey and orange	1 pale	VSt	EXTREMELY WEATHERED
Z			-1.0				M (<pl)< td=""><td>н</td><td></td></pl)<>	н	
			·1.5		16	As above, With medium to coarse angular sandstone fragments			
						TERMINATED AT 1.60 m Target depth			
er tube c drilling ammer ussion sam spiral auge flight auge flight auge w flight aug	kket VE F H WAT Iger VBit Jer: TC-Bit Uger	Very Easy (No R Easy Firm Hard Very Hard (Refus TER Water Leve shown water inflov	^{usal)} rel on [w		SPT HP DCP PSP MC	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Moisture Content Noisture Content Pata Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear, P=Peak, L Penetropy of the penetrometer	 Bulk disturbi- Disturbed sa Environmen Thin wall tub STURE Dry Moist Wet Plastic limit Liquid limit 	ample tal sample be 'undistur	S - Soft F - Firm
er tu an so fli w	uger ibe Irilling mer sion sa piral au ght a	tor bucket VE uger F Hilling VH sion sampler piral auger ght auger: V-Bit ght auger: C-Bit flight auger ore drilling	tor bucket uger be sion sampler piral auger off auger: TC-Bit fight auger ore drilling bler Mathematical	tor bucket uger ube tror bucket uger ube frilling mmer sion sampler piral auger: V-Bit ght auger: V-Bit ght auger: V-Bit ght auger: TC-Bit ght auger: M-Bit ght	tor bucket uger ube throws bucket uger throws bucket t	I I	Image: C-Bit fight auge: C-Bit figh	Image: Solution of the second state	Image: Source of content of the second content of the sec

Geo 457- Refer to ype: 5 n Dime	ES 0.30 - 0.40 m	tigation Road, Gillio or		Graphic Log	Classification	Job No: 304100964 Angle from Horizontal: 90° Excavation Method: 600mm Too Logged By: JH Material Description SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace rootlets, trace sub-rounded cobbles		Consistency Contrac Check Density Density	Ole No: TP01 Sheet: 1 of e Elevation: actor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage RESIDUAL SOIL
Refer to ype: 5 n Dime vated: hate	er to Site Plan e: 5 tonne Excavato imensions: ed: 12/10/22 Sampling & Sample or Field Test ES 0.30 - 0.40 m	Dr Testing DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Depth (m)			Angle from Horizontal: 90° Excavation Method: 600mm Too Logged By: JH Material Description SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FiLL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace	M (<pl condition<="" moisture="" th=""><th>Contra Consistency Relative Density Density</th><th>e Elevation: ctor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage</th></pl>	Contra Consistency Relative Density Density	e Elevation: ctor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage
Stability u Stabil	ES 5 tonne Excavato imensions: ed: 12/10/22 Sampling & Sample or Field Test	Testing DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 	-	Graphic Log	Classification	Excavation Method: 600mm Too Logged By: JH Material Description SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to craines sub-rounded to angular gravel, with fine grained sand, trace	M (<pl condition<="" moisture="" th=""><th>Contra Consistency Relative Density Density</th><th>Ctor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface</th></pl>	Contra Consistency Relative Density Density	Ctor: Stantec Pty Ltd ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface
Stability u Stability u Vater	imensions: ed: 12/10/22 Sampling & Sample or Field Test	Testing DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 	-	Graphic	Classification	Material Description SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to crarse sub-rounded to angular gravel, with fine grained sand, trace	M (<pl< th=""><th>Consistency Relative Density</th><th>ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface</th></pl<>	Consistency Relative Density	ed By: KS STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface
Vater Vater	bit Sample or Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 1	-	Graphic	Classification	Material Description SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to crarse sub-rounded to angular gravel, with fine grained sand, trace	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations FILL 0.00 m: Ponded water on surface
Atability	ES 0.30 - 0.40 m	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 1	-	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to craines sub-rounded to angular gravel, with fine grained sand, trace	Moisture Condition		FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage
	ES 0.30 - 0.40 m	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12 1	-	Graphic	Classification	FILL: Clayey Gravelly SILT, low plasticity, dark brown, fine to coarse angular to sub angular gravel 0.25m FILL: Clayey Sitty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Sitty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace	M (<pl< td=""><td></td><td>FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage</td></pl<>		FILL 0.00 m: Ponded water on surface 0.40 m: Water Seepage
Stable Not Encountered			- - - - 0.5 -			0.25m 0.25m FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace			0.00 m: Ponded water on surface
Stable Not Encountered			- 0.5 - -			FILL: Clayey Silty GRAVEL, fine to medium sub-rounded to angular, pale grey, trace organics 0.45m Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace	w		
Stable Not Encountered	Not Encountered		- 0.5 - -			Silty CLAY, medium plasticity, mottled grey, dark red and orange, with fine to coarse sub-rounded to angular gravel, with fine grained sand, trace			RESIDUAL SOIL
Stable Not Encountered	Not Encountere	16	-				M (>PL	St to VS	t
			- 1.0 -			0.80m Silty CLAY, medium to high plasticity, mottled dark red and grey, with fine to medium grained sand, trace rootlets	M (<pl< td=""><td>) н</td><td></td></pl<>) н	
			- - 1.5 -			1.40m Silty Sandy CLAY/ Sandy Clayey SILT, Iow plasticity, red brown mottled grey, fine to medium grained sand 1.70m	M (<pl< td=""><td></td><td>EXTREMELY WEATHERED</td></pl<>		EXTREMELY WEATHERED
	r bucket VE		- PResistar	nce)	s	SPT - Standard Penetration Test B - B	ulk disturb		
t spiral au	er F er H er WA al auger t t auger: TC-Bit J ht auger	Easy Firm Hard Very Hard (Rei TER Water Le shown water inflo	fusal) evel on ow		P P IN P	DCP Dynamic Cone Penetrometer ES E PSP Perth Sand Penetrometer U T MC Moisture Content MOISTUR PBT Plate Bearing Test D D IMP Borehole Impression Test M W VS Vane Shear; P=Peak, PL PL	nvironmer hin wall tul E ry loist /et lastic limit quid limit	tal sample be 'undistu	
er da tu cd am us ts	ug Ibe Irill sio pir gh gh	tor bucket VE E uger F Ibe H Irilling VH mmer	uger ube tirlling mmer sion sampler piral auger; V-Bit ght auger; V-Bit ght auger; V-Bit flight auger ore drilling uler WATER WATER Water Lef water infl water out water ou	tor bucket uger be trilling	tor bucket uger be trilling t	tor bucket uger be trilling	Image: Construction of the second system	Image: Solution of the second state of the second stat	Image: Construction of the second system

0) S1	tant	cec								ΤE	ST PIT LOG SHEET
Clie Proj		(Geote	er Gillieston H chnical Invest 27 Cessnock I	tigation		Hoigh	ote			Η	ole No: TP017
					Koau, Gill	estor	i neigr	its	Job No: 304100964		f a a	Sheet: 1 of 1
		-		Site Plan onne Excavato					Angle from Horizontal: 90°			e Elevation:
				sions:	Dr				Excavation Method: 600mm Too			ctor: Stantec Pty Ltd
				2/10/22								ed By: KS
					T 4'				Logged By: JH		CHECK	eu by. No
EX	cavat	tion		Sampling &	Testing		-	-	Material Description		1	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
									FILL: Clayey SILT, low plasticity, dark brown, trace organics			FILL
	E					-			As above, With fine to coarse angular to sub-angular gravel, grey to brown	M (<pl)< td=""><td></td><td></td></pl)<>		
						-			0.35m Silty CLAY, high plasticity, brown mottled grey and pale brown, trace fine grained sand, trace organics			RESIDUAL SOIL
		-				-0.5			-		St	
d bucket			Encountered		9	-			As above, Pale red mottled pale grey and brown orange, no organics		VSt	
600mm toothed bucke	F	Stable	Not Enc		15	-				M (>PL)		
					18	- 1.0					н	
	F-H				/100mh ÝF				1.10m Sitty CLAY, low to medium plasticity, mottled pale grey and orange brown, with medium to coarse angular to sub-angular fragments	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
						-			1.50m			
						-			TERMINATED AT 1.50 m Target depth			
ME EX R HA PT SO AF SO AD AD AD HF WB RR	Ri Ha Pu N So A Sf Sf Sf Sf Sf Sf Sf Sf Sf W W	xcavato ipper and aug ush tube onic drill ir hamm ercussic hort spir olid fligh	er ing er on samp al auge t auger t auger ght auge drilling	t VE E F H VH VH VH tr SV-Bit Fr	NETRATION Very Easy (N Easy Firm Hard Very Hard (R TER Water L Shown water inf water ou	^{efusal)} evel on 'low		S H D P N	P - Hand/Pocket Penetrometer D - Director CP Dynamic Cone Penetrometer ES - Er CP Perth Sand Penetrometer U - Th C2 Moisture Content MOISTURI C3 Plate Bearing Test D - Dir C9 Photoionisation Detector M - MM C9 Vane Shear; P=Peak, U - Dir	y bist	mple al sample e 'undistu	S - Soft F - Firm
Refe abbi	er to ex reviation	planatory ns and ba	notes fo	r details of escriptions		ę	STAN	 TE	EC AUSTRALIA PTY LTD			1

0) St	tan	tec								TE	ST PIT LOG SHEET
	nt: ject: atior	(Geote	er Gillieston He echnical Invest 27 Cessnock R	igation		h Heigh	its	Job No: 304100964		H	ole No: TP018
				Site Plan	loau, Onno	63101	Theigh	1.5	Angle from Horizontal: 90°		Surfac	Sheet: 1 of 1 e Elevation:
		-		onne Excavato	r				Excavation Method: 600mm			
				sions:	•							ctor: Stantec Pty Ltd
				2/10/22					Logged By: JH			ed By: KS
	cavat			Sampling & 1	Testing				Material Descrip			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997)	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour,		Consistency Relative Density	STRUCTURE & Other Observations
ž	Resi	Ste	3	Field Test	Blows/ 150 mm 3 6 9 12	Δ		Class	fabric & texture, strength, weathering, defects and structure		Concernent	FILL
						-			FILL: Sitty CLAY, low plasticity, dark brown, wi fine to coarse angular to sub-angular gravel, tr cobbles	Itn race M (<pl< td=""><td>)</td><td></td></pl<>)	
	E			ES 0.30 - 0.60 m		- - 0.5			Silty CLAY, high plasticity, brown mottled grey pale brown, trace fine grained sand, trace organics	and	St	RESIDUAL SOIL
600mm toothed bucket		Stable	Not Encountered			-			As above, Pale brown mottled orange	M (>PL		-
300mm to	F	s	Ñ		 10	-			0.85m		VSt	EXTREMELY WEATHERED
				ES 0.90 - 1.00 m	16	- 1.0			Silty Gravelly CLAY, low plasticity, pale brown mottled grey, fine to medium angular to sub-angular gravel			
		_			/50mm HB	-				M (<pl)< td=""><td>) н</td><td></td></pl)<>) н	
	F-H			ES 1.20 - 1.30 m		-			1.20m SILTSTONE, grey to dark blue, very low stren highly weathered	gth,		WEATHERED ROCK
											1	
									1.50m TERMINATED AT 1.50 m Target depth			
ME EX RA PT SO AH PS AD AD HF WE RR	Ri Ha Pu Ai Sh V So V So V So A Ho S W	ccavato ipper and aug ush tube onic dril r hamm ercussio nort spii olid fligh	jer e er on sam ral auge t auge t auge ght aug ght aug ght aug	et VE F H VH VH Tor Tor V-Bit F: TC-Bit	ETRATION Very Easy (No Easy Firm Hard Very Hard (Rei	^{fusal)} vel on		S H D P N	P Hand/Pocket Penetrometer D P Dynamic Cone Penetrometer U SP Perth Sand Penetrometer U C Moisture Content MOIS ST Plate Bearing Test D P Borehole Impression Test M O Photoionisation Detector W	 Bulk disturb Disturbed sa Environmen Thin wall tub TURE Dry Moist Wet Plastic limit Liquid limit 	ample tal sample be 'undistu	e S - Soft F - Firm
				or details of escriptions		S	STAN	1 TE	C AUSTRALIA PTY LTD			

Clie Proi	nt: ject:			r Gillieston H chnical Invest		Ltd						ST PIT LOG SHEET ole No: TP019
	atior	n: 4	57-52	27 Cessnock I	Road, Gilli	estor	n Heigh	lts	Job No: 304100964			Sheet: 1 of
		-		Site Plan					Angle from Horizontal: 90°			e Elevation:
				nne Excavato	or				Excavation Method: 600mm To			stern Otentes Dt. 144
				sions:								ctor: Stantec Pty Ltd
			ea: 1∡	2/10/22	Testing				Logged By: JH		Спеске	ed By: KS
EX	cavat	lon		Sampling &	resung				Material Descriptio			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-			FILL: Silty CLAY, low plasticity, dark brown, with fine to coarse angular to sub-angular gravel, trace cobbles	M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
	-					-			0.15m Silty Clayey SAND, fine to medium grained, pale grey mottled brown, trace organics	м	L	COLLUVIUM
	E					-			0.30m Silty CLAY, high plasticity, brown mottled grey an pale brown, trace fine grained sand, trace	t t		RESIDUAL SOIL
600mm toothed bucket	F	Stable	Not Encountered			- 0.5 - - - - 1.0			organics	M (>PL)	St	
	F-H				/100mm VR	-			1.30m		VSt	
	н					-			Silty Sandy CLAY, medium plasticity, mottled pale grey orange and brown, fine to medium grained sand	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
						-			TERMINATED AT 1.50 m Target depth			
ME R HA PT SO H PS AD AD HF WE R	Ri Ha Pu N Sci Ain Pe Sh Sh V Sci V Sci A Ho S W	ccavato pper and aug ush tube onic drill r hamm ercussic ort spir olid fligh olid fligh	e ing er on samp al auger t auger: t auger: ght auge e drilling	ler WA r V-Bit − TC-Bit ►	Very Easy (No Easy Firm Hard Very Hard (Re TER Water Le shown water infli- water out	^{fusal)} evel on ow		SF HI D(PS M	P - Hand/Pocket Penetrometer D - CP Dynamic Cone Penetrometer U - CP Perth Sand Penetrometer U - CP Moisture Content U - CP Noisture Content D - CP Plate Bearing Test D - CP Porchole Impression Test M - CP Photoionisation Detector W - CP Vane Shear, P=Peak, LL -	Bulk disturbe Disturbed sa Environment Thin wall tub RE Dry Moist	mple al sample e 'undistu	S - Soft F - Firm

C	S	tan	tec										TE	ST PI		G SHEET
	ient: oject:		Nalk	er Gillieston He	eights Pty I	Ltd							Н	ole N	lo:	TP020
	catio	n: 4	457-5	27 Cessnock F	Road, Gillie	stor	n Heigh	ts		Job No: 304100964					5	Sheet: 1 of 1
				Site Plan						Angle from Horizontal:				e Elevati	on:	
				onne Excavato sions:	r					Excavation Method: 60				ctor: Sta	antec P	Ptv I td
				2/10/22						Logged By: JH				ed By: K		
	Excava			Sampling &	Testing						I Description					
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weathe defects and structure	onents colour,	Moisture Condition	Consistency Relative Density	&	STRUC Other Ob	CTURE servations
					3 6 9 12 			0	0.30m	FILL: Clayey SILT, low plasticity, darl organics	k brown, trace	M (<pl)< td=""><td></td><td>FILL</td><td></td><td></td></pl)<>		FILL		
									0.45m	FILL: Silty CLAY, medium to high pla mottled orange and grey, trace rootle		M (>PL)				-
hed bucket		ole	Not Encountered	ES 0.50 - 0.60 m		0.5				Silty CLAY, medium to high plasticity brown mottled pale grey, with fine to angular to sub-angular gravel			St	RESIDUAL	. SOIL	-
600mm toothed bucket	E	Stable	Not E			· 1.0				As above, Pale grey mottled orange	and brown	M (>PL)	VSt			- - -
									1.40m	Silty CLAY, low plasticity, pale grey/ orange	white, mottled	M (<pl)< td=""><td>VSt</td><td>EXTREME</td><td>LY WEAT</td><td>- HERED</td></pl)<>	VSt	EXTREME	LY WEAT	- HERED
						-1.5—				TERMINATED AT 1.50 m Target depth						
					13					5						-
					13											-
					13											-
					14	2.0										-
					15											
					/100mm YR											-
	R R HA H PTON S WH A S WH S S W/V S S W/T S HFA H VB W	xcavato ipper and auç ush tub onic dril ir hamm ercussie hort spil olid fligh olid fligh ollow flig /ashbor	ger e ling ler on sam ral auge at auge t auge ght auge ght auge	et VE E F H VH VH er V-Bit r: TC-Bit er	IETRATION Very Easy (No F Easy Firm Hard Very Hard (Refu TER Water Lev shown water inflo	^{usal)} vel on w		S F F M F I F	IP - DCP - PSP - MC - PBT - MP - PID -	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test	D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - Wei PL - Plas LL - Liqu	ironmenta n wall tube st t stic limit	mple al sample e 'undistu		VS - S - St - VSt - H - RELATI VL - L - MD - D -	ONSISTENCY Very Soft Soft Firm Stiff Very Stiff Hard VE DENSITY Very Loose Loose Medium Dense Dense
R	lefer to ex	ock rolle	notes fo	or details of escriptions		ę	STAN	 T	EC	AUSTRALIA PTY					VD -	Very Dense

0) S [.]	tan	tec									TE	ST PIT LOG SH	EET
	ject:		Geote	er Gillieston H echnical Inves	stigation		Laiah	40				H	ole No: TP	
	atio			27 Cessnock	Road, Gill	lestor	i Heigh	Its	Job No: 304100964				Sheet: 1	l of 1
		-		Site Plan onne Excavat	or				Angle from Horizontal Excavation Method: 6				e Elevation:	
				sions:	01				Excavation Methou.				ctor: Stantec Pty Ltd	
				2/10/22					Logged By: JH				ed By: KS	
	cava			Sampling &	Testina					al Description				
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type fabric & texture, strength, weath defects and structure	ponents colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations	
A	~				3 6 9 12		~~~~	ö	FILL: Silty CLAY/ Clayey SILT, low	plasticity, dark			FILL	
						-			brown, trace organics		M (<pl)< td=""><td></td><td></td><td></td></pl)<>			
						- 0.5			Silty CLAY, high plasticity, brown m pale brown, trace fine grained sand organics				RESIDUAL SOIL	
		Stable	Not Encountered			-			As above, Mottled grey and pale rec	d, no organics	M (>PL)	St		
	F				15	- 1.0						VSt to H		
	F-H	_			VR 	-			.20m Silty CLAY, low to medium plasticity pale grey	, red mottled	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td><td></td></pl)<>	н	EXTREMELY WEATHERED	
						- 1.5-	<u>, , , , , , , , , , , , , , , , , , , </u>		.50m TERMINATED AT 1.50 m Target depth					
ME EX HA PT SO AH PS AD AD HF. WE RR	R P N S S S S S S S S S S S S S S S S S S	xcavato tipper land aug ush tubo onic dril ir hamm ercussio hort spii olid fligh	jer e er on sam ral auge t auge ght auge ght aug ght aug e drillin	er VE	NerrAartion Very Easy (N Easy Firm Hard Very Hard (R ATER Water L Shown water int water ou	^{efusal)} evel on flow		Si H D P M	P Dynamic Cone Penetrometer P Perth Sand Penetrometer C Moisture Content T Plate Bearing Test D Borehole Impression Test O Photoionisation Detector	D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - Wei PL - Plas LL - Liqu	st t stic limit	mple al sample e 'undistu	S - Soft F - Firm	TY se Dense
Ref abb	er to ex previatio	xplanatory ons and ba	notes fo	or details of escriptions		S	STAN	NTE	C AUSTRALIA PTY	LTD				

	Star											ST PIT LOG SHEE
Client: Projec Locatio	t:	Geote	er Gillieston He echnical Invest 527 Cessnock F	igation		Height	s	Job No: 304100964			Н	ole No: TP02 Sheet: 1 of
	-		Site Plan	,		3	-	Angle from Horizontal:	: 90°		Surface	e Elevation:
			onne Excavato	r				Excavation Method: 6				
			nsions:	•								ctor: Stantec Pty Ltd
			2/10/22					Logged By: JH				ed By: KS
Excav			Sampling & 1	Tosting					al Description			
		_	Sampling &		<u> </u>		_	IVIALEITA				
Method Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	ponents colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
								FILL: Clayey SILT, low plasticity, dar organics, trace fine to medium, angu sub-rounded gravel	rk brown, trace Jlar to	M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
			ES 0.30 - 0.50 m				0.30	FILL: Sandy SILT, low plasticity, pale mottled pale brown, trace organics	e grey,	M (<pl)< td=""><td></td><td></td></pl)<>		
ket		90	ES 0.60 - 0.80 m		0.5		0.50	n Silty CLAY, high plasticity, grey mott light brown, trace organics, trace me coarse rounded gravel				COLLUVIUM
	Stable	Not Encountered								M (>PL)	VSt	
F	-		ES 1.20 - 1.40 m	VR 	1.0		1.05	n Silty CLAY, high plasticity, mottled g red, trace fine grained sand	rey and dark	M (>PL)	Н	RESIDUAL SOIL
<u>, </u>					1.5		1.60	n TERMINATED AT 1.60 m Target depth				
R HA PT SON AH PS AD/V AD/V HFA WB RR	Excava Ripper Hand au Push tu Sonic d Air ham Percuss Short sp Solid flig Solid flig Solid flig Rock ro	iger iilling mer iion sam iral aug ht auge ht auge light aug re drillin ller	et VE E H VH VH er Y-Bit r: V-Bit Per	I I I I I I I I I I I I I I I I I I I	sal) el on D v ww	Date	SPT HP DCP PSP MC PBT IMP PID VS	 Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test 	D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - Wet PL - Plas LL - Liqu w - Mois	st t stic limit	mple al sample e 'undistu	S - Soft F - Firm

0	S	tant	tec							ΤE	ST PIT LOG SHEET
	ent: ject: atio	(Geote	chnical Inves	eights Pty Ltd tigation Road, Gilliesto	n Hoiah	nte			Η	ole No: TP023
				Site Plan	Roau, Gimesto	n neigh	115	Job No: 304100964		C	Sheet: 1 of 1 e Elevation:
		-		onne Excavato)r			Angle from Horizontal: 90° Excavation Method: 600mm Too			
				sions:	Л						ctor: Stantec Pty Ltd
				2/10/22				Logged By: JH			ed By: KS
	cava			Sampling &	Testing			Material Description		oncon	
Method	Resistance	Stability	Water	Sample or	DCP TEST (AS 1289.6. 3.2-1997) 44	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour,	Moisture Condition	Consistency Relative Density	STRUCTURE
Me	Resi	Sta	Ň	Field Test	Blows/ 150 mm 3 6 9 12	US C	Class	fabric & texture, strength, weathering, defects and structure FILL: Silty CLAY, low to medium plasticity, dark	Cor	Cons Re De	& Other Observations
								brown with fine to coarse angular to sub-rounded gravel, trace organics	M (<pl)< td=""><td></td><td>RESIDUAL SOIL</td></pl)<>		RESIDUAL SOIL
		_						CLAY, high plasticity, brown mottled grey and pale brown, trace fine grained sand, trace organics		St	
thed bucket		Stable	Encountered	B 0.55 - 0.90 m				As above, Grey mottled dark red	M (>PL)	VSt	
600mm toothed bucke	F	Stal	Not E		14 					н	
	F-H	_						.25m Silty Sandy CLAY, low to medium plasticity, grey mottled dark red	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
¥.								1.50m TERMINATED AT 1.50 m Target depth			
ME EX FA PT SC AD AD FS AD AD FF WE RF	R Pri DN Sr I Ai S Si S/V Sr D/V Sr A H 3 W	xcavato ipper and aug ush tube onic drill ir hamm ercussic hort spir olid fligh	er er on samp ral auger it auger it auger ght aug e drilling	tt VE E F H VH VH er V-Bit er	Very Easy (No Resist Easy Firm Hard Very Hard (Refusal) TER Water Level or shown water inflow water outflow		SF HI D(PS M	P Hand/Pocket Penetrometer D - D P Dynamic Cone Penetrometer U - TI P Perth Sand Penetrometer U - TI C Moisture Content MOISTUR T Plate Bearing Test D - D P Borehole Impression Test M - M O Photoionisation Detector W - W Vane Shear; P=Peak, L - Li	ulk disturbe isturbed sa nvironment nin wall tub E ry oist	imple al sample e 'undistu	S - Soft F - Firm
Ref abb	fer to ex previatio	planatory	notes fo	or details of escriptions		STAN	NTE	C AUSTRALIA PTY LTD			

0		ant										ST PIT LOG SHEET
Clie Proj	ect:	(Geote	er Gillieston He echnical Invest 27 Cessnock F	igation		Llaiab	40			H	ole No: TP024
Loca				Site Plan	koad, Gille	ston	n Heigh	ts	Job No: 304100964 Angle from Horizontal: 90°		Surfac	Sheet: 1 of 1 e Elevation:
		-		onne Excavato	r				Excavation Method: 600mm Too			
				sions:								ctor: Stantec Pty Ltd
Date	Exc	cavat	ed: 1	2/10/22					Logged By: JH			ed By: KS
Ex	cavat	ion		Sampling & T	Festing				Material Description	1		
Method	Resistance	Stability	Water	Sample or Field Test	150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					3 6 9 12 2 2 				FILL: Clayey SILT, low plasticity, dark brown, trace organics, trace fine to coarse angular to sub-angular gravel	M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
thed bucket	E	ble	Not Encountered	ES 0.20 - 0.40 m					0.20m Silty CLAY, medium to high plasticity, brown mottled grey and red, with fine to coarse angular to sub-rounded gravel, trace organics	M (>PL)	St	RESIDUAL SOIL
600mm toothed bucket		Stable	Not E			0.5			0.45m Sitty Gravelly CLAY, medium to high plasticity, red mottled grey, fine to coarse sub-rounded to rounded gravel, trace rootlets 0.60m	M (>PL)	VSt	WEATHERED ROCK
	F	-			-				SILTSTONE, grey, dark blue mottled orange, very low strength		н	WEATHERED ROOK
	н				13				0.85m			
						1.0			Refusal on Weathered Rock			
ME EX R HA PT SOI AH PS AD/ AD/ HF4 WB RR	Rij Ha Pu N Sc Ain Pe Sh Sc Sc T Sc A Ho W	cavato pper and aug ush tube onic drill r hamm ercussic nort spir olid fligh	er er on sam al auge t auger t auger ght auger ght aug	et VE E F H VH VH VH VH CH Er C-Bit er	ETRATION Very Easy (No R Easy Firm Hard Very Hard (Refu: Very Hard (Refu: Very Hard (Refu: Water Leve shown water inflow water outflow	sal) el on I W		S F F M F I F	P Hand/Pocket Penetrometer D - D CP Dynamic Cone Penetrometer U - Tt SP Perth Sand Penetrometer U - Tt IC Moisture Content D - D BT Plate Bearing Test D - D ID Photoionisation Detector M - M ID Photoionisation Detector W - W S Vane Shear, P=Peak, L - Pit	ulk disturbe sturbed sa nvironment nin wall tub E Ƴ oist	imple al sample e 'undistu	S - Soft F - Firm
				or details of escriptions		S	STAN	 TI	EC AUSTRALIA PTY LTD			1

0	S	tan	tec								TE	ST PIT LOG SHEET
	ect:	(Geote	er Gillieston He chnical Invest	tigation		Llaiab	40			H	ole No: TP025
	atio			27 Cessnock F	Koau, Gilli	estor	neign	is	Job No: 304100964		0	Sheet: 1 of 1
		-		Site Plan	~				Angle from Horizontal: 90° Excavation Method: 600mm Too			e Elevation:
				onne Excavato sions:	И				Excavation Method. Soonin 100			ctor: Stantec Pty Ltd
				2/10/22					Logged By: JH			ed By: KS
	cava			Sampling &	Testing				Material Description			
					DCP TEST	Ê		c				
Method	Resistance	Stability	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-	لك على على على على على على على على على على على على على على على لك على على على على على على على على		TOPSOIL: Clayey SILT, low plasticity, brown orange	M (>PL)		TOPSOIL
	E					-			1.20m Silty CLAY, medium to high plasticity, brown orange mottled grey, trace fine grained sand, trace rootlets		St	RESIDUAL SOIL
ucket		_	tered			- 0.5			As above, Orange mottled brown	M (>PL)	VSt	
600mm toothed bucke		Stable	Not Encountered		18	-			0.80m Silty CLAY, low plasticity, brown orange mottled grey, with lenses of pale grey			EXTREMELY WEATHERED
	F					- 1.0				M (<pl)< td=""><td>н</td><td></td></pl)<>	н	
						-			.30m Clayey SAND, fine to medium grained, brown orange mottled grey, with fine to coarse angular to sub-angular gravel	D	VD	
									TERMINATED AT 1.50 m Target depth			
ME EX HA PT SOH PS AD HF WE R	R Pi N Si Si Si Si Si Si Si Si Si Si Si Si Si	xcavato ipper and aug ush tube onic drill ir hamm ercussic hort spir olid fligh	er er on samp al auge t auger t auger ght auge ght auge	tt VE F H VH VH VT V-Bit cr TC-Bit er	Very Easy (No Easy Firm Hard Very Hard (Re TER Water Le shown water influ water influ	^{fusal)} vel on ow		SF HI	P Hand/Pocket Penetrometer D - Di P Dynamic Cone Penetrometer U - Tr P Perth Sand Penetrometer U - Tr C Moisture Content MOISTURI T Plate Bearing Test D - Di P Borehole Impression Test M - M O Photoionisation Detector W - W Vane Shear; P=Peak, L - Lit	y pist	imple al sample e 'undistu	S - Soft F - Firm
Ref abb	er to ex reviatio	planatory	notes fo	or details of escriptions		S	STAN	ITE	C AUSTRALIA PTY LTD			

nt: ect:	v	Valke	" Cillianton H	- Louis A. D. D.									
tion		Geote	er Gillieston He chnical Invest 27 Cessnock F	tigation		Hojah	te				Н	ole N	o: TP020
				Yoau, Gillio	esioi	rneign	15	Job No: 304100964	000		Surface		Sheet: 1 of
				\r									1.
				/				Excavation method. out				ctor: Star	tec Ptv I td
								Logged By: JH					
				Testina					Description			<u>, a by: ne</u>	
					Ê		-						
Resistance	Stability	Water	Sample or Field Test	(AS 1289.6. 3.3-1997) Blows/ 150 mm	Depth (n	Graphic Log	Classification	colour, secondary and minor compo ROCK TYPE, grain size and type, co	olour,	Moisture Condition	Consistency Relative Density		STRUCTURE ther Observations
					_	للد علد علد علد علد علد علد ع علد علد علد علد علد علد علد علد علد علد علد علد		TOPSOIL: Clayey SILT, low plasticity, trace organics		M (<pl)< td=""><td></td><td>TOPSOIL</td><td></td></pl)<>		TOPSOIL	
												0011111/1114	
					_	600							
				2		$\mathcal{E}_{\mathcal{A}}$				M - W	L		
					_			30m					
E					-			Silty CLAY, high plasticity, brown to or- mottled pale grey, trace fine grained sa rootlets	ange and, trace			RESIDUAL S	OIL
					-0.5								
				4						M (>PL)	St		
				- Hiii	-								
		eq											
		unten		5	_								
	ble	Encol											
	Sta	Not E						80m					
				19	-			Silty Sandy CLAY, low plasticity, orang	ge brown			EXTREMELY	WEATHERED
F								with fine to medium, angular to sub-an	ed sand, igular				
				VR	-			sandstone fragments					
					- 1.0					M (<pl)< td=""><td>н</td><td></td><td></td></pl)<>	н		
					-								
					-	XX/							DROCK
н								mottled dark purple, very low strength,				WEATHERE	DRUCK
					-			weathered					
					_								
								50m					
					-1.5-			TERMINATED AT 1.50 m					
								raiger depth					
					-								
					-								
					-								
					-								
				liiil									
									CANE: 22			<u> </u>	
		bucket			Rocist	nce)				disturbe	d sample		SOIL CONSISTENCY /S - Very Soft
Rip	pper		E	Easy	rtesistai	ice)	н	- Hand/Pocket Penetrometer	D - Distu	irbed sai	mple	5	S - Soft
Pu	ish tube		н	Hard	fueal			2				rbed' S	St - Stiff
Air	r hamm	ər			iusal)		М	- Moisture Content	MOISTURE				/St - Very Stiff H - Hard
Sh	nort spir	al auge	r Z	Vater Le	vel on	Date		ş	D - Dry M - Moist	t			
l So	olid fligh	auger	: TC-Bit	shown			P	- Photoionisation Detector	W - Wet			l	/L - Very Loose Loose
Ho	blow flig		er 🗾 🏴	water infle water out				 Vane Shear; P=Peak, R=Resdual (uncorrected kPa) 	LL - Liquid		tont	[MD - Medium Dense D - Dense
Wa	asnbore										uení		
	asnbore ock rolle								w - worst			\	/D - Very Dense
		E el	E equation page 2 B A avation B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B	Type: 5 tonne Excavator inite Type: 5 tonne Excavator inite Type: 5 tonne Excavator Excavated: 12/10/22 Sampling & Sampling & avation Sample or Field Test avaitor avaitor Sample or Field Test avaitor avaitor avaitor avaitor avaitor avaitor avaitor avaitor </td <td>tion: Refer to Site Plan ine Type: 5 tonne Excavator vation Dimensions: Excavated: 12/10/22 avation avation Sampling & Testing avation Sample or avation Sample or avation Sample or Bower Bower Bower Bower avation 3 6 9 12 avation Sample or Bower Bower Bower Bower Bower Bower avation avation avation Bower avation Bower Bower Bower <tr< td=""><td>tion: Refer to Site Plan ine Type: 5 tonne Excavator Excavated: 12/10/22 colspan="2">colspan="2" colspan="2">colspan="2" colspan="2" colspan="2" colspan="2" </td></tr<></td>	tion: Refer to Site Plan ine Type: 5 tonne Excavator vation Dimensions: Excavated: 12/10/22 avation avation Sampling & Testing avation Sample or avation Sample or avation Sample or Bower Bower Bower Bower avation 3 6 9 12 avation Sample or Bower Bower Bower Bower Bower Bower avation avation avation Bower avation Bower Bower Bower <tr< td=""><td>tion: Refer to Site Plan ine Type: 5 tonne Excavator Excavated: 12/10/22 colspan="2">colspan="2" colspan="2">colspan="2" colspan="2" colspan="2" colspan="2" </td></tr<>	tion: Refer to Site Plan ine Type: 5 tonne Excavator Excavated: 12/10/22 colspan="2">colspan="2" colspan="2">colspan="2" colspan="2" colspan="2" colspan="2"							

	ect:	(Geote	r Gillieston He chnical Invest	igation						Но	ole No: TP02
	ation			27 Cessnock F	Road, Gillie	estor	n Heigh	Its	Job No: 304100964			Sheet: 1 of
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				nne Excavato	r				Excavation Method: 600mm Too			atow. Stantos Divilita
				sions: 2/10/22					Logged By: JH			ctor: Stantec Pty Ltd ed By: KS
	cavat		50. 12	Sampling &	Testing				Material Description		onecke	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
Š	Res	ŝ	5		150 mm 3 6 9 12		ттт Р_	Class	fabric & texture, strength, weathering, defects and structure	≥ °	S S S S C	TOPSOIL
							على على على الم على على على ع على على على ع على على على ع على على على ع على على على ع		TOPSOIL: Clayey SILT, low plasticity, brown	M (<pl)< td=""><td></td><td></td></pl)<>		
									Clayey Sandy SILT, low plasticity, pale brown	M (<pl)< td=""><td>S</td><td>COLLUVIUM</td></pl)<>	S	COLLUVIUM
	E					- 0.5			.30m Sitty CLAY, high plasticity, brown mottled grey and pale brown, trace fine grained sand, trace organics		St	RESIDUAL SOIL
		Stable	Not Encountered		VR	- 1.0			Pale brown mottled pale grey and orange	M (>PL)	VSt to H	
	F								.15m Silty CLAY, low to medium plasticity, pale grey mottled orange and red	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
<u>,</u>						- 1.5			.60m TERMINATED AT 1.60 m Target depth			
MET EX R HA PT SOT AH PS AD/ AD/ HFA WB RR	Push tube H Hard N Sonic drilling VH Air hammer Very Hard (Refusal) Percussion sampler Short spiral auger V Solid flight auger: V-Bit CT Solid flight auger: V-Bit A Hollow flight auger Watter Level on D water inflow water inflow					^{fusal)} vel on ow		SI HI D' P' M	P Hand/Pocket Penetrometer D - Director P Dynamic Cone Penetrometer U - Tr P Perth Sand Penetrometer U - Tr C Moisture Content MOISTURI T Plate Bearing Test D - Dir P Borehole Impression Test M - M O Photoionisation Detector W - W Vane Shear; P=Peak, L - Lit	y pist	mple al sample e 'undistur	S - Soft F - Firm

fer to Site F e: 5 tonne Dimensions ted: 12/10/2 S	Excavator s:	(m	Heigh	ts	Job No: 304100964 Angle from Horizontal: 90° Excavation Method: 600mm Too			Sheet: 1 c e Elevation:
e: 5 tonne Dimensions ted: 12/10/2	Excavator S: (22 Sampling & Testing DCP TEST (AS 12896, AS 12896, (AS 12896, AS 12896, Biows/ Biows/	(m) t						e Elevation:
Dimensions ted: 12/10/2 S	S: 22 Sampling & Testing DCP TEST (AS 12806. 3.2.1997) Sample or Field Test Biows/	(m) r			Excavation Method: 600mm 100	теа в		
ted: 12/10/2	22 Sampling & Testing DCP TEST (AS 12806. 3.2-1997) Field Test Blows/	(m) r				4		ctor: Stantec Pty Ltd
S	Sampling & Testing DCP TEST (AS 12896. 3.2-1997) Semple or Field Test Blows/	(m) r			Logged By: JH			ed By: KS
	DCP TEST (AS 1289.6. 3.2-1997) Field Test Blows/	(m) r			Material Description		onecke	Su by. No
		Depth (Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
	3 6 9 12		ىلىر غلىر غلىر غلىر غلىر غ	Clas	defects and structure TOPSOIL: Sandy SILT, low plasticity, brown, fine	20	8	TOPSOIL
ES 0.0	05 - 0.10 m	-	على على على على على على على على على على على على على على على على		to medium grained sand	M (<pl)< td=""><td></td><td></td></pl)<>		
	20 - 0.35 m	-			Silty CLAY, medium to high plasticity, brown to orange mottled grey and red, trace fine to medium grained sand, trace rootlets	M (>PL)	St	RESIDUAL SOIL
Not Encountered	12 //100mm VR	- 0.5		(.70m		н	
	00 - 1.20 m	- - 1.0 -			Clayey SAND, medium to coarse grained, brown to orange mottled pale grey, with fine to coarse angular sandstone fragments	D	VD	EXTREMELY WEATHERED
		- 1.5			.40m TERMINATED AT 1.40 m Refusal on Weathered Rock			
pr bucket ger ee lilling ner on sampler iral auger: V-Bit ht auger: TC-Bit	E Easy F Firm H Hard VH Very Hard (Rei WATER Water Le shown water influ	fusal) evel on l		SP HF DC PS MC PB IMI PII	T Standard Penetration Test B - Bu - Hand/Pocket Penetrometer D - Dit P Dynamic Cone Penetrometer U - Th P Perth Sand Penetrometer U - Th C Moisture Content MOISTURE T Plate Bearing Test D - Dr O Photoinisation Detector W - We Vane Shear; P=Peak, L - Lit	sturbed sa vironment in wall tub y sist et astic limit	mple al sample	S - Soft F - Firm
ger illing ner ion iral ht a	g sampler auger luger: V-Bit	ucket UCKet UCKet UCKet UCKet Easy F Firm H Hard UCKet VEVeryEasy(No E Easy F Firm H Hard VH VeryHard(Re WATER WATER Water Le shown water infl	ucket UE Very Easy (No Resistan E Easy F Firm H Hard VH Very Hard (Refusal) WATER Uger: V-Bit Uger: TO-Bit user: FO-Bit Uger: TO-Bit Ug	PENETRATION Ucket VE Very Easy (No Resistance) E Easy F Firm H Hard VH Very Hard (Refusal) water Level on Date uger Shown user: V-Bit water inflow	ucket UE VEry Easy (No Resistance) E Easy F Firm H Hard VH Very Hard (Refusal) WATER Uger: V-Bit Uger: TO-Bit Uger: TO-Bit Uger: V-Bit V Water Inflow VS	PENETRATION FIELD TESTS SAMPLES ucket VE Very Easy (No Resistance) E SPT - Standard Penetration Test HP B - Bu D g F Firm DCP Dynamic Cone Penetrometer DCP D Dist g WATER PSP Perth Sand Penetrometer DCP D Dist uger: V-Bit uger: V-Bit uger: V-Bit Water Level on Date shown IMP Borehole Impression Test PID D D D water inflow Water liftlow VS Vane Shear; PSP-eadurit (researct liftlop) W W W	PENETRATION FIELD TESTS SAMPLES ucket VE Very Easy (No Resistance) E SPT - Standard Penetration Test HP B - Buik disturbe D g VE Very Lasy (No Resistance) E SPT - Standard Penetrometer DCP Dynamic Cone Penetrometer DCP D D - Disturbed sa Es Environment U - Disturbed sa D g WATER PSP - Perth Sand Penetrometer MC MOISTURE uger: V-Bit uger: V-Bit uger: U-Bit auger Water Level on Date shown IMP B - Dry Moisture Content PID - Photoionisation Detector VS Vane Shear, Penek, Shear, Penek, U - Plastic limit U - Plastic limit U	PENETRATION FIELD TESTS SAMPLES ucket VE Very Easy (No Resistance) E SPT - Standard Penetration Test HP - B - Bulk disturbed sample D - Disturbed sample g VH Very Easy (No Resistance) E SPT - Standard Penetrometer DCP Dynamic Cone Penetrometer DCP Dynamic Cone Penetrometer DCP D - Disturbed sample ES Environmental sample ES Environmental sample D - Disturbed sample auger VH Very Hard (Refusal) PSP - Petrh Sand Penetrometer MC - MOISTURE uger: V-Bit uuger: V-Bit uuger: V-Bit auger Water Level on Date shown IMP B orehole Impression Test PID - D D ry M - Moist VW water inflow VS Vane Shear, P=Peak, Umenture fullow VS - Vane Shear, P=Peak, Umenture fullow - Pila - Plastic limit

\mathbf{O}) St	tant	ec						TEST	PIT LOG SHEET
	nt: ject: atior	(Geote	er Gillieston H echnical Inves 27 Cessnock	tigation		Heigh	ts		e No: TP101
				Site Plan	Nodu, Onnee	5101	Theigh		Job No: 304100964 Angle from Horizontal: 90° Surface El	Sheet: 1 of 1
		-		onne Excavato	~ r				Excavation Method: 600mm Toothed Bucket	
				sions:	Л					: Stantec Pty Ltd
-		-	-	9/4/23					Logged By: JH Checked E	
	cava		<u>, , , , , , , , , , , , , , , , , , , </u>	Sampling &	Testing				Material Description	<i>.</i>
				Camping a		Ē				
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	STRUCTURE & Other Observations
									with clay, trace fine rounded gravel, trace rootlets	PSOIL
EX	E	Stable	Not Encountered						M (<pl)< td=""><td>LUVIUM</td></pl)<>	LUVIUM
		Sta	Not E		нв	0.5			grey and brown	SIDUAL SOIL
	F-H								mottied pale grey M (~PL) H 0.80m	REMELY WEATHERED
	н								SANDSTONE: fine to medium grained, grey, low WE strength, highly weathered	ATHERED ROCK
•					i i i i				0.90m	
						1.0			Refusal on Weathered Rock	
ME EX R HA PT SO AH PS AD AD HF WE RR	Ri Pu N So Ai Pe SI V So V So V So A Hu 3 W	ccavato ipper and aug ush tube onic drill r hamm ercussic nort spir olid fligh	er eing er n samp al auger t auger ht auger ht auger	t VE E F H VH Sler WA I' V-Bit - t C-Bit - er I	NETRATION Very Easy (No Re Easy Firm Hard Very Hard (Refus Very Hard (Refus Stown Water Leve shown water inflow water outflo	sal) el on I		S H D P N P IN P	IELD TESTS SAMPLES BPT - Standard Penetration Test B - Bulk disturbed sample BPC - Dynamic Cone Penetrometer D - Disturbed sample CP - Dynamic Cone Penetrometer U - Thin wall tube 'undisturbed' VBT - Notisture Content MOISTURE VP - Borehole Impression Test M Moist VID - Photoionisation Detector W Wet VS - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) L L (uid limit W	SOIL CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD Very Dense
Ref	er to ex	planatory	notes fo	r details of escriptions		S	STAN	I J T E	EC AUSTRALIA PTY LTD	

) S	Star	tec								TE	ST PIT LOG SHEET
oject	t:	Geote	chnical Inves	tigation		Hoigh	te			He	ole No: TP102
	-			Noau, Gille	5101	neign	15			Surface	Sheet: 1 of 1 e Elevation:
	_			or.							
											ctor: Stantec Pty Ltd
								Logged By: JH			
				Testina							j .
esistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Issification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering,	Moisture Condition	consistency Relative Density	STRUCTURE & Other Observations
ă.	:			3 6 9 12			G	defects and structure FILL: Silty SAND: fine to coarse grained, dark brown, with foreign building waste inclusions		0	FILL 0.00 m: Distinct ground disturbance in the form of uneven surfaces
E	:	2			-0.5				D		surrounding TP 0.25 m: Bricks, ceramic tiles, timber fragments, Coal Wash Reject fragments Composition: Approx. 25% Foreign, 75% Soil.
	Stable	Not Encountere		I I I I I I III I IIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				2.70m Silty CLAY: high plasticity, red mottled pale grey and orange	M (>PL)	St	RESIDUAL SOIL
					- 1.0						
								Silty CLAY: low plasticity (friable), pale grey mottled brown, trace rootlets			EXTREMELY WEATHERED
									M (<pl)< td=""><td>VSt</td><td></td></pl)<>	VSt	
н	·					VVV					
					- 1.5			TERMINATED AT 1.25 m Refusal on Weathered Rock			
X I A I T I DON 2 FA I B 1 D/T 2 FA I B 1	Excava Ripper Hand au Push tu Sonic d Air ham Percuss Short sp Solid flig Solid flig Hollow f	uger be rilling mer biral auge pht auge pht auge light auge bre drillin	tt VE E F H VH vH er ∇-Bit − er ▶	Very Easy (No I Easy Firm Hard Very Hard (Refu TER Water Lev shown water inflo	^{usal)} vel on l		SF HF DC PS MC PE IM	T Standard Penetration Test B Buil P Hand/Pocket Penetrometer D District Standard P Dynamic Cone Penetrometer ES Em P Perth Sand Penetrometer U Thil C Moisture Content MOISTURE P Plate Bearing Test D D P Borehole Impression Test M Moi O Photoionisation Detector PL Plat Particular (Impression Test) LL Liquid	turbed sar vironmenta n wall tube ist t stic limit uid limit	mple al sample e 'undistu	S - Soft F - Firm
	ETHC	ETHOD F-H H F-H H F-H H H F-H H H F-H H H H H H H H H H H H H H	Dject: Genta cation: Refer to chine Type: 5 tr cavation Dimen 1 te Excavator 1 xcavation 1 via trianger 1<	ETHOD Walker Gillieston H oject: Geotechnical Investication: 457-527 Cessnock I sition: Refer to Site Plan Investication chine Type: 5 tonne Excavate cavation Dimensions: Investication te Excavated: 19/4/23 Investication Sampling & xcavation Sample or Field Test Investication Sample or Field Test Image: Investication of the state of the sta	ent: Walker Gillieston Heights Pty Geotechnical Investigation cation: 457-527 Cessnock Road, Gillie sition: Refer to Site Plan chine Type: 5 tonne Excavator cavation Dimensions: te Excavated: 19/4/23 xcavation Sampling & Testing Sample or Field Test DCP TEST (AS 1286, S. 32-1997) Big 3 6 9 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ent: Walker Gillieston Heights Pty Ltd Geotechnical Investigation sition: Refer to Site Plan chine Type: 5 tonne Excavator cavation Dimensions: te Excavated: 19/4/23 xavation Sampling & Testing Sample or Field Test (ii) (iii)	ent: Walker Gillieston Heights Pty Ltd opect: Geotechnical Investigation cation: 457-527 Cessnock Road, Gillieston Heights sition: Refer to Site Plan Chine Type: 5 tonne Excavator cavation Dimensions: te te Excavated: 19/4/23 xcavation Sample or a b a b a b a b a b b b a b a b b b b b a b b b b b a b a b b b b b c b c b b b c b c b b b c b c b c b c c	ent: Walker Gillieston Heights Pty Ltd. opect: Geotechnical Investigation sition: Refer to Site Plan chine Type: 5 tonne Excavator cavation Dimensions: te Excavated: 19/4/23 xcavation Sampling & Testing 0 Jing 1 Jing <t< td=""><td>Walker Cillisation Heights Py Ltd Statut: Geoderical Integration Sation: Angle from Horizontal: 90° Statut: Concentration Statut: Second Cillisation Statut: Second Cillisation Statut: Second Cillisation Statut: Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation S</td><td>Entropy Valuer Callisation Heights Pty Ltd pict: Action State Plan Angle from Horizontal: 90° Secondard sition: Refore to Site Plan Angle from Horizontal: 90° Secondard cavation Dimensions: Causation Melophysics Counce Excavator Counce Scavator cavation Dimensions: Causation Melophysics Counce Excavator Counce Scavator cavation Dimensions: Causation Melophysics Counce Scavator Counce Scavator cavation Dimensions: Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophys</td><td>Entropy Walker Gilliston Heights Bry Lud Job No: 30410994 action: 457-527 Cessnock Road, Gilliston Heights Job No: 30410994 ittin: Refer to Site Plan Angle from Horizontal: 80* Surface chine Type: 5 come Eccarator Eccarator caration Dimensions: Contra de Eccarator Contra geogram Sampler of Press geogram Sampler of Press <tr< td=""></tr<></td></t<>	Walker Cillisation Heights Py Ltd Statut: Geoderical Integration Sation: Angle from Horizontal: 90° Statut: Concentration Statut: Second Cillisation Statut: Second Cillisation Statut: Second Cillisation Statut: Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation Second Cillisation Second Cillisation Second Cillisation Second Cillisation Second Cillisation Statut: Second Cillisation S	Entropy Valuer Callisation Heights Pty Ltd pict: Action State Plan Angle from Horizontal: 90° Secondard sition: Refore to Site Plan Angle from Horizontal: 90° Secondard cavation Dimensions: Causation Melophysics Counce Excavator Counce Scavator cavation Dimensions: Causation Melophysics Counce Excavator Counce Scavator cavation Dimensions: Causation Melophysics Counce Scavator Counce Scavator cavation Dimensions: Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophysics Causation Melophysics cavation Melophysics Sampling & Testing Causation Melophysics Causation Melophys	Entropy Walker Gilliston Heights Bry Lud Job No: 30410994 action: 457-527 Cessnock Road, Gilliston Heights Job No: 30410994 ittin: Refer to Site Plan Angle from Horizontal: 80* Surface chine Type: 5 come Eccarator Eccarator caration Dimensions: Contra de Eccarator Contra geogram Sampler of Press geogram Sampler of Press <tr< td=""></tr<>

		tant	ec							TE	ST PIT LOG SHEET
Clier Proje Loca	ect:	(Seote	chnical Invest	eights Pty Ltd tigation Road, Gilliesto	n Heia	hte	Job No. 204400064		H	ole No: TP103
				Site Plan	toau, onnesto	inneig	11.5	Job No: 304100964 Angle from Horizontal: 90°	,	Surfac	Sheet: 1 of 1 e Elevation:
				onne Excavato	or			Excavation Method: 600mm To			
				sions:							ctor: Stantec Pty Ltd
				9/4/23				Logged By: JH		Check	
	avat			Sampling &	Testing			Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					3 6 9 12 5 6 6 			FILL: Silty SAND: fine to coarse grained, dark brown, with fine to coarse angular gravels, trace rootlets 0.25m FILL: Gravelly SAND: fine to coarse grained, grey fine to coarse angular to sub-angular gravel, trace rounded to sub-rounded cobbles, trace plastic wrap fragments 0.40m	D		FILL FILL
EX-	E-F	Stable	Not Encountered					Silty CLAY: high plasticity, red mottled pale grey and brown, trace fine grained sand	M (>PL)	St	EXTREMELY WEATHERED
-	F	-			VR 12 (12/50mm) 			Sandy CLAY: low to medium plasticity, orange mottled red and brown, fine to medium grained sand	M (<pl)< td=""><td>VSt - H</td><td></td></pl)<>	VSt - H	
								1.20m TERMINATED AT 1.20 m Refusal on Weathered Rock			
EX R HA PT SON AH PS AD/ HFA WB RR	Rij Ha Pu Air Pe Sh / So / So / So Wi	ccavator pper and aug ush tube pnic drill r hamme ercussion fort spir blid fligh	er ing er n samp al auger t auger t auger ht aug ofrilling	t VE E F H VH VH VH CH Er V-Bit F r V-Bit F r	IETRATION Very Easy (No Resist Easy Firm Hard Very Hard (Refusal) TER Water Level on shown water inflow water outflow		S F F M F	P - Hand/Pocket Penetrometer D - CP Dynamic Cone Penetrometer U - SP - Perth Sand Penetrometer U - C - Moisture Content MOISTUI JT - Plate Bearing Test D - IP - Borehole Impression Test M - D - Photoionisation Detector W - C - Vane Shear, P=Peak, LL -	Bulk disturbe Disturbed sa Environment Thin wall tub RE Dry	imple al sample e 'undistu	S - Soft F - Firm
Refe abbre	r to exp eviation	planatory ns and ba	notes fo sis of de	or details of escriptions		STAI	νTI	EC AUSTRALIA PTY LTD			

Clie	·		Valk	er Gillieston He echnical Invest		/ Ltd						ST PIT LOG SHEE
	ation	1: 4	57-5	27 Cessnock F	Road, Gilli	iestor	n Heigh	ts	Job No: 304100964			Sheet: 1 of
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				onne Excavato	r				Excavation Method: 600mm 1			
Exc	avati	on D	imen	sions:							Contra	ctor: Stantec Pty Ltd
Date	e Exc	cavat	ed: 1	9/4/23		1	1		Logged By: JH		Checke	ed By:
Ex	cavat	ion		Sampling & T	Festing				Material Descrip	tion		.
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
						-			FILL: Clayey SILT: low plasticity, dark brown-black, with fine to medium grained sand trace rootlets, trace glass fragments	, M (<pl< td=""><td></td><td>FILL</td></pl<>		FILL
	_					-			0.25m Clayey SILT: low plasticity, grey, with fine to coarse rub-rounded to sub-angular gravels 0.40m	M (<pl< td=""><td>,</td><td>COLLUVIUM</td></pl<>	,	COLLUVIUM
	F			D 0 50 0 70		- 0.5			Silty CLAY: high plasticity, red mottled pale gre and brown, trace fine grained sand	у		RESIDUAL SOIL
			q	B 0.50 - 0.70 m		_				M (>PL	St	
		Stable	Not Encountered			-			0.80m Silty CLAY: low to medium plasticity (friable), p grey mottled orange, with fine grained sand	ale		EXTREMELY WEATHERED
	F-H			B 1.00 - 1.30 m		- 1.0 -				M (<pl< td=""><td>) St - VSt</td><td></td></pl<>) St - VSt	
v	Н	-			VR 14 (14/75mm) (14/75mm) 	- 1.5			1.60m TERMINATED AT 1.60 m Refusal on Weathered Rock			
						-		1 -				
EX HA PT SOH PS AD AD HF WE	Rij Ha Pu N Sc Ain Pe Sh V Sc VT Sc A Ho S	cavato pper and aug ish tube nic drill hamm crcussic ort spir lid fligh lid fligh blow flig ashbore	er er on sam al auge t auge ght auge ght auge drillin	et VE F H VH VH er V-Bit r: V-Bit	ETRATION Very Easy (Net Easy Firm Hard Very Hard (Ret TER Water Let shown water inf water out	^{efusal)} evel on low		S H D P N I N	CP - Dynamic Cone Penetrometer ES SP - Perth Sand Penetrometer U IC - Moisture Content MOIST BT - Plate Bearing Test D IP - Borehole Impression Test M ID - Photoionisation Detector W S - Vane Shear: PEPeak PL	Bulk disturb Disturbed sa Environmen Thin wall tut 'URE Dry Moist Wet Plastic limit Liquid limit	ample tal sample be 'undistu	s - Soft rrbed' St - Sitff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Densi D - Dense
RR	Ro	ock rolle	er	g				 			ntent	VD - Very Dense

Clier Proje	ct:	G	Geote	er Gillieston He echnical Invest	tigation							Ho	ole No: TP10
.oca				27 Cessnock F Site Plan	Road, Gilliest	on H	eights	i	Job No: 304100964 Angle from Horizontal:	000		Surface	Sheet: 1 of Elevation:
				onne Excavato	r				Excavation Method: 60				
				sions:	//								ctor: Stantec Pty Ltd
				9/4/23					Logged By: JH			Checke	•
	avat			Sampling &	Testing					I Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/	anhic	Log	Classification	SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type,	acteristic, oonents colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
ž	Res	ŝ	5		150 mm 3 6 9 12	Ċ			fabric & texture, strength, weathed defects and structure		₹ °	ы С С	
						ــلد ــلد ــلد ــلد ــلد ــلد ــلد ــلد		0.30m	TOPSOIL: Silty SAND: fine to mediu dark brown, with fine to medium rour trace organics	m grained, nded gravel,	D		TOPSOIL
	E			B 0.50 - 0.80 m				0.300	Silty CLAY: high plasticity, dark grey orange and brown, trace fine to med gravels, trace rootlets		M (>PL)	St	Probably COLLUVIUM
—— ЕХ —		Stable	Not Encountered			0		1.00m	Silty CLAY: high plasticity, red mottle and brown, trace fine grained sand	d pale grey	M (≈ PL)	St - VSt	RESIDUAL SOIL
	F-H				1 - 1.4 -			1.60m	Silty CLAY: low plasticity (friable), mo grey and red	ottled pale	M (<pl)< td=""><td>VSt - H</td><td>EXTREMELY WEATHERED</td></pl)<>	VSt - H	EXTREMELY WEATHERED
	HOD				I I I I I I I I I I I I I I I I I I I	5		2.50m		SAMPLES			SOIL CONSISTENCY
EX R HA PT SON AH PS AD/N AD/N HFA WB RR	Rip Ha Pu So Air Pe Sh So Ho Wa	cavator oper and aug sh tube nic drill hamme rcussio ort spin- lid fligh- lid fligh- blow flig ashbore ock rolle	er ing er n sam al auge t auge t auge t auge ht aug	oler WA er V-Bit − er F ∵ V-Bit − er F	Very Easy (No Resi Easy Firm Hard Very Hard (Refusal TER Water Level of shown water inflow water outflow) on Dat	•	HP - DCP - PSP - MC - PBT - IMP - PID -	Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test	D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - We PL - Pla: LL - Liqu	st t stic limit	nple al sample > 'undistui	

		ant			siahta Dtu	144			TEST PIT LOG SHEET
Clie Proj	ect:	(Geote	er Gillieston H echnical Invest	tigation			4-	Hole No: TP106
	ation			27 Cessnock I Site Plan	Road, Gillie	estor	1 Heigh	Its	Job No: 304100964 Sheet: 1 of Angle from Horizontal: 90° Surface Elevation:
		-		onne Excavato	or				Excavation Method: 600mm Toothed Bucket
				sions:					Contractor: Stantec Pty Ltd
Date	Exc	cavat	ed: 1	9/4/23					Logged By: JH Checked By:
Ex	cavat	ion		Sampling &	Testing				Material Description
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure
						-	على على		TOPSOIL: Silty SAND: fine to medium grained, dark brown, with fine to medium rounded gravel, trace organics D
	F								0.20m Sandy GRAVEL: fine to coarse rounded to sub-rounded, grey, fine to medium grained sand, trace rootlets D .35m
		-				- 0.5			Silty CLAY: high plasticity, red mottled brown, trace fine grained sand M (>PL)
	F-H	-							As Above, orange-brown mottled grey St
EX-	н	Stable	Not Encountered			- 1.0			M (« PL)
		5	Not		15				1.05m EXTREMELY WEATHERED Silty CLAY: low to medium plasticity, mottled pale grey and red-orange, with fine grained sand EXTREMELY WEATHERED
	F-H				VR (15/75mm) 	- 1.5 -			M (<pl) -="" h<="" td="" vst=""></pl)>
V						-2.0-			As Above, with parent rock fragments
									TERMINATED AT 2.00 m Target depth
EX R HA PT SOI AD AD HF WB RR	Ri Ha PL N Sco Sh V Sco T Sco W W	cavato pper and aug ish tube onic drill r hamm ercussic nort spir blid fligh	er er on samp ral auger t auger t auger ght auger ght aug	tt VE E F H VH VH VT VH tr F TC-Bit er	JETRATION Very Easy (No Easy Firm Hard Very Hard (Ref TER Water Le shown water inflo water out	^{fusal)} vel on ow		S H D P M P IN P	Bit D TESTS SAMPLES SOLL CONSISTENCY SPT - Standard Penetration Test B - Bulk disturbed sample S - Very Soft IP - Hand/Pocket Penetrometer D - Disturbed sample S - Soft SP - Perth Sand Penetrometer E - Thin wall tube 'undisturbed' S - Soft YS - Very Soft - Thin wall tube 'undisturbed' St - Stiff YS - Very Stiff - Disturbed sample St - Stiff VS - Very Stiff - Hard - Ory St - Stiff MD - Borehole Impression Test D - Dry RELATIVE DENSITY YL - Very Loose - Loose MD - Medium Dense YS - Vane Shear; P=Peak, L - Liquid limit MD - Medium Dense W - Moisture content W - Moisture content D - Dense
Refe	r to exp eviation	planatory ns and ba	notes fo	or details of escriptions		S	STAN	1TE	EC AUSTRALIA PTY LTD

0) St	ant	ec								TE	ST PIT LOG SHEET
Clie Proj		(Geote	er Gillieston H echnical Invest 27 Cessnock F	tigation		Heigh	te	lab No. 204400064		H	ole No: TP107
				Site Plan	toau, onn	63101	rneign	13	Job No: 304100964 Angle from Horizontal: 90°		Surfac	Sheet: 1 of 1 e Elevation:
				onne Excavato)r				Excavation Method: 600mm To			
				sions:								ctor: Stantec Pty Ltd
				9/4/23					Logged By: JH		Checke	
	cavat			Sampling &	Testina				Material Descripti			j :
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
	E				3 6 9 12 	-		Ğ	FILL: Sandy CLAY: low plasticity, dark brown-black, with fine to coarse angular to sub-angular gravel	M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
	F-H					- 0.5 - -			D.60m Silty CLAY: high plasticity, dark grey mottled dar red, trace fine to coarse sub-rounded to angular gravels, trace rounded cobbles	< M (>PL)	St	COLLUVIUM
EX		Stable	Not Encountered			- 1.0 - - 			I.30m Sitty CLAY: high plasticity, dark red mottled brow with orange staining, with fine to coarse sub-rounded to sub-angular gravel, trace fine grained sand	n		1.20 m: Minor olfactory odour RESIDUAL SOIL
	Н				23 v/ 	2.0			2.20m	M (>PL)	VSt-H	1.50 m: Possible jarosite staining
						ŀ		ť	Silty CLAY: low plasticity (friable), mottled pale	M /-D'	н	EXTREMELY WEATHERED
¥							T T T	:	grey and red 2.30m	M (<pl)< td=""><td></td><td></td></pl)<>		
						_			TERMINATED AT 2.30 m Target depth			
ME EX R HA PT SO AH PS AD AD HF	Rij Ha Pu N Sc Ain Pe Sh V Sc V T Sc A Ho S	cavato pper and aug ish tube onic drill r hamm ercussic iort spir olid fligh	er er on sam al auge t auger t auger yht aug odrillin	et VE E F H VH VH VH VH CH E F C-Bit F C-Bit F C-Bit	Very Easy (No Easy Firm Hard Very Hard (Ro TER Water Lu Shown water inf water out	efusal) evel on low		SF HF DC PS MC	P Hand/Pocket Penetrometer D P Dynamic Cone Penetrometer ES P Perth Sand Penetrometer U C Moisture Content MOISTU T Plate Bearing Test D P Borehole Impression Test M O Photoionisation Detector W Q Vane Shear; P=Peak, LL	Bulk disturbe Disturbed sa Environmen Thin wall tub	ample tal sample be 'undistu	S - Soft F - Firm
Refe abb	er to exp reviatior	blanatory ns and ba	notes fo	or details of escriptions		S	STAN	ITE	C AUSTRALIA PTY LTD			

	ect:	(Geote	r Gillieston He chnical Invest	igation					Η	ole No: TP108
	ation			7 Cessnock F	Road, Gilliesto	on Heig	hts	Job No: 304100964			Sheet: 1 of
				Site Plan nne Excavato	r			Angle from Horizontal: 90° Excavation Method: 600mm			e Elevation:
				sions:	1			Excavation Method. 600mm			ctor: Stantec Pty Ltd
			ed: 19					Logged By: JH		Check	
	cavat			Sampling &	Testing			Material Descrip			·····
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
A					3 6 9 12	ىلىر غلىر لىر غاير غ	-	TOPSOIL: Clayey SILT: low plasticity, dark bro	wn,		TOPSOIL 0.00 m: Within gully line
							- - 	0.25m Silty CLAY: high plasticity, grey mottled pale brown, trace fine to medium rounded gravels, trace rootlets	M (<pl)< td=""><td>)) St - VSt</td><td>COLLUVIUM</td></pl)<>)) St - VSt	COLLUVIUM
EX	F-H	Stable	Not Encountered		- ⁵ - ⁵ - - 1.0 - - - - - - -			0.80m Silty CLAY: high plasticity, mottled pale grey ar orange-brown) St - VSt	RESIDUAL SOIL
					VR			Silty CLAY: low plasticity, mottled pale grey and red	M (<pl)< td=""><td>) н</td><td>EXTREMELY WEATHERED</td></pl)<>) н	EXTREMELY WEATHERED
×								SILTSTONE: pale grey and dark red, very low low strength, highly weathered	0		WEATHERED ROCK
				_				TERMINATED AT 2.20 m Target depth			
ME EX HA PT SOI AH PS AD/ AD/ HF/ WB RR	Rij Ha Pu N Sc Ain Pe Sh V Sc V Sc V Sc V Sc V Sc V Sc V Sc V Sc	oper and aug sh tube nic drill hamm rcussic ort spir lid fligh lid fligh llow flig	er er on sampl al auger t auger: t auger: yht auge e drilling	ler WA1 V-Bit TC-Bit ►	ETRATION Very Easy (No Resid Easy Firm Hard Very Hard (Refusal) TER Water Level c shown water inflow water outflow		S F F F F	IP - Hand/Pocket Penetrometer D ES ICP - Dynamic Cone Penetrometer U - ISP - Perth Sand Penetrometer U - IC Moisture Content MOIST MOIST IBT - Plate Bearing Test D - I/ID - Borehole Impression Test M - I/ID - Photoionisation Detector W -	Bulk disturb Disturbed sa Environmen Thin wall tub URE Dry Moist Wet Plastic limit Liquid limit	ample tal sample be 'undistu	e S - Soft F - Firm

	ent: ject:			er Gillieston H chnical Invest		Ltd					H	ole No: TP109
	atior			27 Cessnock I		stor	h Heigh	ts	Job No: 304100964			Sheet: 1 of
				Site Plan					Angle from Horizontal: 90°			e Elevation:
				onne Excavato	or				Excavation Method: 600mm Toot			stow. Otomtop Dtv I tol
				sions: 9/4/23							Checke	ctor: Stantec Pty Ltd
			au: 15		Teating				Logged By: JH		JUSCH	ей бу:
				Sampling &					Material Description			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
							على على على على على على على على على على على على على يعلى على على		TOPSOIL: Sandy SILT: low plasticity, brown, trace organics	M (<pl)< td=""><td></td><td>TOPSOIL</td></pl)<>		TOPSOIL
	F	-							0.25m Sitly CLAY: high plasticity, brown-grey mottled red, with fine to medium rounded gravel, trace fine grained sand, trace roolets			COLLUVIUM
	F-H	-				-0.5			0.75m	M (>PL)	St	
EX		Stable	Not Encountered			- 1.0			Sitty CLAY: high plasticity, grey mottled red, with fine to medium rounded gravel, trace fine grained sand			RESIDUAL SOIL
	н					- 1.5				M (>PL)	VSt	
V	F-H			B 1.80 - 2.00 m		-2.0			1.80m Sandy CLAY: low plasticity, pale grey mottled orange-brown, fine to medium grained	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
									TERMINATED AT 2.30 m Target depth			
ME R HA PT S H PS AD AD F WE R	Ri Pu N So Ai Pe Sh /V So /T So A Ho 3 W	ccavato pper and aug ush tube onic drill r hamm ercussic nort spir olid fligh	er ing er n samp al auger t auger t auger ht auger of drilling	t VE F H VH r V-Bit TC-Bit F F	UETRATION Very Easy (No F Easy Firm Hard Very Hard (Refu TER Water Lev shown water inflor water outfil	usal) veloni w		S H P N P IN P	IP - Hand/Pocket Penetrometer ICP - Dynamic Cone Penetrometer ISP - Perth Sand Penetrometer IC - Moisture Content IBT - Plate Bearing Test IP - Portoionisation Detector ID - Photoionisation Detector IS - Vane Shear; P=Peak,	/ ist et stic limit	mple al sample e 'undistu	S - Soft F - Firm

	tant											ST PIT LOG SHEET
ject:	(Geote	chnical Investi	gation		Heigh	ts	lab No: 204100964			He	DIE NO: TP110 Sheet: 1 of 1
				oau, onnea	51011	neign			90°		Surface	e Elevation:
				•				v				
										C	Contra	ctor: Stantec Pty Ltd
e Ex	cavat	ed: 19	0/4/23					Logged By: JH		C	Checke	ed By:
cava	tion		Sampling & T	esting				Material	Description			
Resistance	Stability	Water	Sample or Field Test	150 mm	Depth (m)	Graphic Log	Classification	colour, secondary and minor compo ROCK TYPE, grain size and type, c	onents colour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
F								trace rootlets	dark brown,	M (<pl)< td=""><td></td><td>TOPSOIL</td></pl)<>		TOPSOIL
	_				0.5		C	Silty CLAY: high plasticity, brown-grey	/ mottled red, race fine			RESIDUAL SOIL
F-H	Stable	Not Encountered								M (>PL)	St	
				17 HB (10/25mm) - _	1.0		1	Silty Gravelly CLAY: medium to high p	unded to	M (≂ PL)	VSt - H	EXTREMELY WEATHERED
н						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		CONGLOMERATE: medium to coarse sand, fine to coarse rounded to sub-ro gravels, orange-brown and red, very lo highly weathered	ounded			WEATHERED ROCK
							1	10m TERMINATED AT 1.40 m Refusal on Weathered Rock				
EX Ri Pro N So Ai Ai Si V/V So V/T So A Ho 3 W	xcavato ipper and aug ush tube onic drill ir hamm ercussic hort spir olid fligh olid fligh ollow flig	er ing er on samp al auger t auger: t auger: pht auge	ler WATI TC-Bit	Very Easy (No Ro Easy Firm Hard Very Hard (Refus ER Water Leve shown water inflow	^{sal)} el on (v		SP HP DC PS MC PB IMF	 Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test 	D - Distu ES - Envi U - Thin MOISTURE D - Dry M - Mois W - Wet PL - Plas LL - Liqui	urbed sar ironmenta wall tube st st itic limit id limit	mple al sample e 'undistu	S - Soft F - Firm
		ition: Reference ition: Reference ition: Reference ition: Reference avation Dip e Excavator e Excavator avation avation e Excavator avation avation	iect: Geote ation: 457-52 ition: Refer to S chine Type: 5 to avation Dimension e Excavation Image: S cavation Image: S e Excavation Image: S output: Image: S e Excavation Image: S output: Image: S e Excavation Image: S output: Image: S e Excavation Image: S e Image: S Image: S	THOD Page 2 Page 2	iect: Geotechnical Investigation ation: 457-527 Cessnock Road, Gillier ition: Refer to Site Plan avation Dimensions: azata acavation Sampling & Testing cavation Sample or Boxed Boxed F-H Boxed Boxed Boxed F-H Boxed Boxed Boxed F-H Boxed Boxed Boxed Boxed Boxed F Boxed F Boxed F Boxed F Boxed Boxed Boxed	Pipet: Geotechnical Investigation ation: 457-527 Cessnock Road, Gillieston ition: Refer to Site Plan shine Type: 5 tonne Excavator avation Dimensions: a a Excavated: avation Sampling & Testing avation Sample or Bigg a F-H a Bigg a Bigg	iect: description: 457-527 Cessnock Road, Gillieston Heigh ition: Refer to Site Plan ition: Refer to Site Plan ition: Refer to Site Plan ition: Refer to Site Plan ition: Refer to Site Plan automation Dimensions: a Excavated: 19/4/23 Cavation Dimensions: a Excavated: 19/4/23 Cavation Dimensions: a Excavated: 19/4/23 Cavation Dimensions: a 6 e 12 F-H end end end end end end end end	iect: descher heights ition: Refer to Site Plan ition: Refer to Site Plan ition: Type: 5 tonne Excavator avation Dimensions: a Excavatod: 19/4/23 cavation a big in the provide the provide the plan it is the provide the plan it is the plan it the plan it is the plan it the plan it t	Percent Sected chical Investigation Geodechical Investigation Geodechical Investigation Line Type: Stome Excavator	Littler: Geolechnical Investigation Job No: 304100964 Ittler: Argle form Horizontal: 90° Ittler: F Argle form Horizontal: 90° Ittler: Samping & Testing Eccavation Method: 500mm Tooll Ittle: Samping & Testing Ittle: Control Eccavation Method: 500mm Tooll Ittle: Samping & Testing Ittle: Samping & Testing Ittle: Ittle: Ittle: Samping & Testing Ittle: Ittle: Ittle: Mathinal Description Ittle: Samping & Testing Ittle: Ittle: Ittle: Ittle: Mathinal Description Ittle: Samping & Testing Ittle: Ittle: </td <td>Letter Geodechnical Investigation 1000: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 2000: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 200: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 200: Refer to Site Plan Sample or Status Logged By: JH Councellon 90: Big Big Big Big Big Big Big Big Big Big</td> <td>Line Control Line Control Line Ition: Refer to Site Plan Angle from Horizontal: Sufface Ition: Refer to Site Plan Angle from Horizontal: Sufface Ition: Refer to Site Plan Contra Excervation Metrics 600mm Toothed Bucket availon Dimensions: Contra Contra Contra Ition: Refer to Site Plan Logged By: JH Check Sample or metal for the Sample or me</td>	Letter Geodechnical Investigation 1000: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 2000: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 200: Refer to Site Plan Angle from Horizontal: 90° September 200: Stome Reservator 200: Refer to Site Plan Sample or Status Logged By: JH Councellon 90: Big	Line Control Line Control Line Ition: Refer to Site Plan Angle from Horizontal: Sufface Ition: Refer to Site Plan Angle from Horizontal: Sufface Ition: Refer to Site Plan Contra Excervation Metrics 600mm Toothed Bucket availon Dimensions: Contra Contra Contra Ition: Refer to Site Plan Logged By: JH Check Sample or metal for the Sample or me

\mathbf{O}) S1	tant	cec								TE	ST PIT LOG SHEET
Clie Proj			Geote	er Gillieston H chnical Invest 27 Cessnock F	igation		Hoigh	te			He	ole No: TP111
				Site Plan	toau, Gimes	SLOII	neign	15	Job No: 304100964		Surface	Sheet: 1 of 1 e Elevation:
		-		onne Excavato	-				Angle from Horizontal: 90° Excavation Method: 600mm Too			
				sions:					Excavation Method. 000min 100			ctor: Stantec Pty Ltd
				9/4/23					Logged By: JH		Checke	•
	cavat		eu. 1	Sampling &	Footing				Material Description		OTIECK	eu by.
Method	Resistance	Stability	iter	Sample or		Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour,	Moisture Condition	Consistency Relative Density	STRUCTURE
Met	Resis	Stat	Water	Field Test	Blows/ 150 mm 3 6 9 12	De	Gra Lc	Classif	fabric & texture, strength, weathering, defects and structure	Mois	Consi Rela Der	& Other Observations
									brown, with fine to medium rounded gravel, trace organics	D		
	F								0.20m FILL: Silty Gravelly CLAY: medium plasticity, pale grey, brown red and orange, fine to coarse			
		-							angular to sub-angular, with fine to medium grained sand, trace angular cobbles	M (>PL)		
						0.5			0.50m Silty Gravelly CLAY: medium to high plasticity, pale grey mottled brown-orange, fine to coarse angular to sub-angular, with fine to medium			RESIDUAL SOIL
EX		Stable			15				grained sand 0.65m SILTSTONE: pale grey and dark red, highly	M (>PL)	VSt	WEATHERED ROCK
	н				VR 				fractured, very low to low strength, highly weathered			0.70 m: Water inflow
						1.0						
						1.5			TERMINATED AT 1.30 m Refusal on Weathered Rock			-
ME	THOD) Kcavato	r bucke	+		lociot-			ELD TESTS SAMPLES PT - Standard Penetration Test B - Bu	lk disturbe	d sample	SOIL CONSISTENCY VS - Very Soft
R HA PT SO AH PS AD AD HF WE	Ri Pu N So Ai Pe Sh V So V So V So A Ho S W	ipper and aug ush tube onic drill r hamm ercussic nort spir olid fligh ollow flig 'ashbor	er ing er on samp al auge t auger t auger ght aug drilling	oler WA r ∵V-Bit er ►	Very Easy (No Re Easy Firm Hard Very Hard (Refus TER Water Leve shown water inflow water outflo	^{sal)} el on l v		H D P N	P - Hand/Pocket Penetrometer D - Dis CP - Dynamic Cone Penetrometer U - Th SP - Perth Sand Penetrometer U - Th C - Moisture Content MOISTURE 3T - Plate Bearing Test D - Dn IP - Borehole Impression Test M - Mc D - Photoionisation Detector W - We S - Vane Shear; P=Peak, L - Lig	sturbed sa vironment in wall tub sist	mple al sample e 'undistu	s - Soft rrbed' St - Sitff VSt - Sitff VSt - Very Sitff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense
RR Refe	er to ex	ock rolle planatory ns and ba	notes fo	or details of escriptions		S	STAN	I 1 T E	EC AUSTRALIA PTY LTD			VD - Very Dense

Client: Walker Gillieston Heights Py Ltd Project: Goodchinel Investigation Location: 497-827 Cesaratoch Nead, Gillieston Heights Job No: 304100964 Hachine Type: 5 tome Excavator Excavation Method: 600mm Tool Excavation Method: 600mm Tool Barbier Excavator Tool Barbier Excavator Tool Barbier Excavator Field Test Field			T PIT LOG SHEET
Position: Refer to Site Plan Angle from Horizontal: 90° Machine Type: 5 tonne Excavator Excavation Method: 600mm Tool Excavation Method: 600mm Tool Excavation Method: 600mm Tool Excavation Method: 600mm Tool Excavation Tool Excavation Tool Excavation Machine Type: 5 tonne Excavator Date Excavation Tool Excavation Method: 600mm Tool Ex		Но	Sheet: 1 of 1
Machine Type: 5 tonne Excavator Excavation Method: 600mm Tool Date Excavation Sampling & Testing Material Description Date Scavator Sample or Field Test Image: Sample or Field Test	S	Surface I	Elevation:
Excavation Dimensions: Logged By: JH Excavator Sampling & Testing Solt TYPE: plastally or particle characteristic. Out of the second part of			
Logged By: JH Material Description regin of point			tor: Stantec Pty Ltd
Excavation Sample or Field Test Sample or Field Test <th< td=""><td></td><td>Checked</td><td></td></th<>		Checked	
Podge ging ging ging ging ging ging ging gi			,
H H <td></td> <td>Consistency Relative Density</td> <td>STRUCTURE & Other Observations</td>		Consistency Relative Density	STRUCTURE & Other Observations
Image: State of the second st	D	F	FILL
H H H 0.90m H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H <td>M (>PL)</td> <td></td> <td>RESIDUAL SOIL</td>	M (>PL)		RESIDUAL SOIL
H 0.90m H 0.90m IIIISTONE: brown-orange motiled grey and pale grey, highly fractured, very low to low strength, highly weathered IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	M (<pl) 5<="" td=""><td></td><td>EXTREMELY WEATHERED</td></pl)>		EXTREMELY WEATHERED
Image: Sector of the sector		V	NEATHERED ROCK
METHOD PENETRATION FIELD TESTS SAMPLES R Ripper E asy SPT - Standard Penetration Test B - Bui HA Hand auger F Firm DCP - Dynamic Cone Penetrometer D - Dis SON Sonic drilling VH Very Hard (Refusal) WATER PSP - Perth Sand Penetrometer MOISTURE AH Air hammer WATER Water Level on Date shown Short spiral auger: TC-Bit M - Moisture Content AD/T Solid flight auger: TC-Bit Water Inflow Water Inflow VS Vane Shear; P=Peak, PL - Pia WB Washbore diffigure Water Inflow VS Vane Shear; P=Peak, PL - Pia	ulk disturbed sturbed samj nvironmental nin wall tube ' E Y oist	ample tal sample be 'undisturbe	ed' SOIL CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method		
Test Pitting: exc	avation/trench	
BH	Backhoe bucket	
EX	Excavator bucket	
R	Ripper	
Н	Hydraulic Hammer	
Х	Existing excavation	
Ν	Natural exposure	
Manual drilling:	hand operated tools	
HA	Hand Auger	
Continuous sam	iple drilling	
PT	Push tube	
PS	Percussion sampling	
SON	Sonic drilling	
Hammer drilling		
AH	Air hammer	
AT	Air track	
Spiral flight auge	er drilling	
AS	Auger screwing	
AD/V	Continuous flight auger: V-bit	
AD/T	Continuous spiral flight auger: TC-Bit	
HFA	Continuous hollow flight auger	
Rotary non-core	drilling	
WB	Washbore drilling	
RR	Rock roller	
Rotary core drilling		
PQ	85mm core (wire line core barrel)	
HQ	63.5mm core (wire line core barrel)	
NMLC	51.94mm core (conventional core barrel)	
NQ	47.6mm core (wire line core barrel)	
DT	Diatube (concrete coring)	

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method		
Soil sampling		
В	Bulk disturbed sample	
D	Disturbed sample	
С	Core sample	
ES	Environmental soil sample	
SPT	Standard Penetration Test sample	
U	Thin wall tube 'undisturbed' sample	
Water sampling		
WS	Environmental water sample	

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field testing	
---------------	--

	0	
SPT	Standard Penetration Test	
HP/PP	Hand/Po	cket Penetrometer
Dynamic F	Penetrome	ters (blows per noted increment)
	DCP	Dynamic Cone Penetrometer
	PSP	Perth Sand Penetrometer
MC	Moisture	Content
VS	Vane She	ear
PBT	Plate Bea	aring Test
IMP	Borehole Impression Test	
PID	Photo Ionization Detector	

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock q	Rock quality description		
TCR	Total Core Recovery (%)		
	(length of core recovered divided by the length of core run)		
RQD	Rock Quality Designation (%)		
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)		

Notes on groundwater conditions encountered may include.

Groundwater	
Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classific	ation	Particle Size (mm)
CLAY		< 0.002
SILT		0.002 0.075
SAND	fine	0.075 to 0.21
	medium	0.21 to 0.6
	coarse	0.6 to 2.36
GRAVEL	fine	2.36 to 6.7
	medium	6.7 to 19
	coarse	19 to 63
COBBLES		63 to 200
BOULDERS		> 200

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils	
reminology	% fines	% coarse	% coarse
Trace	≤5	≤15	≤15
With	>5, ≤12	>15, ≤30	>15, ≤30

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	Н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	<15%
Loose	L	15% to ≤35%
Medium Dense	MD	35% to ≤65%
Dense	D	65% to ≤85%
Very Dense	VD	>85%

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (*w*) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

woistu	re condition and description
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin and description		
Fill	Anthropogenic deposits or disturbed material	
Topsoil	Zone of soil affected by roots and root fibres	
Peat	Significantly organic soils	
Colluvial	Transported down slopes by gravity/water	
Aeolian	Transported and deposited by wind	
Alluvial	Deposited by rivers	
Estuarine	Deposited in coastal estuaries	
Lacustrine	Deposited in freshwater lakes	
Marine	Deposits in marine environments	
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident	
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties	

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition	
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident	
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident	
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).	
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock	
Fresh Rock	FR	The rock shows no sign of decomposition or staining	

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I₅50 (MPa)
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	Μ	0.3 to 1.0
High	Н	1.0 to 3
Very High	VH	3 to 10
Extremely High	EH	> 10

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing (mm)
Thinly laminated	< 6
Laminated	6 to 20
Very thinly bedded	20 to 60
Thinly bedded	60 to 200
Medium bedded	200 to 600
Thickly bedded	600 to 2000
Very thickly bedded	> 2000

Terms for describing rock and defects are as follows.

Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		

The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating		
Clean	CN	
Stained	SN	
Carbonaceous	Х	
Minerals	MU	Unidentified mineral
	MS	Secondary mineral
	KT	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
Veneer	VNR	Thin or patchy coating
Coating	СТ	Infill up to 1mm

Graphic Symbols Index

APPENDIX

UNEXPECTED FINDS PROTOCOL

now

Unexpected Finds Protocol

457-527 Cessnock Road, Gillieston Heights

304100964

Prepared for Walker Gillieston Heights Pty Ltd

8 June 2023

Contact Information

Stantec Australia Pty Ltd ABN 17 007 820 322

Suite 2, Level 2, 22 Honeysuckle Drive Newcastle 2300 Australia

Phone+61 2 4965 4555Fax+61 2 4965 4666

www.cardno.com

www.stantec.com

Document Information

Prepared for	Walker Gillieston Heights Pty Ltd
Project Name	457-527 Cessnock Road, Gillieston Heights
File Reference	304100964-003.2
Job Reference	304100964
Date	8 June 2023
Version Number	2

Author(s):

Kosta Sykiotis Geotechnical Engineer

Approved By:

Dimce Stojanovski Senior Scientist

Effective Date

Date Approved

8/06/2022

8/06/2022

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	13/12/2022	First Issue to Client	KS	DS
2	8/6/2023	Incorporating additional lots	KS	DS

Table of Contents

1	Introduc	Introduction		
	1.1	Scope	1	
	1.2	References	1	
2	Procedu	re	2	
	2.1	General	2	
	2.2	Training and Induction of Personnel	2	
	2.3	Initial Response	2	
	2.4	Skeletal Remains	2	
	2.5	Aboriginal Heritage	3	
	2.6	Archaeological Heritage	3	
	2.7	Potentially Contaminated Soils	3	
	2.8	Asbestos Containing Materials	3	
	2.9	Summary	3	

Appendices

Appendix A Figures

Appendix B Unexpetced Finds Protocol Form

1 Introduction

This Unexpected Finds Protocol (UFP) has been developed for the proposed residential development located at 457 – 527 Cessnock Road, Gillieston Heights (the "Site") as shown in **Figure 1**, attached.

The purpose of the Unexpected Finds Protocol is to document the process for evaluating any unexpected environmental finds during the project, and to specify safety measures to be implemented to manage such circumstances and prevent any adverse environmental and human health impacts.

Based on subdivision concept design plans provided by the Client, the proposed residential development comprises the creation of a residential subdivision, internal subdivision roads and associated infrastructure.

1.1 Scope

This Unexpected Finds Protocol (UFP) is specific to the proposed residential development at 457 – 527 Cessnock Road, Gillieston Heights NSW as shown in **Figure 1**, attached. It provides guidance and procedures for dealing with any unexpected finds that may be encountered during the disturbance works carried out on Site.

1.2 References

The following documents have been reviewed in preparation of this Unexpected Finds Protocol:

- > National Parks and Wildlife Act 1974 (NSW)
- > Coroners Act 2009 (NSW)
- > Aboriginal and Torres Strait Islander Heritage Protection Act 1984 (Cth)
- > Heritage Act 1977 (NSW)
- > National Environmental Protection Measure (1999)

2 **Procedure**

2.1 General

The following procedure should be used to assess any unexpected finds that are encountered throughout the duration of the project. Unexpected finds may include but are not limited to heritage items, unidentified filling, odorous or stained soils, and suspected asbestos materials. All Site personnel are required to report any unexpected finds to the site manager, if observed during the course of their works.

2.2 Training and Induction of Personnel

Personnel involved in the project on site are to be inducted to the unexpected finds protocol.

Site inductions would include making workers and site personnel aware of the possibility of unexpected finds. Inductions will also include the immediate course of actions to be taken by workers if they were to find anything, including stopping work, notifying their supervisor immediately and completing the Incident Report forms. The induction should be reinforced at daily toolbox meetings.

2.3 Initial Response

If any unexpected/unidentified material is uncovered during disturbance works, the following procedure should be followed;

- > Cease all works in the immediate area.
- > Identify the category of the find (Contaminated Soils, Heritage, uncovering of Asbestos Materials etc).
- > Delineate and restrict access to the area using fencing and /or appropriate barriers and signage.
- > Ensure appropriate training and PPE is available for any persons required to enter the area.
- > Document the nature of the find.
- > Engage a suitably qualified consultant to assess the unexpected find.
- The consultant will assess the unexpected find and provide advice regarding the preliminary assessment with reference to Sections 4.4 – 4.8 below, which will include the following:
 - The need for further immediate management controls if required;
 - Further assessment and / or remediation works required in accordance with relevant guidelines;
 - Preparation of Remediation Action Plan (RAP) if required or provide clean up advice;
 - If required, clean up strategies of the affected area will be implemented.
 - If appointed, correspondence with a Site Auditor shall be undertaken.

Works within the affected area are not to recommence until it is deemed safe and suitable for works to continue. Written confirmation shall be undertaken by the appropriate consultant following appropriate advice and clean up procedures.

2.4 Skeletal Remains

In the event that skeletal remains are uncovered and the remains are not immediately identifiable as nonhuman remains, a qualified archaeologist should be engaged to determine their origin. If the skeletal remains are identifiable as human remains, the Local Police should be contacted to assess the discovery. Under no circumstances should the skeletal remains be disturbed without prior consultation with the relevant authorities which may include the coroner, police, Office of Environment & Heritage, aboriginal groups or a qualified anthropologist.

2.5 Aboriginal Heritage

In the event that any relic, artefact or material that is suspected of being Aboriginal Heritage is uncovered, works must cease immediately in the area. The Office of Environment and Heritage (OEH) should be notified, as well as the National Parks and Wildlife Service, NSW Police and local Aboriginal Stakeholders.

The Office of Environment and Heritage requires notification and an AHIP permit is required prior to the removal of any Aboriginal artefacts. An AHIP permit is issued under the National Parks and Wildlife Act and applications can be made directly to the OEH.

2.6 Archaeological Heritage

Items of archaeological heritage may be uncovered during disturbance works. Items of archaeological heritage may include Aboriginal artefacts or remains, European artefacts following settlement. European heritage may include items such as roadways (telford & corduroy timber road bases etc), kerbing, culverts, building foundations and tools. A suitably qualified archaeologist should be engaged to assess the find.

2.7 Potentially Contaminated Soils

In the event that any odorous, stained or unidentified soils are uncovered during the site works, a suitable qualified environmental consultant should be engaged to assess the material and the following procedures should apply:

- > Excavation works at that part of the site where suspect soil material was encountered should cease until an inspection by an environmental consultant is carried out;
- > Based on a visual inspection, the consultant will provide guidance on health and safety of remedial works, soil storage and soil disposal to allow construction works to proceed if possible;

Based on sampling and analysis the consultant will provide advice as to any additional requirements (i.e. managed on site or any offsite disposal requirements).

2.8 Asbestos Containing Materials

Contingency measures must be developed to evaluate any unexpected finds of suspected asbestos containing materials. These are to specify safety measures that can be implemented to manage and prevent any adverse environmental and human health impacts. Appropriate contingency measures in relation to asbestos impacted soils and suspected asbestos containing materials (ACM) include:

- > Where suspected ACM is encountered excavation works must cease until an inspection by an environmental consultant is carried out;
- > Any illegal dumping containing suspected asbestos bearing material or synthetic mineral fibres should be inspected by an environmental consultant.

Following a visual inspection; and sampling if necessary, the consultant will provide interim advice on health and safety requirements to allow construction works to proceed if possible;

Based on sampling and analysis the consultant will provide advice as to any additional requirements (i.e. management or disposal requirements).

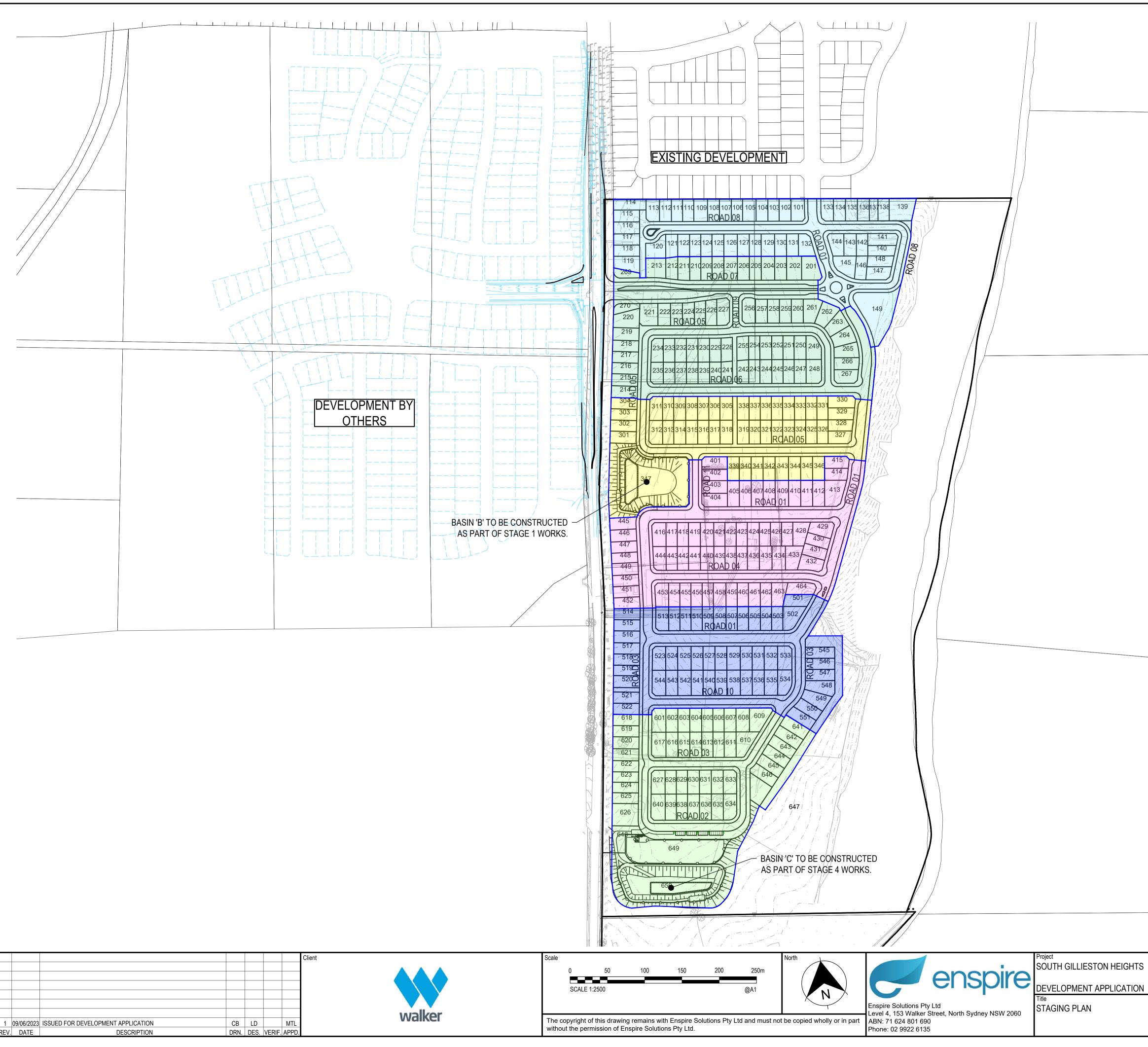
Following an inspection and sampling for laboratory testing (where required), works can continue following the consultants written advice.

2.9 Summary

Where an area is identified as containing an isolated find, works must cease, and an inspection and sampling (where required) shall be undertaken by a suitable qualified consultant in accordance with Sections 2.4 to 2.8.

Works within the area shall only recommence following the advice of the suitable qualified personal.

An Unexpected Finds Protocol procedure form is available in Appendix B.


APPENDIX

FIGURES

Stantec

LEGEND	
STAGE 1	
STAGE 2	
STAGE 3	
STAGE 4	
STAGE 5	
STAGE 6	

			PM BY : CAITLIN BEHETS
Scale	Status		3:57
1:2500	FOR INFORMATION ONLY		2023
Date	NOT TO BE USED FOR CONSTRUCTION		June 2
09/06/2023			٦ 1 ا
Size	Project Number/Drawing Number	Revision	DATE PLOTTED:
A1	210039-DA-C01.31	1	ЦO
Datum	Z10039-DA-C01.31		ΕPΙ
MGA 2020			DAT
CAD File: P:\210039 So	uthGillieston\D-Civil\01-DA\Drawings\6-DACC\210039-DA-C01.31 STAGIN	IG PLAN.dw	<u> </u>

UNEXPETCED FINDS PROTOCOL FORM

now

UNEXPECTED FINDS PROTOCOL

INCIDENT REPORT FORM

Location of discovery (photographs, location map etc):

Nature of find (contaminated soils, heritage, asbestos etc.):

Action Taken:

Date:

Recorded By:

APPENDIX

DOUGLAS PARTNERS REPORT

Report on Preliminary Site Investigation and Detailed Site Investigation (Contamination)

Proposed Residential Subdivision 501-527 Cessnock Road, Gillieston Heights

Prepared for Walker Gillieston Heights Pty Ltd

> Project 204921.00 May 2022

ntegrated Practical Solutions

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	204921.00	Document No.	R.001.Rev1
Document title	Report on Preliminary	Site Investigation a	and Detailed Site Investigation
	Proposed Residential	Subdivision	
Site address	501-527 Cessnock Ro	oad, Gillieston Heig	hts
Report prepared for	Walker Gillieston Heig	ghts Pty Ltd	
File name	204921.00.R.001.Rev	' 1	

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Patrick Heads	Paul Gorman	20 May 2022	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Sam Barclay, Walker Gillieston Heights Pty Ltd
			· · · · ·

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature	Date
Author Robuild Heads	20 May 2022
Reviewer P. Jorman	20 May 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistemon Close Warabrook NSW 2304 PO Box 324 Hunter Region Mail Centre NSW 2310 Phone (02) 4960 9600

Executive Summary

Douglas Partners Pty Ltd (DP) has conducted preliminary site investigation and detailed site investigation for a proposed residential subdivision at the subject site.

The objectives of the investigation were to identify and assess the potential contamination sources identified at the site (by DP and others) and provide an assessment of the suitability of the site for the proposed residential land use.

The scope of works included review of existing investigations, assessment of site history over the southern portion of the site, site inspection, subsurface investigation, soil sample collection, laboratory analysis and preparation of this report.

Assessment indicated that the site had generally been used for residential and agricultural purposes, including a dairy farm on the site and a poultry farm on the adjacent site to the north-west of the site. Potential contamination sources identified included agricultural use, demolition of structures, the presence of fill and possible storage of minor quantities of fuels and chemicals.

The results of the assessment suggested the general absence of gross contamination over the majority of the site. Some fill associated with demolition of structures was identified in the vicinity of the former dairy, along with the presence of some asbestos containing materials in near-surface soils associated with an existing building in the dairy.

The site is considered to be suitable for the proposed development from a contamination perspective, subject to the remediation and validation of the identified contamination, as outlined in Section 15 of this report.

Table of Contents

Page

1.	Introduction1		
2.	Propo	osed Development	1
3.	Scope of Works2		
4.	Site I	nformation	3
5.	Back	ground	6
	5.1	Introduction	6
	5.2	Environmental Resources Management Australia Pty Ltd (ERM, 2017)	7
	5.3	Practical Environmental Solutions Pty Ltd (PES, 2020)	8
	5.4	Qualtest Laboratory (NSW) Pty Ltd (Qualtest, 2020)	10
6.	Site H	History – Lot 3 DP 71130	14
	6.1	Introduction	14
	6.2	Historical Aerial Photography	14
	6.3	Title Deeds	15
	6.4	Public Registers and Planning Records	16
	6.5	On Line Search	16
	6.6	Site History Integrity Assessment	16
	6.7	Summary of Site History – Lot 3 DP 71130	17
	6.8	Summary of Site History – Current Site	17
7.	Site V	Nalkover	17
	7.1	Observations	17
8.	Preliminary Conceptual Site Model		
9. Sampling and A		bling and Analysis Quality Plan	
	9.1	Data Quality Objectives	
	9.2	Soil Sampling Rationale	
	9.3	Analytical Rationale	
10.	Site A	Assessment Criteria	39
11.	Resu	lts	40
	11.1	Field Work Results	40
	11.2	Laboratory Analytical Results	43
12.	Discu	ussion	43
	12.1	Soils 43	

Douglas Partners Geotechnics | Environment | Groundwater

	12.2 Waste Classification	.44
	12.3 Data Quality Assurance and Quality Control	.44
13.	Revised Conceptual Site Model	.44
14.	Conclusions and Recommendations	.46
15.	References	.47
16.	Limitations	.48

Appendix A:	About this Report
Appendix B:	Test Pit Logs - Pits 1 to 15, Pits 101 to 138,
	Borehole Logs Bores 201 to 207
Appendix C	Historical Aerial Photos
Appendix D	NSW EPA Records
	Historical Titles
Appendix E	Summary of Laboratory Results
	Laboratory Reports
Appendix F	Data Quality Report
	Site Assessment Criteria
	Fieldwork Methodology
	Chain of Custody (Field and Despatch)
	Sample Receipt
Appendix G	Drawings 1 to 4 – Test Location Plan
	Preliminary Subdivision Plan (PCB, reference 118763, 26 August 2016)

Report on Preliminary Site Investigation and Detailed Site Investigation (Contamination) Proposed Residential Subdivision 501-527 Cessnock Road, Gillieston Heights

1. Introduction

Douglas Partners Pty Ltd (DP) has been engaged by Walker Gillieston Heights Pty Ltd to complete this preliminary site investigation and detailed site investigation for contamination (PSI and DSI) undertaken for a proposed residential subdivision for the site at 501-527 Cessnock Road, Gillieston Heights (the site). The site is shown on Drawing 1, Appendix G. and Figure 1 below.

The investigation was undertaken with reference to DP's proposal 204921.00.P.001.Rev3 dated 8 July 2021.

The objectives of the PSI and DSI are to assess the potential for contamination at the site based on past and present land uses, investigate the potential sources of contamination, provide an assessment of the suitability of the site for the proposed residential land use, and to comment on the need for further investigation and/or management with regard to the proposed development. It is understood that the report will be used to support a development application for the proposed residential development.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Proposed Development

The proposed development comprises a residential subdivision with associated infrastructure (roads, drainage, etc). The development includes a riparian zone associated with Wallis Creek, and several open space areas.

Bulk earthworks is proposed as part of the development, including up to 7 m of cut in the central portion of the site, and some fill, including localised fill of up to 5 m thickness in the vicinity of existing drainage lines. The preliminary cut fill plan (Walker Corporation, drawing 210039-SK004) is provided in Appendix G. The preliminary subdivision plan (PCB, reference 118763, 26 August 2016) is also provided in Appendix G.

3. Scope of Works

The scope of work for the assessment comprised the following:

- Preparation of a PSI for part 527 Cessnock Road (Lot 3 DP 71130), comprising the following:
 - o Review of available published information on the site, including geological, topographical, acid sulfate soil and soil landscape maps;
 - o Brief data review of previous investigations conducted at the site and nearby sites;
 - Brief site history review to assess the potential for contamination at the site comprising a review of historical aerial photograph records, search of registered groundwater bores in the area, a SafeWork NSW hazardous chemicals storage records for the lot, a historic title deed search and NSW EPA and Council searches;
 - o Brief site inspection by an environmental engineer to identify areas of potential contamination and assess current site condition;
 - o Preparation of a preliminary Conceptual Site Model (CSM);
 - Preparation of a PSI report for part 527 Cessnock Road presenting the findings of the PSI and recommendations for subsurface investigation, remediation etc (if required) to support the rezoning.
- Preparation of a DSI for the site defined above and on Drawing 1, Appendix G, comprising the following:
 - o Preparation of safety and quality plan;
 - o Dial before you dig search;
 - o Review of PSI reports completed by others for the site;
 - o Brief walkover by senior environmental engineer to assess current site condition and mark test locations;
 - o Preparation/review of conceptual site model;
 - o Electromagnetic check of test locations for buried services;
 - o Excavation of test pits to depth of up to 2.5 m or prior refusal/collapse, or 0.5 m into natural soils;
 - o Logging of the subsurface profile, including visual and olfactory assessment of potential contamination;
 - o Collection of soil samples from the test pits at regular depth intervals for identification and testing purposes, with reference to contamination sampling protocols;
 - o Screening of soil samples for the presence of volatile organic compounds using a PID;
 - o Analysis of selected soil samples for TRH, BTEX, PAH, PCB, OCP, OPP and Metals (10), including QA/QC samples;
 - o Analysis of selected soil samples for microbiological contaminants (E.Coli, faecal coliforms, salmonella);
 - o Analysis of selected soil samples for asbestos identification (500 ml bulk soil sample);
 - o Preparation of a report comprising the results of the DSI for the site, including the results of field testing, contaminant observations, comments on the contamination status of the site and the requirements for further investigation, remediation and validation (if any).

4. Site Information

Site Address	501-527 Cessnock Road, Gillieston Heights
Legal Description	Lot 1 DP 601226
	Lot 2 DP 601226
	Lot 1 DP 311179
	Lot 3 DP 71130
Area	50 ha approx.
Zoning	Maitland Local Environmental Plan 2011
	RU2 – Rural Landscape
	E2 – Environmental Conservation
Local Council Area	Maitland City Council
Current Use	Rural Residential
Surrounding Uses	North – Rural residential properties and further a large residential development
	East – River (Wallis Creek)/rural residential properties/agricultural and grazing properties
	South –River (Testers Hollow)/Residential properties
	West – Main road (Cessnock Road) directly bordering, furthered by creek (Testers Hollow)

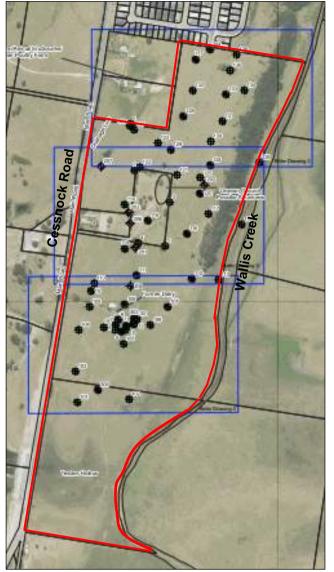


Figure 1: Approximate site extent (in red)

Environmental Setting

Regional Topography	Gillieston Heights generally comprises gently undulating topography, elevated between approximately RL $10 - 40$ m (AHD), surrounded by the low lying areas of Wallis Creek to the east, swap creek to the west and Testers Hollow to the south of the suburb. The area largely consists of rural residential development grazing land.
Site Topography	The site generally falls to the south, with elevations of approximately RL 46 in the north-eastern portion of the site, falling to approximately RL 4 in the south-eastern and southern portions of the site.
Soil Landscape	Bolwarra Heights: the majority of the site is within the Bolwarra Heights soil landscape.

	The landscape generally comprises rolling low hills on Permian sediments in the centre-west of the sheet in the East Maitland Hills region. Slopes are 5-20%, elevation to 100m, local relief to 80m.Soil comprises moderately deep (<150cm), well-drained Yellow Podzolic Soils (Dy2.21, Dy2.31), Red Podzolic Soils (Dr2.31, Dr3.21) and Brown Podzolic Soils (Db1.21, Db1.11) with some moderately deep (<100cm), well-drained Lithosols (Um1.41, Um1.42) on crests, moderately deep (<140cm), imperfectly drained yellow Soloths (Dy2.41, Dy3.41) on lower slopes. Limitations include moderate foundation hazard, water erosion hazard, high run-on (localised), seasonal waterlogging (localised), localised steep slopes with mass movement hazard.
	The far eastern and southern portion of the site is underlain by the Wallis Creek soil type. The landscape comprises narrow (<500m) to moderately broad (1000m), level to gently undulating floodplains on Quaternary alluvium. Local relief is up to 2m, slopes are 0-3%, elevation to 20m. soils generally comprise deep (>200cm), well to imperfectly drained Alluvial Soils (Um1.23) and Siliceous Sands (Uc1.23) on floodplains with some deep (>200cm), imperfectly to poorly drained Alluvial Soils. Limitations of the soil landscape include flooding, permanently high watertables, high run-on, high stream bank erosion hazard, ground water pollution hazard, non-cohesive soils of low fertility.
Geology	Published mapping indicates that the majority of the site is underlain by various formations of the Maitland Group (Branxton Formation, Muree Sandstone and Mulbring Siltstone generally comprising conglomerate, sandstone and siltstone respectively). The far eastern and southern portions of the site are underlain by Quaternary Alluvial backswamp deposits, generally comprising Organic-rich mud, peat, silt and clay. A reproduction of the published geology map
Acid Sulfate Soils	Published acid sulfate soils risk mapping indicates high probability of ASS within 1 m of the ground surface within the southern eastern corner and southern portions of the site. the remainder of the site is outside an area of mapped acid sulfate soils
Surface Water	Wallis Creek to the east and Testers Hollow to the south are considered to be the nearest sensitive surface water receptors. These water bodies form the eastern and southern site boundaries respectively.
Groundwater	The nearest registered borehole was GW051647 located approximately 370 m east of the site, on the eastern side of Wallis Creek. The bore registered for stock purposes. There was no groundwater information available for the registered borehole, however subsurface information indicated the presence of clay and sand layers to 6.1 m underlain by sandstone to termination at 12 m. Groundwater flow direction is anticipated to flow with the surface topography and flow to the south and east.

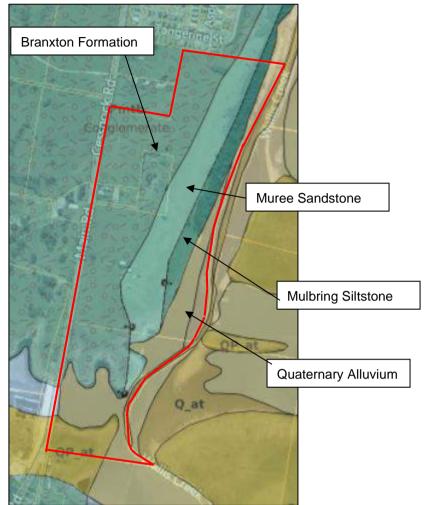


Figure 2: Geology map (approximate site boundary in red)

5. Background

5.1 Introduction

Several reports have been prepared for the site and surrounds with regards to contamination assessment. A brief review of the following reports (as supplied by the client) has been conducted:

- Environmental Resources Management Australia Pty Ltd (ERM, 2017);
- Practical Environmental Solutions Pty Ltd (PES, 2020);
- Qualtest Laboratory (NSW) Pty Ltd (Qualtest, 2020).

A summary of the reports is presented below.

5.2 Environmental Resources Management Australia Pty Ltd (ERM, 2017)

A Preliminary Site Investigation (ERM PSI) at a property located at 527 Cessnock Road, Gillieston Heights, New South Wales (Lot 2, DP 601226), as shown on Figure 3 below, was conducted by Environmental Resources Management Australia Pty Ltd (ERM) in 2017. The objectives of the ERM PSI were to collect site information to:

- Identify potential sources of contamination and determine potential contaminants of concern;
- Identify areas of potential contamination;
- Identify potential human and ecological receptors;
- Identify potentially affected media.

The scope of works included:

- Desktop searches and review (historical aerial photos, groundwater bore search, regulator database searches, published maps etc.)
- Site inspection (interview with site personnel, site walkover);
- Preparation of a PSI report.

ERM identified relevant potential contaminating activities to be limited, and generally associated with on-site dwelling construction materials (lead based paints and asbestos), the historical storage and use minor quantities of fuel and other chemicals, and uncertainty surrounding the use of various construction waste and household materials in the infilling of a former dam.

The reported findings of the assessment found that although a limited number of potentially contaminating activities had been identified, there was a low potential that these activities have resulted in areas of contamination or unacceptable impact to soil or groundwater conditions beneath the site. As a result, complete source–pathway–receptor linkages were considered unlikely under the current or the proposed future land use scenario, and site conditions precluding the redevelopment of the site for residential use had not been identified.

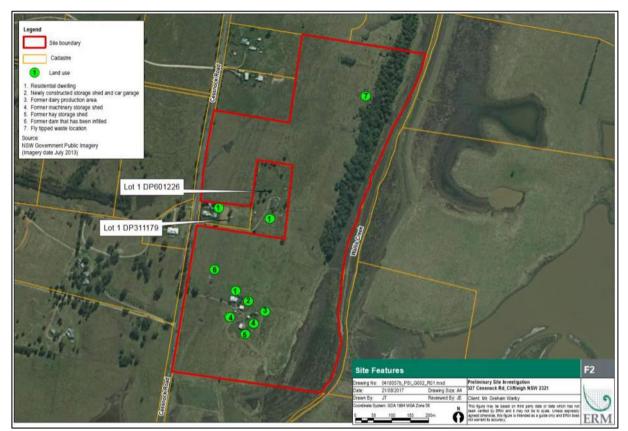


Figure 3: Site location (Lot 2 DP 601226) identified by Environmental Resources Management Australia Pty Ltd (2017)

5.3 Practical Environmental Solutions Pty Ltd (PES, 2020)

A Preliminary Site Investigation (PES PSI) at a property located at 457-463 Cessnock Road (adjoining Lots 1 & 2, DP 302745, respectively) Gillieston Heights, New South Wales, as shown on Figure 4 below, was conducted by Practical Environmental Solutions Pty Ltd (PES) in February 2020. The investigation was undertaken to develop an understanding of the current and historical activities that either have been or are being conducted on the land and its surrounds. This included assessing areas of environmental concern (AECs) and *potential contaminants of concern (PCOCs) and reporting on the potential for contamination on the site, if any, to impact on the planned, future residential use of the land. At the time the proposed development of the area was a manufactured home estate.

It is noted that PES (2020) was prepared for lots not part of the current assessment. The subject lots of the PES report do, however, share boundaries and drainage features with the subject site

The scope of works in PES (2020) included:

- Review of documents provided by the current landowner and/or previous owners;
- Assessment of site geology, hydrogeology and topography;
- Review of site history through Maitland City Council records, NSW DECC records, SafeWork NSW, Historical Title Information (past and present), historical aerial photographs and EPA records;

- A site inspection to identify potential areas of environmental concern (AEC) or possible environmental contaminants;
- Drilling of boreholes using hand tools in areas targeted to potential areas of environmental concern, and collection and analysis of soil samples;
- Preparation of a Preliminary Site Investigation report which discusses the findings of the assessment; in reference to the NEPC (2013) guidelines.

Based on historical data, former site use included agricultural use, with chicken sheds covering Lot 1 of the site (subsequently removed by 1993 approx.). Subsequent land use included residential/agricultural with associated outbuildings, including sheds and horse stables.

Possible fill materials of an unknown origin were also observed within the site.

A series of targeted bore holes was conducted across both allotments, with analysis of eight soil samples and one QA/QC sample for the site. PES compared the results of analysis to the NEPC (2013) Health Investigation / Screening Level 'A' criteria. Following analysis of the samples, no exceedances of the adopted criteria were identified. However, PES identified areas of environmental concern due to the presence of two small pockets of bonded asbestos fragments, identified in the area of a now demolished shed footprint on Lot 1. The Asbestos Containing Materials appear to be limited to the immediate surface layer and are a result of poor demolition practices. PES did not identify any other AECs, including no evidence of contamination such as staining or odours, or agricultural uses such as cattle tick dips or petroleum storage tanks (above or below ground).

PES concluded that based on the site history, site walkover and results of the limited sampling, the site was suitable for the proposed redevelopment as a manufactured housing estate following the removal of the identified bonded asbestos 'pockets' and issuing of an Asbestos Clearance Certificate.

Figure 4: Site locations (Lot 1 & 2, DP 302745) identified in PES (2020)

5.4 Qualtest Laboratory (NSW) Pty Ltd (Qualtest, 2020)

A Preliminary Contamination Assessment (PCA) was undertaken at properties located at 457, 463, 501, and 507 Cessnock Road (adjoining Lots 1 & 2 DP 302745, Lot 1 DP 311179, and Lot 1 DP 601226 respectively) Gillieston Heights, New South Wales. The investigation was conducted by Qualtest Laboratory (NSW) Pty Ltd in April 2020 to provide an assessment of the likelihood for contamination to be present on the site from past uses and activities, in support of the development application for proposed rezoning of the sites.

The scope of works included:

- Desktop study and site history review (historical titles, historical aerial photos, regulatory records, council records, discussions with site personnel);
- Site walkover; and,
- Data assessment and preparation of a PCA Report.

The Qualtest investigation area included two lots outside the current subject site (i.e. the lots also assessed in PES (2020)), plus the two residential lots in the central portion of the current subject site. The areas assessed in the Qualtest report are shown in Figures 5, 6 and 7 below.

The desk study and site history review suggested the site (approx. 8 ha) has been used for rural and agricultural purposes including dairy farming and hobby farming for the past 20 years. Lots 1 and 2 DP 302745 and Lot 1 DP311179 were occupied, with residences and sheds located on the properties, since at the least the 1950s. Lot 1 DP601226 had been occupied, with a residence, since the 1980s, and is expected to have been previously used as a dairy farm. The eastern portion of Lot 1 DP 302745 appeared to have been used as a commercial poultry farm from at least the 1950s to the 1970s. Site observations confirmed the then current presence of domestic stock (horses, pigs, chickens and geese) typical with hobby farming.

Five AEC were identified as part of the conceptual site model based on the site history and site observations. The AECs related to former commercial poultry farm and potential burial pits on Lot 1 DP 302745; weathering of hazardous materials in former and current buildings on each Lot; septic tanks and associated soak-aways and trenches on each Lot; storage of waste materials and farm materials; and fill of unknown quality and origin on each Lot.

Based on the site history and observations during the site walkover, it was recommended that additional assessment, comprising intrusive investigations (e.g. test pitting, sampling of surface soils, fill stockpiles, and surface water and sediment sampling) in the AECs identified is carried out. Given the age of the buildings on site it was also recommended that a hazardous materials survey be carried out by a suitably qualified consultant, prior to demolition of the structures due to the possible presence of asbestos containing materials (if they are proposed to be demolished).

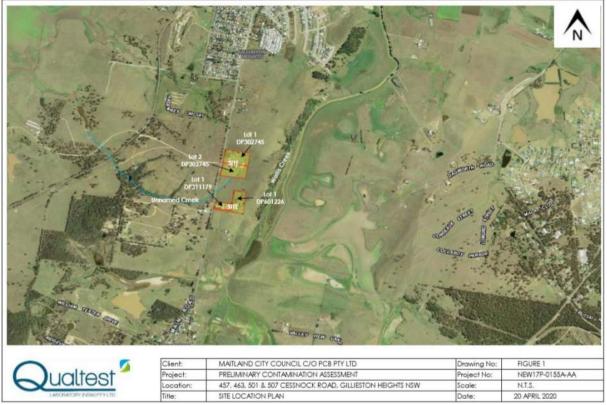


Figure 5: Site locations (Lot 1 & 2 DP 302745, Lot 1 DP 311179, and Lot 1 DP 601226) identified by Qualtest Laboratory (NSW) Pty Ltd (2020)

Figure 6: Locations of former structures on site (Lot 1 & 2 DP 302745) identified by Qualtest Laboratory (NSW) Pty Ltd (2020)

Figure 7: Locations of former structures on site (Lot 1 DP 311179 and Lot 1 DP 601226) identified by Qualtest Laboratory (NSW) Pty Ltd (2020)

6. Site History – Lot 3 DP 71130

6.1 Introduction

Subsequent to review of existing reported site history as presented in Section 6, additional site history information has been collated for Lot 3, DP 71130, located in the southern portion of the subject site.

The review of site history for the lot included the following:

- Review of historical aerial photographs;
- Historical title deed search;
- Review of planning and regulatory records;

A summary of site history information is presented in the following sections.

6.2 Historical Aerial Photography

Several historical aerial photographs were obtained from public databases. Extracts of the aerial photographs are included in Appendix C. A summary of key features observed for the lot and surrounding land is presented in Table 1.

Year	Lot	Surrounding Land Use	
1944	Open space, with the lot partially inundated by Wallis Creek. No trees or other obvious vegetation on the site.	Property to the southwest of site appears to have been used for agricultural purposes.	
		Property to the north of site appears to have been residential, with several smaller shed structures possible farm.	
		Site bordered by a main road directly west, and Wallis Creek to the east.	
1961	No significant changes to site.	No significant changes to surrounding areas.	
1984	No significant changes to site. Less inundation, indicating variable water levels across the site with time	Development of long structures (chicken sheds?) southwest of site (western side of main road). Some possible residential/agricultural development in the lot to the south	
2006	Fenced grassed paddocks within the lot – agricultural use.	Developed residential lots to the south.	
	Small body of water located in north-	Construction being completed on road to the west. Chicken sheds? In previous aerial have been cleared.	
	eastern corner. Minimal trees – only located on borders of lot.		

Table 1: Summary of Historical Aerial Photographs

Year	Lot	Surrounding Land Use
2010	Dry grass fields. No water.	Pastures all very dry with little colour. Testers Hollow and surrounding creeks mostly dry.
2012-2015	Minor inundation. Lot consists of approx. 20-30% water.	Development/construction of turning lane at southwest corner of lot. Large scale construction of residential areas began north (upstream?) of the site.
2016	Extremely flooded. Lot consists of >80% floodwater. Loss of separated fields.	Site flood continuous with surrounding floodwaters spanning approximately 6 km north-south and 1 km east-west.
2017-2020	No significant changes to site. Lightly inundated.	Major construction began directly west of main road. Greener pastures.

6.3 Title Deeds

A historical title deeds search was used to obtain ownership and occupancy information including company names and the occupations of individuals. The title information can assist in the identification of previous land uses by the company names or the site owners and can, therefore, assist in establishing whether there were potentially contaminating activities occurring at the site. The results of the title deed search are provided in Appendix D. A summary of the title deeds and possible land uses (with reference to the aerial photographs and other historical searches) is presented in Table 2.

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations	Inferred Land Use
27.04.1920 (1920 to 1929)	William Johnson (Retired Licensed Victualler)	Unknown Rural
11.11.1929 (1929 to 1939)	William James Johnson (Retired Fireman) Joseph Johnson (Engineer) Reginald Heath Stakes (Civil Engineer)	Unknown Rural
30.03.1939 (1939 to 1954)	Charles William Osland (Contractor)	Unknown Rural
18.05.1954 (1954 to 2019)	Victor Claud Warby (Dairy farmer)	Agricultural / Dairy Farm
16.12.2019 (2019 to date)	Graeme Dennis Victor Warby Gloria Valmai Hesketh Victor Francis William Warby	Agricultural

6.4 Public Registers and Planning Records

EPA Notices available under Section 58 of the Contaminated Lands Management Act (CLM Act)	There were no records of notices for the site or adjacent sites.
Database searched 10/01/22	
Sites notified to EPA under Section 60 of the CLM Act	The site and adjacent sites were not listed as a notified contaminated site.
Database searched 10/01/22	
Licences listed under Section 308 of the Protection of the Environment Operations Act 1997 (POEO Act)	There were no records issued to the site or adjacent sites.
Database searched 10/01/22	
Council Records	

6.5 On Line Search

An on-line search for the site indicated the general absence of information regarding the subject site (Lot 3).

News articles for the surrounding areas included reports of acid mine drainage in Testers Hollow as a result of abandoned coal mines in the vicinity.

6.6 Site History Integrity Assessment

The information used to establish the history of the site was sourced from reputable and reliable reference documents, many of which were official records held by Government departments/agencies. The databases maintained by various Government agencies potentially can contain high quality information, but some of these do not contain any data at all.

In particular, aerial photographs can provide high quality information that is generally independent of memory or documentation. They are only available at intervals of several years, so some gaps exist in the information from this source. The observed site features are open to different interpretations and can be affected by the time of day and/or year at which they were taken, as well as specific events, such as flooding. Care has been taken to consider different possible interpretations of aerial photographs and to consider them in conjunction with other lines of evidence.

6.7 Summary of Site History – Lot 3 DP 71130

The site history information for Lot 3 DP 71130 suggests that the site has remained as an agricultural property with no evidence of major earthworks, building or demolition activities. Historical aerial photographs suggest that the site is regularly inundated with surface water, as a result of the sites proximity to both Wallis Creek and Testers Hollow. The lot is bordered by Cessnock Rd to the West, and open fields / residential areas surrounding the North, East and South borders. The land was likely used as grazing land as part of adjacent dairy farm operations. Major construction works of residential estates have been completed within 1.5 km (and upslope) of the lot. It is noted that Lot 3 is within a local topographical low point and is regularly inundated with surface water, suggesting that historically, runoff from nearby agricultural land uses and drainage, including acid mine drainage from an abandoned coal mine to the west, may have been deposited on the site.

6.8 Summary of Site History – Current Site

Based on the results of previous assessments (ERM (2017), PES (2020) and Qualtest (2020)), the site history information for the subject site suggests that the site has remained as a residential and agricultural property with no evidence of major earthworks.

Agricultural activities on the site have included a dairy farm and grazing, with poultry farming on adjacent sites to the west and north-west of the subject site.

Review of historical aerial photographs indicate that some structures have been constructed on the site, generally associated with resident dwellings, sheds and agricultural activities (e.g. farm sheds). Evidence of some demolition and possible ground disturbance is present in the central-southern portion of the site (i.e. in the vicinity of the former dairy).

7. Site Walkover

7.1 Observations

A site walkover was undertaken by a senior environmental engineer on 24 January 2022. The general site topography was consistent with that described in Section 5. The site layout appeared to have remained relatively unchanged from recent historical aerial photographs. The following key site features pertinent to the current investigation were observed:

- The majority of the site surface generally comprised grassed paddocks, including a ridge in the northern portion of the site (Figure 8), with the remainder of the site generally falling to the south and east towards Testers Hollow and Wallis Creek respectively. Figure 9 shows the elevated paddocks in the central portion of the site, with Figure 10 illustrating the low-lying areas of the southern portion of the site;
- Residential and hobby farm properties in the lots immediately north-west of the subject site (Figure 11). It was noted that surface water drainage from these lots flow onto the subject site (Figure 12). Several structures, enclosures and a dam were observed within the adjacent sites;
- Two residential structures with associated sheds and animal holding areas were present in the central portion of the site;
- Some evidence of soil disturbance and possible former structures were observed within the central portion of the site within the animal paddocks, particularly in Lot 1 DP601226 (Figures 13 and 14);
- A residential structure and associated agricultural shed structures were observed in the centralsouthern portion of the site, within Lot 2 DP 601226 (Figures 15 and 16);
- Evidence of demolition of structures was also observed in the central southern portion of the site, with some exposed building materials, concrete slabs and uneven ground observed (Figures 17 and 18);
- A former dairy structure was also observed in the central-southern portion of the site (Figures 19 to 21). The dairy structure was largely timber and metal, however, there was a portion of the structure made with cement sheeting (possible asbestos containing materials);
- Some evidence of possible fuel/oil storage was also observed in the former dairy farm area and surrounds (Figures 22 and 23);
- Storage of cement pipes (possible asbestos containing materials) in the central-southern portion of the site (Figure 24); and
- Infilled drainage channel/dam in the central-southern portion of the site. The dumped material included metal sheeting and timber (Figure 25).

Page 19 of 49

Figure 8: Grassed paddock and ridge in the northern portion of the site, looking south

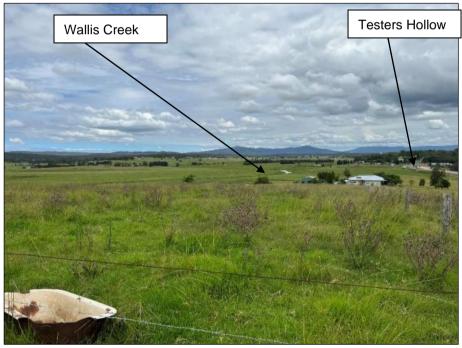


Figure 9: Grassed paddocks in the central portion of the site, looking south-south-west towards Wallis Creek and Testers Hollow

Page 20 of 49

Figure 10: Grassed paddock and dam in the southern portion of the site, looking south

Figure 11: Residential and hobby farm structures and paddocks immediately north-west of the subject site, looking south-west

Page 22 of 49

Figure 12: Drainage line flowing from the adjacent site to the north-west onto the subject site, looking north-east

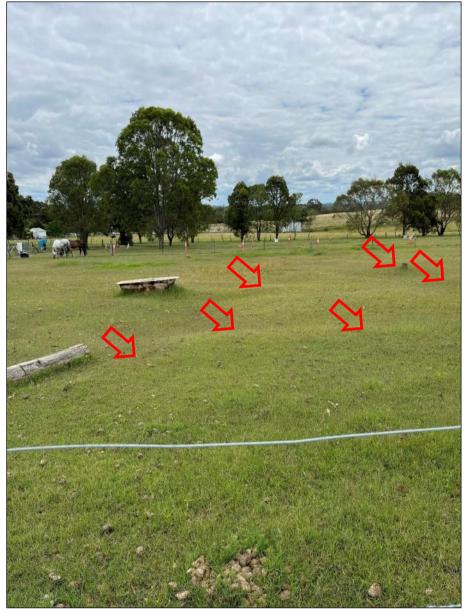


Figure 13: Possible ground disturbance within Lot 1 DP 601226. Arrows show locations of raised/disturbed ground

Figure 14: Possible ground disturbance within Lot 1 DP 601226.



Figure 15: Residential dwelling, metal clad and framed shed structure and evidence of former animal holding area, central-southern portion of the site, looking north

Figure 16: Residential dwelling, metal clad and framed shed structure and evidence of former animal holding area, central-southern portion of the site, looking north-east

Figure 17: Building materials and uneven ground in the central-southern portion of the site, looking south-west

Figure 18: Building materials, remnant structure and uneven ground in the central-southern portion of the site, looking south-east

Figure 19: Former dairy structure, of timber and metal construction, in the central-southern portion of the site, looking north

Figure 20: Former dairy structure, of timber and metal construction, in the central-southern portion of the site, looking south

Figure 21: Cement sheeting/cladding on the walls of a portion of the former dairy, with some broken sheeting on the exposed soil (in red circle) in the central-southern portion of the site.

Figure 22: Oil/fuel barrels within the former dairy structure in the central-southern portion of the site

Figure 23: Oil/fuel barrels in the central-southern portion of the site

Figure 24: Cement pipes (possible asbestos containing materials) in the central-southern portion of the site (i.e. former dairy area)

Figure 25: Infilled dam (red circle) in the central-southern portion of the site, looking north

8. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e. it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential Sources

Based on the current investigation (including the review of previous relevant investigation reports), the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

- S1: Fill: Associated with levelling, demolition of former buildings on the site and potential burying of waste;
 - o COPC include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), phenols and asbestos;
- S2: Storage and use of minor quantities of chemicals associated with agricultural and residential land use;
 - o COPC include TRH, BTEX, PAH, metals and pesticides;
- S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming;
 - o COPC include microbiological contaminants (e.g. faecal coliforms, E. Coli);
- S4: Current and former buildings, including demolition of structures;
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead and PCB.

Potential Receptors

The following potential human receptors have been identified:

- R1: Current users (residential and agricultural);
- R2: Construction and maintenance workers;
- R3: End users (residential land use, general public); and
- R4: Adjacent site users (residential land use).

The following potential environmental receptors have been identified:

- R5: Surface water (Wallis Creek, Testers Hollow);
- R6: Groundwater; and
- R7: Terrestrial ecosystems.

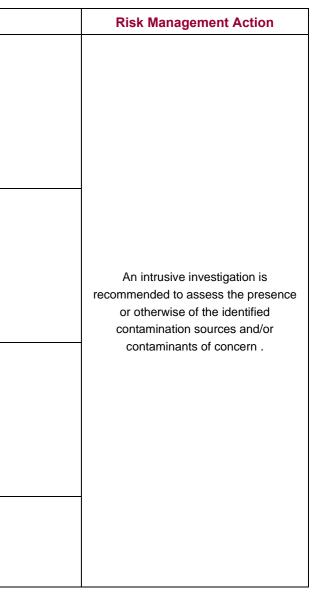
Potential Pathways

The following potential pathways in relation to human receptors have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of dust and/or vapours;

The following potential pathways in relation to the environmental receptors have been identified:

- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Inhalation, ingestion and absorption.


Summary of Potentially Complete Exposure Pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S4) and receptors (R1 to R7) are provided in below Table 3.

Table 3: Summary of Potentially Complete Exposure Pathways

S1: Fill, Metals, TRH, BTEX, PAH, OCP and asbestos P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours R2: Construction and maintenance workers P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). P6: Inhalation, ingestion and dermal contact R1: Current users (residents) R4: Adjacent site users residents). S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users (residents) P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users (residents) R5: Surface water P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water R6: Groundwater P6: Inhalation, ingestion and dermal contact R1: Current users (residents) R5: Surface P4: Lateral migration of groundwater providing base flow to water bodies <th>Source and COPC</th> <th>Transport Pathway</th> <th>Receptor</th>	Source and COPC	Transport Pathway	Receptor
S1: Fill, Metals, TRH, BTEX, PAH, OCP and asbestos P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption R3: End users (residents) S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water run-off R1: Current users (residents) P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R3: End users (residents) P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) P4: Lateral migration of groundwater providing base flow to water bodies P4: Adjacent site users residents) R5: Surface water P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption R1: Current users (residents) S3: Agricultural activities on the site and adjacent site such as dairy and poultry farming P1: Ingestion and dermal contact R1: Current users (residents) P3: Surface water run-off <td></td> <td>P1: Ingestion and dermal contact</td> <td>R1: Current users (residents)</td>		P1: Ingestion and dermal contact	R1: Current users (residents)
S1: Fill, Metals, TRH, BTEX, PAH, OCP and asbestos P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). P5: Leaching of contaminants and vertical migration into groundwater R6: Groundwater P6: Inhalation, ingestion and absorption R1: Current users (residents) S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) P3: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). R2: Construction and maintenance workers S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) R2: Construction and maintenance workers P3: Surface water run-off P4: Lateral migration of dust and / or vapours R3: End users (residents) R4: Adjacent site users residents) P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water R6: Groundwater P6: Inhalation, ingestion and dermal contact R2: Construction and maintenance workers R3: End users (residents) P2: Inhalation of dust and / or vapours P3: Surface water run-off R4: Adjacent site users		P2: Inhalation of dust and / or vapours	R2: Construction and maintenance workers
asbestos P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water P6: Inhalation, ingestion and absorption R7: Terrestrial ecosystems S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) P3: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) R2: Construction and maintenance workers P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) P5: Leaching of contaminants and vertical migration into groundwater R3: End users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water P6: Inhalation, ingestion and absorption R5: Surface water P6: Inhalation, ingestion and dermal contact R1: Current users (residents) P2: Inhalation of dust and / or vapours R1: Current users (residents) P2: Inh		P3: Surface water run-off	R3: End users (residents)
P5: Leaching of contaminants and vertical migration into groundwaterR5: Surface waterP6: Inhalation, ingestion and absorptionR6: GroundwaterR7: Terrestrial ecosystemsR1: Current users (residents)S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAHP1: Ingestion and dermal contactR1: Current users (residents)P3: Surface water run-offP4: Lateral migration of groundwater providing base flow to water bodiesR2: Construction and maintenance workersP5: Leaching of contaminants and vertical migration into groundwaterR5: Surface waterR3: End users (residents)P4: Lateral migration of groundwater providing base flow to water bodiesR4: Adjacent site users residents)R4: Adjacent site users residents)P6: Inhalation, ingestion and dermal contactR6: GroundwaterR6: GroundwaterP6: Inhalation, ingestion and dermal contactR2: Construction and maintenance workersP6: Inhalation, ingestion and dermal contactR2: Construction and maintenance workersP3: Surface water run-offP4: Ingestion and dermal contactP2: Inhalation of dust and / or vapoursR1: Current users (residents)P3: Surface water run-offP4: Lateral migration of groundwater providing base flow to water bodiesP4: Lateral migration of groundwater providing base flow to water bodiesR1: Current users (residents)R2: Construction and maintenance workersR3: End users (residents)P4: Lateral migration of groundwater providing base flow to water bodiesR1: Current users (residents)P4: Lateral migration of groundwater providing base flow to water bodiesR		P4: Lateral migration of groundwater providing base flow to water bodies	R4: Adjacent site users residents).
R7: Terrestrial ecosystemsS2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAHP1: Ingestion and dermal contact P2: Inhalation of groundwater providing base flow to water bodies P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and dermal contact P6: Inhalation of dust and / or vapoursR1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents) R5: Surface water R6: Groundwater R7: Terrestrial ecosystemsS3: Agricultural activities on the site and adjacent sites such as dairy and poultry farmingP1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: End users (residents) P4: Lateral migration of groundwater providing base flow to water bodies P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Leaching of contaminants and vertical migration into groundwater P7:		P5: Leaching of contaminants and vertical migration into groundwater	R5: Surface water
S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P1: Ingestion and dermal contact R1: Current users (residents) S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P4: Lateral migration of groundwater providing base flow to water bodies R3: End users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents) R4: Adjacent site users residents) P5: Leaching of contaminants and vertical migration into groundwater R6: Groundwater R6: Groundwater P6: Inhalation, ingestion and dermal contact R1: Current users (residents) R5: Surface water P3: Surface water run-off R6: Groundwater R6: Groundwater P6: Inhalation, ingestion and dermal contact R1: Current users (residents) R2: Construction and maintenance workers P3: Surface water run-off P1: Ingestion and dermal contact R1: Current users (residents) P2: Inhalation of dust and / or vapours R1: Current users (residents) R2: Construction and maintenance workers P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R1: Current users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R3: End users (residents) R3: End users (residents) R4:		P6: Inhalation, ingestion and absorption	R6: Groundwater
S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAHP2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorptionR2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents) R5: Surface water R6: Groundwater R7: Terrestrial ecosystemsS3: Agricultural activities on the site and adjacent sites such as dairy and poultry farmingP1: Ingestion and dermal contact P2: Inhalation of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P5: Leaching of contaminants and vertical migration into groundwater P6: Surface waterR1: Current users (residents) R4: Adjacent site users residents). R5: Surface water			R7: Terrestrial ecosystems
S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies R3: End users (residents) BTEX, PAH P4: Lateral migration of groundwater providing base flow to water bodies R5: Surface water S0: Leaching of contaminants and vertical migration into groundwater R6: Groundwater R6: Groundwater R7: Terrestrial ecosystems R7: Terrestrial ecosystems R1: Current users (residents) R3: End users (residents) R4: Adjacent site users residents) R6: Groundwater R6: Groundwater R7: Terrestrial ecosystems R1: Current users (residents) R3: End users (residents) R2: Construction and maintenance workers R3: End users (residents) R2: Construction and maintenance workers R3: End users (residents) R2: Construction and maintenance workers R3: End users (residents) R3: End users (residents) R4: Adjacent site users residents). R3: End users (residents) R4: Adjacent site users residents). R3: End users (residents) R3: End users (residents) R3: End users (residents) R4: Adjacent site users residents). R4: Adjacent site users residents). R5: Leaching of contaminants and v		P1: Ingestion and dermal contact	R1: Current users (residents)
S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption R4: Adjacent site users residents) R5: Surface water P6: Inhalation, ingestion and absorption R6: Groundwater R7: Terrestrial ecosystems P1: Ingestion and dermal contact R1: Current users (residents) R2: Construction and maintenance workers P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration of groundwater providing base flow to water bodies R4: Adjacent site users (residents) R5: Surface water P6: Inhalation, ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water P5: Leaching of contaminants and vertical migration into groundwater P7: Information of groundwater providing base flow to water bodies P4: Adjacent site users residents). P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Surface water P5: Leaching of contaminants and vertical migration into groundw		P2: Inhalation of dust and / or vapours	R2: Construction and maintenance workers
chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption R4: Adjacent site users residents) R5: Surface water R6: Groundwater R7: Terrestrial ecosystems S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents). R5: Surface water run-off R4: Adjacent site users residents). R4: Adjacent site users residents). R5: Surface water	S2: Storage/use of minor quantities of	P3: Surface water run-off	R3: End users (residents)
P3: Leaching of contaminants and vertical migration into groundwater R3: Surface water P6: Inhalation, ingestion and absorption R6: Groundwater R7: Terrestrial ecosystems R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R3: Surface water run-off P1: Ingestion of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater R4: Adjacent site users residents). R5: Surface water R5: Surface water		P4: Lateral migration of groundwater providing base flow to water bodies	R4: Adjacent site users residents)
S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P1: Ingestion and dermal contact R1: Current users (residents) P3: Surface water run-off P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater R4: Adjacent site users residents). R5: Surface water P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water	BTEX, PAH	P5: Leaching of contaminants and vertical migration into groundwater	R5: Surface water
S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P1: Ingestion and dermal contact P1: Ingestion and dermal contact R1: Current users (residents) P2: Inhalation of dust and / or vapours P3: Surface water run-off R3: End users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water		P6: Inhalation, ingestion and absorption	R6: Groundwater
 S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming S4: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater 			R7: Terrestrial ecosystems
S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P2: Inhalation of dust and / or vapours P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P4: Adjacent site users residents). P5: Leaching of contaminants and vertical migration into groundwater P5: Leaching of contaminants and vertical migration into groundwater P5: Surface water		D1. Insection and downel context	R1: Current users (residents)
S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming P3: Surface water run-off R3: End users (residents) P4: Lateral migration of groundwater providing base flow to water bodies R4: Adjacent site users residents). P5: Leaching of contaminants and vertical migration into groundwater R5: Surface water			R2: Construction and maintenance workers
adjacent sites such as dairy and poultry farming P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P5: Leaching of contaminants and vertical migration into groundwater	S3: Agricultural activities on the site and		R3: End users (residents)
P5: Leaching of contaminants and vertical migration into groundwater	adjacent sites such as dairy and poultry		R4: Adjacent site users residents).
R6: Groundwater	farming		R5: Surface water
		P5. Leaching of contaminants and vehical migration into groundwater	R6: Groundwater
R7: Terrestrial ecosystems			R7: Terrestrial ecosystems
R1: Current users (residents)		D1. Insection and downel contact	R1: Current users (residents)
	S4: Current and former buildings, including demolition of structures: ACM asbestos, (SMF),	-	R2: Construction and maintenance workers
R3: End users (residents)	lead (in paint) and PCB		R3: End users (residents)
P6: Inhalation, ingestion and absorption R4: Adjacent site users residents).		Po. Innaiation, ingestion and absorption	R4: Adjacent site users residents).

9. Sampling and Analysis Quality Plan

9.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix F.

9.2 Soil Sampling Rationale

Based on the CSM and data quality objectives (DQO) the following sampling rationale was adopted.

A combined systematic and judgemental sampling strategy was adopted for the assessment to determine test pit locations which was adapted based on areas of access. The systematic assessment was conducted to assess general site conditions. Judgemental; sampling locations were based on site history information, site observations and the subsequent CSM with the rationale provided below

Test pit locations are shown on Drawings 1 to 4, in Appendix G.

Pits 1 to 5	 Pit 1: drainage line downslope of adjacent hobby farm and animal enclosures (and former poultry sheds) in the north-western portion of the site Pit 2: Downslope of residence/hobby farm in the central-northern portion of the site Pit 3: Downslope of residence/hobby farm in the central-northern portion of the site, and adjacent to possible soil disturbance Pit 4: Downslope of residence/hobby farm in the central-northern portion of the site Pit 5: Downslope of residence/hobby farm in the central-northern portion of the site 		
Pits 6 to 15, Pits 301 and 302	Within and in the vicinity of the former dairy in the central-southern portion of the site, including areas of demolished buildings and building rubble. Pits 10, 12 and 13 were located downgradient of fuel/oil drums within the former dairy area		
Pits 101 to 138	General site coverage		
Pit 303	drainage line downslope of adjacent hobby farm and animal enclosures (and former poultry sheds) in the north-western portion of the site – collected for microbiological analysis		
Pit 304	Located adjacent to the northern site boundary (i.e. background microbiological sample)		
Pit 305	Within low-lying flood prone area in the southern portion of the site (microbiological sample)		

Soil samples from machine excavated test pits and boreholes were collected from each borehole / test pit at depths of approximately 0.1 m, 0.5 m, 1.0 m and every 0.5 m thereafter, and changes in lithology or signs of contamination.

Soil samples from hand excavated test pits (i.e. pits 1 to 5, Pits 301 to 305) were collected from nearsurface soils.

In terms of the sampling rationale, the following is noted:

- No sampling was undertaken in Lot 1 DP 311179 as the site was used to house horses at the time of the assessment;
- Minimal sampling was undertaken in Lot 1 DP 601226 (i.e. in the area of uneven ground and possible former structures) as access to the site for subsurface investigation was not granted by the owner;

The general sampling methods are described in the field work methodology, included in Appendix F.

9.3 Analytical Rationale

Samples were selected for analysis on the basis of the identified sources and contaminants of concern as per in the conceptual site model, including:

- Upper soil profile across the general site area to assess for pesticide, chemical and fuel use as part of former rural activities (i.e. TRH, BTEX, PAH, metals, pesticides):
- The presence of fill (former dairy area and residential areas, general suite of analytes including trH, BTEX, PAH, PCB, OCP, OPP, metals);
- The presence of building materials at the surface or in fill (former dairy area, analysis for asbestos);
- The presence of oil/fuel storage containers (former dairy area, analysis for TRH, BTEX and PAH);
- Observed possible asbestos containing materials on structures and at the surface (former dairy shed, analysis for asbestos in materials and asbestos in soil);
- Former and current agricultural activities upslope of the site, including hobby farms and animal enclosures (microbiological contaminants, pesticides).

10. Site Assessment Criteria

The site assessment criteria (SAC) applied in the current investigation are informed by the CSM (Section 9) which identified human and environmental receptors to potential contamination on the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential land use scenario. The derivation of the SAC is included in Appendix F and the adopted SAC are listed on the summary analytical results tables in Appendix E.

11.Results

11.1 Field Work Results

The test pit logs for this assessment are included in Appendix B The logs recorded the following general sub-surface profile:

- Fill: Generally comprising silty soils with fragments of brick, glass, metal and plastic, generally within the area of the former dairy. Fill was observed in Pits 5 to 8, Pits 10 to 13 and Pit 15, Pit 108 and Pit 122 to depths of between 0.1 m and 1.0 m bgl;
- Sandy silt/clayey silt/silty clay/silt: generally comprising grey brown silty soils with varying fractions
 of clay and sand;
- Clay: Clay in all test locations. Encountered in all machine-excavated locations, generally below silty upper soils. Clays in the eastern portion of the site (i.e. adjacent to the eastern boundary) were likely alluvial clays, with residual clays generally encountered in the central-southern, central, western and northern portions of the site;
- Sandstone: encountered in the majority of pits within the central, central-southern, western and northern portions of the site. Sandstone encountered to the depth of investigation in test pits was generally extremely weathered.

Location ⁽¹⁾	Surface Level (AHD)	Depth to Base of Fill (m)	Depth to Top of Extremely Weathered Material (m)	Depth to Top of Rock (m)	Test Pit Refusal Depth ⁽¹⁾ (m)	Depth to Groundwater (m)
1	31.415					
2	33.716					
3	39.29					
4	33.364					
5	26.694	0.1				
6	16.818	0.8		1.5		
7	15.485	0.1				
8	14.808	0.45				
10	12.536	0.4				
11	13.928	0.55		1.3		
12	12.687	0.4		1.5		
13		0.5		1.3		
14				1.2		

Table 4: Summary of Field Investigations

Preliminary Site Investigation and Detailed Site Investigation, Proposed Residential Subdivision 501-527 Cessnock Road, Gillieston Heights

Location ⁽¹⁾	Surface Level (AHD)	Depth to Base of Fill (m)	Depth to Top of Extremely Weathered Material (m)	Depth to Top of Rock (m)	Test Pit Refusal Depth ⁽¹⁾ (m)	Depth to Groundwater (m)
15		1.0				
101	5.56		2.0	2.0	2.3	
102	2.72					2.4
103	8.33		1.0	1.3	1.5	
104	10.07		2.1	2.3	2.6	
105	10.46		1.6	1.7	1.9	
106	9.63		2.1	2.3		
107	9.96		1.0	1.1		
108	19.51	0.4		1.8	2.3	
109	13.94		1.3	1.6	2.3	
110	17.51			1.2	1.7	
111	23.94		1.0	1.2	1.5	
112	8.92		0.8	1.0	1.7	
113	1.56					2.0^
114	31.10		1.2	1.4	1.8	
116	28.09			1.4	2.3	
117	26.63			1.3	2.2	
118	1.56					2.4^
119	33.41					
120	38.83			1.2	1.8	
121	40.66			1.4		
122	34.31	0.4				
123	36.32		0.9			
124	42.69		0.8			
125	42.69		0.5			
126	1.75					2.5
127	32.64					
128	40.65		1.3			

Location ⁽¹⁾	Surface Level (AHD)	Depth to Base of Fill (m)	Depth to Top of Extremely Weathered Material (m)	Depth to Top of Rock (m)	Test Pit Refusal Depth ⁽¹⁾ (m)	Depth to Groundwater (m)
129	38.93		1.2			
130	45.12		0.7			
131	46.35		0.6			
132	42.47					
133	46.14		0.8			
134	44.75		0.6	0.7	0.8	
135	1.94					2.2^
136	40.86		1.1	1.8	1.8	
137	43.61		1.2			
138	32.25		0.6	0.9	1.1	
301						
302						
303						
304						
305						

Notes to Table 4:

Shaded values are from current investigation

NE – Not Encountered

^ groundwater encountered as seepage at the measured depth

(1) Pits 1 to 5 and 301 to 305 excavated using hand tools; Pits 6-15 and Pits 101 to 138 excavated using 5 t excavator

There were no other apparent records of visual or olfactory evidence (e.g. staining, odours, free phase product) to suggest the presence of contamination within the soils observed in the investigation.

The PID screening indicated that the sub-surface conditions were generally absent of VOC with all recorded values of less than 1 ppm.

Free groundwater was observed during excavation of test pits at Pit 102 (2.4 m depth) and Pit 126 (2.5 m depth). Seepage was observed in Pits 113, 118 and 125 at depths of 2.0 m, 2.4 m and 2.2 m respectively. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

Page 42 of 49

11.2 Laboratory Analytical Results

The results of laboratory analysis are summarised in the following tables in Appendix E:

- Table E1: Summary of Laboratory Results for Land Use Metals;
- Table E2: Summary of Laboratory Results for Land Use TRH, BTEX, PAH;
- Table E3: Summary of Laboratory Results for Land Use OCP, OPP, PCB, Asbestos;
- Table E4: Summary of Laboratory Results for Land Use Microbiological;
- Table E5: Summary of Laboratory Results for Waste Classification Metals, TRH, BTEX;
- Table E6: Summary of Laboratory Results for Waste Classification PAH, OCP, OPP, PCB, Asbestos;

The laboratory certificate(s) of analysis are presented in Appendix E. The chain of custody and sample receipt information are provided in Appendix F.

12. Discussion

12.1 Soils

The analytical results for all contaminants tested in all samples were below the SAC with the exception of:

- Lead in sample Pit 13/0.0-0.1 at 350 mg/kg which exceeded the HIL-A of 300 mg/kg. This exceedance is within fill and building rubble within the former dairy area;
- Zinc in four samples (Pit 7/0.0-0.1, Pit 8/0.3, Pit 12/0.3, Pit 13/0.0-0.1) which exceeded the conservative EIL for urban residential and public open space. These exceedances were within fill within the former dairy area; and
- Asbestos containing materials within surface soils (i.e. fibro fragment >7 mm in size in soil) and fibro fragment at the surface at test location 301.

Preliminary microbiological testing in soil indicated the following:

- Detected faecal coliforms (Pit 304, 3300 MPN/100g) in the surface soil sample in the northern portion of the site (i.e. on the northern site boundary, upgradient of site activities and downgradient of the adjacent residential subdivision);
- Elevated faecal coliforms and E.Coli in surface samples in the vicinity of the former dairy (Pit 302, >180000 MPN/100 g) and downslope of the adjacent hobby farm /animal enclosures/former poultry sheds in the north-western portion of the site (Pit 303, 35000 MPN/100 g); and
- Detected faecal coliforms in the low-lying southern portion of the site (Pit 305), at similar levels to the background sample (i.e. Pit 305, 3100 MPN/100 g).

12.2 Waste Classification

All soil samples tested were within 'General Solid Waste' criteria (CT1) based on total concentrations with the exception of the following samples:

- Samples from near-surface fill in Pits 8, 12 and 13 exceeded 'General Solid Waste (CT1) criteria for lead; and
- Samples from near surface fill in Pit 8 exceeded 'General Solid Waste (CT1) criteria for benzo(a)pyrene;
- Asbestos containing materials within surface soils (i.e. fibro fragment >7 mm in size in soil) and fibro fragment at the surface at test location 301.

12.3 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA/QC) results are included in Appendix F. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

13. Revised Conceptual Site Model

The data collected for this DSI has generally confirmed that certain potential contaminant sources outlined in the CSM outlined in Section 9 pose a potentially complete pathway to the identified receptor(s) whilst others do not. No other sources of contamination have been identified as a result of the testing results. This is summarised in **Table 5**.

Source	Transport Pathway	Receptor	Remediation Action Required
S1: Fill, Metals, TRH, BTEX, PAH, OCP and asbestos	 P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water runoff P4: Lateral migration of groundwater providing base flow to water bodies 	 R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents). 	Localised minor exceedances in upper fill, generally associated with building material and fill in the vicinity of the former dairy. Removal of the impacted fill and surrounds will be required for geotechnical suitability.

 Table 5: Updated Summary of Potentially Complete Exposure Pathways (Proposed Land Use)

Source	Transport Pathway	Receptor	Remediation Action Required
	 P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption 	R5: Surface water R6: Groundwater R7: Terrestrial ecosystems	
S2: Storage/use of minor quantities of chemicals/fuels - OCP, OPP, metals, TRH, BTEX, PAH	 P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies P5: Leaching of contaminants and vertical migration into groundwater P6: Inhalation, ingestion and absorption 	 R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents) R5: Surface water R6: Groundwater R7: Terrestrial ecosystems 	Testing of soil indicates that contaminants associated with adjacent land uses do not appear to be significantly impacting the site. Testing in the downgradient of, oil/fuel storage at the site indicated the general absence of impacts in soil. No remediation action required.
S3: Agricultural activities on the site and adjacent sites such as dairy and poultry farming	 P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P3: Surface water run-off P4: Lateral migration of groundwater providing base flow to water bodies 	 R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents). 	Testing of soil indicates that microbiological contaminants associated with former and adjacent land uses have impacted the site in the vicinity of former dairy activities and in drainage lines downgradient of adjacent agricultural activities. Localised remediation of impacted soils is recommended, including aerations, liming and spelling of soils

Source	Transport Pathway	Receptor	Remediation Action Required
	P5: Leaching of contaminants and vertical migration into groundwater	R5: Surface water R6: Groundwater R7: Terrestrial ecosystems	
S4: Current and former buildings, including demolition of structures: ACM asbestos, (SMF), lead (in paint) and PCB	 P1: Ingestion and dermal contact P2: Inhalation of dust and / or vapours P6: Inhalation, ingestion and absorption 	 R1: Current users (residents) R2: Construction and maintenance workers R3: End users (residents) R4: Adjacent site users residents). 	Controls should be in place in for the management of the hazardous waste contamination during demolition (i.e. removal of ACM from the former dairy building, relevant to R2, and potentially other buildings). Localised minor exceedances of lead in upper fill, and the presence of asbestos in the vicinity of the former dairy structure. Removal of the impacted fill and surrounds will be required. Further investigation of existing building footprints post demolition, and in data gaps identified in Section 9.2. Remediation options for the impacts associated with hazardous building materials include removal and disposal to an appropriately licensed landfill or on-site management of impacts (e.g. beneath structures, pavements or soil capping).

14. Conclusions and Recommendations

The objective of the PSI and DSI was to identify and investigate the potential for contamination at the site from the previous and current land uses. Based on the results of previous assessment by others and the current assessment, potential contamination sources included the use of fill within the site, former agricultural activities, possible storage and use of chemicals and demolition of structures.

The results of the investigation indicated the general absence of gross contamination across the site.

Localised impacts were observed in the vicinity of the former dairy farm in the central-southern portion of the site, associated with the following:

- Demolition and burial of former structures within the area;
- Former dairy activities (i.e. microbiological contamination);
- The presence of asbestos-containing materials on the dairy structure, impacting underlying soils.

Microbiological impacts were also observed within the site, immediately downgradient of adjacent agricultural activities.

There are potential impacts in close proximity to and beneath existing structures, which cannot currently be fully accessed for sampling.

On the basis of the above, the following remediation is recommended for the site:

- Hazardous building material assessment of buildings proposed to be demolished;
- Demolition of existing structures, including management of existing hazardous building materials, including asbestos. Demolition and remediation of asbestos impacts should be conducted by an appropriately licensed asbestos contractor;
- Further assessment of building footprints, once demolished;
- Delineation and remediation of contaminated soils identified in Section 12.1;
- Assessment of data gaps identified in Section 9.2;
- Excavation, removal and waste classification of uncontrolled fill in the vicinity of the former dairy in the central-southern portion of the site, and any other localised areas of soil contamination determined through the previous steps outlined above; and
- Localised aeriation, liming and spelling of microbiological-impacted soils in the vicinity of the former dairy structure and in areas adjacent to upgradient agricultural activities.

Remediation of the identified impacts should be conducted with reference to a site-specific Remediation Action Plan, outlining the procedures, methodologies and responsibilities for remediation and validation at the site.

Based on the results of the DSI it is considered that the site is suitable for the proposed residential development subject to implementation of the recommendations above.

15. References

- CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene.* Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.
- NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

Preliminary Site Investigation and Detailed Site Investigation, Proposed Residential Subdivision 501-527 Cessnock Road, Gillieston Heights

- NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.
- NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

16. Limitations

Douglas Partners (DP) has prepared this report for this project at 501-527 Cessnock Road Gillieston Heights with reference to DP's proposal dated 8 July 2021 and acceptance received from Walker Gillieston Heights dated 26 November 2021. The work was carried out under Walker Consultancy Deed dated 26 November 2021. This report is provided for the exclusive use of Walker Gillieston Heights Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been detected by observation and by laboratory analysis, on the surface of the site and in near-surface soil at selected test locations sampled and analysed. Building demolition materials, such as sheetmetal, timber and, brick were, however, located in below-ground fill and at the surface, and these are considered as indicative of the possible presence of hazardous building materials (HBM), including asbestos.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that additional HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that additional asbestos is not present.

Douglas Partners Pty Ltd

Appendix A

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Test Pit Logs – Pits 1 to 15, 101 to 138 Borehole Logs – Bores 201 to 207

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 31.42 AHD EASTING: 362038.8 **NORTHING:** 6372774.378

PIT No: 1 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	.u		Sam	pling &	& In Situ Testing		
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	. ,	Strata	U	Тy		San		_	5 10 15 20
F		Sandy SILT (ML) : Low plasticity, dark brown, trace rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>Е</td><td>PID<1</td><td></td><td></td></pl<>		D	0.0	Е	PID<1		
ł	-				0.1				
	-								
		From 0.2m, trace fine to medium grained subangular to subrounded gravels	· · · ·		0.0	-			
F	-		· . · .	D	0.3	E	PID<1		
31-	- 0.4	Pit discontinued at 0.4m, limit of investigation	1.1.1.1						
	-								,] : : :
F	-								
-	-								
	-								
ŀ	-								
-	-1								-1
	-								
ſ									
ŀ	-								
	-								
	_								
-8									
ŀ	-								
	-								
ł									
ŀ	-								
	-								
	-2								-2
F	-2								
ŀ	-								
	-								
ŀ	-								
29	-								
	-								
Ī									
ł	-								
	-								
	_								
ľ									
ł	-								

RIG: Spade

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 33.72 AHD EASTING: 362048.7 **NORTHING:** 6372647.524

PIT No: 2 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

Depth (m) Description of Strata Perform of Strata Sandy SILT (ML) : Low plasticity, brown, trace rootlets, W <pl< td=""> From 0.2m, trace charcoal Pit discontinued at 0.3m, limit of investigation</pl<>		EPID<1	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
Sandy SILT (ML) : Low plasticity, brown, trace rootlets, W <pl From 0.2m, trace charcoal 0.3 Pit discontinued at 0.3m, limit of investigation</pl 	. D 0.0	PID<1	
Pit discontinued at 0.3m, limit of investigation	D 0.3	-EPID<1	
			-2

RIG: Spade

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)		
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

Walker Gillieston Heights Pty Ltd

Proposed Residential Subdivision

LOCATION: 527 Cessnock Road, Gillieston Heights

CLIENT: PROJECT:
 SURFACE LEVEL:
 39.29 AHD

 EASTING:
 362145.3

 NORTHING:
 6372560.917

PIT No: 3 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		_			San	nling	& In Situ Testing				
RL	Depth	Description of	Graphic Log					Water	Dy	namic Penetrometer Test (blows per 150mm)	
Ľ.	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ň		5 10 15 20	
		Sandy SILT (ML) : Low plasticity brown, trace fine to medium grained subangular to subrounded gravel, rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>E</td><td>PID<1</td><td></td><td></td><td></td></pl<>		D	0.0	E	PID<1				
-	-	rootlets, W <pl< td=""><td></td><td></td><td>0.1</td><td></td><td></td><td></td><td>· [</td><td></td></pl<>			0.1				· [
-	-								-]		
-62	0.25 -	Clayey SAND (SP) : Fine to medium grained, poorly graded pale brown, trace fine to medium subangular to subrounded gravel, rootlets, moist	· · · · · · · · · · · · · · · · · · ·	D	0.3	Е	PID<1				
-	- 0.4	subrounded gravel, rootlets, moist Pit discontinued at 0.4m, limit of investigation	Y., Y.,						-		
-	_	Fit discontinued at 0.411, inflit of investigation							_		
_											
									-		
	-								-		
	-								-		
	_								_		
	-1								-1		
	-								-		
	-										
38	_								_		
	-								-		
	-								-		
	-								-		
									_		
	-								-		
	-								-		
	-2								-2		
									_		
	-								-		
37	-								-		
	-								-		
									-		
	-								a.		
									-		
									-		
									-		

RIG: Spade

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLINC	3 & IN SITU TESTING		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 33.36 AHD **EASTING:** 362059 **NORTHING:** 6372449.895

PIT No: 4 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	<u>.0</u>		San	npling &	& In Situ Testing	Γ.	
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	- 0.2	Sandy SILT (ML) : Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td></td><td>0.0 0.01</td><td></td><td>PID<1</td><td></td><td></td></pl<>			0.0 0.01		PID<1		
-8	- 0.3	Sandy CLAY (CL) : Low plasticity, pale brown mottled orange, trace fine grained subangular to subrounded gravels, W <pl Pit discontinued at 0.3m, limit of investigation</pl 	·/./.	—D—	-0.3-	—E—	PID<1	-	
-	-								
-	-								
-	-								
-	- 1								
-	-								
-	-								
-6	4								
-	-								
-									
-	-								-
-	-2								-2
-	-								
-5	-								
-	-								
-	-								
-	-								
ŀ									

RIG: Spade

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLINC	3 & IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

Walker Gillieston Heights Pty Ltd

Proposed Residential Subdivision

LOCATION: 527 Cessnock Road, Gillieston Heights

CLIENT: PROJECT: **SURFACE LEVEL:** 26.70 AHD **EASTING:** 362132.6 **NORTHING:** 6372441.496 PIT No: 5 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

\prod	_	Description	ic		Sam		& In Situ Testing	_				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrome (blows per 150) 5 10 15	eter Test mm) ²⁰		
Ħ	0.1-	FILL / Silty SAND (SP) : Fine to medium grained, poorly graded, brown, trace fine to medium grained subrounded gravels (natural imported), wood, moist		D	0.0	E	PID<1					
		Sandy CLAY (CL) : Low plasticity, pale brown, trace fine grained subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td></td><td></td><td></td></pl<>		D	0.3	E	PID<1					
	0.4	Pit discontinued at 0.4m, limit of investigation										
								-				
									. L			
	1								-1			
									-			
									-			
									-			
25												
-	2								-2			
$\left \right $									-			
24												
									-			

RIG: Spade

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

		SAN	IPLING	& IN SITU TESTING	LEGE	ND
A		Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B		Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
B	LΚ	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test ls(50) (MPa)
C	;	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D		Disturbed sample	⊳	Water seep	S	Standard penetration test
E		Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

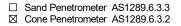
CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 16.82 AHD EASTING: 362004.5 **NORTHING:** 6372239.61

PIT No: 6 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

			Description	U		San	npling &	& In Situ Testing					
RL	Dep (m)	th	of	Graphic Log	e	£	ble	Populto 8	Water	Dyn	amic Pen (blows	etromet per mm	er Test)
	(III)	, I	Strata	0	Type	Depth	Sample	Results & Comments	5	5		15	20
F			FILL : Grey brown clayey silt fill, trace plastic rope, brick		D	0.0					÷		
	-		fragments, moist		_	0.1				-			
	_												
ŀ											÷		
-	-).35								1			
	-		Sandy SILT : Brown fine to medium grained sandy silt, moist	· ·	D	0.4				-	÷	÷	
			moist	· · · ·									
ł	-	0.5	FILL : Grey to grey brown clayey silt and intermixed fine to coarse grained sand and fine gravel fill (possible ash),		κ.					[
	-		coarse grained sand and fine gravel fill (possible ash), moist		D	0.6				+ :			
	_										:		
İ													
-9	-	0.8	Silty CLAY : Dark brown mottled orange silty clay, M <wp< td=""><td>1/1/</td><td></td><td>0.85</td><td></td><td></td><td></td><td>† !</td><td>:</td><td></td><td>•</td></wp<>	1/1/		0.85				† !	:		•
	-			1/1/		0.00				ł	÷		
	-1												
F	- 1			1/1/									
	-				U ₅₀					-			
	-										÷		
Ī													
ł	-			1/1/		1.3							
	-									-	÷		
		1.5											
ł		1.5	SANDSTONE : Pale brown, mottled orange, very low strength, extremely weathered							[
-	-		sucingui, exucinely weathered							F			
	-									-			
-15	-									1			
	-									+ :			
	-2	2.0								2			
t			Pit discontinued at 2.0m, limit of investigation								÷	÷	:
ł	-									†			
	-									-			
F													
ŀ	-									+ :	÷	÷	
	_									!			•
t													
$\left \right $	-									† !			•
	-									+ :			•
-4-	-									[÷	÷	
-	-									+ :			

RIG: Yanmar 8t Excavator 600mm bucket with teeth


LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND											
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)							
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D Disturbed sample	⊳	Water seep	S	Standard penetration test							
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 15.49 AHD **EASTING:** 361997.3 **NORTHING:** 6372225.614

PIT No: 7 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

\square		Description	ic		Sam		& In Situ Testing	<u> </u>	Dumomio Depotrometor Test		
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
Ц		Strata	0	É.	ŏ	Saı	Comments		5 10 15 20		
-	- 0.1 -	FILL / Clayey SILT (ML) : Low plasticity grey/brown, trace timber, metal wire, plastic bag, plastic pipe with abundant rootlets, W <pl< td=""><td></td><td>D</td><td>0.1</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.1	E	PID<1				
	- 0.4 -	Clayey SILT (ML) : Low plasticity, grey brown, W <pl< td=""><td>/ / / / / / / / / / / / / / / /</td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	/ / / / / / / / / / / / / / / /								
15	-	CLAY (CH) : High plasticity, red/brown mottled orange, W≤PL		D	0.5	E	pp = 350 PID<1				
-	-				0.9		pp >400				
	-1 1.0-								-1		
-	-	Pit discontinued at 1.0m, limit of investigation						-			
14	-										
-	-										
-	-2								-2		
13	-										
-	-										
-	-										

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 14.81 AHD EASTING: 361995.8 **NORTHING:** 6372212.383

PIT No: 8 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

		Description	. <u>ט</u>		Sam	pling &	& In Situ Testing		Dynamic Penetrometer Test			
RL	Depth (m)	of	Graphic Log	эс	oth	ple	Results &	Water	Dynam	nic Penet (blows pe	romete er mm)	r Test
	()	Strata	Ū	Type	Depth	Sample	Results & Comments	>	5	10	15	20
-	- 0.1	FILL / Clayey SILT : Low plasticity, pale brown, trace subangular to subrounded gravels, W <pl< td=""><td></td><td>D</td><td>0.0 0.01</td><td></td><td>PID<1</td><td></td><td>-</td><td></td><td></td><td></td></pl<>		D	0.0 0.01		PID<1		-			
-	-	FILL / CLAY : Low plasticity, orange/brown, trace subangular to subrounded gravels, glass bottles, plastic, rootlets, abundant sheet metal, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl<>							-			
-	- - 0.45			D	0.3		PID<1		-			
-	-	Silty CLAY : Low plasticity, brown, trce rootlets, W <pl< td=""><td></td><td>D</td><td>0.5</td><td></td><td>pp = 300 PID<1</td><td>-</td><td></td><td></td><td></td><td></td></pl<>		D	0.5		pp = 300 PID<1	-				
-14	0.75	CLAY : High plasticity, red/brown mottled orange, W≤PL										
$\left \right $	-1 1.0	Pit discontinued at 1.0m, limit of investigation		—D—	-1.0-		pp = 300 PID<1		-1			
	-											
13	- - -2								-2			
-	-											
- 12	-								-			

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)		Point load diametral test ls(50) (MPa)							
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	¥	Water level	V	Shear vane (kPa)							

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 12.54 AHD EASTING: 362025.1 **NORTHING:** 6372212.138

PIT No: 10 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sampling & In Situ Testing				Dynamic Penetrometer Test			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per mm)			
		Strata		L L		Sar	PID<1	-	5 10	15	20	
-		FILL / Clayey SILT : Low plasticity, pale brown, with rootlets, W <pl< td=""><td></td><td>D</td><td>0.0 0.05</td><td></td><td></td><td></td><td>-</td><td></td><td></td></pl<>		D	0.0 0.05				-			
-	- 0.3 - 0.4			D	0.4		PID<1		-			
-12		CLAY : High plasticity, red/brown mottled orange, trace rootlets, W \leq PL		D	0.6		pp >400 PID<1		-	•		
-				2	0.0		PID<1		-			
-	0.8	Pit discontinued at 0.8m, limit of investigation							-			
-	-1								-1			
-									-			
-									-			
-									-			
-5									-			
-									-			
-									-			
-	-2								-2			
[-			
-									-			
-6									-	•		
-									-			
									-	•		
-	-								-	•		

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 13.93 AHD **EASTING:** 362026.6 NORTHING: 6372223.775

PIT No: 11 PROJECT No: 204921.00 **DATE:** 25/1/2022 SHEET 1 OF 1

		Description	.U		Sam	pling &	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	Type	oth	Sample	Results &	Water	Dynamic (blo	Penetrom ows per m	neter Test nm)
	()	Strata	Ō	Тy	Depth	San	Results & Comments	>	5	10 15	20
-	-	FILL / Clayey SILT : Low plasticity, brown, trace rootlets, subangular to subrounded gravels, coal reject, W <pl< td=""><td></td><td>D</td><td>0.0 0.1</td><td></td><td>PID<1</td><td></td><td>-</td><td></td><td></td></pl<>		D	0.0 0.1		PID<1		-		
	0.15 -	FILL / Silty CLAY : Low plasticity, brown, trace glass, metal piping, plastic, hose, rootlets, subangular to subrounded gravels, W <pl< td=""><td></td><td>D</td><td>0.3</td><td></td><td>PID<1</td><td></td><td>-</td><td></td><td></td></pl<>		D	0.3		PID<1		-		
-	0.55 - - -	Silty SAND : Fine to medium grain, pale brown, moist		D	0.6		PID<1		-		
13	- - 1 -			D	0.8		pp = 200 PID<1		-1		
-	- 1.2-	CLAY : High plasticity, red/brown mottled orange, trace							-		
-	- 1.3-	rootlets, W <u><</u> PL SANDSTONE : Grey with orange mottling, very low strength, extremely weathered							-		
-	- 1.5 - - -	Pit discontinued at 1.5m, limit of investigation	<u> :::::</u> :								
12	-2								-2		
-	-								· · · · · · · · · · · · · · · · · · ·		
-1-	-								-		

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

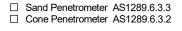
CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 12.69 AHD EASTING: 362046.2 **NORTHING:** 6372227.717

PIT No: 12 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

		Description	.ci		Sarr	npling &	& In Situ Testing		
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	. ,	Strata	U			San		_	5 10 15 20
	0.05	FILL / Clayey SILT : Low plasticity, brown, trace rootlets \and coal reject, W <pl <="" td=""><td>\bigotimes</td><td>D</td><td>0.0 0.05</td><td></td><td>PID<1</td><td></td><td></td></pl>	\bigotimes	D	0.0 0.05		PID<1		
	-	FILL / Sandy SILT : Low plasticity, pale brown, trace rootlets, coal reject, metal, plastic bags, brick, W <pl< td=""><td>\bigotimes</td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	\bigotimes						
ł	-	rootlets, coal reject, metal, plastic bags, brick, W <pl< td=""><td>\bigotimes</td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	\bigotimes						
ł	-		\bigotimes	D	0.3		PID<1		│
	- 0.4 -		\bigotimes						
	0.4	CLAY : High plasticity, red/brown mottled orange, trace rootlets, W≤PL	\langle / \rangle						
ľ	-		\bigvee	D/	0.5		PID<1		
ł	-								
-5-	-			U		50			
ľ	-				0.9				
ŀ	-1			D	1.0		pp = 250 PID<1		-1
ł	-								ן ו ו ר ו ו
				в	10		2 buckets		
				в	1.2		2 DUCKETS		
ł	-								
ł	-		\bigvee						
-	- 1.5-								
		SANDSTONE : Grey with orange mottling, very low strength, extremely weathered							
-5	-								
ł	- 1.8	Pit discontinued at 1.8m, limit of investigation						_	
ł	-								
	2								
	-2								-2
Ī	-								
ŀ	-								
-	-								
ŀ									
ł	-								
-6									
	[
ŀ	-								
Ŀ									

RIG: Yanmar 8t Excavator 600mm bucket with teeth


LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAM	PLINC	3 & IN SITU TESTING	LEGE	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: --**EASTING:** 362048.8 NORTHING: 6372230.429 **PIT No:** 13 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

	Description		. <u>ט</u>		Sam	pling 8	& In Situ Testing		_			
RL	Depth (m)	of	Graphic Log	Type	oth	ple	Results &	Water	Dynamic Penetrometer T (blows per mm)			
		Strata	Ū	Тy	Depth	Sample	Results & Comments	>	5	10 1	5 20	
	0.01-	FILL / Clayey SILT : Low plasticity, pale brown, trace plastic fragments, electric fence wire, bail twine, rootlets, timber, W <pl< td=""><td></td><td>D</td><td>0.0 0.1</td><td></td><td>PID<1 D3</td><td></td><td>-</td><td></td><td></td><td></td></pl<>		D	0.0 0.1		PID<1 D3		-			
	-	FILL / Sandy SILT : Low plasticity, brown, trace subangular to subrounded gravels, fine to coarse grained, brick, W <pl< td=""><td></td><td>D</td><td>0.3</td><td></td><td>PID<1</td><td></td><td>-</td><td></td><td></td><td></td></pl<>		D	0.3		PID<1		-			
	- 0.5 -	CLAY : High plasticity, red/brown mottled orange, trace rootlets, W <u><</u> PL		D	0.6		рр = 350 PID<1		- - -			
	- 1 - - 1.3 -	SANDSTONE : Grey with orange mottling, very low strength, extremely weathered							-1			
	- 1.6 -								-			
	-	Pit discontinued at 1.6m, limit of investigation							-			
	-2 - -								-2			
	-								-			
	-								-			
							1	1	L i			

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample G Gas sample PID Photo id	onisation detector (ppm)
	ad axial test Is(50) (MPa)
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point los	ad diametral test ls(50) (MPa)
	penetrometer (kPa)
D Disturbed sample D Water seep S Standar	d penetration test
E Environmental sample 📱 Water level V Shear v	ane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: --**EASTING:** 361965.2 **NORTHING:** 6372218.763 **PIT No:** 14 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

			Description	.c		Sam		& In Situ Testing	<u> </u>				
ā	z C	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water			rometer Te 150mm)	
F			SANDY SILT - Low plasticity, dark brown with rootlets,		D	-0.0	ő	PID<1 D2		5	10	15 20)
	ŀ	0.40	W <pl< td=""><td></td><td></td><td>0.1</td><td></td><td>D2</td><td></td><td>-</td><td>÷</td><td></td><td></td></pl<>		0.1		D2		-	÷		
		0.13	CLAY - High plasticity, red / brown mottled orange, trace rootlets, W <pl< td=""><td>$\overline{//}$</td><td></td><td></td><td></td><td></td><td></td><td></td><td>÷</td><td></td><td></td></pl<>	$\overline{//}$							÷		
											÷		
	ł									Γ ΄	÷		
	ŀ									-			
				\langle / \rangle	D	0.5		pp = 200 PID<1		_			
								PID<1			÷		
	Ī									ן א			
	ł			\mathbb{V}/\mathbb{I}						ł iL	÷		
	ł			$\langle / /$						- 7			
				$\langle / /$									
											÷		
	-1									-1			
	F												
	-	1.2	SANDSTONE- Grev mottled grange very low strength	\square						-	÷		
			SANDSTONE- Grey mottled orange, very low strength, extremely weathered							-			
		1.4											
		1.4	Pit discontinued at 1.4m, limit of investigation										
	ſ										÷		
	ł										÷		
	+									-	÷		
											÷		
	Ī										÷		
	-2	2								-2			
	-									-			
											÷		
	ſ										÷		
	F										÷		
	ł									-	÷		
										-			
											÷		
										[:		
	ł												
	ł									-			
L													

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAM	IPLINC	3 & IN SITU TESTING	LEGE	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: --**EASTING:** 361930.3 **NORTHING:** 6372318.352 **PIT No:** 15 PROJECT No: 204921.00 DATE: 25/1/2022 SHEET 1 OF 1

		Description	. <u>u</u>	Sampling & In Situ Testing				Dynamic Penetrometer Test (blows per mm)				
RL	Depth	of	Graphic Log	e	£	ole	Desute 9	Water	Dynan	nic Pene (blows p	tromete er mm)	r Test
	(m)	Strata	U U U	Type	Depth	Sample	Results & Comments	8	5	10	15	20
		FILL / SANDY SILT - Low plasticity, dark brown, trace		D	0.0	0	PID<1					
	- 0.1	rootlets, W <pl< td=""><td></td><td></td><td>0.05</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></pl<>			0.05				_			
	0.1	FILL / CLAYEY SILT - Low plasticity, dark brown, trace subangular to subrounded gravels, fine to coarse grained, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl<>							-			
	-	subangular to subrounded gravels, fine to coarse grained,							-			
										-	÷	
	-								-		÷	
	-								-			:
	-			D	0.5		PID<1					
	_											
									:		:	-
	-								-	÷	÷	
											:	-
									-			
	-								-			
							pp = 200					
	-1 1.0	CLAY - High plasticity, red / grey, mottled W <pl< td=""><td>\mathcal{V}</td><td>D</td><td>1.0</td><td></td><td>PID<1</td><td></td><td>-1</td><td></td><td>:</td><td>-</td></pl<>	\mathcal{V}	D	1.0		PID<1		-1		:	-
	-										÷	-
			$\langle / /$							÷	÷	
	-		Y//						-			
									_			
			$\langle / / \rangle$									
	-		$\langle / /$						-	:	÷	-
			$\langle / /$							-	÷	-
											÷	:
	-								-			
			$\langle / / \rangle$									
	-		X//						-	÷	÷	
	- 1.8		X//					_				
		Pit discontinued at 1.8m, limit of investigation										
	-								-	÷	÷	
	-2								-2	÷	÷	-
	-								-			
	_										:	-
										÷	÷	
	-								-		:	
									_			
											:	
									-	÷	÷	:
									:			
									-			
									-			
									-	:	÷	:
	-								-	÷	÷	
									•		:	
							1					

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	/IPLING	& IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)		Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 5.56 AHD **EASTING:** 361892.6 NORTHING: 6372014.337

PIT No: 101 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

			Description	<u>.</u>		San	npling &	& In Situ Testing	_	
RL	Dept (m)	th)	of Strata	Graphic	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-		SILT (ML) - Low plasticity, brown trace rootlets, fine rounded gravels (natural), W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td></td><td></td><td></td></pl<>		D, E	0.05				
- - -	0. - -	.35 -	CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W <pl, hard<="" td=""><td></td><td><u>D, E</u> U₅₀</td><td></td><td></td><td>pp >400 PID<1</td><td></td><td></td></pl,>		<u>D, E</u> U ₅₀			pp >400 PID<1		
-	-					- 0.72				
-	- 1 -				D	1.0		pp >400		
-4	-				D	1.5		pp >400		
-	- 2 2	2.0	From 1.7m, grading to very stiff rock From 1.9m, very stiff SANDSTONE - Fine to medium grained, grey brown, extremely weathered			1.9		pp = 300-400		-2
-	- 2	2.3-	Pit discontinued at 2.3m, machine refusal on rock		D	2.1				
-6	-									
-	-									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Ficton sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) C Cora diffing W Water sample PD Point load diametral test Is(50) (MPa)		SAMPLING & IN SITU TESTING LEGEND										
BLK Block sample U_x Tube sample (x mm dia.) PL(D) Point load diametral test ls(50) (MP	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
			Р									
C Core drilling W Water sample pp Pocket penetrometer (kPa)	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
	C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample D Water seep S Standard penetration test			⊳	Water seep	S	Standard penetration test						
E Environmental sample 📱 Water level V Shear vane (kPa)	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 2.72 AHD **EASTING:** 362034.3 NORTHING: 6372022.592

PIT No: 102 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	npling &	& In Situ Testing		
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		É.	ă	Sai	Comments		5 10 15 20
	-	SILT (ML) - Low plasticity, brown trace rootlets, fine rounded gravels (natural), W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td></td><td></td><td></td></pl<>		D, E	0.05				
	0.15	SILTY CLAY (CH) - High plasticity,dark brown, trace rootlets, W>PL	1/1		0.15				
				1					
				В					
ł				1					
ł				D, E	0.5		pp = 150-200		
ŀ	0.65			1	0.65				
-~	-	CLAY (CH) - High plasticity, pale grey mottled orange brown, trace rootlets, fine to medium grained sand							
ŀ	-								
	-]					
	-1				1.0		pp = 200-250		-1
		From 1.0m, with fine to medium grained sand							
ſ									
ł				1					
ł				1					
ł	-								-
-	-			D	1.5		pp = 200-250		
	-			1					
	-								
	-								
ſ				1					
ŀ									
ł	-2			D	2.0		pp = 100-200		-2
ł	-]					
ł	- 2.2	SANDSTONE - Fine to medium grained, pale grey mottled orange - brown, extremely weathered							
-	-	mottled orange - brown, extremely weathered							
	-							Ţ	
				D	2.5			27-01-22	
	2.55	Pit discontinued at 2.55m, limit of investigation	[:::::	:				27	
ſ									
-0									
ŀ									
ŀ									
L									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Free groundwater observed at 2.4m

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 8.33 AHD **EASTING:** 361887.6 NORTHING: 6372098.719

PIT No: 103 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sam	pling 8	& In Situ Testing	Ι.	
님	Depth (m)	of	Graphic Log	e	oth	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	(,	Strata	0	Type	Depth	Sample	Results & Comments	>	5 10 15 20
- 8	- 0.2 -	SANDY SILT (ML) - Low plasticity, brown, trace rootlets, W <pl CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W<pl, fine="" grained<br="" medium="" to="" with="">sand</pl,></pl 		D, E	0.05				
-	-			<u>_D, E</u> _	0.5		pp >400		
-	-			В					
-	-1			D	1.0		pp = 200-300		-1
-	-	From 1.1m, grading to rock			1.2		pp = 100-200		
	- 1.3-	SANDSTONE - Fine to medium grained, brown - orange, mottled grey, extremely weathered							
- - - - - - - - - -	- 1.5-	Pit discontinued at 1.5m, machine refusal on rock							-2
-	-								
L	L								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	ž	Water level	V	Shear vane (kPa)						

□ Sand Penetrometer AS1289.6.3.3

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 10.07 AHD **EASTING:** 361896.3 NORTHING: 6372211.993

PIT No: 104 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

\square		Description	ic		San		& In Situ Testing	-	Dynamic Penetrometer Test
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
H		SANDY SILT (ML) - Low plasticity, brown, trace rootlets,				Š			5 10 15 20 : : : :
	- 0.3 -	W <pl CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W<pl, fine="" grained<br="" medium="" to="" with="">sand</pl,></pl 		D, E D, E	0.05		pp = 150-200		
- 0 -	1			D, E	1.0		pp = 100-150		
	-			D, E	1.5		pp = 80-100		
00	-2 - - 2.3-	From 2.1m, with fine to medium grained sand, grading to rock		D	2.0		pp = 50		-2
-	-	SANDSTONE - Fine to medium grey mottled brown, extremely weathered		D	2.5				
	- 2.6 -	Pit discontinued at 2.6m, machine refusal on rock							
		ar 8t Excavator 600mm bucket with teeth). Kra			

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 10.46 AHD **EASTING:** 362019.2 **NORTHING:** 6372173.471

PIT No: 105 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

Γ		Description	.cj		Sam		& In Situ Testing	_	
Я	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		ŕ	ð	Sar	Comments		5 10 15 20
-	-	SANDY SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td></td><td>-</td><td></td></pl<>		D, E	0.05			-	
-£	0.35 - - - -	CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W <pl, fine="" grained<br="" medium="" to="" with="">sand</pl,>		D, E U ₅₀	0.4 - 0.5 - 0.62		рр >400 PID<1	-	
-	- 1 - -			D,	1.0		рр >400 PID<1	-	
-0 -	-	From 1.6m, grading to rock			1.5		pp >400 PID<1	-	
	- 1.7 -	SANDSTONE - Fine to medium grained sand, orange - brown mottled grey, extremely weathered, with sandstone cobbles		D	1.8			-	
-	- 1.9 - - 2 - -	Pit discontinued at 1.9m, machine refusal on rock						-	-2
	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) C core drilling W Water sample p Pocket penetrometer (kPa) D Disturbed sample Water seep S Standard penetration test		SAMPLING & IN SITU TESTING LEGEND										
BLK Block sample U_ Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa) D Disturbed sample V Water seep S Standard penetration test	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
C Core drilling W Water sample pp Pocket penetrometer (kPa) D Disturbed sample D Water seep S Standard penetration test			Р		PL(A)) Point load axial test Is(50) (MPa)						
D Disturbed sample > Water seep S Standard penetration test	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
D Disturbed sample D Water seep S Standard penetration test	C		Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
E Environmental comple V Water lavel V/ Shear yone (kDe)			⊳		S							
E Environmental sample 🔮 Water level V Shear Vane (kPa)	E	Environmental sample	¥	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 9.63 AHD **EASTING:** 362092.1 NORTHING: 6372225.293

PIT No: 106 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

		Description	<u>.</u>			Sam	pling &	& In Situ Testing		
RL	Depth (m)	of Strata	Graphic	Log	2016-	Depth	Sample	Results & Comments	Water	
-	-	SILT (ML) - Low plasticity, brown, trace rootlets, fine rounded gravels (natural), W <pl< td=""><td></td><td>D,</td><td></td><td>0.05</td><td>S</td><td></td><td></td><td></td></pl<>		D,		0.05	S			
- 0	- 0.3 - - -	CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W <pl, fine="" grained<br="" medium="" to="" with="">sand</pl,>		D,	E	0.5		рр >400 PID<1		
-	- - 1 -			D, U	E	· 1.0	50	рр >400 PID<1		
	-	From 1.5m, brown - orange				1.5		pp >400		
-	-2	From 2.1m, trace fine to medium grained sand, grading to rock				2.0		pp >400		-2
-	- 2.3 -	SANDSTONE - Fine to medium grained, grey-brown, extremely weathered)	2.4				
	- 2.5 -	Pit discontinued at 2.5m, limit of investigation	1							

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 9.96 AHD EASTING: 362139.4 **NORTHING:** 6372274.821

PIT No: 107 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

Description Sampling & In Situ Testing 0 f 0 <td< th=""><th>Dynamic Penetrometer Test (blows per 150mm)</th></td<>	Dynamic Penetrometer Test (blows per 150mm)
SILT (ML) - Low plasticity brown, trace rootlets, W <pl 0.2 CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W<pl, hard<br="">D, E 0.05 PID<1 D, E 0.05 D, E 0.</pl,></pl 	
0.2 CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W <pl, hard<br="">D, E 0.5 Pp >400 PID<1</pl,>	
D, E 0.5 Pp >400 PID<1	
pp >400	
From 1.0m, trace fine to medium grained sand, grading to	1
SANDSTONE - Fine to medium grained, pale brown / grey, extremely weathered D 1.2 PID<1	
1.3 Pit discontinued at 1.3m, limit of investigation	
	2

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) B LK Black compto LL Tube compto (x pm dia) PL(A) Point load diagraphic test Is(50) (MPa)	SAMPLING & IN SITU TESTING LEGEND										
	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
PLK Plack comple II Tube comple (x mm dia) PL (D) Point load diametral text ls (50) (ME			Р								
$\int D L r D U C r Sample O_x$ rube sample (x minuta.) $PL(D)$ Point load diametral test is (50) (MP	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)					
C Core drilling W Water sample pp Pocket penetrometer (kPa)			Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample D Water seep S Standard penetration test			⊳	Water seep	S	Standard penetration test					
E Environmental sample 📱 Water level V Shear vane (kPa)	Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 19.51 AHD EASTING: 362022.4 NORTHING: 6372281.7

PIT No: 108 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

님			Description	.9		00		& In Situ Testing	L	
	De	epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-		FILL / SANDY SILT (ML) - Low plasticity brown, trace rootlets, fine to medium subangular to subrounded (CNR), brick, ceramic, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td></td><td></td><td></td></pl<>		D, E	0.05				
-6	-	0.4 -	CLAY (CH) - High plasticity, orange brown mottled red / grey, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.5</td><td></td><td>pp = 250-300</td><td></td><td></td></pl<>		D, E	0.5		pp = 250-300		
-	- 1				D	1.0		pp >400		
-	-				D	1.5		pp >400		
-	-2	1.8 -	SANDSTONE - Fine to medium grained, brown grey, extremely weathered		D	2.0				-2
	-	2.3 -	Pit discontinued at 2.3m, machine refusal on rock							

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 13.94 AHD EASTING: 361926.6 **NORTHING:** 6372275.28

PIT No: 109 PROJECT No: 204921.00 DATE: 27/1/2022 SHEET 1 OF 1

		Description	& In Situ Testing	_	ية Dynamic Penetrometer Test				
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
		Strata		Ê	ð	Sar	Comments	-	5 10 15 20
-	-	SANDY SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td></td><td></td><td></td></pl<>		D, E	0.05				
	0.35 - - -	CLAY (CH) - High plasticity, orange - brown, mottled red / grey, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.5</td><td></td><td>pp = 300</td><td></td><td></td></pl<>		D, E	0.5		pp = 300		
13	- - - 1 -			D	1.0		pp = 200-300		
-	-	From 1.3m, with fine to medium grained sand, grading to rock		D	1.5		pp = 300-350		
12	- 1.6 - - -2	SANDSTONE - Fine to medium grained, pale brown, mottled grey, extremely weathered		D	2.0				-2
-	- 2.3	Pit discontinued at 2.3m, machine refusal on rock							
-	-								
-1-1	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 17.51 AHD **EASTING:** 361939.4 NORTHING: 6372339.484

PIT No: 110 PROJECT No: 204921.00 **DATE:** 28/1/2022 SHEET 1 OF 1

		Description	.ici		Sam		& In Situ Testing	<u> </u>	
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	SANDY GRAVELLY SILT (ML) - Low plasticity, brown, with fine to coarse subangular to subrounded gravels (CNR), trace rootlets, cobbles W <pl (possible="" filling)<="" td=""><td></td><td>D, E</td><td>0.05</td><td>05</td><td></td><td></td><td></td></pl>		D, E	0.05	05			
	- 0.• - - -	CLAY (CH) - High plasticity, orange -brown mottled red / grey, trace rootlets, W <pl, hard,="" stiff<="" td="" very=""><td></td><td>U₅₀</td><td>0.4 0.51 0.79</td><td></td><td>pp = 350-400</td><td></td><td></td></pl,>		U ₅₀	0.4 0.51 0.79		pp = 350-400		
-	-1			D	1.0		pp = 350-400		
	- 1.: - - -	SANDSTONE - Fine to medium grained, pale brown with grey, extremely weathered		D	1.2				
-	- 1. ⁻ - 2 -	Pit discontinued at 1.7m, machine refusal on rock						-	-2
	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 23.94 AHD EASTING: 362054.5 **NORTHING:** 6372361.038

PIT No: 111 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

	Dauth	Description	ic _		Sam		& In Situ Testing	5	Dunamic Popotromotor Tost
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td>0</td><td></td><td></td><td></td></pl<>		D, E	0.05	0			
-	0.25 - - - -	CLAY (CH) - High plasticity, orange-brown, mottled red/grey, trace rootlets, W <pl, hard<="" td=""><td></td><td>D, E</td><td>0.5</td><td></td><td>pp >400</td><td></td><td></td></pl,>		D, E	0.5		pp >400		
-3 	- 1 - 1.2-	From 1.0m, grading to rock		D	1.0		pp >400		
-	-	SANDSTONE - Fine to medium grained, pale brown / grey, extremely weathered, trace fine rounded gravel		D	1.3				-
21	- 1.5 - - - - - - -	Pit discontinued at 1.5m, machine refusal on rock							

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
в	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 8.92 AHD **EASTING:** 362205.4 NORTHING: 6372351.407

PIT No: 112 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

			Description	. <u>e</u>		Sam	pling &	& In Situ Testing	_	Dynamic Penetrometer Test		
Ч	Dept (m)	th)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
			Strata		F -	De	Sar	Comments	_	5 10 15 20 · · · · · ·		
	- (- (0.3 –	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl CLAY (CH) - High plasticity, orange-brown, mottled red/grey, trace rootlets, W<pl, hard<="" td=""><td></td><td>D, E</td><td>0.05</td><td></td><td>pp >400</td><td></td><td></td></pl,></pl 		D, E	0.05		pp >400				
	- - - 1	1.0 -	From 0.8m, trace fine to medium sandstone gravels SANDSTONE - Fine to medium grained, intermixed pale		D	0.9		pp >400				
	· · ·	1.7	grey / brown, extremely weathered		D	1.5						
			Pit discontinued at 1.7m, machine refusal on rock									
	· · · · · · · · · · · · · · · · · · ·									-2		

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 1.56 AHD **EASTING:** 362278.3 NORTHING: 6372348.656

PIT No: 113 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

		Description						-	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>PL		D, E D, E	0.05		pp = 350-400		
-	1			D/	1.0		pp >400		
-0	-			U ₅₀ B 	1.3 1.5		pp = 150-200		
-	- 2			D	2.0		pp = 150-200	Δ	-2
	- 2.55	Pit discontinued at 2.55m, limit of investigation		D	2.5		pp = 100-150		
-	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Seepage at 2.0m

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 31.1 AHD EASTING: 362022.4 NORTHING: 6372433.497

PIT No: 114 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

RL	Depth (m)	Description							1
	()	of	Graphic Log	e	oth	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	. ,	Strata	<u>ق</u> _	Type	Depth	Sample	Results & Comments	5	5 10 15 20
31-	-	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td>PID<1</td><td></td><td></td></pl<>		D, E	0.05		PID<1		
-	0.15- - - -	CLAY (CH) - High plasticity, orange-brown, mottled red/grey, trace rootlets, W <pl, hard<="" td=""><td></td><td>D, E</td><td>0.5</td><td></td><td>pp = 300-400 PID<1</td><td></td><td></td></pl,>		D, E	0.5		pp = 300-400 PID<1		
30	- 1			D,	1.0		pp = 350-400		
-	- 1.4 -	From 1.2m, grading to rock SANDSTONE - Fine to medium grained, pale brown			1.4				-
-	-	SANDSTONE - Fine to medium grained, pale brown mottled grey, extremely weathered		D	1.5		PID<1		
-	- 1.8-	Pit discontinued at 1.8m, machine refusal on rock							-
29	-2								-2
-									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)							
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 28.09 AHD **EASTING:** 362192.1 NORTHING: 6372474.77

PIT No: 116 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

		Description	Description						Dynamic Panatromator Test		
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
		Strata		Ê	De	Sar	Comments	-	5 10 15 20		
- 28	-	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td>PID<1</td><td></td><td></td></pl<>		D, E	0.05		PID<1				
-	- 0.3 - - - -	CLAY (CH) - High plasticity, orange-brown, mottled red/grey, trace rootlets, W <pl, fine="" hard,="" rounded<br="" trace="">gravel (natural)</pl,>		D, E U ₅₀	0.45 0.5		pp >400				
27	- 1			D	1.0		pp >400		-1 -1 -1 -1 -1 -1 -1 -1		
-	- 1.4- - - - -2	SANDSTONE - Fine to medium grained, pale brown - grey, extremely weathered		D	1.5				-2		
-% - - - - -	- 2.3-	Pit discontinued at 2.3m, machine refusal on rock									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 26.63 AHD **EASTING:** 362250.8 NORTHING: 6372528.885

PIT No: 117 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

		Description	<u>ں</u>		Sam		& In Situ Testing		Dumomio Depotromotor Test		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
-	-	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td>S</td><td></td><td></td><td></td></pl<>		D, E	0.05	S					
	- - - -	CLAY (CI) - Medium plasticity, orange-brown mottled red, trace rootlets, fine rounded gravels (natural), W <pl, very<br="">stiff to hard</pl,>		D, E	0.5		pp >400				
-	- 1 -			D	1.0		pp = 300				
	- 1.3 - - -	SANDSTONE - Fine to medium grained, pale brown-grey, extremely weathered		D	1.5						
-	-2 - - 2.2-			D	2.0				-2		
-	- -	Pit discontinued at 2.2m, machine refusal on rock									
	-										
-	-										

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U_x W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 1.56 AHD **EASTING:** 362341.6 NORTHING: 6372499.993

PIT No: 118 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

Γ		Description	.e		Sam		& In Situ Testing	_	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>PL		D, E	0.05		pp >400		
-	-			D, E	0.5		pp = 300-400		
-	- 1 -			D	1.0		pp = 150-200		
-0	-			D	1.5		pp = 150		
-	- 2			D	2.0		pp = 150		-2
	- 2.6	Pit discontinued at 2.6m, limit of investigation		D	2.5		pp = 100-150		
-	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Seepage at 2.4m

REMARKS:

A Auger sample G Gas sample PID Photo insistion detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U Tube sample (x mm dia.) PL(D) Point load axial test Is(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa) D Disturbed sample W Water seep S Standard penetration test		SAM	PLINC	3 & IN SITU TESTING	LEGE	END
BLK Block sample U_ Tube sample (x mm dia.) PL(D) Point load diametral test 15(50) (MPa) C Core drilling W Water sample pp Pocket penetrometer (kPa) D Disturbed sample V Water seep S Standard penetration test	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
C Core drilling W Water sample p Pocket penetrometer (kPa) D Disturbed sample > Water seep S Standard penetration test			Р			
D Disturbed sample D Water seep S Standard penetration test	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
D Disturbed sample D Water seep S Standard penetration test	C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	D		⊳	Water seep	S	Standard penetration test
E Environmental sample 📱 Water level V Shear vane (KPa)	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 33.41 AHD **EASTING:** 362022 **NORTHING:** 6372554.488

PIT No: 119 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	. <u>u</u>		Sam	npling &	& In Situ Testing		
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
-		Strata		Ê	0.0	Sar	PID<1		5 10 15 20 · · · · · ·
-	-	Sandy SILT (ML) : Low plasticity brown, trace rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>E</td><td></td><td></td><td></td></pl<>		D	0.0	E			
33	0.15 - - -	Silty CLAY (CL) : Low plasticity brown, trace rootlets, fine to medium grained subangular to subrounded gravel, trace charcoal, W <pl< td=""><td></td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.3	E	PID<1		
-	-			D	0.5	E	PID<1		
-	- 0.8 -	CLAY (CH) : High plasticity pale brown/grey, mottled orange, trace rootlets			0.8				
-	- 1 - -			D	1.0	E	PID<1		-1
-32-	-	From 1.5m, mottled red, trace fine to medium grained subangular to subrounded gravel, W>PL		В					
-	- 1.9 -2 -	CLAY (CH) : High plasticity , grey mottled red/orange, trace rootlets, W <pl< td=""><td></td><td></td><td>· 1.9</td><td></td><td></td><td></td><td>-2</td></pl<>			· 1.9				-2
-	- 2.2-	Pit discontinued at 2.2m, limit of investigation							
31	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Gilmour

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	SAMPLING & IN SITU TESTING LEGEND											
R Bulk cample D Distan cample DI (A) Point load axial test Ic(50) (MPa)												
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test ls(50) (M	√Pa)											
C Core drilling W Water sample pp Pocket penetrometer (kPa)												
D Disturbed sample D Water seep S Standard penetration test												
E Environmental sample 📱 Water level V Shear vane (kPa)												

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: --**EASTING:** 362227.4 NORTHING: 6372584.376

PIT No: 120 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

Γ		Description	. <u>u</u>		Sam	pling a	& In Situ Testing		
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		F -	ð	Sar	Comments	-	5 10 15 20 · · · · · ·
	-	SILT (ML) - Low plasticity, brown, trace rootlets, W <pl< td=""><td></td><td>D, E</td><td>0.05</td><td></td><td>PID<1</td><td></td><td></td></pl<>		D, E	0.05		PID<1		
	- 0.3 -	CLAY (Cl) - Medium plasticity, orange-brown mottled red, trace rootlets, fine rounded gravels (natural), W <pl, very<br="">stiff</pl,>		D, E	0.5		pp = 300-400 PID<1		
	- 1			D	1.0		pp = 300-400 PID<1		-1
	- 1.2- - - -	SANDSTONE - Fine to medium grained, pale brown-grey, extremely weathered		D	1.5		PID<1		
	- 1.8-	Pit discontinued at 1.8m, machine refusal on rock	1						
	-2								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)							
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	¥	Water level	V	Shear vane (kPa)							

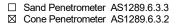
CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 40.65 AHD **EASTING:** 362165 NORTHING: 6372635.335

PIT No: 121 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

Γ			Description	.u		Sam	npling	& In Situ Testing					
R	1	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows	etromete per mm)	er Test
		()	Strata		Ту		San		>	5	10	15	20
ł			Silty SAND (SP) : Fine to medium grained dark brown, trace subangular to subrounded gravels (crushed natural	$ \cdot \cdot \cdot $	D	0.0	E	PID<1					
ļ	ŀ		rock), moist			0.1				-			
	-									-	:	-	:
Ī	-				D	0.3	E	PID<1		-		-	:
ł													:
ŀ		0.4	CLAY (CL) : Low plasticity, red/orange, mottled grey, W <pl< td=""><td>$\overline{//}$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td></pl<>	$\overline{//}$:
	-				D	0.5	E	PID<1		-	:		:
	-									-			
-4	₽									-			
ł				$\langle / /$									
-	Ī			\mathbb{V}/\mathbb{I}	1					-			
	-												:
Ī	Ļ	1								-1			:
ŀ											:		:
-													
	-			$\langle / /$						-			
	-			$\langle / /$						-			
ł		1.4								-	-		
ł			SANDSTONE : Fine to medium grained, light brown, very low strength, extremely weathered										:
ŀ	Ī												:
-ę	-										:	:	:
ſ	-									-			
ł										-			
ł													:
	Ī												:
	-:	2 2.0	Pit discontinued at 2.0m, limit of investigation	1::::::					_	-2			:
	-									-			
ł													
ł											i	-	:
	ŀ												:
	-										-		:
Ī	ļ									-	:		
ł												•	
-8	8												
	ł												
	ł												:
ŀ											÷		÷
ŀ													:
L	_									- +			

RIG: Yanmar 8t Excavator 600mm bucket with teeth


LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	PLINC	3 & IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

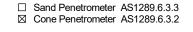
CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 34.30 AHD **EASTING:** 362063.6 NORTHING: 6372656.295

PIT No: 122 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

\square		Description	<u>.0</u>		Sam	pling a	& In Situ Testing		
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	. ,	Strata	0	τ	ے 0.0	San	Comments PID<1	Ĺ	5 10 15 20
	-	Sandy SILT (ML) : Low plasticity, brown, trace fine grained subangular to subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>E</td><td></td><td></td><td></td></pl<>		D	0.0	E			
-8-	- 0.2 -	FILL / Gravelly SAND (SA) : Fine to medium grained, poorly graded, fine to coarse grained gravels (natural), grey, moist		D	0.3	E	PID<1		
	- 0.4 -	CLAY (CH) : High plasticity, brown mottled red/orange, trace fine to coarse grained subangular to subrounded graves, rootlets, W≤PL		D	0.5	E	PID<1		
	- - - - 1			D	1.0	E	PID<1		
- 8.	-								
	- 1.6 - - -	CLAY (CH) : High plasticity, grey mottled red/orange, trace rootlets, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
	-2 2.0	Pit discontinued at 2.0m, limit of investigation							2
	-	· · ·							
37	-								
	-								
	-								
	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth


LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)						
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	¥	Water level	V	Shear vane (kPa)						

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 36.32 AHD **EASTING:** 362113.2 NORTHING: 6372722.943

PIT No: 123 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

Γ			Description	U		Sa	mpling	& In Situ Testing		
RL	De	epth m)	of	Graphic	p e	Ę	ple	Resulte &	Water	Dynamic Penetrometer Test (blows per 150mm)
	(,	Strata	0	Type		Sample	Results & Comments	5	5 10 15 20
F			Sandy SILT (ML) : Low plasticity, dark brown, trace fine grained subrounded gravel, rootlets, W <pl< td=""><td></td><td>· D</td><td>0.0</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		· D	0.0	E	PID<1		
ł	ŀ		gramed subjounded graver, rooliets, WARE		.	0.1		-		
	ŀ	0.2	Sandy CLAY (CH) : High plasticity, grey mottled orange	1.	Ŀ					
36	ļ		Sandy CLAY (CH) : High plasticity, grey mottled orange, trace rootlets, W>PL	./.	. D	0.3	E	PID<1		
ſ		0.4				0.4				
f		0.4	CLAY (CH) : High plasticity, grey mottled orange/ref, trace fine grained subangular to subrounded gravels, W <pl< td=""><td>\mathbb{Z}</td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	\mathbb{Z}						
ł	ľ					0.5	E	PID<1		
ŀ	ŀ			\mathbb{V}	В					
	ŀ			\mathbb{V}						
	ŀ				1					
	ļ	0.9			4	0.9				
Ī	1		SAND / SANDSTONE : Fine to medium grained, pale brown, extremely weathered		· D		E	PID<1		-1
ł	-1					1.0		PID<1		
ł	ŀ									
ł	ŀ									
35	ł									
	ŀ									
	ļ									
Ī										
ł	[
ł	ŀ									
+	ŀ									
	ŀ									
	-2	2.0	Dit discontinued at 0.0m limit of investigation		<u>.</u>]	_				2
	ļ		Pit discontinued at 2.0m, limit of investigation							
Ţ	[
ł	[
-8	f									
ŀ	ŀ									
ļ	ŀ									
	ŀ									
	ļ									
Ţ										
ł	[
ł	ŀ									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level
 LECEND

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)
 G P U_x W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 42.70 AHD **EASTING:** 362255.8 NORTHING: 6372661.959

PIT No: 124 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	,	Dumomia Denetrometer Test
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Sandy SILT (ML): Low plasticity, dark brown, trace			0.0		PID<1		5 10 15 20 · · · · · ·
-	- 0.1-	Sandy SILT (ML) : Low plasticity, dark brown, trace rootlets, W <pl< td=""><td></td><td>D</td><td>0.1</td><td>E</td><td>-</td><td></td><td></td></pl<>		D	0.1	E	-		
	_	Silty CLAY (CL) : Low plasticity, brown, trace carbonaceous lenses, W <pl< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td> h </td></pl<>							h
						_			
	- 0.35 -	$O(\Delta V/O(1))$, how electricity and trace fine to medium		D	0.3	E	PID<1		
-	-	CLAY (CL) : Low plasticity, red, trace fine to medium grained subangular to subrounded gravels, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>							
-	-				0.5	E	PID<1		-
-	-			U ₅₀					
42	-			-50					
	- 0.8-				0.75				
		SAND / SANDSTONE : Fine to medium grained, pale brown, extremely weathered							
-	-1			D	1.0	E	PID<1		-1
-	-								
-	-								
-	-								
	-								
-	-								
41	-								
-	-								
-	- 1.9	Pit discontinued at 1.9m, limit of investigation	·						
	-2	rit discontinued at 1.9m, innit of investigation							-2
	_								
-	-								
-	-								
-	-								
$\left \right $	-								
	-								
40									
ŀ	-								
ŀ	-								

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

 LECEND

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 G P U_x W ₽

CLIENT: PROJECT: LOCATION:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision 527 Cessnock Road, Gillieston Heights **SURFACE LEVEL:** 42.69 AHD **EASTING:** 362228.4 **NORTHING:** 6372628.513

PIT No: 125 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

Γ		Description	U		San	npling &	& In Situ Testing		
R	Depth	of	Graphic	n v	£	<u>e</u>	Des lis A	Water	Dynamic Penetrometer Test (blows per 150mm)
	(m)	Strata	5	Type	Depth	Sample	Results & Comments	3	5 10 15 20
-	-	Sandy SILT (ML) : Low plasticity, dark brown, trace rootlets, W <pl< td=""><td>· · ·</td><td></td><td>0.0</td><td>0,</td><td>PID<1</td><td></td><td></td></pl<>	· · ·		0.0	0,	PID<1		
-	0.15-	CLAY (CL) : Low plasticity, dark brown, trace fine to medium grained subangular to subrounded gravels, W <pl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pl<>							
	- 0.3	CLAY (CL) : Low plasticity, brown/red, trace subangular to subrounded fine to medium grained gravels, W <pl< td=""><td></td><td></td><td>0.3</td><td></td><td>PID<1</td><td></td><td></td></pl<>			0.3		PID<1		
-	- 0.5-	SAND / SANDSTONE : Fine to medium grained pale		В 	- 0.5		PID<1		
-	-	brown, extremely weathered							
42	-				0.8				
-	-			. В					
-	-1				- 1.0				-1
	-								
-	-			· . · . · .					
-	-			•					
-	-			· · · · · · ·					
41	-								
ŀ	-								
-	-2								-2
ŀ	-								
ŀ	- 2.2	Pit discontinued at 2.2m, limit of investigation	<u>l: : : :</u>	<u>.</u>					
	-								
ŀ	-								
	-								
- -4									
-	-								
Ŀ									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: --**EASTING:** 362390.2 NORTHING: 6372669.217 **PIT No: 126** PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	2	Dvnamic Penetrometer Test		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20		
	-	CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>PL		D, E	0.05		pp >400				
	-										
	-			<u>, D, E</u>	0.5		pp = 300-400				
	-			В							
	- 1 -			D	1.0		pp = 150-200				
	-			D	1.5		pp = 100-150				
	-										
	- 1.9- -2	SILTY CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>WP		D	2.0		pp = 50-60		-2		
	-										
	- 2.6 -			D	2.5		pp = 50-60	28-01-22 i			
	-	Pit discontinued at 2.6m, limit of investigation						28-			
	-										

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Free groundwater observed at 2.5m

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 32.64 AHD EASTING: 362047.6 **NORTHING:** 6372758.737

PIT No: 127 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

	Donth	Description	hic		Sam		& In Situ Testing		Dynamic Penetrometer Test
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
		Strata Sandy SILT (ML) : Low plasticity dark brown, trace rootlets, fine grained subangular to subrounded gravels, W <pl< td=""><td></td><td>D</td><td>0.01</td><td>S E</td><td>PID<1</td><td></td><td>5 10 15 20</td></pl<>		D	0.01	S E	PID<1		5 10 15 20
	0.25-	CLAY (CH) : High plasticity, dark brown mottled pale brown, trace rootlets, fine to medium grained subangular to subrounded gravels, W <pl< td=""><td></td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td>-</td><td>h</td></pl<>		D	0.3	E	PID<1	-	h
	0.6 -	CLAY (CH) : High plasticity, dark brown mottled red/orange, trace rootlets, fine to coarse grained subangular to subrounded W>PL			0.6			-	
_	1			D	1.0	E	PID<1	-	1
31				В		E		-	
-	1.7 -	CLAY (CH) : High plasticity, grey/red, trace rootlets, fine to medium grained subangular to subrounded, W <pl< td=""><td></td><td></td><td>1.7</td><td></td><td></td><td>-</td><td></td></pl<>			1.7			-	
	2			D	2.0	E	PID<1	-	2
-	2.4 -	CLAY (CH) : High plasticity, grey mottled red, trace rootlets, fine to medium grained subangular to subrounded W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></pl<>						-	
. 30	2.7 -	Pit discontinued at 2.7m, limit of investigation	r⁄⁄						
-								-	

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Gilmour

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPL		3 & IN SITU TESTING	LEGE	ND
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 40.65 AHD **EASTING:** 362182 NORTHING: 6372795.326

PIT No: 128 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

\square		Description	<u>.</u>		Sam		& In Situ Testing	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Per (blows p	netrometer 1 er 150mm)	Fest
	()	Strata	G	Тy		San			5 10	15 2	20
-	- 0.1	SANDY SILT (ML) - Low plasticity, dark brown, trace, fine to medium grained subangular to subrounded gravels, \rootlets, W <pl <="" td=""><td></td><td>D</td><td>0.0</td><td>E</td><td>PID<1</td><td></td><td>-</td><td>•</td><td>•</td></pl>		D	0.0	E	PID<1		-	•	•
-	-	SANDY CLAY (CL) - Low plasticity, grey-brown, trace fine to medium grained subangular to subrouded gravels, W <pl< td=""><td>· · / ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	· · / ·								
-	- 0.4			D	0.3	E	PID<1			• • • • • • • • •	•
-	-	CLAY (CH) - High plasticity, orange mottled red-grey, trace fine to medium grained subangular to subrounded gravels, trace rootlets, W <pl< td=""><td></td><td>D</td><td>0.5</td><td>E</td><td>PID<1</td><td></td><td>-</td><td>•</td><td></td></pl<>		D	0.5	E	PID<1		-	•	
-9-	-										•
-	-			в							•
	-1			D	1.0	E	PID<1		-1		
-	-								-		•
	- 1.3	SAND / SANDSTONE - Fine to medium grained pale brown, extremely weathered			1.3				-		•
-	-								-		•
-66									-		
-	-								-		•
-	-2								-2		
-	-								-		•
	-								-		•
	- 2.4	Pit discontinued at 2.4m, limit of investigation	<u> : :::</u> :								:
	-	,									:
	-									•	
-86	_										
$\left \right $											
	-										
	-										
										:	;

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 38.93 AHD **EASTING:** 362148 NORTHING: 6372704.037

PIT No: 129 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	U		Sam	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	e	oth	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)	
	(11)	Strata	<u>م</u> _	Type	Depth	Sample	Results & Comments	5	5 10 15 20	
-	- 0.1	SANDY SILT (ML) - Low plasticity, dark brown, trace fine to medium grained subangular / subrounded gravels, W <pl <="" td=""><td></td><td>D</td><td>0.0 0.1</td><td>E</td><td>PID<1</td><td></td><td></td></pl>		D	0.0 0.1	E	PID<1			
-	-	SANDY CLAY (CL) - Low plasticity, brown, mottled dark grey-orange, trace fine to medium subangular to subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.3	E	PID<1			
-	0.35	CLAY (CH) - High plasticity, red mottled grey-orange, trace subrounded fine grained gravels, rootlets, W <pl< td=""><td></td><td></td><td>0.35</td><td></td><td></td><td></td><td></td></pl<>			0.35					
-	-	From 0.6m, orange mottled red-grey, trace fine to medium		D	0.5	E	PID<1			
-	-	grained sand		в						
38	-									
-	-1			D	1.0	E	PID<1		-1	
-	- 1.2	SAND / SANDSTONE - Fine to medium grained pale			1.2					
-	-	brown, extremely weathered								
-	-									
-	-									
-	-								-	
37	-2								-2	
-	-									
$\left \right $	- 2.2	Pit discontinued at 2.2m, limit of investigation	I					+		
-	-									
	-									
-	-									
-	-									
36	-									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

 LECEND

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 G P U_x W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 45.12 AHD **EASTING:** 362257.3 **NORTHING:** 6372727.062

PIT No: 130 PROJECT No: 204921.00 DATE: 7/2/2022 SHEET 1 OF 1

		Description	O D D D D D D D D D D D D D D D D D D D									
RL	Depth (m)	of	aph		e	oth	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)		
	()	Strata	Ū	۲ ۲	I ype	Depth	Sample	Results & Comments	>	5 10 15 20		
45	-	SANDY SILT (ML) - Low plasticity, dark brown, trace rootlets, W <pl< td=""><td>· · ·</td><td>. с</td><td>D</td><td>0.1</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>	· · ·	. с	D	0.1	E	PID<1				
	0.15	SILT (ML) - Low plasticity, dark brown, W <pl< td=""><td>111</td><td>Ħ</td><td></td><td></td><td></td><td></td><td></td><td>↓]</td></pl<>	111	Ħ						↓]		
-	-				D	0.3	E	PID<1				
-	- 0.4	CLAY (CL) - Low plasticty, brown-orange, W <pl< td=""><td>\overline{V}</td><td>H</td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>	\overline{V}	H								
-	-		\mathbb{V}			0.5	Е	PID<1				
	-		\mathbb{V}									
			\mathbb{V}	F	в							
-	- 0.7	SAND / SANDSTONE - Fine to medium grained pale										
-	-	brown, extremely weathered			_	0.8						
	_ 1											
-	- 1											
-4	-											
-	-											
	-											
-												
-												
-	-											
	-											
-												
-												
	-											
	2 20											
	-2 2.0	Pit discontinued at 2.0m, limit of investigation										
43												
	-									-		
	-											
F												
-	-											
	-											
	_											
	-											
	-											

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)								
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)								
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D Disturbed sample	⊳	Water seep	S	Standard penetration test								
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)								

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 46.35 AHD **EASTING:** 362289.3 NORTHING: 6372781.891

PIT No: 131 PROJECT No: 204921.00 DATE: 7/2/2022 SHEET 1 OF 1

Г		Description	<u>ں</u> Sampling & In Situ Testing							
RL	Depth (m)	of	Graphic Log	0				Water	Dynamic Penetrometer Test (blows per 150mm)	
ľ	(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ň		
\vdash					-0.0		PID<1		5 10 15 20 · · · · · ·	
ł		SANDY SILT (ML) - Low plasticity, brown, trace fine to medium grained subangular to subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td></td><td>E</td><td></td><td></td><td></td></pl<>		D		E				
		rootlets, W <pl< td=""><td></td><td></td><td>0.1</td><td></td><td></td><td></td><td></td></pl<>			0.1					
	-									
ł	0.25	CLAY (CL) - Low plasticity, red-orange mottled brown.	$\overline{//}$	-		_				
-9	[CLAY (CL) - Low plasticity, red-orange mottled brown, trace rootlets, W <pl< td=""><td>V/</td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>	V/	D	0.3	E	PID<1			
	-		V//							
ł			$\langle / /$	_		_				
			\mathbb{V}/\mathbb{I}	D 	0.5	E	PID<1			
	- 0.6	CAND / CANDOTONE Fine to medium preined note	<u> </u>		0.6				├ <u>┊</u> ┋┣━━┪ ╎	
ł		SAND / SANDSTONE - Fine to medium grained pale brown, extremely weathered								
	-									
ł										
	-									
	-1								-1	
ł										
	-								-	
ł										
-4										
_	-								-	
ł										
	-									
	-									
ł										
	Ī									
	-									
ł			:··							
	Ī									
	-2								-2	
ł	- 2.1									
ł	2.1	Pit discontinued at 2.1m, limit of investigation								
	-									
f										
-4										
ſ										
ł										
t										
$\left \right $										
ſ										
ŀ										

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND											
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)							
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D Disturbed sample	⊳	Water seep	S	Standard penetration test							
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 42.47 AHD **EASTING:** 362208 **NORTHING:** 6372865.873

PIT No: 132 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

		Description	<u>.</u>		Sam		& In Situ Testing		Dynamic Penetrometer Test		
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic I (blow	s per 150mm)	st
				É.	0.0	Sa	PID<1		5 1	0 15 20	
-	- 0.1-	SANDY SILT (ML) - Low plasticity, brown, trace fine to medium grained subrounded gravel, rootlets, W <pl< td=""><td></td><td>D</td><td>0.1</td><td>E</td><td></td><td></td><td></td><td></td><td></td></pl<>		D	0.1	E					
-		SANDY CLAY (CL) - Low plasticity, brown, trace fine to coarse grained subrounded gravel, rootlets, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>									
	- 0.3-	CLAY (CH) - High plasticity, red mottled pale brown, trace rootlets, W <pl< td=""><td></td><td>D</td><td>0.3</td><td>E</td><td>PID<1</td><td></td><td><u>ן</u></td><td></td><td></td></pl<>		D	0.3	E	PID<1		<u>ן</u>		
	-								ļ		
42	-			D	0.5	Е	PID<1				
ŀ	-										
ŀ	-										
-	- 0.8-										
-	_	CLAY (CH) - High plasticity, grey mottled orange, trace fine to medium grained sand, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>									
-					10	-					
	-1			D	1.0	E	PID<1		-1		
	-										
	-										
	-										
Ī	-							.			
-4	-										
-	- 1.6-		///								
-	-	Pit discontinued at 1.6m, limit of investigation									
-	_										
									•		
	-								. • • • •		
	-2								-2		
	-										
Ī	-								-		
	-										
ŀ											
40	-										
$\left \right $											
									•		
	-								• •		
	-										
	-										
Ŀ											

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND					
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)		Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 46.14 AHD **EASTING:** 362298.7 NORTHING: 6372855.269

PIT No: 133 PROJECT No: 204921.00 DATE: 8/2/2022 SHEET 1 OF 1

Γ			Description	U		Sam	ipling 8	& In Situ Testing		
RL	Dep (m	th	of	Graphic Log	e	oth	ple	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
		"	Strata	ອ_	Type	Depth	Sample	Results & Comments	5	5 10 15 20
. 46	-		SANDY SILT (ML) - Low plasticity, dark brown, trace fine grained subangular to subrounded gravels, W <pl< td=""><td></td><td></td><td>0.0 0.01</td><td><u> </u></td><td>PID<1</td><td></td><td>-</td></pl<>			0.0 0.01	<u> </u>	PID<1		-
-	-	0.4			D	0.3	E	PID<1		
-	-	0.4	CLAY (CL) - Low plasticity, brown-red, trace fine grained subangular to subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td>0.4</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.4	E	PID<1		
-	-				В					
-	-	0.8	SAND / SANDSTONE - Fine to medium grained pale brown, extremely weathered			0.8				
-	-1				D	1.0	Е	PID<1		-1
45	-									
-	-									
-	-									
-	-									
-	-									
-	-2									-2
ŀ		2.1								
-44	-		Pit discontinued at 2.1m, limit of investigation							
-	-									
-	-									
	-									
	-									
-	-									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND												
A Auger sample G Gas sample PID Photo ionisation detector (
B Bulk sample P Piston sample PL(A) Point load axial test Is(50)													
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test is													
C Core drilling W Water sample pp Pocket penetrometer (kPa))												
D Disturbed sample D Water seep S Standard penetration test													
E Environmental sample V Shear vane (kPa)													

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 44.75 AHD **EASTING:** 362349.2 NORTHING: 6372866.331

PIT No: 134 PROJECT No: 204921.00 DATE: 7/2/2022 SHEET 1 OF 1

		Description	. <u>u</u>		Sam	npling &	& In Situ Testing				
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
-	-	Stata SANDY SILT (ML) - Low plasticity, brown, trace fine to medium grained subangular to subrounded gravels, rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>ю́ Е</td><td>PID<1</td><td></td><td>5 10 15 20</td></pl<>		D	0.0	ю́ Е	PID<1		5 10 15 20		
-	-			_		_					
-	- 0.4	CLAV (CL) Low plasticity arange mattled red trace fine		D	0.3	E	PID<1				
-	-	CLAY (CL) - Low plasticity, orange mottled red, trace fine to medium grained subangular to subrounded gravel, rootlets, W <pl< td=""><td></td><td>B D-⁄</td><td>- 0.5</td><td>Е</td><td>PID<1</td><td></td><td></td></pl<>		B D-⁄	- 0.5	Е	PID<1				
-	- 0.6 - 0.7	SAND / SANDSTONE - Fine to medium grained pale brown, low strength			0.6						
44	- 0.8	SANDSTONE - Fine to medium grained, white to pale brown, moderately weathered Pit discontinued at 0.8m, refusal						_			
-	- 1								-1		
-	-										
-	-										
-	-										
-	-								-		
-	-										
43	-								-		
-	-								-		
-	-2								-2		
-	-										
-	-										
-	-										
	-										
-4-	-										
	-										

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level
 LECEND

 PID
 Photo ionisation detector (ppm)

 PL(A) Point load axial test Is(50) (MPa)

 PL(D) Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)
 G P U_x W ₽

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 1.94 AHD **EASTING:** 362475.3 NORTHING: 6372871

PIT No: 135 PROJECT No: 204921.00 DATE: 28/1/2022 SHEET 1 OF 1

	-	Description	ji		Sam		& In Situ Testing	_	Dumania Danataan dan Taat
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-		CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>PL		D, E	0.05		PID<1		
ł	-								╎┍┛
ł	-				0.2		pp >400		
ł									
ł	_			D, E	0.5		pp = 300 PID<1		L _
ŀ	-				0.0		PID<1		
ł	-								-
ł	-			U ₅₀					-
ŀ	-								
	-1			D	0.94 1.0		pp = 250-280		-1
	-								
	-								
	-								-
	-								-
	-			D	1.5		pp = 150-160		
	-								-
	-								
-	-								
-0	-								
-	-2			D	2.0		pp = 100		-2
+	-			1					
ł	- 2.2	SILTY CLAY (CH) - High plasticity, grey mottled brown, trace rootlets, W>WP							
ł				D	2.3		pp = 90		
-	- 2.5-								
ŀ	- 2.3	Pit discontinued at 2.5m, limit of investigation	_						
-	-								
-	-								
-	-								
-7									

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Kramer

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Seepage at 2.2m

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

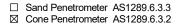
CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 40.85 AHD **EASTING:** 362309.6 NORTHING: 6372920.569

PIT No: 136 PROJECT No: 204921.00 **DATE:** 7/2/2022 SHEET 1 OF 1

			Description	Sampling & In Situ Testing			& In Situ Testing			
RL	Dep (m	oth 1)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-		SANDY SILT (ML) - Low plasticity, brown, trace fine grained subangular to subrounded gravels, rootlets, W <pl< td=""><td>· · ·</td><td>D</td><td>0.0</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>	· · ·	D	0.0	E	PID<1		
-	-	0.4			D	0.3	E	PID<1		
-	-		CLAY (CL) - Low plasticity, brown-orange mottled red, trace rootlets, wood (natural), W <pl< td=""><td></td><td>D</td><td>0.5</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.5	E	PID<1		
-	-					0.8				
40	ar.				В					
-	-1	1.1				1.0				-1
-	-		SAND / SANDSTONE - Fine to medium grained pale brown, extremely weathered		D	1.2	E	PID<1		-
-	-									
-8	-	1.8	Pit discontinued at 1.8m, refusal	1						
-	-2									-2
-	-									-
-										
-	-									
-	-									
38-	-									
-										

RIG: Yanmar 8t Excavator 600mm bucket with teeth


LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)							
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	¥	Water level	V	Shear vane (kPa)							

CLIENT: PROJECT: LOCATION:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 43.61 AHD EASTING: 362216.2 NORTHING: 6372950.377

PIT No: 137 PROJECT No: 204921.00 DATE: 7/2/2022 SHEET 1 OF 1

Γ		Description	ici		Sam		& In Situ Testing	-		Dynamic Penetrometer Test (blows per mm)			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam	(blows p	rometer er mm)	lest	
-		Strata SANDY SILT (ML) - Low plasticity, brown, trace rootlets,					PID<1	_	5	10	15	20	
	-	W <pl< td=""><td></td><td>D</td><td>0.1</td><td>E</td><td></td><td></td><td>-</td><td>÷</td><td>•</td><td></td></pl<>		D	0.1	E			-	÷	•		
-	-			D	0.3	E	PID<1		-				
-	- 0.4 -	CLAY (CH) - High plasticity, pale brown mottled orange, trace rootlets, W>PL		,	0.5	E	PID<1		-				
43	-			в					-			· · · ·	
-	-				0.8								
	- 1.2	SAND / SANDSTONE - Fine to medium grained pale brown, extremely weathered		D	1.5	E	PID<1		-1				
	-2 - 2.1								-2				
	-	Pit discontinued at 2.1m, limit of investigation							-				

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CLIENT: PROJECT:

Walker Gillieston Heights Pty Ltd Proposed Residential Subdivision LOCATION: 527 Cessnock Road, Gillieston Heights SURFACE LEVEL: 32.25 AHD **EASTING:** 362327.7 NORTHING: 6372964.25

PIT No: 138 PROJECT No: 204921.00 DATE: 7/2/2022 SHEET 1 OF 1

		Description	aphic og		Sam		& In Situ Testing	<u> </u>	Durania Danatanya tan Tant
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
-	-	SANDY SILT (ML) - Low plasticity, dark brown, trace fine grained subangular to subrounded gravel, rootlets, W <pl< td=""><td></td><td>D</td><td>0.0</td><td>E</td><td>PID<1</td><td></td><td></td></pl<>		D	0.0	E	PID<1		
32	- 0.3 -	CLAY (CH) - High plasticity, orange mottled red, trace rootlets, W ≪PL		D	0.3 0.4	E	PID<1	-	
	- 0.6 -			D U ₅₀	0.5	E	PID<1		
-	-	SAND / SANDSTONE - Fine to medium grained pale brown, low strength			0.75			-	>>
-	- 0.9- -1	SANDSTONE - Fine to medium grained, white to pale brown, moderately weathered						-	1
	- 1.1-	Pit discontinued at 1.1m, refusal on rock							2

RIG: Yanmar 8t Excavator 600mm bucket with teeth

LOGGED: Helbig

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 201 PROJECT No: 204921.00 DATE: 9/2/2022 SHEET 1 OF 1

_	1						1				
	_	Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	.e	Rock Strength _{ត្រ}	Fracture	Discontinuities				n Situ Testing
R	Depth (m)	of	9	Log	Strendth Very Low Low Very High Kery High Ex High	Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
		Strata	H M M M M M M M M M M M M M M M M M M M	G		0.01 0.10 0.50 1.00	S - Shear F - Fault	≻	ပိမ္ရွိ	R S	∝ Comments
	- 0.1	TOPSOIL / SANDY SILT (ML) - Low plasticity, brown, sand fine to medium grained, trace fine grained subangular to subrounded gravel, W <pl SILTY CLAY (CH) - High plasticity clay, red-brown, trace fine to</pl 		N // // // //							
	-	medium grained sand						s			pp >600 6,10,10 N = 20
	-2 2.1	SANDY CLAY (CL) - Brown, low plasticiity clay, sand medium to coarse with silt, extremely weathered rock						s			25/90,-,- refusal
								S			25/120,-,- refusal
	- 5.5	SANDSTONE - Brown, fine grained with quartz clasts and pebbles, irregular bedding					5.52m: P, sh, pl, ro 5.67m: P, sh, pl, ro 5.72m: P, sh, pl, sm, 15mm 5.82m: J, 10°, pl, ro, cly inf (20mm) 6.24m: J, 5°, pl, ro, cly inf, fe 6.27m: P, sh, pl, sm 6.31m: P, sh, pl, ro	S			25/40,-,- refusal
	-7 7.0	Bore discontinued at 7.0m, limit of investigation					6.37m: P, sh, pl, ro 6.37m: DB 6.53m: J, 15°, ir, ro 6.66m: P, sh, pl, ro				
	- 9 										

 RIG:
 Truck-mounted drilling rig
 DRILLER:
 Campbell

 TYPE OF BORING:
 Solid flight auger to 5.55m, NMLC coring to 7.0m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights

Proposed Residential Subdivision

CLIENT:

PROJECT:

LOGGED: Keogh / Helbig

CASING: HQ to 0.7m

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 202 PROJECT No: 204921.00 DATE: 9/2/2022 SHEET 1 OF 1

		Description	Degree of Weathering	. <u>0</u>	Rock Strength	5	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
Ę	Depth (m)	of	· · · · · · · · · · · · · · · · · · ·	Log	Strength Very High Medium Very High Ex High	Vate	Spacing (m)	B - Bedding J - Joint	Type	ore %:	RQD %	Test Results &
	()	Strata	H M M H M M H M M H M M H M M H M M H M M H M M H M	ڻ ا	Ex Lo Low High Ex High	> ^{0.0}	0.10	S - Shear F - Fault	Ţ	ပိမ္စ	R ~	Comments
	0.1	CLAY (CH) - High plasticity clay, orange-brown, M <pl, stiff,<br="" very="">residual SANDY CLAY (CL) - Low plasticity, pale brown, sand medium to coarse</pl,>										
	1	with silt, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>S</td><td>-</td><td></td><td>14,18,18 N = 36</td></pl<>							S	-		14,18,18 N = 36
-	2	SANDSTONE - Pale brown, fine to										
	3	medium grained, quartz clasts						2.55m: fg 2.72m: P, sh, pl, ro 2.76m: P, sh, pl, ro 2.86m: P, sh, pl, ro 2.94m: P, sh, pl, ro 2.94m: P, sh, pl, ro 2.96m to 3.11m, soil 3.17m: P, sh, pl, sm 3.4m: P, sh, pl, ro 3.6m: P, sh, pl, ro	С	100	44	
Ē								3.65m: HB 3.72m: J, 15°, pl, ro				
Ę						ľ		3.75m: cs, sh, pl, ro, inf (40)	С	100	81	
	5	Bore discontinued at 5.7m, limit of investigation						3.86m: P, sh, pl, ro 4.35m: P, sh, pl, ro 4.6m: P, sh, pl, ro (cly inf (2) 4.73m: P, sh, pl, ro 4.84m: P, sh, pl, ro, cly 5m: P, sh, pl, ro, cly inf 5.17m: P, sh, pl, ro, cly inf (3) 5.34m: J, 10°, ir, ro, cly				
	6 7							infil (3) 5.5m: J, 15°, ir, cly infil				
	8											
	9											
-												

RIG: Truck-mounted drilling rig

CLIENT:

PROJECT:

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights

Proposed Residential Subdivision

DRILLER: Campbell

LOGGED: Keogh / Helbig CASING: HQ to 0.7m

TYPE OF BORING: Solid flight auger to 2.5m, NMLC coring 2.5m to 5.7m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

	SAMPLING & IN SITU TESTING LEGEND												
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test ls(50) (MPa)								
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
	Disturbed sample	⊳	Water seep	S	Standard penetration test								
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)								

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 203 PROJECT No: 204921.00 DATE: 9/2/2022 SHEET 1 OF 1

			I _ I						
		Description	Degree of Weathering Claph Caphone Cap	Rock Strength _{টা}	Fracture	Discontinuities			In Situ Testing
RL	Depth (m)	of	aph aph	Strendth Medium Keny High Keny High Ex High Medium Con O.01	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. % RQD %	Test Results
	(,	Strata	G FR SW G			S - Shear F - Fault	Σ.	လ အတြ 🕺	& Comments
	0.1	TOPSOIL / SANDY SILT (ML) - Low plasticity, brown, trace fine to medium subangular to subrounded gravel, W <pl CLAY (CH) - High plasticity, orange mottled grey-red, W < PL CLAY (CH) - High plasticity, grey mottled red-orange, W<pl< td=""><td></td><td></td><td></td><td></td><td>S</td><td></td><td>pp = 500600 4,6,10 N = 16</td></pl<></pl 					S		pp = 500600 4,6,10 N = 16
	-2 2.6	SANDY CLAY (CL) - Low plasticity, pale brown, sand fine to medium					S		15,25/90,- refusal
	-3	grained, extremely weathered rock, W <pl< td=""><td></td><td></td><td></td><td></td><td><u>s</u>,</td><td></td><td>25/60,-,- refusal</td></pl<>					<u>s</u> ,		25/60,-,- refusal
	-5 5.0	Bore discontinued at 5.0m, limit of investigation							
	- 6								
	-9								

 RIG:
 Truck-mounted drilling rig
 DRILLER:
 Campbell

 TYPE OF BORING:
 Solid flight auger to 5.0m
 Solid flight auger to 5.0m

LOGGED: Keogh / Helbig

CASING: HQ to 0.7m

WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights

Proposed Residential Subdivision

	SAMPLING & IN SITU TESTING LEGEND									
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)					
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)					
C	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 204 PROJECT No: 204921.00 DATE: 9/2/2022 SHEET 1 OF 1

		Description	Degree of Weathering	<u>.</u>	Rock Strength ក្រ	Fracture	Discontinuities			In Situ Testing
	pth n)	of	, rocanon ig	Graphic Log	/ate	Spacing (m)	B - Bedding J - Joint	e	e % Q	Test Results
	,	Strata	FIS N M M M M M M M M M M M M M M M M M M	Ū	Strength Low Very Low Low Very Low Very L	0.01	S - Shear F - Fault	Type	Core Rec. % RQD	 & Comments
	0.1 -	TOPSOIL / SANDY SILT - Dark brown, trace subangular to subrounded gravel SILTY CLAY (CH) - High plasticity, orange-brown, W <pl< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>		<u> </u>						
-1								s	-	pp = 300 8,8,10 N = 18
	2.5-	SANDY CLAY (CL) - Low plasticity, pale brown, sand medium to coarse with silt, extremely weathered rock						S		25/135,-,- refusal
- - - - - - - - - - - - - - - - - - -								S		25/50,-,- refusal
-5	5.0 -	Bore discontinued at 5.0m, limit of investigation								
- 6 										
- 7 - 7 										
- - 8 - - - - - -										
- -9 - - - - - -										

RIG: Truck-mounted drilling rigDRILLER: CampbellTYPE OF BORING:Solid flight auger to 5.0m

LOGGED: Keogh / Helbig

CASING: HQ to 0.7m

WATER OBSERVATIONS: No free groundwater observed REMARKS:

CLIENT:

PROJECT:

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights

Proposed Residential Subdivision

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample C	Gas sample	PID Photo ionisation detector (ppm)								
B Bulk sample F	Piston sample	PL(A) Point load axial test Is(50) (MPa)								
BLK Block sample L	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)								
C Core drilling V	Water sample	pp Pocket penetrometer (kPa)								
D Disturbed sample D	Water seep	S Standard penetration test								
E Environmental sample	Water level	V Shear vane (kPa)								

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 206 PROJECT No: 204921.00 DATE: 10/2/2022 SHEET 1 OF 1

	Description	Degree of Weathering	.c	Rock Strength		Discontinuities				n Situ Testing
	of	·9	Log			B - Bedding J - Joint	be	sre %	۵°	Test Results
()	Strata	M A M S H	Q			S - Shear F - Fault	<u>∼</u>	ပိမ္မိ	R S ⊗	& Comments
0.2	FILL / SANDY SILT (ML) - Low plasticity, brown, trace plastic, fine to coarse grained subangular to subrounded gravel, wood, W <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl<>									
-1 1.0	pale brown with fine to medium						S			25/100,-,- refusal
-2 2 	SANDSTONE Data brown fing to									
-3	medium grained, pebbles from 4.2m, quartz clasts, irregular bedding					2.91m: P, sh, pl, ro 3.08m: P, sh, ir, ro, cly inf (3) 3.14m: P, 20°, cu, ro 3.48m: P, sh, un, ro 3.76m: P, sh, ir, ro, cly	с	100	54	
	From 4.95m to 5.4m, grey					inf 4.1m: P, sh, pl, ro 4.1m: P, sh, ir, ro 4.14m: P, 10°, pl, ro 4.42m: P, sh, pl, ro 4.62m: P, sh, pl, ro 4.82m: P, sh, ir, ro 4.83m: P, sh, pl, ro, cly inf	С	100	86	
-6						inf 5.76m: P, sh, ir, ro 6.13m: P, 10°, un, ro 6.25m: P, sv, un, ro 6.69m: P, sh, pl, ro	С	100	91	
-7 7.0	Bore discontinued at 7.0m, limit of investigation					6.8/m: P, sh, pl, ro				
	-1 1.(-2 -3 -3 -4 -4 -7 7.(FILL / SANDY SILT (ML) - Low plasticity, brown, trace plastic, fine to coarse grained subangular to subrounded gravel, wood, W<pl SILTY CLAY (CL) - Low plasticity, pale brown with fine to medium grained sand, extremely weathered rock, W<pl< li=""> SANDSTONE - Pale brown, fine to medium grained, pebbles from 4.2m, quartz clasts, irregular bedding From 4.95m to 5.4m, grey Bore discontinued at 7.0m, limit of investigation </pl<></pl 	0.2 FILL / SANDY SILT (ML) - Low 0.2 plasticity, brown, trace plastic, fine to coarse grained subangular to subrounded gravel, wood, W <pl< td=""> SILTY CLAY (CL) - Low plasticity, pale brown with fine to medium 97 arined poorly graded sand, W<pl< td=""> SANDY CLAY (CL) - Low plasticity, pale brown with medium to coarse grained sand, extremely weathered rock, W<pl< td=""> 2 2.8 SANDSTONE - Pale brown, fine to medium grained, pebbles from 4.2m, quartz clasts, irregular bedding 4 5 From 4.95m to 5.4m, grey 6 7 7.0 Bore discontinued at 7.0m, limit of investigation</pl<></pl<></pl<>	 FILL / SANDY SILT (ML) - Low plasticity, brown, trace plastic, fine to carse grained subangular to subrounded gravel, wood, W<pl (cl)="" -="" brown="" carse="" clay="" extremely="" fine="" grained="" li="" low="" medium="" pale="" plasticity,="" rock,="" sada,="" sand,="" sandy="" silty="" to="" w<pl="" w<pl<="" weathered="" with=""> SANDSTONE - Pale brown, fine to medium grained, pebbles from 4.2m, quartz clasts, irregular bedding From 4.95m to 5.4m, grey Bore discontinued at 7.0m, limit of investigation </pl>	Depth (m) Lescription of Weathering Strata Strength (m) Strength	FILL / SANDY SILT (ML) - Low 12 plasticity, brown, trace plastic, fine to coarse grained pooly graded sand, W-PL, silt TY CLAY (CL) - Low plasticity, pale brown with fine to medium to coarse grained sand, extremely weathered rock, W <pl< td=""> 1 10 grained sand, extremely weathered rock, w<pl< td=""> 2 SANDSTONE - Pale brown, fine to medium grained, pables from 4.2m, quartz clasts, irregular bedding 4 From 4.95m to 5.4m, grey 5 From 4.95m to 5.4m, grey 6 Sander data to the site of /pl<></pl<>	02 PILL / SANDY SILT (ML) - Low conservation of the submounded gravel, wood, W-PL submounded gravel, wood, W-PL submounded gravel, wood, W-PL submounded gravel, wood work fine to medium graned peoty graded sand, wePL graded sand, wePL submounded gravel, woor plasticity, pale brown with fine to work fine to medium graned, pebbles from 4.2m, quart clasts, irregular bedding SANDSTONE - Pale brown, fine to medium graned, pebbles from 4.2m, quart clasts, irregular bedding From 4.95m to 5.4m, grey From 4.95m to 5.4m, grey Bore discontinued at 7.0m, limit of investigation Bore discontinued at 7.0m, limit of investigation a a a b a b a a b a a b a b a a a a a b a b a a a a b a 	02 PILL / SANDY SLT (ML) r- Low coarse grained subangular to subangular br>to subangular to subangular to subangular to subangu	02 plasticly horw, tace plastic, fine to coarse grained subangular to subangular to subangular to subangular to grained poorly graded sand, W-PL Shall Y CLAY (CL) - Low plasticity, plast brown with fine to medium grained poorly graded sand, we plastic, fine to coarse grained sand, extremely weathered rock, W <pl< td=""> Shall Y CLAY (CL) - Low plasticity, plast brown with needum to coarse grained sand, extremely weathered rock, W<pl< td=""> 2.8 Shall STONE - Pale brown, fine to medium grained, pebbles from 4, plastic, inregular badding Shall Y CLAY (CL) - Low plasticity, plastic y plastic, y plastic y plastic, y plast</pl<></pl<>	PLL/SAMOY SLT (ML)-Low 02 plasticity, hown, trace plasticity, plastici

 RIG:
 Truck-mounted drilling rig
 DRILLER:
 Campbell

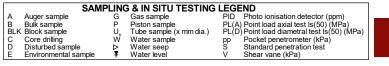
 TYPE OF BORING:
 Solid flight auger to 2.8m, NMLC coring to 7.0m

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights


Proposed Residential Subdivision

CLIENT:

PROJECT:

LOGGED: Keogh / Helbig

CASING: HQ to 0.7m

SURFACE LEVEL: --EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 207 PROJECT No: 204921.00 DATE: 10/2/2022 SHEET 1 OF 1

		Description	Degree of Weathering ﷺ ≩ ≩ ଛ ଝ ଝ	ic	Rock Strength _{ចេ}	Fracture	Discontinuities	Sa	ampli	ng & I	n Situ Testing
2	Depth (m)	of		Log	Strength Very High Kery High Kery High Kery High Kery High Kery High Kery High Kery High Kery High Kery Low Kery High Kery Low Kery Low Kery High Kery Low Kery High Kery Low Kery Low Kery High Kery Low Kery High Kery Low Kery Low Ke	Spacing (m)	B - Bedding J - Joint	Type	ore :. %	RQD %	Test Results &
	(,	Strata	H M M M M M M M M M M M M M M M M M M M	Ū	Very I Very I Very I Ex High		S - Shear F - Fault	⊨	ပိမ္ရွိ	R %	م Comments
-	0.2 -	SANDY SILT (ML) - Low plasticity, dark brown, trace medium to coarse grained subrounded gravels, W <pl CLAY (CH) - High plasticity, brown-red, W>PL</pl 									
	1							S	-		pp = 100 1,2,3 N = 5
	-2	From 2.0m, colour red - grey mottled orange						s	-		pp = 250 4,6,9 N = 15
	•3										
	- 4										
	5 5.0 -	Bore discontinued at 5.0m, limit of investigation									
	6										
	-7										
	8										
	9										

 RIG: Truck-mounted drilling rig
 DRILLER: Campbell

 TYPE OF BORING:
 Solid flight auger to 5.0m

Walker Corporation Pty Ltd

LOCATION: 527 Cessnock Road, Gillieston Heights

Proposed Residential Subdivision

CLIENT: PROJECT:

LOGGED: Keogh / Helbig

CASING: HQ to 0.7m

WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard ard penetration test

Appendix C

Historical Aerial Photographs (Optional)

Appendix C Historical Aerial Photos 527 Cessnock Road, Gillieston Heights

Figure C1: 1944 aerial photo, Lot 3 DP 71130

Figure C2: 1961 aerial photo, Lot 3 DP 71130

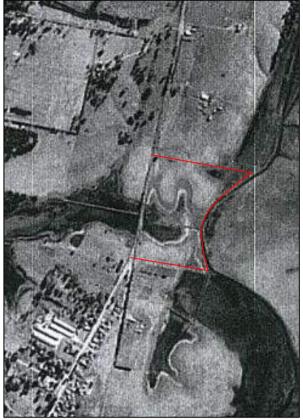


Figure C3: 1984 aerial photo, Lot 3 DP 71130



Figure C4: 2006 aerial photo, Lot 3 DP 71130

Figure C5: 2006 aerial photo, Lot 3 DP 71130

Figure C6: 2015 aerial photo, Lot 3 DP 71130

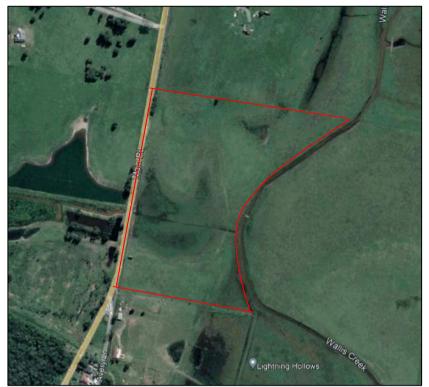


Figure C7: 2020 aerial photo, Lot 3 DP 71130

Douglas Partners Pty Ltd

Appendix D

NSW EPA Records Historical Titles Search

Appendix D Council and NSW EPA searches 527 Cessnock Road, Gillieston Heights

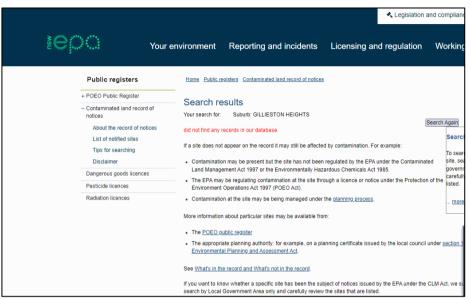
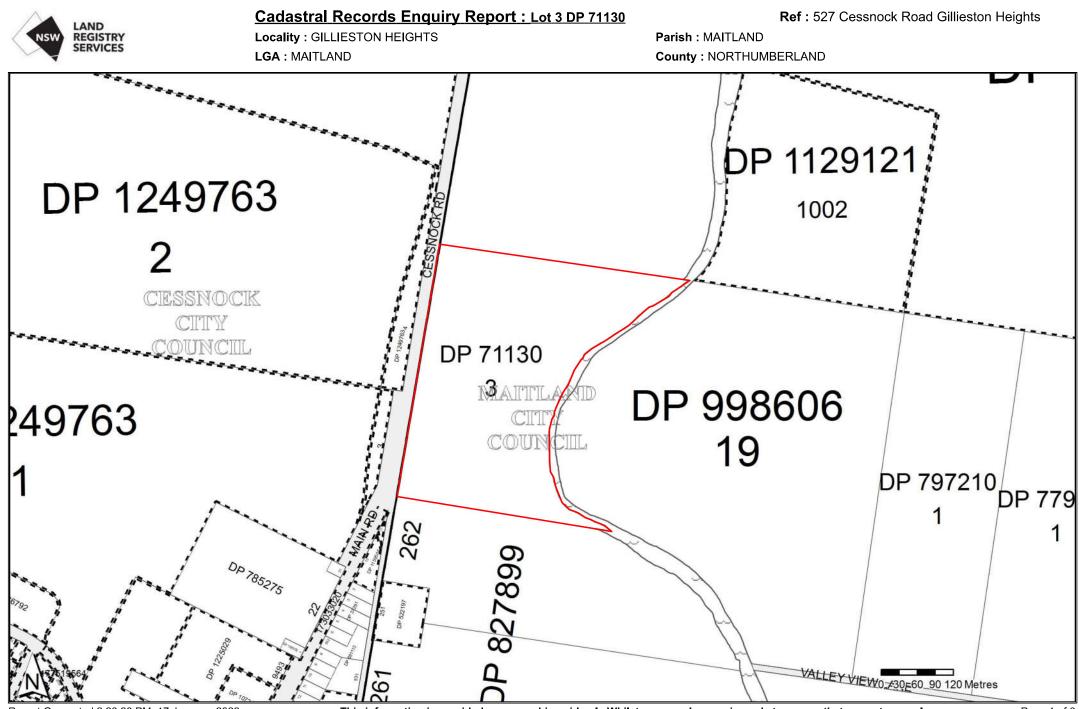
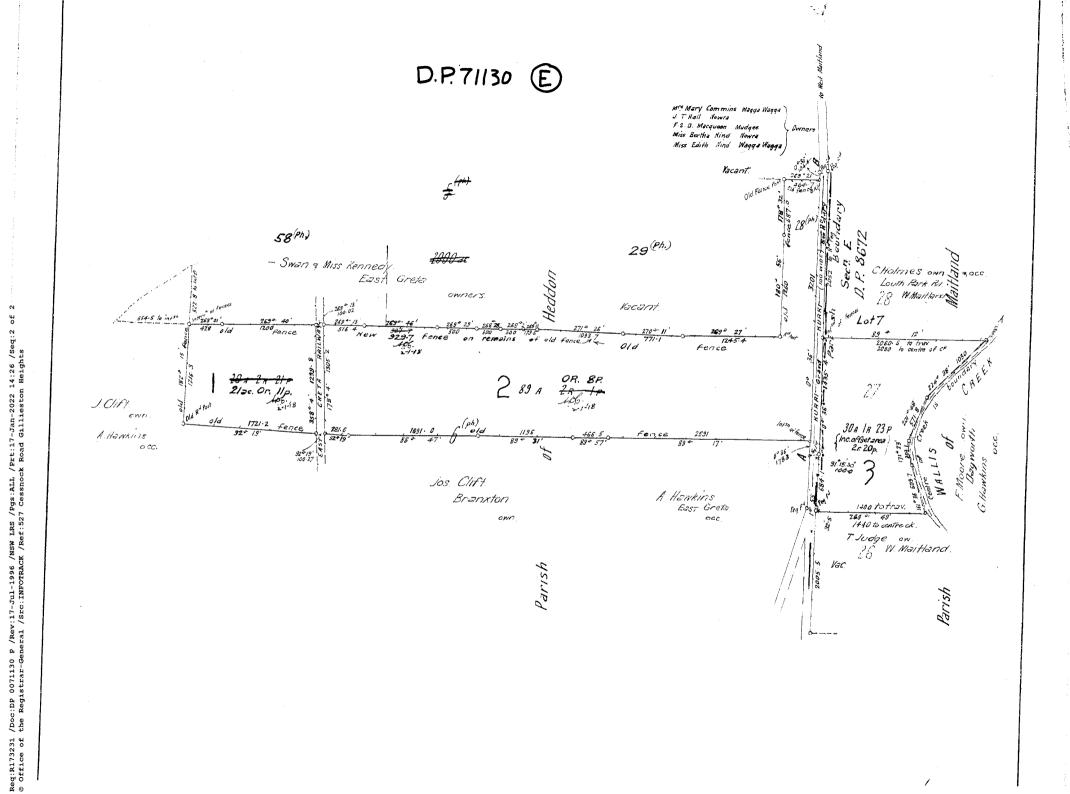



Figure D1: EPA Notices available under Section 58 of the Contaminated Lands Management Act

				Regulation under CLM Act not		
GERRINGONG	Gerringong Cooperative	18 Belinda STREET	Other Petroleum	required	-34.74518835	150.81810
GILGANDRA	United (Former Mobil) Service Station	13 Castlereagh STREET	Service Station	Regulation under CLM Act not required	-31.71715641	148.65815
GILGANDRA	Former Mobil Depot	2 Federation STREET	Other Petroleum	Regulation under CLM Act not required	-31.70937362	148.652210
GILGANDRA	Former Mobil Depot	20 Federation STREET	Other Petroleum	Regulation under CLM Act not required	-31.70771744	148.65141
GILGANDRA	Caltex Service Station Gilgandra	6425 Newell HIGHWAY	Service Station	Regulation under CLM Act not required	-31.72545524	148.652
GILLENBAH	Caltex (Former Mobil) Narrandera Service Station	16321 - 16335 Newell HIGHWAY	Service Station	Regulation under CLM Act not required	-34.76124219	146.53986
GIRRAWEEN	Industrial Galvanizers Girraween	20-22 Amax AVENUE	MetalIndustry	Regulation being finalised	-33.80500693	150.939674
GIRRAWEEN	Caltex Pendle Hill Service Station Girraween	602 Great Western HIGHWAY	Service Station	Regulation under CLM Act not required	-33,80827518	150.34215

Figure D2: Sites notified to EPA under Section 60 of the CLM Act


Douglas Partners Pty Ltd


Report Generated 2:28:20 PM, 17 January, 2022 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 6

Req:R173231 /Doc:DP 0071130 P /Rev:17-Jul-1996 /NSW LRS /Pgs:ALL /Prt:17-Jan-2022 14:26 /Seq:1 of 2 © Office of the Registrar-General /Src:INFOTRACK /Ref:527 Cessnock Road Gillieston Heights InfoTrack FP71130 E DP71130 Municipality of West Maitland R. P. A 21130 PLAN Por 28^(pt) of part of Samuel Cliffs 640ac G^+ Por $\delta^{(n)}_{and}$ Lot 27 of the Dagworth Estate Parishes of Heddon & Maitland County of Northumberland Scale 10 chains to an inch £. 29^{(Ph} 58 (Phy 2000-Miss 1:251 28 WMailk . Lot 7 263 = /1 1000 = 2 2050 2 89 A 28 14 27 I Chili 30a Ir 23 p \$ 36 183 A Hawkin 3 1.15.36 jos. ChiPt Branxton 769 ° /440 to T. Lodge ov. 25 W. Mai Hai 25 Parish Parish I Alexander Donald Craig of Sydney Licensed Surveyor specially licensed under the Real Property Act do hereby sincerely declare that the boundaries and measurements shown in this plan are con nd that the survey of the land to which the plan relates has been in this solema declaration conscientionsly believing the same to be true nathe Act. 1900 of June Surveyor lacanto Vature line of Azimuth A.B. Bate of Survey May 1917 DP 71130 ۲ 3201 LINKS REGISTRAR GENERAL'S DEPARTMEN 6.5.9 AC RD F AC RD N N I 2 1 8 8118 8118 3.822 20.121 20.121 20.121 20.121 20.121 21.002 35.868 36.130 36.130 36.130 36.350 56.649 374 12.3 36.04 259 IETRES

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------17/1/2022 2:26PM

FOLIO: 3/71130

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 5040 FOL 80

Recorded	Number	Type of Instrument	C.T. Issue
24/11/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/4/1990		AMENDMENT: PARISH-COUNTY	
1/5/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
14/5/1990	¥932590	DISCHARGE OF MORTGAGE	EDITION 1
16/12/2019	AP763514	TRANSMISSION APPLICATION (DEVISEE, BENEFICIARY, NEXT OF KIN)	EDITION 2
30/3/2021	AQ916413	CAVEAT	

*** END OF SEARCH ***

527 Cessnock Road Gillieston Heights PRINTED ON 17/1/2022

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 3/71130

LAND

SERVICES

_ _ _ _ _ _

EDITION NO DATE SEARCH DATE TIME _____ ____ _____ ____ 16/12/2019 17/1/2022 2:25 PM 2 LAND ____ LOT 3 IN DEPOSITED PLAN 71130 LOCAL GOVERNMENT AREA MAITLAND PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP71130 FIRST SCHEDULE _____ GRAEME DENNIS VICTOR WARBY IN 1/3 SHARE GLORIA VALMAI HESKETH IN 1/3 SHARE VICTOR FRANCIS WILLIAM WARBY IN 1/3 SHARE AS TENANTS IN COMMON (AD AP763514) SECOND SCHEDULE (3 NOTIFICATIONS) _____ 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) C775518 LAND EXCLUDES MINERALS AND SUBSTRATA AND IS SUBJECT 2 TO RIGHTS TO MINE AQ916413 CAVEAT BY WALKER GILLIESTON HEIGHTS PTY LIMITED * 3 NOTATIONS _____ UNREGISTERED DEALINGS: NIL *** END OF SEARCH ***

527 Cessnock Road Gillieston Heights PRINTED ON 17/1/2022

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Appendix E

Summary of Laboratory Results Laboratory Reports

Appendix E Summary of Laboratory Results Proposed Residential Subdivision 527 Cessnock Road, Gillieston Heights

E1.0 Introduction

The results of laboratory testing for the above project is presented in the following tables:

- Table E1: Summary of Laboratory Results for Land Use Metals;
- Table E2: Summary of Laboratory Results for Land Use TRH, BTEX, PAH;
- Table E3: Summary of Laboratory Results for Land Use OCP, OPP, PCB, Asbestos;
- Table E4: Summary of Laboratory Results for Land Use Microbiological;
- Table E5: Summary of Laboratory Results for Waste Classification Metals, TRH, BTEX;
- Table E6: Summary of Laboratory Results for Waste Classification PAH, OCP, OPP, PCB, Asbestos.

Table E1: Summary of Laboratory Results for Residential Land Use – Metals

							we	itals			
				Arsenic	Cadmium	Total Chromium	Copper	read	Mercury (inorganic)	Nickel	Zinc
			PQL	4	0.4	1	1	1	0.1	1	1
Sample ID	Depth	Fill/Natural	Sample Date	mg/kg	mg/kg <0.4	mg/kg 8	mg/kg 5	mg/kg 24	mg/kg <0.1	mg/kg 5	mg/kg 48
1	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 5	6000 65 2	300 1100 26	40 - <0.1	400 35 2	7400 190 12
2	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 4	6000 65 1	300 1100 5	40 - <0.1	400 35 2	7400 190 9
3	0.3 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 4	6000 65 4	300 1100 10	40 - <0.1	400 35 4	7400 190 38
4	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 4	6000 65 16	300 1100 17	40 - <0.1	400 35 2	7400 190 20
5	0 - 0.1 m	Fill	08 Feb 2022	100 100 <4	20 - <0.4	100 410 6	6000 65 9	300 1100 60	40 - <0.1	400 35 5	7400 190 130
6	0 - 0.1 m	Fill	25 Jan 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190
6	0.4 m	Fill	25 Jan 2022	<4 100 100	0.4 20 -	3 100 410	28 6000 65	16 300 1100	<0.1 40 -	4 400 35	51 7400 190
7	0 - 0.1 m	Fill	25 Jan 2022	<4 100 100	0.6 20 -	9 100 410	16 6000 65	89 300 1100	<0.1 40 -	8 400 35	490 7400 190
8	0.3 m	Fill	25 Jan 2022	11 100 100	<0.4 20 -	17 100 410	8 6000 65	110 300 1100	<0.1 40 -	9 400 35	330 7400 190
10	0.4 m	Fill	25 Jan 2022	<4 100 100	<0.4	3 100 410	<1 6000 65	4 300 1100	<0.1	1 400 35	19 7400 190
11	0.3 m	Fill	25 Jan 2022	<4	<0.4	7	21	87	<0.1	6	190
12	0.3 m	Fill	25 Jan 2022	100 100 5	0.5	100 410 10	27	130	<0.1	400 35 9	800
13	0 - 0.1 m	Fill	25 Jan 2022	100 100 4	<u>20</u> - 2	100 410 9	6000 65 51	300 1100 350	<u>40</u> - <0.1	400 35 9	7400 190 1400
				100 100 4	20 - <0.4	100 410 9	6000 65 7	300 1100 17	40 - <0.1	400 35 4	7400 190 130
15	0.5 m	Fill	25 Jan 2022	100 100 <4	20 - <0.4	100 410 10	6000 65 7	300 1100 11	40 - <0.1	400 35 8	7400 190 22
101	0 - 0.05 m	Natural	25 Jan 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190
102	0.05 m	Natural	25 Jan 2022	<4 100 100	<0.4 20 -	25 100 410	19 6000 65	12 300 1100	<0.1 40 -	29 400 35	45 7400 190
103	0.05 m	Natural	25 Jan 2022	<4 100 100	<0.4 20 -	7 100 410	2 6000 65	8 300 1100	<0.1 40 -	3 400 35	6 7400 190
104	0.5 m	Natural	25 Jan 2022	9 100 100	<0.4	12 100 410	4 6000 65	41 300 1100	0.2 40 -	4 400 35	9 7400 190
105	0.05 m	Natural	25 Jan 2022	<4	<0.4	6	3	9	<0.1	3	27
106	0.05 m	Natural	25 Jan 2022	100 100 <4	20 - <0.4	100 410 8	6000 65 7	300 1100 14	40 - <0.1	400 35 5	7400 190 35
107	0.05 m	Natural	25 Jan 2022	100 100 <4	<u>20</u> - <0.4	100 410 5	6000 65 2	<u>300 1100</u> 8	40 - <0.1	400 35 3	7400 190 13
				100 100 <4	20 - <0.4	100 410 6	6000 65 3	300 1100 26	40 - <0.1	400 35 3	7400 190 52
108	0.05 m	Fill	25 Jan 2022	100 100 7	20 - <0.4	100 410 19	6000 65 5	300 1100 12	40 - <0.1	400 35 5	7400 190 20
109	0.5 m	Natural	25 Jan 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190
110	0.05 m	Natural	25 Jan 2022	10 100 100	<0.4 20 -	7 100 410	<1 6000 65	6 300 1100	<0.1 40 -	1 400 35	6 7400 190
111	0.05 m	Natural	25 Jan 2022	<4 100 100	<0.4 20 -	5 100 410	3 6000 65	10 300 1100	<0.1 40 -	3 400 35	20 7400 190
112	0.05 m	Natural	25 Jan 2022	<4 100 100	<0.4	5 100 410	3 6000 65	7 300 1100	<0.1 40 -	5 400 35	10 7400 190
114	0.05 m	Natural	25 Jan 2022	4 100 100	<0.4	7 100 410	5 6000 65	13 300 1100	<0.1	6 400 35	31 7400 190
116	0.05 m	Natural	25 Jan 2022	5	<0.4	8	6	14	<0.1	12	25
118	0.05 m	Natural	25 Jan 2022	100 100 5	20 - <0.4	100 410 25	6000 65 24	300 1100 17	40 - <0.1	400 35 28	7400 190 72
119	0.3 m	Natural	08 Feb 2022	100 100 5	20 - <0.4	100 410 15	6000 65 1	300 1100 9	40 - <0.1	400 35 4	7400 190 13
				100 100 4	20 - <0.4	100 410 6	6000 65 4	300 1100 12	40 - <0.1	400 35 5	7400 190 21
120	0.05 m	Natural	25 Jan 2022	100 100 <4	20 - <0.4	100 410 6	6000 65 2	300 1100 7	40 - <0.1	400 35 2	7400 190 12
121	0 - 0.1 m	Natural	08 Feb 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190
122	0.3 m	Fill	08 Feb 2022	4 100 100	<0.4 20 -	5 100 410	<1 6000 65	8 300 1100	<0.1 40 -	1 400 35	4 7400 190
123	0 - 0.1 m	Natural	08 Feb 2022	<4 100 100	<0.4	5 100 410	<1 6000 65	9 300 1100	<0.1 40 -	2 400 35	11 7400 190
124	0.5 m	Natural	08 Feb 2022	6 100 100	<0.4	12 100 410	5 6000 65	13 300 1100	<0.1 40 -	13 400 35	38 7400 190
125	0.3 m	Natural	08 Feb 2022	8	<0.4	16	7	13	<0.1	14	31
127	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	<0.4	6	6000 65 6	300 1100 8	<0.1	3	8
128	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 6	6000 65 1	300 1100 9	40 - <0.1	400 35 2	7400 190 9
				100 100 <4	20 - <0.4	100 410 6	6000 65 2	300 1100 10	40 - <0.1	400 35 2	7400 190 12
129	0 - 0.1 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 5	6000 65 2	300 1100 8	40 - <0.1	400 35 3	7400 190 11
130	0.3 m	Natural	08 Feb 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190
D1LAH	0.3 m	Natural	08 Feb 2022	6 100 100	<0.4	12 100 410	5 6000 65	13 300 1100	<0.1 40 -	8 400 35	26 7400 190
131	0.5 m	Natural	08 Feb 2022	8 100 100	<0.4 20 -	17 100 410	3 6000 65	14 300 1100	<0.1 40 -	10 400 35	28 7400 190
132	0 - 0.1 m	Natural	08 Feb 2022	<4 100 100	<0.4 20 -	6 100 410	<1 6000 65	7 300 1100	<0.1 40 -	2 400 35	6 7400 190
133	0.3 m	Natural	08 Feb 2022	5 100 100	<0.4	10 100 410	4 6000 65	11 300 1100	<0.1	6 400 35	17 7400 190
134	0.3 m	Natural	08 Feb 2022	<4	<0.4	4	<1	4	<0.1	2	5
D2LAH	0.3 m	Natural	08 Feb 2022	100 100 <4	20 - <0.4	100 410 4	6000 65 <1	300 1100 3	40 - <0.1	400 35 2	7400 190 6
				100 100 4	20 - <0.4	100 410 26	6000 65 25	300 1100 16	40 - <0.1	400 35 31	7400 190 80
135	0.05 m	Natural	25 Jan 2022	100 100 <4	<u>20</u> - <0.4	100 410 6	6000 65 3	300 1100 11	40 - <0.1	400 35	7400 190 25
	0 - 0.1 m	Natural	08 Feb 2022	100 100	20 -	100 410	6000 65	300 1100	40 -	3 400 35	7400 190
136		Natural	08 Feb 2022	<4 100 100	<0.4 20 -	3 100 410	2 6000 65	6 300 1100	<0.1 40 -	2 400 35	7 7400 190
136 137	0.3 m							4	<0.1	2	
	0.3 m 0.3 m	Natural	08 Feb 2022	<4	<0.4	4 100 410	1 6000 65	300 1100	40 -	400 35	6 7400 190
137		Natural	08 Feb 2022 08 Feb 2022	<4 100 100 <4	20 - <0.4	100 410 8	6000 65 2	300 1100 9	40 - <0.1	400 35 6	7400 190 16
137 D3LAH	0.3 m			<4 100 100	20 -	100 410	6000 65	300 1100	40 -	400 35	7400 190

Lab r	esult		
HIL/HSL value	EIL/ESL value	EIL/ESL value	

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📓 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceed Blue = DC exceedance Bold = Lab detections - = Not tested or No HL/HSL/EL/ESL (as applicable) or Not applicable

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level /

- Site Assessment Criteria (SAC):

 Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

 SAC based on gen-SAC based on generic land use thresholds for Residential A with garden/accessible soil

 HL A
 HLA

 HSL AB
 HSL AB

 D C HSL A
 Decidential / Low High Density (NePC, 2013)

 D C HSL A
 Decidential / Low High Density (vapour Intrusion) (REPC, 2013)

 EL/ESL URPOS
 EL/ESL URPOS
 Ureat NetWork HSL AR esidential (Low density) (direct contact) (CRC CARE, 2011)

 EL/ESL URPOS
 ML R/P/POS
 Wahn Residential and Public Open Space (NEPC, 2013)

Appendix E, Summary of Laboratory Results 527 Cessnock Road, Gillieston Heights

Table E2: Summary of Laboratory Results – TRH, BTEX, PAH

						TF	RH				ВТ	ΈX		РАН				
				TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	
			PQL	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05	
Sample ID	Depth	Fill/Natural	Sample Date	mg/kg <25	mg/kg <50	mg/kg <25	mg/kg <50	mg/kg <100	mg/kg <100	mg/kg <0.2	mg/kg <0.5	mg/kg <1	mg/kg <1	mg/kg <0.1	mg/kg	mg/kg <0.5	mg/kg 1.8	
1	0 - 0.1 m	Natural	08 Feb 2022	<25	- 120 <50	<25 50 180 <25	<50 280 - <50	- 1300 <100	- 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	NL 125 <1	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 <0.05	<0.5 3 - <0.5	300 - 0.1	
2	0 - 0.1 m	Natural	08 Feb 2022	<25	- 120 <50	<25 50 180 <25	<50 280 - <50	<100 - 1300 <100	< 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	NL 125	<1 110 45 <1	<0.1 5 170 <0.1	<0.05 - 0.7 <0.05	<0.5 3 - <0.5	300 - <0.05	
3	0.3 m	Natural	08 Feb 2022		- 120 <50	50 180	<50 280 - <50	- 1300	- 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	NL 125	110 45	5 170	- 0.7 0.05	3 - <0.5	<u>300</u> - 0.3	
4	0 - 0.1 m	Natural	08 Feb 2022	<25 <25	- 120 <50	<25 50 180 <25	<50 280 - <50	<100 - 1300 <100	- 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	<1 NL 125 <1	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 <0.05	<0.5 3 - <0.5	300 - <0.05	
5	0 - 0.1 m	Fill	08 Feb 2022	<25	- 120	50 180 <25	280 - <50	- 1300 <100	- 5600	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	5 170 <0.1	- 0.7 0.1	3 -	<u>300</u> - 1.2	
6	0 - 0.1 m	Fill	25 Jan 2022	<25	- 120	50 180 <25	280 -	- 1300	- 5600	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	5 170 0.1	- 0.7 0.3	3 -	300 -	
6	0.4 m	Fill	25 Jan 2022	<25	- 120	50 180 <25	<u>280</u> - <50	- 1300 <100	- <u>5600</u> <100	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	<0.1	- 0.7 0.1	3 -	300 - 1.1	
7	0 - 0.1 m	Fill	25 Jan 2022	<25	- 120	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65 <0.2	480 105 <0.5	NL 125 <1	110 45 <1	5 170 <0.1	- 0.7 0.81	3 -	<u>300</u> - 9.4	
8	0.3 m	Fill	25 Jan 2022	<25	- 120	50 180 <25	280 - <50	- 1300 <100	- <u>5600</u> <100	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	<0.1 <0.1	- 0.7 <0.05	3 -	<u>300</u> - <0.05	
10	0.4 m	Fill	25 Jan 2022	<25	- 120 <50	50 180 <25	280 - <50	- 1300 <100	- 5600 <100	0.7 65	480 105 <0.5	NL 125	110 45 <1	5 170 <0.1	- 0.7 0.5	3 -	300 - 5.4	
11	0.3 m	Fill	25 Jan 2022	<25	- 120 <50	50 180 <25	280 - <50	- 1300 120	- <u>5600</u> <100	0.7 65 <0.2	480 105 <0.5	NL 125	110 45 <1	<u>5</u> 170 <0.1	- 0.7 0.2	3 -	<u>300</u> - 1.7	
12	0.3 m	Fill	25 Jan 2022	<25	- 120 <50	<u>50 180</u> <25	280 - <50	- 1300	- 5600	0.7 65 <0.2	480 105 <0.5	NL 125	<u>110 45</u>	<u>5</u> 170 <0.1	- 0.7 0.54	<u> </u>	<u>300</u> - 4.5	
13	0 - 0.1 m	Fill	25 Jan 2022	<25	- 120 <50	<25 50 180 <25	<50 280 - <50	- 1300 <100	- <u>5600</u> <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	NL 125	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 0.3	3 - <0.5	4.5 300 - 3.3	
15	0.5 m	Fill	25 Jan 2022	<25	<50 - 120 <50	<25 50 180 <25	<50 280 - <50	<100 - 1300 <100	<100 - 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	<1 NL 125 <1	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 <0.05	<0.5 3 - <0.5	3.3 300 - 0.1	
101	0 - 0.05 m	Natural	25 Jan 2022	<25 <25	<50 - 120 <50	<25 50 180 <25	<50 280 - <50	<100 - 1300 <100	<100 - 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	<1 NL 125 <1	<1 110 45 <1	<0.1 5 170 <0.1	<0.05 - 0.7 <0.05	<0.5 3 - <0.5	0.1 300 - <0.05	
102	0.05 m	Natural	25 Jan 2022	<25	- 120 <50	<25 50 180 <25	<50 280 - <50	- 1300 <100	- 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	NL 125	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 0.07	<0.5 3 - <0.5	300 - 0.3	
103	0.05 m	Natural	25 Jan 2022	<25	<50 - 120 <50	<25 50 180 <25	<50 280 - <50	<100 - 1300 <100	<100 - 5600 <100	<0.2 0.7 65 <0.2	<0.5 480 105 <0.5	<1 NL 125	<1 110 45 <1	<0.1 5 170 <0.1	- 0.7 <0.05	<0.5 3 - <0.5	0.3 300 - <0.05	
104	0.5 m	Natural	25 Jan 2022	<25	- 120	<25 50 180 <25	<50 280 - <50	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	3 -	300 -	
105	0.05 m	Natural	25 Jan 2022	• •	<50 - 120	50 180	280 -	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
106	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
107	0.05 m	Natural	25 Jan 2022	<25	<50	<25 50 180	<50	<100	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
108	0.05 m	Fill	25 Jan 2022	<25	<50 - 120	<25 50 180	<50	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
109	0.5 m	Natural	25 Jan 2022	<25	<50	<25 50 180	<50	<100	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
110	0.05 m	Natural	25 Jan 2022	<25	<50	<25 50 180	<50	<100 - 1300	<100	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
111	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5	<0.05 300 -	
112	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05 300 -	
114	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	0.1 - 0.7	<0.5 3 -	0.77 300 -	
116	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05 300 -	
118	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
119	0.3 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5 <u>3</u> -	<0.05 300 -	
120	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 <u>3</u> -	<0.05 300 -	
121	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 <u>3</u> -	<0.05 300 -	
122	0.3 m	Fill	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 <u>3</u> -	<0.05 300 -	
123	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
124	0.5 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
125	0.3 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
127	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
128	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
129	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
130	0.3 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
D1LAH	0 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
131	0.5 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
132	0 - 0.1 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
133	0.3 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
134	0.3 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
D2LAH	0 m	Natural	08 Feb 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
135	0.05 m	Natural	25 Jan 2022	<25	<50 - 120	<25 50 180	<50 280 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05 - 0.7	<0.5 3 -	<0.05 300 -	
136	0 - 0.1 m	Natural	08 Feb 2022	<25	<50	<25 50 180	<50 280 -	140 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05 300 -	
137	0.3 m	Natural	08 Feb 2022	<25	<50	<25 50 180	<50 280 -	<100	<100	<0.2 0.7 65	<0.5	<1 NL 125	<1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
D3LAH	0 m	Natural	08 Feb 2022	<25	<50	<25 50 180	<50 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 <1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
138	0 - 0.1 m	Natural	08 Feb 2022	<25	<50	<25 50 180	<50 -	<100 - 1300	<100 - 5600	<0.2 0.7 65	<0.5 480 105	<1 NL 125	<1 <1 110 45	<0.1 5 170	<0.05	<0.5	<0.05	
301/0-0.05	0 m	Natural	21 Mar 2022	· · ·	- 120 - 120	- 50 180	280 -	- 1300	- 5600	0.7 65 - 0.7 65	480 105 - 480 105	NL 125 - NL 125	- 110 45 - 110 45	5 170 - 5 170	- 0.7	3 -	300	
301/A	0 m	Natural	21 Mar 2022			-		-	-			-	-	-	-	3 .	-	
L	L		L		- 120	50 180	280 -	- 1300	- 5600	0.7 65	480 105	NL 125	110 45	5 170	- 0.7	-	300 -	

Lab result HL/HSL value EL/ESL value

- а QA/QC replicate of sample listed directly below the primary sample
- b Reported naphthalene laboratory result obtained from BTEXN suite

📕 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections - = Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting

HL = Health investigation level HSL = Health screening level (excluding DC) EL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Site Assessment Criteria (SAC):

Refer to the SAC section of report for information of SAC sources and rationale. Summary information as follows:

SAC based on generic land use thresholds for Residential A with garden/accessible soil

- Residential / Low High Density (NEPC, 2013) HIL A HSL A/B Residential / Low - High Density (vapour intrusion) (NEPC, 2013) Universitive in Low - right Density (vapour intrusion) (NEPC, 2013) Direct contact HEL A Residential (Low density) (direct contact) (CRC CARE, 2011) Urban Residential and Public Open Space (NEPC, 2013) Residential Public density of the State Contact State St DC HSL A EIL/ESL UR/POS
- Residential, Parkland and Public Open Space (NEPC, 2013) ML R/P/POS

Appendix E, Summary of Laboratory Results 527 Cessnock Road, Gillieston Heights

Table E3: Summary of Laboratory Results - OCP, OPP, PCB, Asbestos

Note No o No No<					1						OCP						OPP				PC	`B				Asbestos
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N									1	1		1			e	1	OFF									E
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N					PAHs	9	000+s	W	5	Dieldrin	lordane	÷	dosultan	chlor	obenzer	ychlor	riphos	r 1016	5	121	r 1232	r 1242	r 1248	r 1254	1260	Comme
					Total	DC	I I	DC	5	Vdrin &	Total Ch	Enc	otal Enc	Hepta	wachlor	Methox	Chlorp)	Arochib	Total	Arochib	Arochib	Arochib	Arochib	Arochio	Arada	pestos
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <				PQL	0.05	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	王 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	- ₹ 0
	Sample ID	Depth	Fill/Natural	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
	1	0 - 0.1 m	Natural	08 Feb 2022	1.8 300 -		- 240 180		- 180	6 -	50 -	- 10 -	270 -	- 6 -	- 10 -	300	- 160 -		1 -					•		NT .
	2	0 - 0.1 m	Natural	08 Feb 2022	0.1 300 -		- 240 180	•	- 180	6 -	50 -	10 -	270 -	- 6 -	10	300	- 160 -		1 -	-		-	-		-	NT .
	3	0.3 m	Natural	08 Feb 2022	<0.05 300 -			-		- 6 -	50 -	- 10 -	270 -	- 6 -	- 10 -	300 -	- 160 -		1 -	-	-	-	-			NAD
	4	0 - 0.1 m	Natural	08 Feb 2022	0.3		- 240 180	-	- 180	- 6 -	50 -	- 10 -	270 -	- 6 -	- 10 -	300	- 160 -		1 -	-	-	-				NT
1 1 1 1 1 1	5	0 - 0.1 m	Fill	08 Feb 2022	<0.05 300 -		- 240 180	-	-	- 6 -	50 -	- 10 -	270 -	- 6	- 10 -	300	- 160 -			-	-	-		•		NAD
	6	0 - 0.1 m	Fill	25 Jan 2022	1.2 300 -	<0.1		<0.1		<0.1	<0.1	<0.1 10 -	<0.1	<0.1	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD
	6	0.4 m	Fill	25 Jan 2022	3.6 300 -					- 6 -	- 50 -	- 10 -	270	6 -	- 10 -	300	- 160 -	•				-	-		-	NT
	7	0 - 0.1 m	Fill	25 Jan 2022	1.1	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD -
	8	0.3 m	Fill	25 Jan 2022	9.4		- 240 180		-	- 6 -	- 50 -	- 10 -	270	6	- 10 -	300	160			-			-	•		NAD
	10	0.4 m	Fill	25 Jan 2022	<0.05			•		-		10	270	-	10	300	- 160 -	•	1 .	-	•	-	-	•	-	NT
N N N N N <td>11</td> <td>0.3 m</td> <th>Fill</th> <td>25 Jan 2022</td> <td>5.4</td> <td><0.1</td> <td></td> <td>⊲0.1</td> <td><0.1</td> <td>NAD</td>	11	0.3 m	Fill	25 Jan 2022	5.4	<0.1		⊲0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD
	12	0.3 m	Fill	25 Jan 2022	1.7	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD
N N N N N N N N N N	13	0 - 0.1 m	Fill	25 Jan 2022	4.5					•	50	10 -	270	•	10 .	300	100	• •		•	• •	• •	•	• •		NT
No o No <					300 -					•	50	10 -	270	•	10 .	300	100 -	• •							• •	NT
····································					300 - 0.1	<0.1	<0.1	<0.1	<0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - ≼0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD
					300 - <0.05					6 -	50 -	10 -	270	6	10 -	300	160		1 -							NT
					300 - 0.3					6 -	50	10 -	270	<u>6</u> -	10	300	160 -	• •	1 +		• •	· · ·			• •	NT .
N N N N					300 - <0.05					6 -	50 -	10 -	270	6 -	10	300	160		1	-						NT -
N N N N N N <th<< td=""><td></td><td></td><th></th><td></td><td>300 - <0.05</td><td></td><td>240 180</td><td></td><td>- 180</td><td>6 - -</td><td>50 -</td><td>10 -</td><td>270 -</td><td>6</td><td>10 -</td><td>300</td><td>160</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NT ·</td></th<<>					300 - <0.05		240 180		- 180	6 - -	50 -	10 -	270 -	6	10 -	300	160		1							NT ·
Image Image <td></td> <td></td> <th></th> <td></td> <td>300 - <0.05</td> <td></td> <td>240 180</td> <td></td> <td>- 180</td> <td>6 -</td> <td>50 -</td> <td>10 -</td> <td>270</td> <td>6 -</td> <td>10 -</td> <td>300</td> <td>160 -</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NT -</td>					300 - <0.05		240 180		- 180	6 -	50 -	10 -	270	6 -	10 -	300	160 -		1							NT -
Image Ima Image Image <th< td=""><td></td><td></td><th></th><td></td><td>300 -</td><td></td><td>240 180</td><td></td><td>- 180</td><td>6</td><td>50</td><td>10 -</td><td>270</td><td>6</td><td>10</td><td>300</td><td>160</td><td></td><td>1</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td></th<>					300 -		240 180		- 180	6	50	10 -	270	6	10	300	160		1			-	-		-	
n n n n n <					300 -	 c0.1		 		6 - =01	50 ·	10 -	270 -	6 - c0.1	10 -	300 -	160 -	• •	1 -				 c0.1	• •	• •	
N N N N N <th<< td=""><td></td><td></td><th></th><td></td><td>300 -</td><td></td><td></td><td>100 A</td><td></td><td>6</td><td>50</td><td>10 -</td><td>270</td><td>6</td><td>10</td><td>300</td><td>160 -</td><td></td><td>1</td><td></td><td></td><td>1. A. C. A. C.</td><td></td><td></td><td></td><td>1 A. 1997</td></th<<>					300 -			100 A		6	50	10 -	270	6	10	300	160 -		1			1. A. C. A. C.				1 A. 1997
N N N N N N <th< td=""><td>109</td><td>0.5 m</td><th>Natural</th><td></td><td>300 -</td><td></td><td></td><td></td><td></td><td>6</td><td>50</td><td>10 -</td><td>270</td><td>6</td><td>10 -</td><td>300</td><td>160 -</td><td></td><td>1 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	109	0.5 m	Natural		300 -					6	50	10 -	270	6	10 -	300	160 -		1 -							
10 10 10 10 10					300 -					6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -		1 -							
10 1	111	0.05 m	Natural	25 Jan 2022	300 -		240 180		- 180	6 -	50 -	10	270	6 -	10	300	160		1							
Image Image <td>112</td> <td>0.05 m</td> <th>Natural</th> <td>25 Jan 2022</td> <td>300 -</td> <td></td> <td>- 240 180</td> <td></td> <td>- 180</td> <td>6 -</td> <td>50 -</td> <td>10 -</td> <td>270</td> <td>6 -</td> <td>10 -</td> <td>300</td> <td>160</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	112	0.05 m	Natural	25 Jan 2022	300 -		- 240 180		- 180	6 -	50 -	10 -	270	6 -	10 -	300	160		1							
Image Image <t< td=""><td>114</td><td>0.05 m</td><th>Natural</th><td>25 Jan 2022</td><td>300 -</td><td></td><td></td><td></td><td></td><td>6 -</td><td>50 -</td><td>- 10 -</td><td>270</td><td>6 -</td><td>10 -</td><td>300</td><td>160 -</td><td>• •</td><td>1</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>	114	0.05 m	Natural	25 Jan 2022	300 -					6 -	50 -	- 10 -	270	6 -	10 -	300	160 -	• •	1					•		
N N	116	0.05 m	Natural	25 Jan 2022	300 -	<0.1		<0.1		<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1 A 1 A 1
Image Image <t< td=""><td>118</td><td>0.05 m</td><th>Natural</th><td>25 Jan 2022</td><td>300 -</td><td></td><td></td><td>-</td><td></td><td>6 -</td><td>- 50 -</td><td>10</td><td>270</td><td>6 -</td><td>10</td><td>300</td><td>160</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	118	0.05 m	Natural	25 Jan 2022	300 -			-		6 -	- 50 -	10	270	6 -	10	300	160		1						-	
No o No No <td>119</td> <td>0.3 m</td> <th>Natural</th> <td>08 Feb 2022</td> <td>300 -</td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td><0.1 6 -</td> <td><0.1 50 ·</td> <td><0.1 10 -</td> <td><0.1 270 -</td> <td><0.1 6 -</td> <td><0.1 10 -</td> <td><0.1 300 -</td> <td><0.1 160 -</td> <td><0.1</td> <td><0.1 1 -</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td></td>	119	0.3 m	Natural	08 Feb 2022	300 -	<0.1		<0.1		<0.1 6 -	<0.1 50 ·	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1	<0.1 1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
No. No. <td>120</td> <td>0.05 m</td> <th>Natural</th> <td>25 Jan 2022</td> <td><0.05 300 -</td> <td></td> <td></td> <td></td> <td>- 180</td> <td>6 -</td> <td>- 50 -</td> <td>- 10 -</td> <td>270</td> <td>6 -</td> <td>- 10 -</td> <td>300</td> <td>160</td> <td></td> <td>1 .</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>NT .</td>	120	0.05 m	Natural	25 Jan 2022	<0.05 300 -				- 180	6 -	- 50 -	- 10 -	270	6 -	- 10 -	300	160		1 .			-	-		-	NT .
Image Image <t< td=""><td>121</td><td>0 - 0.1 m</td><th>Natural</th><td>08 Feb 2022</td><td><0.05 300 -</td><td></td><td>- 240 180</td><td>-</td><td>- 180</td><td>6 -</td><td>50</td><td>10 -</td><td>270</td><td>6 -</td><td>10</td><td>300</td><td>160</td><td></td><td>1</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>NT .</td></t<>	121	0 - 0.1 m	Natural	08 Feb 2022	<0.05 300 -		- 240 180	-	- 180	6 -	50	10 -	270	6 -	10	300	160		1	-			-		-	NT .
Image Image <t< td=""><td>122</td><td>0.3 m</td><th>Fill</th><td>08 Feb 2022</td><td><0.05 300 -</td><td></td><td>- 240 180</td><td></td><td>- 180</td><td>- 6 -</td><td>50 -</td><td>- 10 -</td><td>270</td><td></td><td>- 10 -</td><td>300</td><td>- 160 -</td><td></td><td>1 .</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>NT</td></t<>	122	0.3 m	Fill	08 Feb 2022	<0.05 300 -		- 240 180		- 180	- 6 -	50 -	- 10 -	270		- 10 -	300	- 160 -		1 .	-	-	-	-			NT
<table-container> h</table-container>	123	0 - 0.1 m	Natural	08 Feb 2022	<0.05	<0.1		<0.1		<0.1	<0.1	<0.1 10 -	<0.1	<0.1	<0.1	<0.1 300 -	<0.1 160 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
1 1 1 1 1 <	124	0.5 m	Natural	08 Feb 2022	<0.05					6 .	50 .	- 10 -	270	6 .	- 10 -	300	- 160		1							NT
100 0100	125	0.3 m	Natural	08 Feb 2022	<0.05	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
h h	127	0 - 0.1 m	Natural	08 Feb 2022	<0.05	<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD
1 1 1 1 1 <	128	0 - 0.1 m	Natural	08 Feb 2022	<0.05		•			6	50	10	270	6	10	300	160		1							NT
10 10<	129	0 - 0.1 m	Natural	08 Feb 2022	<0.05								270		10	300	160		1							NT
<table-container> DIM DIM<td>130</td><td>0.3 m</td><th>Natural</th><td>08 Feb 2022</td><td><0.05</td><td><0.1</td><td><0.1</td><td>≪0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>NT</td></table-container>	130	0.3 m	Natural	08 Feb 2022	<0.05	<0.1	<0.1	≪0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
1 0	D1LAH	0 m	Natural	08 Feb 2022	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
1 1 2 2 2 2 3 1					<0.05				-		50	10 -	270	6	10	300	160		1	• •		• •				NT .
Image: state					300 - <0.05	<0.1	<0.1	۰ «0.1	<0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - ≼0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
Image: biase interm Solure Solure <					300 - <0.05					6 -	50	10 -	270	6	10 -	300	160		1							NT .
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					300 - <0.05	<0.1	<0.1	<0.1	<0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					300 - <0.05	<0.1	<0.1	<0.1		6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	<0.1	1 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					300 - <0.05		240 180		- 180	6 -	50 -	10 -	270 -	6	10 -	300	160	1997 - 1997 1997 - 1997	1							NT
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					300 -				- 180	6 -	50	10 -	270	6	10	300	160 -		1	• •	-			• •		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					300 -		240 180	 <0.1		<u>6</u> - <0.1	50 - <0.1	10 -	270 - <0.1	<u>6</u> - <0.1	10 - <0.1	<u> </u>	160 -	- · ·	1 - <0.1	 <0.1		· ·		 <0.1	<0.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					300 -		240 180	· ·	- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	· ·	1 -	· ·	· ·	• •	· ·	· ·	· ·	
138 0.0 Nstral 08e0202 300 0.0 200 ml 0.0 <					300 -		240 180	· ·	- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	· ·	1 -		· ·	· · · ·	· ·	· · · · ·	· ·	
3010-0.05 0 m Natural 21 Mar 2022 300 . 20 m 0 m 6 m 0 m 6 m 1 m 0 m 1 m	138	0 - 0.1 m	Natural		300 -					6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -		1 -			· ·				
	301/0-0.05	0 m	Natural	21 Mar 2022	300				- 180	6 -	50 -	10	270	6	10	300	160 -		1			· ·				
	301/A	0 m	Natural	21 Mar 2022	300			•	- 180		50	- 10 -	270	6	10	300	160 -	•	1	•		•	-	•		AD

Lab result HL/HSL value EIL/ESL value

a QA/QC replicate of sample listed directly below the primary sample

b Reported naphthalene laboratory result obtained from BTEXN suite

c Criteria applies to DDT only

Site Assessment Criteria (SAC):

 Bite Assessment Chrieria (BAC):

 Refer to be SAC section of report for information of SAC sources and rationale. Summary information as follows:

 SAC based on generic taid use thresholds for Residential A with garden/accessible soil

 HL A
 Residential A with garden/accessible soil

 HL A
 Residential / Low - Hgh Density (HEPC, 2013)

 C DC HSL A
 Direct contact HSL A Residential (Low density) (direct contact) (CRC CARE, 2011)

 EL/ESL URPOS
 Uban Residential and Public Open Space (NEPC, 2013)

 ML R/IP/POS
 Residential and Public Open Space (NEPC, 2013)

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📗 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance 🗌 HSL 0-<1 Exceedance Bold = Lab detections - = Not tested or No HL/HSL/ELL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Appendix E, Summary of Laboratory Results 527 Cessnock Road, Gillieston Heights

Table E4: Summary of Laboratory Results – Faecal Coliforms and E. Coli in Soil

		Microbial Testir	ng in Soil
		Faecal Coliforms in Soil	E. Coli in Soil
	PQL	<200	<200
Sample ID	Sample Date	MPN/100g	MPN/100g
302	23/03/2022	>180,000	>180,000
303	23/03/2022	35,000	35,000
304	23/03/2022	3,300	200
305	23/03/2022	3100	<200
SW EPA Bios	olids Guideline	100000	10000

Notes:

Results in Bold exceed Stabilisation Grade A Microbiological Standards for Biosolids from NSW EPA Environmental Guidelines: Use and Disposal of Biosolids Guidelines

Table E5: Summary of Laboratory Results for Wate Classification – Metals, TRH, BTEX

						Me	tals				TRH					BTEX					
					E			nic)				4	00	9	_			-			
			Arsenic	Cadmium	Total Chromiu	Copper	Lead	Mercury (inorga	Nickel	Zinc	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C 10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (total
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	100	100	50	0.2	0.5	1	2	1	3
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2	0 - 0.1 m 0 - 0.1 m	08/02/2022 08/02/2022	6 <4	<0.4	8	5	24 26	<0.1	5	48	<25 <25	<50 <50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<1
3	0.3 m	08/02/2022	<4	<0.4	4	1	5	<0.1	2	9	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
4	0 - 0.1 m 0 - 0.1 m	08/02/2022	<4	<0.4	4 4	4 16	10	<0.1	4	38	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<1
6	0 - 0.1 m	25/01/2022	<4	<0.4	6	9	60	<0.1	5	130	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
6	0.4 m	25/01/2022	<4	0.4	3	28	16	<0.1	4	51	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
7 8	0 - 0.1 m 0.3 m	25/01/2022 25/01/2022	<4	0.6 <0.4	9 17	16 8	89 110	<0.1	8	490 330	<25	<50 <50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<3
10	0.4 m	25/01/2022	<4	<0.4	3	<1	4	<0.1	1	19	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
11	0.3 m 0.3 m	25/01/2022 25/01/2022	<4	<0.4 0.5	7 10	21	87	<0.1	6	190 800	<25	<50 <50	<100 <100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<3
13	0 - 0.1 m	25/01/2022	4	2	9	51	350	<0.1	9	1400	<25	<50	<100	140	140	<0.2	<0.5	<1	<2	<1	<3
15	0.5 m	25/01/2022	4	<0.4	9	7	17	<0.1	4	130	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
101	0 - 0.05 m 0.05 m	25/01/2022 25/01/2022	<4 <4	<0.4	10 25	7 19	11	<0.1	8 29	22 45	<25 <25	<50 <50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<3 <3
103	0.05 m	25/01/2022	<4	<0.4	7	2	8	<0.1	3	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
104	0.5 m 0.05 m	25/01/2022 25/01/2022	9 <4	<0.4	12 6	4 3	41 9	0.2 <0.1	4	9 27	<25 <25	<50 <50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<3
106	0.05 m	25/01/2022	<4	<0.4	8	7	14	<0.1	5	35	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
107	0.05 m	25/01/2022	<4	<0.4	5	2	8	<0.1	3	13	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
108	0.05 m 0.5 m	25/01/2022	<4	<0.4	6 19	3	26	<0.1	3	52 20	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<3
110	0.05 m	25/01/2022	10	<0.4	7	<1	6	<0.1	1	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
111	0.05 m	25/01/2022	<4	<0.4	5	3	10	<0.1	3	20	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
112	0.05 m 0.05 m	25/01/2022	<4	<0.4	5	3	13	<0.1	5	10 31	<25	<50	<100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<3
116	0.05 m	25/01/2022	5	<0.4	8	6	14	<0.1	12	25	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
118	0.05 m	25/01/2022 08/02/2022	5	<0.4	25	24	17 9	<0.1	28	72	<25 <25	<50	<100 <100	<100	<50 <50	<0.2	<0.5	<1	<2 <2	<1	<3 <1
119	0.3 m 0.05 m	25/01/2022	4	<0.4	6	4	12	<0.1	5	21	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
121	0 - 0.1 m	08/02/2022	<4	<0.4	6	2	7	<0.1	2	12	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
122	0.3 m 0 - 0.1 m	08/02/2022	4	<0.4	5	<1	8	<0.1	1	4	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<1
124	0.5 m	08/02/2022	6	<0.4	12	5	13	<0.1	13	38	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
125	0.3 m	08/02/2022	8	<0.4	16	7	13	<0.1	14	31	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
127	0 - 0.1 m 0 - 0.1 m	08/02/2022	<4	<0.4	6	6	8	<0.1	3	8	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<1
129	0 - 0.1 m	08/02/2022	<4	<0.4	6	2	10	<0.1	2	12	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
130 D1LAH	0.3 m	08/02/2022	<4	<0.4	5	2	8	<0.1	3	11 26	<25 <25	<50 <50	<100	<100	<50 <50	<0.2	<0.5	<1	<2	<1	<1
131	0 m 0.5 m	08/02/2022	6 8	<0.4	12	5	13	<0.1	8	26	<25	<50	<100 <100	<100	<50	<0.2	<0.5	<1	<2 <2	<1 <1	<1
132	0 - 0.1 m	08/02/2022	<4	<0.4	6	<1	7	<0.1	2	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
133	0.3 m 0.3 m	08/02/2022	5 <4	<0.4	10	4 <1	11	<0.1	6	17 5	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2 <2	<1	<1
D2LAH	0 m	08/02/2022	<4	<0.4	4	<1	3	<0.1	2	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
135	0.05 m	25/01/2022	4	<0.4	26	25	16	<0.1	31	80	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3
136	0 - 0.1 m 0.3 m	08/02/2022 08/02/2022	<4 <4	<0.4	6	3	11 6	<0.1	3	25 7	<25 <25	<50	<100 <100	<100	<50 <50	<0.2	<0.5	<1 <1	<2 <2	<1	<1
D3LAH	0 m	08/02/2022	<4	<0.4	4	1	4	<0.1	2	6	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
138 301/0-0.05	0 - 0.1 m 0 m	08/02/2022 21 Mar 2022	<4	<0.4	8	2	9	<0.1	6	- 16	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<1
301/0-0.05 301/A	0 m 0 m	21 Mar 2022 21 Mar 2022									-				-						
					1	1		_			ary Statistics			1		-	1				
	Min Max		4	0.4	26	1 51	3	0.1	31	4	25 25	50 50	100	100	50 140	0.2	0.5	1	2	1	1 3
	Mean		5	0.4	9	7	27	0.1	6	87	25	50	100	101	52	0.2	0.5	1	2	1	2
			400		400		100		10		ification Criteria	f			40000						4000
	CT1 SCC1		100 500	20	100	NC	100 1500	4 50	40	NC	650 650	NC NC	NC	NC NC	10000	10	288	600 1080	NC NC	NC	1000 1800
	TCLP1		N/A	N/A	N/A	NC	N/A	N/A	N/A	NC	N/A	NC	NC	NC	N/A	N/A	N/A	N/A	NC	NC	N/A
	CT2		400	80	400	NC	400	16	160	NC	2600	NC	NC	NC	40000	40	1152	2400	NC	NC	4000
	SCC2 TCLP2		2000 N/A	400 N/A	7600 N/A	NC NC	6000 N/A	200 N/A	4200 N/A	NC NC	2600 N/A	NC NC	NC NC	NC NC	40000 N/A	72 N/A	2073 N/A	4320 N/A	NC NC	NC NC	7200 N/A
L	-		l	I			Į	ļ							ļ		I				·

CT1 exceedance CT2 receedance CT2 exceedance CT2 exceedance CT2 exceedance Asbestos detection NT = Not testad NL = Non limiting NC = No criteria NA = Not applicable

Notes: QA/QC replicate of sample listed directly below the primary sample Total chromium used as initial screen for chromium(VI). a b

Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH) Criteria for scheduled chemicals used as an initial screen Criteria for Chlorpyrifos used as initial screen All criteria are in the same units as the reported results

c d

е

f

PQL Practical quantitation limit

CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

 SCC1
 NSW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

 TCLP1
 NSW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste

 TCLP
 NSW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (SCC) for classification without TCLP. Restricted solid waste

 SW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

 SW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

 TCLP2
 NSW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

 TCLP2
 NSW EPA. 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste

Appendix E, Summary of Laboratory Results 527 Cessnock Road, Gillieston Heights

Table E6: Summary of Laboratory Results for Wate Classification – PAH, OCP, OPP, PCB, Asbestos

No. No. <th></th> <th></th> <th></th> <th>Р</th> <th>АН</th> <th>0</th> <th>CP</th> <th>OPP</th> <th></th> <th></th> <th></th> <th>Pi</th> <th>СВ</th> <th></th> <th></th> <th></th> <th></th> <th colspan="4">Asbestos</th> <th></th>				Р	АН	0	CP	OPP				Pi	СВ					Asbestos				
				Benzo(a)pyrene (BaP)	Total PAHs	Total Endosultan		Total Analysed OPP	Arochior 1016	Arochior 1221	Arochior 1232	Arochior 1242	Arochior 1248	Arochior 1254	Arocior 1260	Total PCB	Asbestos ID in soil >0.1 g/kg		ACM >7mm Estimation	FA and AF Estimation	Total Asbestos#1	Asbestos ID in materials
1 1			PQL	0.05	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1				<0.001	<0.1	0
N <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td>mg/kg</td><td></td><td>mg/kg</td><td>mg/kg</td><td></td><td></td><td>-</td><td></td><td>g</td><td>%(w/w)</td><td>g/kg</td><td>-</td></td<>							mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg			-		g	%(w/w)	g/kg	-
1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td></t<>									1					1			-				-	-
1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>NAD</td><td>NAD</td><td></td><td></td><td>-</td><td>-</td></td<>													-				NAD	NAD			-	-
h θ θ H																	-				-	-
1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>-</td><td>-</td></td<>																			+		-	-
Image <																	-			-	-	-
Image: Provent state Pro																}			+		-	-
NN <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>					+		-						-				-				-	-
□ 1																f					-	-
Sine <																		*****			-	-
Image Solution																	-					-
Image Boom																					-	-
Image Series Series </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*****</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>					1		-									*****	-				-	-
Image <																			<u> </u>		-	-
Image 1 0.0000 0.0000 0.000																					-	-
100 m8 m0						1		-	-	1		-	-			-	-	1			-	
Int End </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NAD</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>							<0.1		<0.1								NAD				-	-
111 0m </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.1</td> <td></td> <td><0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- NAD</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td>							<0.1		<0.1								- NAD				-	-
1140.0%0.400.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td></t<>							-		1								-				-	-
Inf 0.80 4.60 4.60 4.01							-	1													-	-
1110.3.n0.4.n							<0.1				<0.1			<0.1		}			+		-	-
11 0.10 0.40 0.40 0.4 0.		****		÷				-	-				-			{			÷			-
11 0.0m 00000 0.0m						-	<0.1	-	<0.1	-	1		<0.1		1	1					-	-
1210-01m040202204050.050.010.1					+	•	-	-				-					-	-				-
PA 0.4m 0.40000000000 0.4m							-									1					-	
127 0-0.1m 0980702 0.40 0.40 0.1							-		-		-		-		+						-	-
128 0+0.1m 0802202 0.40 0.40 0.0																			-	-	-	-
1280.01m04020224.0654.065				+							+								+			-
DILM 0 m 0802202 0.05 0.05 0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>																						-
131 0.5 m 0402022 40.6 m 40.6 m 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 <td></td> <td>-</td> <td>-</td>																					-	-
1320 -0.1m0802202240.0s40.0s40.1s40.140.140.1s <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>.</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									<u>.</u>							l						
134 0.3 m 08/02/202 4.0.6 m 4.0.1	132	0 - 0.1 m	08/02/2022	<0.05	<0.05	<0.1						<0.1		<0.1		<0.1	-					
D2LAH 0 m 0802202 4.0.0 4.0.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></th<>																					-	-
138 0+0.1n 0802/202 40.05 40.05 1																					-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							•						-				-				-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	****						- ⊲0.1				-		-								-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1								-					-
		****		<0.05							1				1	<u></u>					-	-
Summary Statistics Min 0.05 0.01 0.1				-																	8.487	- AD
Max O				·			1				7								1			
Main 0.1 0.72 0.1 </td <td></td> <td>-</td>																						-
CT1 0.8 200 60 <50 4 NC																					-	-
SCC1 10 200 108 <50 7.5 NC <											T		f									
TOLP1 NA NA NA NA NA NA NA NA NC				÷		·{·····			{		÷				÷	{					NC NC	NC NC
		TCLP1		N/A	N/A	N∕A	N/A	N/A	NC N/A	NC	NC	NC	NC	NC	NC							
CT2 3.2 800 240 <50 16 NC NC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł</td> <td></td> <td></td> <td></td> <td></td> <td>NC NC</td> <td>NC NC</td>									ł							ł					NC NC	NC NC
SUC2 2.3 900 432 450 30 NC <									<u>}</u>							<u>}</u>					NC	NC

Notes:

a QA/QC replicate of sample listed directly below the primary sample

- b Total chromium used as initial screen for chromium(VI).
- Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
 Criteria for scheduled chemicals used as an initial screen
 Criteria for Chlorpyrifos used as initial screen
 All criteria are in the same units as the reported results
- All criteria are in the same units as the reported results
- All criteria are in the same units as the reported results
 All criteria are in the same units as the reported results
 ProLive Practical quantitation limit
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste

- NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of piecinc contaminant concentration (CLC) for classification (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of eleachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) when used together: General solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) when used together: Restricted solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid waste
 <

Douglas Partners Pty Ltd

Appendix E, Summary of Laboratory Results 527 Cessnock Road, Gillieston Heights

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 288062

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	204921.00, Gillieston Heights
Number of Samples	26 Soil
Date samples received	04/02/2022
Date completed instructions received	08/02/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

15/02/2022 15/02/2022

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Ridwan Wijaya Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 204921.00, Gillieston Heights

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		288062-1	288062-2	288062-3	288062-4	288062-5
Your Reference	UNITS	6	6	7	8	10
Depth		0.0-0.1	0.4	0.0-0.1	0.3	0.4
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	80	97	83	89	97
vTRH(C6-C10)/BTEXN in Soil						
		288062-6	288062-7	288062-8	288062-9	288062-10
vTRH(C6-C10)/BTEXN in Soil	UNITS	288062-6 11	288062-7 12	288062-8 13	288062-9 15	288062-10 101
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	11	12	13	15	101
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	11 0.3	12 0.3	13 0.0-0.1	15 0.5	101 0.0-0.05
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	11 0.3 25/01/2022	12 0.3 25/01/2022	13 0.0-0.1 25/01/2022	15 0.5 25/01/2022	101 0.0-0.05 25/01/2022
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	11 0.3 25/01/2022 Soil	12 0.3 25/01/2022 Soil	13 0.0-0.1 25/01/2022 Soil	15 0.5 25/01/2022 Soil	101 0.0-0.05 25/01/2022 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	11 0.3 25/01/2022 Soil 09/02/2022	12 0.3 25/01/2022 Soil 09/02/2022	13 0.0-0.1 25/01/2022 Soil 09/02/2022	15 0.5 25/01/2022 Soil 09/02/2022	101 0.0-0.05 25/01/2022 Soil 09/02/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <25	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25	12 0.3 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)Benzene	- - mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <0.2	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	15 0.5 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	12 0.3 25/01/2022 Soil 09/02/2022 (99/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	13 0.0-0.1 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	15 0.5 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	13 0.0-0.1 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	15 0.5 25/01/2022 Soil 09/02/2022 (09/02/2022) (09/02/2022 (09/02/2022 (09/02/2022) (09/02/2022) (09/02/2022 (09/02/2022) (09/02/2022) (09/02/2022) (09/02/2022) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/202) (09/02/20) (09/02) (09/02/20) (09/02) (101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	13 0.0-0.1 25/01/2022 Soil 09/02/2022 (99/02/2022 (99/02/2022 (25) (25) (25) (25) (25) (25) (25) (2	15 0.5 25/01/2022 Soil 09/02/2022 (09/02/2022) (09/02/2022 (09/02/2022 (09/02/2022) (09/02/2022) (09/02/2022) (09/02/2022) (09/02/2022) (09/02/2022) (09/02/202) (09/02) (101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

Client Reference: 204921.00, Gillieston Heights

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		288062-11	288062-12	288062-13	288062-14	288062-15
Your Reference	UNITS	102	103	104	105	106
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	91	117	86	95	95
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		288062-16	288062-17	288062-18	288062-19	288062-20
	UNITS	288062-16 107	288062-17 108	288062-18 109	288062-19 110	288062-20 111
Our Reference	UNITS					
Our Reference Your Reference	UNITS	107	108	109	110	111
Our Reference Your Reference Depth	UNITS	107 0.05	108 0.05	109 0.5	110 0.05	111 0.05
Our Reference Your Reference Depth Date Sampled	UNITS -	107 0.05 25/01/2022	108 0.05 25/01/2022	109 0.5 25/01/2022	110 0.05 25/01/2022	111 0.05 25/01/2022
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	107 0.05 25/01/2022 Soil	108 0.05 25/01/2022 Soil	109 0.5 25/01/2022 Soil	110 0.05 25/01/2022 Soil	111 0.05 25/01/2022 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	107 0.05 25/01/2022 Soil 09/02/2022	108 0.05 25/01/2022 Soil 09/02/2022	109 0.5 25/01/2022 Soil 09/02/2022	110 0.05 25/01/2022 Soil 09/02/2022	111 0.05 25/01/2022 Soil 09/02/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1)	- - mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25	108 0.05 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25	109 0.5 25/01/2022 Soil 09/02/2022 <25 <25 <25	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	110 0.05 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2 <0.2	111 0.05 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2 <0.2
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	108 0.05 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	109 0.5 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	110 0.05 25/01/2022 Soil 09/02/2022 (09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	109 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	110 0.05 25/01/2022 Soil 09/02/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	107 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	108 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	109 0.5 25/01/2022 Soil 09/02/2022 (99/02/2022 (09/02/2022 (25) (25) (25) (25) (25) (25) (25) (2	110 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	111 0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

Client Reference: 204921.00, Gillieston Heights

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		288062-21	288062-22	288062-23	288062-24	288062-25
Your Reference	UNITS	112	114	116	118	120
Depth		0.05	0.05	0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	93	92	87	99	92

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		288062-26
Your Reference	UNITS	135
Depth		0.05
Date Sampled		25/01/2022
Type of sample		Soil
Date extracted	-	09/02/2022
Date analysed	-	09/02/2022
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	80

svTRH (C10-C40) in Soil									
Our Reference		288062-1	288062-2	288062-3	288062-4	288062-5			
Your Reference	UNITS	6	6	7	8	10			
Depth		0.0-0.1	0.4	0.0-0.1	0.3	0.4			
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022			
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022			
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50			
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100			
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50			
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50			
TRH >C ₁₆ -C ₃₄	mg/kg	<100	160	<100	<100	<100			
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100			
Total +ve TRH (>C10-C40)	mg/kg	<50	160	<50	<50	<50			
Surrogate o-Terphenyl	%	78	80	90	76	74			
svTRH (C10-C40) in Soil									
		288062-6	288062-7	288062-8	288062-9	288062-10			
svTRH (C10-C40) in Soil	UNITS	288062-6 11	288062-7 12	288062-8 13	288062-9 15	288062-10 101			
svTRH (C10-C40) in Soil Our Reference	UNITS								
svTRH (C10-C40) in Soil Our Reference Your Reference	UNITS	11	12	13	15	101			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth	UNITS	11 0.3	12 0.3	13 0.0-0.1	15 0.5	101 0.0-0.05			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	11 0.3 25/01/2022	12 0.3 25/01/2022	13 0.0-0.1 25/01/2022	15 0.5 25/01/2022	101 0.0-0.05 25/01/2022			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	11 0.3 25/01/2022 Soil	12 0.3 25/01/2022 Soil	13 0.0-0.1 25/01/2022 Soil	15 0.5 25/01/2022 Soil	101 0.0-0.05 25/01/2022 Soil			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	11 0.3 25/01/2022 Soil 09/02/2022	12 0.3 25/01/2022 Soil 09/02/2022	13 0.0-0.1 25/01/2022 Soil 09/02/2022	15 0.5 25/01/2022 Soil 09/02/2022	101 0.0-0.05 25/01/2022 Soil 09/02/2022			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <50	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <50	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <50			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	- - mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100	12 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100	13 0.0-0.1 25/01/2022 Soil 09/02/2022 <50 <100 140	15 0.5 25/01/2022 Soil 09/02/2022 <09/02/2022 <50 <100 <100	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100			
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100 <50	12 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100 <50	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 140 140	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100	101 0.0-0.05 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50			
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 <09/02/2022 <50 <100 <100 <50 <50	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50 <50	13 0.0-0.1 25/01/2022 Soil 09/02/2022 <50 <100 140 140 140 <50	15 0.5 25/01/2022 Soil 09/02/2022 <09/02/2022 <50 <100 <100 <50 <50	101 0.0-0.05 25/01/2022 Soil 09/02/2022 <50 <100 <100 <50 <50 <50			
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C16TRH >C10 - C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100 <100 <50 <50 <50 <50	12 0.3 25/01/2022 Soil 09/02/2022 <50 <100 <100 <100 <50 <50 <50 <50	13 0.0-0.1 25/01/2022 Soil 09/02/2022 <50 <100 140 140 <50 <50 <50	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50 <50 <50	101 0.0-0.05 25/01/2022 Soil 09/02/2022 <50 <100 <100 <100 <50 <50 <50 <50			
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)TRH >C_{16} - C_{34}	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	11 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50 <50 <50 <50 <100	12 0.3 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50 <50 <50 <50 <120	13 0.0-0.1 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 140 140 140 50 <50 <50 180	15 0.5 25/01/2022 Soil 09/02/2022 09/02/2022 <50 <100 <100 <50 <50 <50 <50 <100	101 0.0-0.05 25/01/2022 Soil 09/02/2022 <50 <100 <100 <50 <50 <50 <50 <100			

svTRH (C10-C40) in Soil						
Our Reference		288062-11	288062-12	288062-13	288062-14	288062-15
Your Reference	UNITS	102	103	104	105	106
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	75	73	73	71	80
svTRH (C10-C40) in Soil						
Our Reference		288062-16	288062-17	288062-18	288062-19	288062-20
Your Reference	UNITS	107	108	109	110	111
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
	0.0					

svTRH (C10-C40) in Soil						
Our Reference		288062-21	288062-22	288062-23	288062-24	288062-25
Your Reference	UNITS	112	114	116	118	120
Depth		0.05	0.05	0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	78	78	79	89	76

svTRH (C10-C40) in Soil		
Our Reference		288062-26
Your Reference	UNITS	135
Depth		0.05
Date Sampled		25/01/2022
Type of sample		Soil
Date extracted	-	09/02/2022
Date analysed	-	10/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C16 -C34	mg/kg	<100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	85

PAHs in Soil						
Our Reference		288062-1	288062-2	288062-3	288062-4	288062-5
Your Reference	UNITS	6	6	7	8	10
Depth		0.0-0.1	0.4	0.0-0.1	0.3	0.4
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	0.1	1.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluoranthene	mg/kg	0.3	0.5	0.3	1.7	<0.1
Pyrene	mg/kg	0.2	0.6	0.3	1.6	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.3	0.1	0.6	<0.1
Chrysene	mg/kg	0.1	0.3	0.1	0.7	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	0.6	<0.2	1	<0.2
Benzo(a)pyrene	mg/kg	0.1	0.3	0.1	0.81	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	<0.1	0.5	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	0.3	0.1	0.7	<0.1
Total +ve PAH's	mg/kg	1.2	3.6	1.1	9.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	1.2	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.5	<0.5	1.2	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.6	<0.5	1.2	<0.5
Surrogate p-Terphenyl-d14	%	80	97	80	95	94

PAHs in Soil						
Our Reference		288062-6	288062-7	288062-8	288062-9	288062-10
Your Reference	UNITS	11	12	13	15	101
Depth		0.3	0.3	0.0-0.1	0.5	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	0.1	0.2	0.4	<0.1
Anthracene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	1	0.3	0.6	0.7	0.1
Pyrene	mg/kg	1	0.3	0.7	0.6	<0.1
Benzo(a)anthracene	mg/kg	0.6	0.2	0.4	0.2	<0.1
Chrysene	mg/kg	0.4	0.1	0.4	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.7	0.3	0.8	0.4	<0.2
Benzo(a)pyrene	mg/kg	0.5	0.2	0.54	0.3	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	0.3	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	0.1	0.4	0.2	<0.1
Total +ve PAH's	mg/kg	5.4	1.7	4.5	3.3	0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.6	<0.5	0.7	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	<0.5	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.7	<0.5	0.8	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	82	88	100	103	84

PAHs in Soil						
Our Reference		288062-11	288062-12	288062-13	288062-14	288062-15
Your Reference	UNITS	102	103	104	105	106
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.07	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.3	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	96	95	93	93

PAHs in Soil						
Our Reference		288062-16	288062-17	288062-18	288062-19	288062-20
Your Reference	UNITS	107	108	109	110	111
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	11/02/2022	11/02/2022	10/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	83	102	93	100

PAHs in Soil						
Our Reference		288062-21	288062-22	288062-23	288062-24	288062-25
Your Reference	UNITS	112	114	116	118	120
Depth		0.05	0.05	0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	11/02/2022	10/02/2022	11/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.77	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	99	94	104	99

PAHs in Soil			
Our Reference		288062-26	288062-27
Your Reference	UNITS	135	6 - [TRIPLICATE]
Depth		0.05	0.0-0.1
Date Sampled		25/01/2022	25/01/2022
Type of sample		Soil	Soil
Date extracted	-	09/02/2022	11/02/2022
Date analysed	-	11/02/2022	11/02/2022
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.4
Pyrene	mg/kg	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	0.2
Chrysene	mg/kg	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3
Benzo(a)pyrene	mg/kg	<0.05	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2
Total +ve PAH's	mg/kg	<0.05	1.8
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	106	100

Organochlorine Pesticides in soil						
Our Reference		288062-1	288062-3	288062-6	288062-7	288062-10
Your Reference	UNITS	6	7	11	12	101
Depth		0.0-0.1	0.0-0.1	0.3	0.3	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	74	74	85	81

Organochlorine Pesticides in soil				
Our Reference		288062-17	288062-19	288062-23
Your Reference	UNITS	108	110	116
Depth		0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	10/02/2022	10/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	88	86

Organophosphorus Pesticides in Soil						
Our Reference		288062-1	288062-3	288062-6	288062-7	288062-10
Your Reference	UNITS	6	7	11	12	101
Depth		0.0-0.1	0.0-0.1	0.3	0.3	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	74	74	85	81

Organophosphorus Pesticides in Soil				
Our Reference		288062-17	288062-19	288062-23
Your Reference	UNITS	108	110	116
Depth		0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	10/02/2022	10/02/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	88	86

1	I		1			
PCBs in Soil						
Our Reference		288062-1	288062-3	288062-6	288062-7	288062-10
Your Reference	UNITS	6	7	11	12	101
Depth		0.0-0.1	0.0-0.1	0.3	0.3	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	74	74	85	81

PCBs in Soil				
Our Reference		288062-17	288062-19	288062-23
Your Reference	UNITS	108	110	116
Depth		0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil
Date extracted	-	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	11/02/2022	10/02/2022	10/02/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	88	86

Acid Extractable metals in soil						
Our Reference		288062-1	288062-2	288062-3	288062-4	288062-5
Your Reference	UNITS	6	6	7	8	10
Depth		0.0-0.1	0.4	0.0-0.1	0.3	0.4
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Arsenic	mg/kg	<4	<4	<4	11	<4
Cadmium	mg/kg	<0.4	0.4	0.6	<0.4	<0.4
Chromium	mg/kg	6	3	9	17	3
Copper	mg/kg	9	28	16	8	<1
Lead	mg/kg	60	16	89	110	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	4	8	9	1
Zinc	mg/kg	130	51	490	330	19

Acid Extractable metals in soil						
Our Reference		288062-6	288062-7	288062-8	288062-9	288062-10
Your Reference	UNITS	11	12	13	15	101
Depth		0.3	0.3	0.0-0.1	0.5	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Arsenic	mg/kg	<4	5	4	4	<4
Cadmium	mg/kg	<0.4	0.5	2	<0.4	<0.4
Chromium	mg/kg	7	10	9	9	10
Copper	mg/kg	21	27	51	7	7
Lead	mg/kg	87	130	350	17	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	9	9	4	8
Zinc	mg/kg	190	800	1,400	130	22

Acid Extractable metals in soil					_	
Our Reference		288062-11	288062-12	288062-13	288062-14	288062-15
Your Reference	UNITS	102	103	104	105	106
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Arsenic	mg/kg	<4	<4	9	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	25	7	12	6	8
Copper	mg/kg	19	2	4	3	7
Lead	mg/kg	12	8	41	9	14
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	29	3	4	3	5
Zinc	mg/kg	45	6	9	27	35

Acid Extractable metals in soil						
Our Reference		288062-16	288062-17	288062-18	288062-19	288062-20
Your Reference	UNITS	107	108	109	110	111
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Arsenic	mg/kg	<4	<4	7	10	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	6	19	7	5
Copper	mg/kg	2	3	5	<1	3
Lead	mg/kg	8	26	12	6	10
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	3	5	1	3
Zinc	mg/kg	13	52	20	6	20

Acid Extractable metals in soil						
Our Reference		288062-21	288062-22	288062-23	288062-24	288062-25
Your Reference	UNITS	112	114	116	118	120
Depth		0.05	0.05	0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Arsenic	mg/kg	<4	4	5	5	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	7	8	25	6
Copper	mg/kg	3	5	6	24	4
Lead	mg/kg	7	13	14	17	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	6	12	28	5
Zinc	mg/kg	10	31	25	72	21

Acid Extractable metals in soil		
Our Reference		288062-26
Your Reference	UNITS	135
Depth		0.05
Date Sampled		25/01/2022
Type of sample		Soil
Date prepared	-	09/02/2022
Date analysed	-	09/02/2022
Arsenic	mg/kg	4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	26
Copper	mg/kg	25
Lead	mg/kg	16
Mercury	mg/kg	<0.1
Nickel	mg/kg	31
Zinc	mg/kg	80

Moisture						
Our Reference		288062-1	288062-2	288062-3	288062-4	288062-5
Your Reference	UNITS	6	6	7	8	10
Depth		0.0-0.1	0.4	0.0-0.1	0.3	0.4
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
Moisture	%	22	17	28	15	6.7
Moisture						
Our Reference		288062-6	288062-7	288062-8	288062-9	288062-10
Your Reference	UNITS	11	12	13	15	101
Depth		0.3	0.3	0.0-0.1	0.5	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
Moisture	%	18	24	34	36	9.4
Moisture						
Our Reference		288062-11	288062-12	288062-13	288062-14	288062-15
Your Reference	UNITS	102	103	104	105	106
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
Moisture	%	16	15	34	13	15
Moisture						
Our Reference		288062-16	288062-17	288062-18	288062-19	288062-20
Your Reference	UNITS	107	108	109	110	111
Depth		0.05	0.05	0.5	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
Moisture	%	11	8.1	21	4.5	11

Moisture						
Our Reference		288062-21	288062-22	288062-23	288062-24	288062-25
Your Reference	UNITS	112	114	116	118	120
Depth		0.05	0.05	0.05	0.05	0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
Date analysed	-	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022
Moisture	%	13	13	19	17	12

Moisture		
Our Reference		288062-26
Your Reference	UNITS	135
Depth		0.05
Date Sampled		25/01/2022
Type of sample		Soil
Date prepared	-	09/02/2022
Date analysed	-	10/02/2022
Moisture	%	20

1		
Asbestos ID - soils		
Our Reference		288062-1
Your Reference	UNITS	6
Depth		0.0-0.1
Date Sampled		25/01/2022
Type of sample		Soil
Date analysed	-	15/02/2022
Sample mass tested	g	Approx. 25g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO
Trace Analysis	-	No asbestos detected

Asbestos ID - soils NEPM						
Our Reference		288062-3	288062-4	288062-6	288062-7	288062-10
Your Reference	UNITS	7	8	11	12	101
Depth		0.0-0.1	0.3	0.3	0.3	0.0-0.05
Date Sampled		25/01/2022	25/01/2022	25/01/2022	25/01/2022	25/01/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022
Sample mass tested	g	303.54	469.64	383.35	434.95	297.48
Sample Description	-	Brown fine- grained soil & rocks	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbesto detected			
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	_	-	_	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM			
Our Reference		288062-17	288062-19
Your Reference	UNITS	108	110
Depth		0.05	0.05
Date Sampled		25/01/2022	25/01/2022
Type of sample		Soil	Soil
Date analysed	-	15/02/2022	15/02/2022
Sample mass tested	g	743.18	277.25
Sample Description	-	Brown coarse- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	288062-3
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	79	79
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	79	79
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	94	92
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	74	75
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	78	70
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	74	80
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	78	84
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	112	1	80	98	20	83	87

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil		Duplicate Spike F					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-22
Date extracted	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0	88	94
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0	88	94
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0	105	117
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0	83	95
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	76	78
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0	89	91
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	93	95
Naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	91	77	17	93	110

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	09/02/2022	09/02/2022			
Date analysed	-			[NT]	21	09/02/2022	09/02/2022			
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	21	<25	<25	0		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	21	<25	<25	0		
Benzene	mg/kg	0.2	Org-023	[NT]	21	<0.2	<0.2	0		
Toluene	mg/kg	0.5	Org-023	[NT]	21	<0.5	<0.5	0		
Ethylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
m+p-xylene	mg/kg	2	Org-023	[NT]	21	<2	<2	0		
o-Xylene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Naphthalene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	21	93	86	8	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	288062-3
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			10/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	123	80
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	127	91
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	127	101
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	123	80
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	127	91
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	127	101
Surrogate o-Terphenyl	%		Org-020	79	1	78	79	1	120	90

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-22
Date extracted	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			[NT]	11	09/02/2022	09/02/2022		10/02/2022	10/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0	78	72
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	<100	0	89	84
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	<100	<100	0	109	93
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0	78	72
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	<100	<100	0	89	84
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	<100	0	109	93
Surrogate o-Terphenyl	%		Org-020	[NT]	11	75	78	4	74	78

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	09/02/2022	09/02/2022		[NT]	
Date analysed	-			[NT]	21	10/02/2022	10/02/2022		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	21	78	75	4	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil		Duplicate Spike Recovery Spike Recov						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	288062-3	
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022	
Date analysed	-			10/02/2022	1	10/02/2022	10/02/2022		10/02/2022	11/02/2022	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	92	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	95	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	95	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.3	100	112	122	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.7	80	108	123	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.6	100	111	117	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.3	100	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.2	67	77	65	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.2	0.5	86	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.1	0.3	100	112	112	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.3	100	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	96	1	80	88	10	97	92	

QUALIT		covery %								
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-22
Date extracted	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			[NT]	11	11/02/2022	11/02/2022		10/02/2022	10/02/2022
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	99	99
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	91	97
Fluorene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	101	99
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	126	99
Anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	114	92
Pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	115	94
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	68	71
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	11	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	11	<0.05	<0.05	0	98	104
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	11	99	100	1	93	95

QUAL	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	21	09/02/2022	09/02/2022			[NT]	
Date analysed	-			[NT]	21	11/02/2022	11/02/2022			[NT]	
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Fluorene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Pyrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Chrysene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	21	<0.2	<0.2	0		[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	21	<0.05	<0.05	0		[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	21	99	99	0		[NT]	

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-3	
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	11/02/2022	
Date analysed	-			10/02/2022	1	10/02/2022	10/02/2022		10/02/2022	11/02/2022	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	86	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	103	96	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	93	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	101	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	106	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	98	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	104	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	127	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	100	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	80	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	82	1	78	82	5	86	84	

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-3
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			10/02/2022	1	10/02/2022	10/02/2022		10/02/2022	11/02/2022
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	117
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	99
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	79	91
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	110
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	102
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	89
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	100
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	82	1	78	82	5	86	84

QUALIT	QUALITY CONTROL: PCBs in Soil						plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-3
Date extracted	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			10/02/2022	1	10/02/2022	10/02/2022		10/02/2022	11/02/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	118	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-021	82	1	78	82	5	86	84

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	288062-3
Date prepared	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			09/02/2022	1	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	101	92
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	94	79
Chromium	mg/kg	1	Metals-020	<1	1	6	7	15	96	87
Copper	mg/kg	1	Metals-020	<1	1	9	10	11	97	94
Lead	mg/kg	1	Metals-020	<1	1	60	60	0	100	79
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	107	98
Nickel	mg/kg	1	Metals-020	<1	1	5	5	0	99	87
Zinc	mg/kg	1	Metals-020	<1	1	130	140	7	105	#

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	288062-22
Date prepared	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Date analysed	-			[NT]	11	09/02/2022	09/02/2022		09/02/2022	09/02/2022
Arsenic	mg/kg	4	Metals-020	[NT]	11	<4	<4	0	101	78
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	94	70
Chromium	mg/kg	1	Metals-020	[NT]	11	25	22	13	95	76
Copper	mg/kg	1	Metals-020	[NT]	11	19	18	5	95	81
Lead	mg/kg	1	Metals-020	[NT]	11	12	11	9	100	75
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	117	109
Nickel	mg/kg	1	Metals-020	[NT]	11	29	27	7	98	76
Zinc	mg/kg	1	Metals-020	[NT]	11	45	40	12	103	73

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	09/02/2022	09/02/2022			
Date analysed	-			[NT]	21	09/02/2022	09/02/2022			
Arsenic	mg/kg	4	Metals-020	[NT]	21	<4	<4	0		
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	21	5	7	33		
Copper	mg/kg	1	Metals-020	[NT]	21	3	3	0		
Lead	mg/kg	1	Metals-020	[NT]	21	7	10	35		
Mercury	mg/kg	0.1	Metals-021	[NT]	21	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	21	5	6	18		
Zinc	mg/kg	1	Metals-020	[NT]	21	10	13	26	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 metals in soil - # Percent recovery is not applicable due to the high concentration of the element in the sample. However an acceptable recovery was obtained for the LCS.

PAHs in Soil: The laboratory RPD acceptance criteria has been exceeded for 288062-1. Therefore a triplicate result has been issued as laboratory sample number 288062-27.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 288062-1 was sub-sampled from a jar provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 288062-3, 6, 7, 10, 19 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 289028

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	204921.00, Gillieston Heights
Number of Samples	25 Soil
Date samples received	17/02/2022
Date completed instructions received	17/02/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	28/02/2022
Date of Issue	24/02/2022
NATA Accreditation Number 2901. This document shall not be reproduced except in full.	
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Dragana Tomas, Senior Chemist Jeremy Faircloth, Operations Manager, Sydney Loren Bardwell, Development Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 289028 Revision No: R00

Page | 1 of 39

vTRH(C6-C10)/BTEXN in Soil								
Our Reference		289028-1	289028-2	289028-3	289028-4	289028-5		
Your Reference	UNITS	1	2	3	4	5		
Depth		0.0-0.1	0.0-0.1	0.3	0.0-0.1	0.0-0.1		
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022		
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022		
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25		
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25		
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1		
m+p-xylene	mg/kg	<2	<2	<2	<2	<2		
o-Xylene	mg/kg	<1	<1	<1	<1	<1		
Naphthalene	mg/kg	<1	<1	<1	<1	<1		
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1		
Surrogate aaa-Trifluorotoluene	%	68	70	78	90	83		
vTRH(C6-C10)/BTEXN in Soil								
vTRH(C6-C10)/BTEXN in Soil Our Reference		289028-6	289028-7	289028-8	289028-9	289028-10		
	UNITS	289028-6 119	289028-7 121	289028-8 122	289028-9 123	289028-10 124		
Our Reference	UNITS							
Our Reference Your Reference	UNITS	119	121	122	123	124		
Our Reference Your Reference Depth	UNITS	119 0.3	121 0.0-0.1	122 0.3	123 0.0-0.1	124 0.5		
Our Reference Your Reference Depth Date Sampled	UNITS -	119 0.3 08/02/2022	121 0.0-0.1 08/02/2022	122 0.3 08/02/2022	123 0.0-0.1 08/02/2022	124 0.5 08/02/2022		
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	119 0.3 08/02/2022 Soil	121 0.0-0.1 08/02/2022 Soil	122 0.3 08/02/2022 Soil	123 0.0-0.1 08/02/2022 Soil	124 0.5 08/02/2022 Soil		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	119 0.3 08/02/2022 Soil 21/02/2022	121 0.0-0.1 08/02/2022 Soil 21/02/2022	122 0.3 08/02/2022 Soil 21/02/2022	123 0.0-0.1 08/02/2022 Soil 21/02/2022	124 0.5 08/02/2022 Soil 21/02/2022		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C $_6$ - C $_9$ TRH C $_6$ - C $_{10}$ vTPH C $_6$ - C $_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2		
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C $_9$ TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <0.2 <0.2 <0.5	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5		
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2		
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	119 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <2 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	121 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	122 0.3 08/02/2022 Soil 21/02/2022 21/02/2022 <21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	123 0.0-0.1 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	124 0.5 08/02/2022 Soil 21/02/2022 21/02/2022 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1		

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		289028-11	289028-12	289028-13	289028-14	289028-15
Your Reference	UNITS	125	127	128	129	130
Depth		0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	22/02/2022	22/02/2022	22/02/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	81	81	75	74	80
-				I	I	
vTRH(C6-C10)/BTEXN in Soil						
		289028-16	289028-17	289028-18	289028-19	289028-20
vTRH(C6-C10)/BTEXN in Soil	UNITS	289028-16 131	289028-17 132	289028-18 133	289028-19 134	289028-20 136
vTRH(C6-C10)/BTEXN in Soil Our Reference	UNITS					
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	131	132	133	134	136
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	131 0.5	132 0.0-0.1	133 0.3	134 0.3	136 0.0-0.1
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS -	131 0.5 08/02/2022	132 0.0-0.1 08/02/2022	133 0.3 08/02/2022	134 0.3 08/02/2022	136 0.0-0.1 08/02/2022
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	131 0.5 08/02/2022 Soil	132 0.0-0.1 08/02/2022 Soil	133 0.3 08/02/2022 Soil	134 0.3 08/02/2022 Soil	136 0.0-0.1 08/02/2022 Soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	131 0.5 08/02/2022 Soil 21/02/2022	132 0.0-0.1 08/02/2022 Soil 22/02/2022	133 0.3 08/02/2022 Soil 21/02/2022	134 0.3 08/02/2022 Soil 21/02/2022	136 0.0-0.1 08/02/2022 Soil 21/02/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25
vTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)Benzene	- - mg/kg mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25 <25 <0.2	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25 <25 <0.2	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25 <25 <0.2 <0.2	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.5	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25 <0.2 <0.5 <1 <2	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.5 <1 <2	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <0.2 <0.5 <1 <2	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	131 0.5 08/02/2022 Soil 21/02/2022 22/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	132 0.0-0.1 08/02/2022 Soil 22/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	133 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1	134 0.3 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <1 <2 <1	136 0.0-0.1 08/02/2022 Soil 21/02/2022 23/02/2022 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		289028-21	289028-22	289028-23	289028-24	289028-25
Your Reference	UNITS	137	138	D1LAH	D2LAH	D3LAH
Depth		0.3	0.0-0.1	-	-	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	89	92	92	81	85

svTRH (C10-C40) in Soil						
Our Reference		289028-1	289028-2	289028-3	289028-4	289028-5
Your Reference	UNITS	1	2	3	4	5
Depth		0.0-0.1	0.0-0.1	0.3	0.0-0.1	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	80	77	80	75
svTRH (C10-C40) in Soil						
Our Reference		289028-6	289028-7	289028-8	289028-9	289028-10
Your Reference	UNITS	119	121	122	123	124
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.5
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample						00/02/2022
		Soil	Soil	Soil	Soil	Soil
Date extracted	-	Soil 21/02/2022	Soil 21/02/2022	Soil 21/02/2022	Soil 21/02/2022	
	-					Soil
Date extracted	- - mg/kg	21/02/2022	21/02/2022	21/02/2022	21/02/2022	Soil 21/02/2022
Date extracted Date analysed	- - mg/kg mg/kg	21/02/2022 23/02/2022	21/02/2022 23/02/2022	21/02/2022 23/02/2022	21/02/2022 23/02/2022	Soil 21/02/2022 23/02/2022
Date extracted Date analysed TRH C ₁₀ - C ₁₄		21/02/2022 23/02/2022 <50	21/02/2022 23/02/2022 <50	21/02/2022 23/02/2022 <50	21/02/2022 23/02/2022 <50	Soil 21/02/2022 23/02/2022 <50
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	mg/kg	21/02/2022 23/02/2022 <50 <100	21/02/2022 23/02/2022 <50 <100	21/02/2022 23/02/2022 <50 <100	21/02/2022 23/02/2022 <50 <100	Soil 21/02/2022 23/02/2022 <50 <100
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	mg/kg mg/kg	21/02/2022 23/02/2022 <50 <100 <100	21/02/2022 23/02/2022 <50 <100 <100	21/02/2022 23/02/2022 <50 <100 <100	21/02/2022 23/02/2022 <50 <100 <100	Soil 21/02/2022 23/02/2022 <50 <100 <100
Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	mg/kg mg/kg mg/kg	21/02/2022 23/02/2022 <50 <100 <100 <50	21/02/2022 23/02/2022 <50 <100 <100 <50	21/02/2022 23/02/2022 <50 <100 <100 <50	21/02/2022 23/02/2022 <50 <100 <100 <50	Soil 21/02/2022 23/02/2022 <50 <100 <100 <50
Date extracted Date analysed TRH C10 - C14 TRH C15 - C28 TRH C29 - C36 Total +ve TRH (C10-C36) TRH >C10 - C16	mg/kg mg/kg mg/kg mg/kg	21/02/2022 23/02/2022 <50 <100 <100 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50	Soil 21/02/2022 23/02/2022 <50 <100 <100 <50 <50
Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C_{10} -C_{16} TRH >C_{10} - C_{16} less Naphthalene (F2)	mg/kg mg/kg mg/kg mg/kg mg/kg	21/02/2022 23/02/2022 <50 <100 <100 <50 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50 <50	21/02/2022 23/02/2022 <50 <100 <100 <50 <50 <50	Soil 21/02/2022 23/02/2022 <50 <100 <100 <50 <50 <50

%

81

77

79

79

Surrogate o-Terphenyl

89

svTRH (C10-C40) in Soil						
Our Reference		289028-11	289028-12	289028-13	289028-14	289028-15
Your Reference	UNITS	125	127	128	129	130
Depth		0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	80	78	79	78	82
svTRH (C10-C40) in Soil						
Our Reference		289028-16	289028-17	289028-18	289028-19	289028-20
Your Reference	UNITS	131	132	133	134	136
Depth		0.5	0.0-0.1	0.3	0.3	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	140
				<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	100	100
TRH >C ₃₄ -C ₄₀ Total +ve TRH (>C10-C40)	mg/kg mg/kg	<100 <50	<100	<50	<50	140

svTRH (C10-C40) in Soil						
Our Reference		289028-21	289028-22	289028-23	289028-24	289028-25
Your Reference	UNITS	137	138	D1LAH	D2LAH	D3LAH
Depth		0.3	0.0-0.1	-	-	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	23/02/2022	23/02/2022	23/02/2022	23/02/2022	23/02/2022
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	72	83	83	80	81

PAHs in Soil						
Our Reference		289028-1	289028-2	289028-3	289028-4	289028-5
Your Reference	UNITS	1	2	3	4	5
Depth		0.0-0.1	0.0-0.1	0.3	0.0-0.1	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.4	0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	0.4	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.8	0.1	<0.05	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	102	94	99	95

PAHs in Soil						
Our Reference		289028-6	289028-7	289028-8	289028-9	289028-10
Your Reference	UNITS	119	121	122	123	124
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.5
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	93	110	96	93

PAHs in Soil						
Our Reference		289028-11	289028-12	289028-13	289028-14	289028-15
Your Reference	UNITS	125	127	128	129	130
Depth		0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	22/02/2022	22/02/2022	22/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	110	94	101	93	90

PAHs in Soil						
Our Reference		289028-16	289028-17	289028-18	289028-19	289028-20
Your Reference	UNITS	131	132	133	134	136
Depth		0.5	0.0-0.1	0.3	0.3	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	93	86	87	97	88

PAHs in Soil						
Our Reference		289028-21	289028-22	289028-23	289028-24	289028-25
Your Reference	UNITS	137	138	D1LAH	D2LAH	D3LAH
Depth		0.3	0.0-0.1	-	-	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	85	89	93	79	86

Organochlorine Pesticides in soil						
Our Reference		289028-6	289028-9	289028-11	289028-12	289028-15
Your Reference	UNITS	119	123	125	127	130
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	22/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	104	103	93	91

Organochlorine Pesticides in soil					_	
Our Reference		289028-17	289028-19	289028-21	289028-22	289028-23
Your Reference	UNITS	132	134	137	138	D1LAH
Depth		0.0-0.1	0.3	0.3	0.0-0.1	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	82	80	83	86	79

Organochlorine Pesticides in soil			
Our Reference		289028-24	289028-25
Your Reference	UNITS	D2LAH	D3LAH
Depth		-	-
Date Sampled		08/02/2022	08/02/2022
Type of sample		Soil	Soil
Date extracted	-	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	79

Organophosphorus Pesticides in Soil						
Our Reference		289028-6	289028-9	289028-11	289028-12	289028-15
Your Reference	UNITS	119	123	125	127	130
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	22/02/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	104	103	93	91

Organophosphorus Pesticides in Soil				_		
Our Reference		289028-17	289028-19	289028-21	289028-22	289028-23
Your Reference	UNITS	132	134	137	138	D1LAH
Depth		0.0-0.1	0.3	0.3	0.0-0.1	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	82	80	83	86	79

Organophosphorus Pesticides in Soil			
Our Reference		289028-24	289028-25
Your Reference	UNITS	D2LAH	D3LAH
Depth		-	-
Date Sampled		08/02/2022	08/02/2022
Type of sample		Soil	Soil
Date extracted	-	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	79

PCBs in Soil						
Our Reference		289028-6	289028-9	289028-11	289028-12	289028-15
Your Reference	UNITS	119	123	125	127	130
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	22/02/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	104	103	93	91

PCBs in Soil						
Our Reference		289028-17	289028-19	289028-21	289028-22	289028-23
Your Reference	UNITS	132	134	137	138	D1LAH
Depth		0.0-0.1	0.3	0.3	0.0-0.1	
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	82	80	83	86	79

PCBs in Soil			
Our Reference		289028-24	289028-25
Your Reference	UNITS	D2LAH	D3LAH
Depth		-	-
Date Sampled		08/02/2022	08/02/2022
Type of sample		Soil	Soil
Date extracted	-	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCMX	%	86	79

Acid Extractable metals in soil						
Our Reference		289028-1	289028-2	289028-3	289028-4	289028-5
Your Reference	UNITS	1	2	3	4	5
Depth		0.0-0.1	0.0-0.1	0.3	0.0-0.1	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Arsenic	mg/kg	6	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	5	4	4	4
Copper	mg/kg	5	2	1	4	16
Lead	mg/kg	24	26	5	10	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	2	2	4	2
Zinc	mg/kg	48	12	9	38	20

Acid Extractable metals in soil						
Our Reference		289028-6	289028-7	289028-8	289028-9	289028-10
Your Reference	UNITS	119	121	122	123	124
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.5
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Arsenic	mg/kg	5	<4	4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	6	5	5	12
Copper	mg/kg	1	2	<1	<1	5
Lead	mg/kg	9	7	8	9	13
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	2	1	2	13
Zinc	mg/kg	13	12	4	11	38

Acid Extractable metals in soil						
Our Reference		289028-11	289028-12	289028-13	289028-14	289028-15
Your Reference	UNITS	125	127	128	129	130
Depth		0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Arsenic	mg/kg	8	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	6	6	6	5
Copper	mg/kg	7	6	1	2	2
Lead	mg/kg	13	8	9	10	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	3	2	2	3
Zinc	mg/kg	31	8	9	12	11

Acid Extractable metals in soil						
Our Reference		289028-16	289028-17	289028-18	289028-19	289028-20
Your Reference	UNITS	131	132	133	134	136
Depth		0.5	0.0-0.1	0.3	0.3	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Arsenic	mg/kg	8	<4	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	6	10	4	6
Copper	mg/kg	3	<1	4	<1	3
Lead	mg/kg	14	7	11	4	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	10	2	6	2	3
Zinc	mg/kg	28	6	17	5	25

Acid Extractable metals in soil						
Our Reference		289028-21	289028-22	289028-23	289028-24	289028-25
Your Reference	UNITS	137	138	D1LAH	D2LAH	D3LAH
Depth		0.3	0.0-0.1	-	-	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Arsenic	mg/kg	<4	<4	6	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	8	12	4	4
Copper	mg/kg	2	2	5	<1	1
Lead	mg/kg	6	9	13	3	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	6	8	2	2
Zinc	mg/kg	7	16	26	6	6

Moisture						
Our Reference		289028-1	289028-2	289028-3	289028-4	289028-5
Your Reference	UNITS	1	2	3	4	5
Depth		0.0-0.1	0.0-0.1	0.3	0.0-0.1	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Moisture	%	25	16	9.1	19	9.2
Moisture						
Our Reference		289028-6	289028-7	289028-8	289028-9	289028-10
Your Reference	UNITS	119	121	122	123	124
Depth		0.3	0.0-0.1	0.3	0.0-0.1	0.5
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Moisture	%	21	16	11	13	14
Moisture						
Our Reference		289028-11	289028-12	289028-13	289028-14	289028-15
Your Reference	UNITS	125	127	128	129	130
Depth		0.3	0.0-0.1	0.0-0.1	0.0-0.1	0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Moisture	%	18	15	11	16	10
Moisture						
Our Reference		289028-16	289028-17	289028-18	289028-19	289028-20
Your Reference	UNITS	131	132	133	134	136
Depth		0.5	0.0-0.1	0.3	0.3	0.0-0.1
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Moisture	%	16	13	16	10	16

Moisture						
Our Reference		289028-21	289028-22	289028-23	289028-24	289028-25
Your Reference	UNITS	137	138	D1LAH	D2LAH	D3LAH
Depth		0.3	0.0-0.1	-	-	-
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/02/2022	21/02/2022	21/02/2022	21/02/2022	21/02/2022
Date analysed	-	22/02/2022	22/02/2022	22/02/2022	22/02/2022	22/02/2022
Moisture	%	13	14	15	9.7	11

Method ID	_ Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6
Date extracted	-			21/02/2022	1	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			21/02/2022	1	21/02/2022	21/02/2022		21/02/2022	21/02/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	89	101
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	89	101
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	87	101
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	87	100
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	87	98
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	93	104
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	92	102
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	88	1	68	67	1	85	93

QUALITY CONT	ROL: vTRH	(C6-C10),	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22
Date extracted	-			[NT]	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			[NT]	11	21/02/2022	21/02/2022		23/02/2022	23/02/2022
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0	85	92
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0	85	92
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0	86	96
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0	94	99
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	81	91
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0	81	86
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	81	87
Naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	81	96	17	80	88

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	21	21/02/2022	21/02/2022			[NT]	
Date analysed	-			[NT]	21	23/02/2022	23/02/2022			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	21	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	21	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	21	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	21	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	21	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]	
Naphthalene	mg/kg	1	Org-023	[NT]	21	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	21	89	85	5		[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	pike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6	
Date extracted	-			21/02/2022	1	21/02/2022	21/02/2022		21/02/2022	21/02/2022	
Date analysed	-			23/02/2022	1	23/02/2022	23/02/2022		23/02/2022	23/02/2022	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	79	90	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	67	80	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	91	#	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	79	90	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	67	80	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	91	#	
Surrogate o-Terphenyl	%		Org-020	75	1	84	81	4	108	111	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil	_		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22
Date extracted	-			[NT]	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			[NT]	11	23/02/2022	23/02/2022		23/02/2022	23/02/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0	83	82
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	<100	0	70	74
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	<100	<100	0	91	95
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0	83	82
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	<100	<100	0	70	74
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	<100	0	91	95
Surrogate o-Terphenyl	%		Org-020	[NT]	11	80	82	2	88	97

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	21/02/2022	21/02/2022		[NT]	
Date analysed	-			[NT]	21	23/02/2022	23/02/2022		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	21	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	21	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	21	72	71	1	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6
Date extracted	-			21/02/2022	1	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			21/02/2022	1	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	111	101
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	123
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	124
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.1	67	102	116
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.3	29	102	119
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.4	0.3	29	105	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.1	67	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	79	79
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.3	0.2	40	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.2	0.1	67	124	130
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.1	67	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	92	1	94	103	9	85	94

QUALITY CONTROL: PAHs in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22
Date extracted	-			[NT]	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			[NT]	11	21/02/2022	21/02/2022		22/02/2022	22/02/2022
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	107	103
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	95	103
Fluorene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	93	95
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	106	94
Anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	114	104
Pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	113	105
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	77	71
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	11	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	11	<0.05	<0.05	0	112	110
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	11	110	112	2	99	89

QUALITY CONTROL: PAHs in Soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	21/02/2022	21/02/2022			[NT]
Date analysed	-			[NT]	21	22/02/2022	22/02/2022			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	21	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	21	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	21	85	96	12		[NT]

QUALITY CONTROL: Organochlorine Pesticides in soil						Spike Re	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6
Date extracted	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	100	124
НСВ	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	106	128
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	99	111
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	107	120
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	104	126
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	101	119
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	104	120
Endrin	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	92	113
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	96	116
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	108	130
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	95	11	103	102	1	89	99

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22
Date extracted	-			[NT]	21	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			[NT]	21	22/02/2022	22/02/2022		22/02/2022	22/02/2022
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	98	96
НСВ	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	103	99
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	109	97
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	116	111
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	112	104
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	115	109
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	122	108
Endrin	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	100	111
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	116	108
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	112	94
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	21	83	82	1	84	80

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6	
Date extracted	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022	
Date analysed	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	114	128	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	104	118	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	91	111	
Malathion	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	120	115	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	112	122	
Parathion	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	89	107	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	11	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	102	131	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	11	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	95	11	103	102	1	89	99	

QUALITY CONTROL: Organophosphorus Pesticides in Soil					Duplicate Spike Recove					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22
Date extracted	-				21	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-				21	22/02/2022	22/02/2022		22/02/2022	22/02/2022
Dichlorvos	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	97	103
Dimethoate	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	114	108
Fenitrothion	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	63	69
Malathion	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	108	110
Chlorpyriphos	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	120	108
Parathion	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	72	70
Bromophos-ethyl	mg/kg	0.1	Org-022		21	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	90	90
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		21	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025		21	83	82	1	84	80

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6
Date extracted	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Date analysed	-			21/02/2022	11	21/02/2022	21/02/2022		21/02/2022	21/02/2022
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	105	100
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	95	11	103	102	1	89	99

QUALIT	Y CONTRO	L: PCBs	in Soil		Duplicate					Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22	
Date extracted	-			[NT]	21	21/02/2022	21/02/2022		21/02/2022	21/02/2022	
Date analysed	-			[NT]	21	22/02/2022	22/02/2022		22/02/2022	22/02/2022	
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	120	100	
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	21	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	[NT]	21	83	82	1	84	80	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Duj		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	289028-6
Date prepared	-			22/02/2022	1	22/02/2022	22/02/2022		22/02/2022	22/02/2022
Date analysed	-			22/02/2022	1	22/02/2022	22/02/2022		22/02/2022	22/02/2022
Arsenic	mg/kg	4	Metals-020	<4	1	6	<4	40	102	94
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	103	85
Chromium	mg/kg	1	Metals-020	<1	1	8	8	0	105	90
Copper	mg/kg	1	Metals-020	<1	1	5	5	0	104	100
Lead	mg/kg	1	Metals-020	<1	1	24	32	29	104	86
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	100	125
Nickel	mg/kg	1	Metals-020	<1	1	5	5	0	104	89
Zinc	mg/kg	1	Metals-020	<1	1	48	48	0	103	85

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	289028-22	
Date prepared	-			[NT]	11	22/02/2022	22/02/2022		22/02/2022	22/02/2022	
Date analysed	-			[NT]	11	22/02/2022	22/02/2022		22/02/2022	22/02/2022	
Arsenic	mg/kg	4	Metals-020	[NT]	11	8	8	0	96	94	
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	97	87	
Chromium	mg/kg	1	Metals-020	[NT]	11	16	19	17	97	91	
Copper	mg/kg	1	Metals-020	[NT]	11	7	7	0	98	97	
Lead	mg/kg	1	Metals-020	[NT]	11	13	14	7	97	89	
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	118	123	
Nickel	mg/kg	1	Metals-020	[NT]	11	14	15	7	97	92	
Zinc	mg/kg	1	Metals-020	[NT]	11	31	30	3	97	87	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	22/02/2022	22/02/2022		[NT]	
Date analysed	-			[NT]	21	22/02/2022	22/02/2022		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	21	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	21	3	4	29	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	21	2	2	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	21	6	5	18	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	21	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	21	2	2	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	21	7	7	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.				
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.				
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.				
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.				
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.				

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PAHs in Soil: The laboratory RPD acceptance criteria has been exceeded for 288062-1. Therefore a triplicate result has been issued as laboratory sample number 288062-27.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Sample 288062-1 was sub-sampled from a jar provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 288062-3, 6, 7, 10, 19 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

TRH Soil C10-C40 NEPM - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 289028-6ms have caused interference.

CERTIFICATE OF ANALYSIS 289446

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	204921.00, Gillieston Heights
Number of Samples	5 Soil
Date samples received	22/02/2022
Date completed instructions received	22/02/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	01/03/2022
Date of Issue	01/03/2022
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 289446 Revision No: R00

Page | 1 of 5

Asbestos ID - soils NEPM						
Our Reference		289446-1	289446-2	289446-3	289446-4	289446-5
Your Reference	UNITS	3/0.3	5/0-0.1	127/0-0.1	136/0-0.1	137/0.3
Date Sampled		08/02/2022	08/02/2022	08/02/2022	08/02/2022	08/02/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/03/2022	01/03/2022	01/03/2022	01/03/2022	01/03/2022
Sample mass tested	g	659.31	658.19	638.83	526.27	470.31
Sample Description	-	Beige fine- grained soil & rocks	Beige fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	_	_
FA and AF Estimation*	g	-	-	-	_	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 291536

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	204921.00 Gillieston Heights
Number of Samples	5 Soil, 1 Material
Date samples received	22/03/2022
Date completed instructions received	22/03/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	01/04/2022
Date of Issue	31/03/2022
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Wonnie Condos Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Greta Petzold, Senior Report Coordinator Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 291536 Revision No: R00

Page | 1 of 8

Micro testing in soil					
Our Reference		291536-3	291536-4	291536-5	291536-6
Your Reference	UNITS	302	303	304	305
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		21/03/2022	21/03/2022	21/03/2022	21/03/2022
Date of testing	-	23/03/2022	23/03/2022	23/03/2022	23/03/2022
Faecal Coliforms in soil	MPN/100g	>180,000	35,000	3,300	3,100
E Coli in soil	MPN/100g	>180,000	35,000	200	<200

Asbestos ID - soils NEPM - ASB-001		
Our Reference		291536-1
Your Reference	UNITS	301/0-0.05
Type of sample		Soil
Date Sampled		21/03/2022
Date analysed	-	28/03/2022
Sample mass tested	g	558.19
Sample Description	-	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	Chrysotile asbestos detected Amosite asbestos detected Crocidolite asbestos detected Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	8.4870
Asbestos ID in soil <0.1g/kg*	-	See Above
ACM >7mm Estimation*	g	4.7373
FA and AF Estimation*	g	_
ACM >7mm Estimation*	%(w/w)	0.8487
FA and AF Estimation*#2	%(w/w)	<0.001

Asbestos ID - materials		
Our Reference		291536-2
Your Reference	UNITS	301/A
Type of sample		Material
Date Sampled		21/03/2022
Date analysed	-	24/03/2022
Mass / Dimension of Sample	-	90x70x5mm
Sample Description	-	Beige fibre cement material
Asbestos ID in materials	-	Chrysotile asbestos detected
Trace Analysis	-	[NT]

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	 NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF) NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-008	Subcontracted to Sonic Food & Water Testing. NATA Accreditation No. 4034.

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 291536-1; Chrysotile, Amosite and Crocidolite asbestos identified in 31.5823g of fibre cement material >7mm

Microbiology analysed by Sonic Food & Water Testing. Report No. W2206862 The time between collection and the commencement of testing should not exceed 24 hours. Samples tested outside this time may have their results compromised

Appendix F

Data Quality Report Site Assessment Criteria Fieldwork Methodology Chain of Custody (Field and Despatch) Sample Receipt

Appendix F Data Quality Report 527 Cessnock Road, Gillieston Heights

F1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included at the end of this appendix.

Item	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples; <30% RPD	PC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Laboratory Duplicate	1 per lab batch; As laboratory certificate	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table 1: Field and Laboratory Quality Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in bold in Table F1. The exceedances are not, however, considered to be of concern given that:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the PQL;

- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

F2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement						
Completeness	Systematic and selected target locations sampled.						
	Preparation of borehole logs, sample location plan and chain of custody records.						
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.						
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).						
	Completion of chain of custody (COC) documentation.						
	NATA accredited laboratory results certificates provided by the laboratory.						
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.						
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.						
	Experienced sampler(s) used.						
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.						
	Satisfactory results for field and laboratory QC samples.						
Representativeness	Target media sampled.						
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.						
	Samples were extracted and analysed within holding times.						
	Samples were analysed in accordance with the COC.						
Precision	Field staff followed standard operating procedures.						
	Acceptable RPD between original samples and replicates.						
	Satisfactory results for all other field and laboratory QC samples.						

Т

Based on the above, it is considered that the DQIs have been generally complied with.

F3.0 Conclusion

Accuracy

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Field staff followed standard operating procedures.

Satisfactory results for all field and laboratory QC samples.

Page 4 of 4

F4.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Page 1 of 2

Table F1: Relative Percentage Difference Results – Intra-laboratory Replicates

				Metals								TRH							BTEX				РАН			
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs		
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
D1LAH	0 m	08 Feb 2022	6	<0.4	12	5	13	<0.1	8	26	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
130	0.3 m	08 Feb 2022	<4	<0.4	5	2	8	<0.1	3	11	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
		Difference	2	0	7	3	5	0	5	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		RPD	40%	0%	82%	86%	48%	0%	91%	81%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
				1	r			8			1	,	r	1		1	r	,		,		1	8			
D2LAH	0 m	08 Feb 2022	<4	<0.4	4	<1	3	<0.1	2	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
134	0.3 m	08 Feb 2022	<4	<0.4	4	<1	4	<0.1	2	5	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
		Difference	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		RPD	0%	0%	0%	0%	29%	0%	0%	18%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
D3LAH	0 m	08 Feb 2022	<4	<0.4	4	1	4	<0.1	2	6	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
137	0.3 m	08 Feb 2022	<4	<0.4	3	2	6	<0.1	2	7	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.05	<0.5	<0.05		
		Difference	0	0	1	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		RPD	0%	0%	29%	67%	40%	0%	0%	15%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		

Page 2 of 2

Table F1	1: Relativ	e Percentaç	ge Differen	ce Results -	- Intra-labor	atory Repli	cates (cont	nued)															
														1									
								OCP						OPP				P	СВ				Asbestos
			QQ	DDT+DDE+DDD ^c	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	Endrin	Total Endosulfan	Heptachlor	Hexachlorobenzene	Methoxychlor	Chlorpyriphos	Arachlor 1016	Total PCB	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclor 1260	Asbestos Comment
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
D1LAH	0 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
130	0.3 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
		Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		RPD	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
D2LAH	0 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
134	0.3 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
		Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		RPD	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
D3LAH	0 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
137	0.3 m	08 Feb 2022	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT
		Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		RPD	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-

Appendix F Site Assessment Criteria 527 Cessnock Road, Gillieston Heights

F1.0 Introduction

F1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013);
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011); and
- NSW EPA Use and Disposal of Biosolids Products (NSW EPA, 1997).

F1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results are assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: residential;
 - Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry)), also includes children's day care centres, preschools and primary schools.
- Soil type: clay.

F2.0 Soils

F2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table 1 and Table 2.

Table 1: Health Investigation Levels (mg/kg)

Contaminant	HIL-A
Metals	
Arsenic	100
Cadmium	20
Chromium (VI)	100
Copper	6000
Lead	300
Manganese	3800
Mercury (inorganic)	40
Nickel	400
Zinc	7400
РАН	
B(a)P TEQ	3
Total PAH	300
OCP	
DDT+DDE+DDD	240
Aldrin and dieldrin	6
Chlordane	50
Endosulfan	270
Endrin	10
Heptachlor	6
НСВ	10
Methoxychlor	300
OPP	
Chlorpyrifos	160
РСВ	
PCB	1

Contaminant	HSL-A&B	HSL-A&B	HSL-A&B	HSL-A&B
CLAY	0 m to <1 m	1 m to <2 m	2 m to <4 m	4 m+
Benzene	0.7	1	2	3
Toluene	480	NL	NL	NL
Ethylbenzene	NL	NL	NL	NL
Xylenes	110	310	NL	NL
Naphthalene	5	NL	NL	NL
TRH F1	50	90	150	290
TRH F2	280	NL	NL	NL

Table 2: Health Screening Levels (mg/kg)

Notes to Table 2: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table 3.

Table 3: Health Screening Levels for Direct Contact (mg/kg)

Contaminant	DC HSL-A	DC HSL-IMW		
Benzene	100	1100		
Toluene	14 000	120 000		
Ethylbenzene	4500	85 000		
Xylenes	12 000	130 000		
Naphthalene	1400	29 000		
TRH F1	4400	82 000		
TRH F2	3300	62 000		
TRH F3	4500	85 000		
TRH F4	6300	120 000		

Notes to Table 3: TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

IMW intrusive maintenance worker

F2.2 Asbestos in Soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table 4.

Table 4: Health Screening Levels for Asbestos

Form of Asbestos	HSL-A
ACM	0.01%
FA and AF	0.001%
FA and AF and ACM	No visible asbestos for surface soil *

Notes to Table 4: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

F2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table 6, with inputs into their derivation shown in Table 5.

Table 5: Inputs to the Derivation of the Ecological Investigation Levels

Variable	Input	Rationale					
Age of contaminants	"Aged" (>2 years) / "new" (<2 years)						
рН	4.0	Conservative assumption of clay pH					
CEC	5 cmol₀/kg	Conservative assumption of clay CEC					
Clay content	%	Conservative assumption of clay content					
Traffic volumes	high	Residential subdivision, adjacent to main road					
State / Territory	NSW						

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	65
Nickel	35
Chromium III	410
Lead	1100
Zinc	190
РАН	
Naphthalene	170
ОСР	
DDT	180

Table 6: Ecological Investigation Levels (mg/kg)

Notes to Table 6: EIL-A-B-C urban residential and public open space

F2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table 7.

Table 7: Ecological Screening Levels (mg/kg)
--

Contaminant	Soil Type	EIL-A-B-C
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
Benzene	Fine	65
Toluene	Fine	105
Ethylbenzene	Fine	125
Xylenes	Fine	45
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Fine	1300
TRH F4	Fine	5600
B(a)P	Fine	0.7

Notes to Table 7: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

EIL-A-B-C urban residential and public open space

F2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure eg: penetration of, or damage to, in-ground services.

The adopted management limits are in Table 8.

Contaminant	Soil Type	ML-A-B-C
TRH F1	Fine	800
TRH F2	Fine	1000
TRH F3	Fine	3500
TRH F4	Fine	10 000

Notes to Table 8: TRH F1 is TRH C₆-C₁₀ including BTEX

TRH F2 is TRH > C_{10} - C_{16} including naphthalene

ML-A-B-C residential, parkland and public open space

F2.6 Microbiological Criteria

In the absence of land use criteria for microbiological contaminants, Stabilisation Grade A criteria for microbiological contamination in biosolids have been adopted from NSW EPA Environmental Guidelines: Use and Disposal of Biosolids Products (NSW EPA, 1997). The guidelines are summarised in Table 9 below.

Table 9: Stabilisation Grade A Microbiological Standards (MPN/100 g)

Contaminant	Standard						
E.Coli	<10000						
Faecal Coliforms	<100000						

Notes to Table 9: MPN – most probable number

F2.7 Waste Classification

The contaminant concentration criteria in the NSW EPA Waste Classification Guidelines: Part 1 – Classifying Waste (NSW EPA , 2014) are considered to be appropriate for the assessment of soils for disposal to an appropriately licensed landfill. The adopted criteria are presented in Tables B5 and B6, Appendix E.

F3.0 References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (2014). Waste Classification Guidelines, Part 1: Classifying Waste. NSW Environment Protection Authority.

Douglas Partners Pty Ltd

Appendix F Field Work Methodology 527 Cessnock Road, Gillieston Heights

F1.0 Guidelines

The following key guidelines were consulted for the field work methodology:

• NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

F2.0 Soil Sampling

Soil sampling is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

- Collect soil samples directly from the excavator bucket at the nominated sample depth;
- Collect near surface samples using hand tools;
- Transfer samples in laboratory-prepared glass jars with Teflon lined lids by hand, capping immediately and minimising headspace within the sample jar;
- Collect replicate samples in zip-lock bags for PID screening;
- Collect ~500 ml samples for FA and AF analysis;
- Wear a new disposable nitrile glove for each sample point thereby minimising potential for crosscontamination;
- Collect 10% replicate samples for QC purposes;
- Label sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable);
- Place samples into a cooled, insulated and sealed container for transport to the laboratory; and
- Use chain of custody documentation.

F2.1 Field Testing

Field testing is carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprise:

PID Field Test

 Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;

- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

F3.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

CHAIN OF CUSTODY FIELD SHEET

4

Project No:				204921	Client Pro	ient Project Name: Proposed Residential Subdivision								
Client:	Walker Co	orporation	ż		Location:	Location: 527 Cessnock Road Gillieston Heights								
Project Manag	ger:	PH								DP Lab Received		By: D		Date:
Do samples c	ontain 'pot	ential' HBN	1? Yes 🗆 N	No □ (If YES	, then hand	nen handle, transport and store in accordance with FPM HAZID)								
				Field						DP Lab	For Despatch to			Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sam	pling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Dat	e	Time	Locn *	Date	Date	Date	
Pit 6	20-01		5	9(P		LANG	25/1/2	22	915		/			
	0.4			<u> </u>		1	1							
	0-6													
Act 7	0-0-01	DI												
0. 71	05													
<u>pil8</u>	0-0.01													
	0.3													
	0-5													
- <u>^</u>	1.0										à			
Pi+14	0-0.	m												<
· · · · · · · · · · · · · · · · · · ·	0.5	-												
$p_i + $	0-0.													
	0.3										\checkmark			
	0-6					1		Í						
	0.8							Ī						
				1,		l, –								
		ĺ	A	Ŵ		1	4							
			· · · ·					L		11				

Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

A Provide name of Lab 1 Envirolab

Douglas Partners

B Provide name of Lab 2

C Provide name of Lab 3

Bulks + Uso Stored in bay CHAIN OF CUSTODY FIELD SHEET

Project No:				204921	Client Pro	ject Nam	9:	Proposed	Residential					
Client:	Walker Co	prooration			Location:		······································		527 Cessi	nock Road	Gillieston He			
Project Manag		PH							DP Lab Re	ceived	Ву:	C	Date:	
Do samples co	jei.	ntial' HRM	12 Vas 🗆 N	o □ (If YES	then hand	le. transpo	ort and store	in accordar	nce with FPN	I HAZID)				
Do samples co	ontain pote			<u> </u>	,							•	Notes	
				Field				DP Lab	FC	or Despatch	10			
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C		
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	By	Date	Date Time		Date	Date	Date		
DHTO	0-0.01		5	14/P		LAH	25/1/22							
	0.4			1		1	1			<u> </u>				
	0.6													
P,7-13	0-01	D3								<u> </u>				
Hill 19	0.3													
	0.6													
Pi7-12														
MIT LE	0.3													
	0.0													
				1										
A L	1-0	-								1 .				
Pit15	0-0.05)								1				
	0,5													
	1.0													
								1					AND AND AND	
		<u> </u>											<u></u>	
				lastic contair		<u> </u>	n freezer, w	l ater sampl	 es in fridge	<u> </u>	1	<u></u>	*****	

* Default storage: glass containers in tridge,

Douglas Partners Geotechnics | Environment | Groundwater

B Provide name of Lab 2

C Provide name of Lab 3

F

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No:	ject No: 204921 Client Project Name: Proposed F													Subdivision		·	
Client:	Walker Co	orporation					Location:						527 Cessr	ock Road (Gillieston He		
Project Manag		PH					Lange and the second						DP Lab Re	ceived	By:		Date:
Do samples c	ontain 'pot		? Ye	s 🗆 N	lo 🗆 (I	f YES	, then hand	e, transp	ort and	d store	in acc	ordan	ice with FPM	HAZID)			
													········		or Despatch		Notes
													DP Lab				
			San			ainer	100		Sa	mpling			Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C	
Sample ID	Depth (m)	Duplicate Sample	Ту			pe	ASS Samples						Locn *				
ID	(11)	Sample	S- W-v			glass lastic	Campier	Ву	D	ate	Т	ime	-	Date	Date	Date	
101/0.05	D.05		S		6.			JRK	27/	1/22	11:	00	Fridge /				
101 0.5	0.05			[-				ſ			Bayill				
102/0.05	0.05								1		1		5	✓			
102 0.5	0.65			1	 					1							
103/0-05	0.05													<i>√</i>			
103/0.5	0.05		Į	1						1							
104 0.05	0.05																
104/0.5	0.5	_				1								<u> </u>			
105/0-05	0.05					1										L	
105/0.5	0.05					1											
106 0.05	0.05			1	1]							
106/0.5	0.5		1			1											
108/0.05	0.05	DI/JRK		1	1	1	-							✓			
108 0.5	0.5	17500		1		1											
109/0.05	0.05			1	1	<u> </u>	_										
109/0.5	0.05					1	-	V		1/	15:	30		V,			
107/0.05	0.05			/	,									J			
* Default stora		containers i	<u> </u>	<i>r</i>	lastic (contai	ners shelved	I, ASS	in free	zer, v	vater	sample	es in fridge				

C Provide name of Lab 3

FPM - ENVID/Form COC 01

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No:					20	4921	Client Pro	ject N	lam	e:	Prop	osed I		Subdivisio	and the second se		
Client:	Walker C	orporation					Location:						527 Cess	nock Road (Gillieston He		
		PH											DP Lab Received By:				Date:
Project Manag Do samples co		ontial' HRM	12 Va	е П. N		YES	then hand	le, tra	insp	ort and store	in ac	cordan	ce with FPN	1 HAZID)			
Do samples co	ontain pot						,	,					1				Notes
Field													DP Lab	+c	or Despatch		10.00
	Depth	Duplicate	Sarr Ty		Conta Typ		ASS			Sampling	9		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C	
Sample ID	Depth (m)	Sample	S -	soil	G - g P - pla	lass	Samples	В	у	Date	Т	ime	Locn *	Date	Date	Date	
	ļ		<u> </u>		Gip			JRK		28/1/22	Th	8.00	Fridge				
107/0.5	0.5				41			1	_	1		1	Bay 111				
110/0.05	0.05	D2/JRK	-								1						
110/0.5	0.5										-		1	1			
111/0.05	0.05			<u> </u>	$\left \right $							1	1				
111/0.5	0.5			<u>}</u>										./			
112 0.05	0.05			 								1					
112 0.5	0.5			[1				
113 0.05	0.05				╞╼╾┼							1					
113/0.5	0.5							$\left \right $				+		$\overline{\checkmark}$. <u></u>		
114/0.05	c.05		<u> </u>									-					<u></u>
114/0.5	0.5													1			
116/0.05	0.05				<u> </u>												······································
116/0.5	D.5				_ ├			$\left - \right $		<u> </u>		+					
117 0.05	0.05																
117/0.5	0.5				+ +				<u> </u>	╂		$\overline{\mathbf{V}}$		/			
118/0.05	0.05								<u> </u>					 			
118/0-5	0.5				V			<u> </u>				:30	- : (+-:	<u> </u>	<u> </u>	<u> </u>	
* Default stora	ge: glass	containers i	n fridg	e, pi	lastic c	ontair	ners shelved	i, A	SS i	n freezer,	water	sample	s in fridge		_		

A Provide name of Lab 1 Envirolab

B Provide name of Lab 2

C Provide name of Lab 3

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Project No:				204921	Client Pro	ient Project Name: Proposed Residential Subdivision								
Client:	Walker C	orporation			Location:				527 Cessnock Road Gillieston Heights					
Project Manag		PH			<u> </u>				DP Lab Re	eceived	By:		Date:	
Do samples co	jer.	ontial' HRM		Jo □ (If YES	, then hand	lle, transr	ort and stor	e in accordai	nce with FPN	1 HAZID)				
Do samples co	ontain por				,			······································			or Despatch	to	Notes	
				Field		DP Lab								
Sample	Depth	ASS		Samplin	g	Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C					
ID	(m)	Duplicate Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Date	Time	Locn *	Date	Date	Date		
1200 0.05	0.05		S	G.P		JRK_	28/1/22	8:00	Fridge/					
120/0.5	0.5					<u> </u>	<u> </u>		Bay 111					
126/0.05	0.05			<u> </u>		<u> </u>							······································	
n6/0.5	0.5										1			
135/0.05	0.05							15:30						
135/0.25	0.5		<u> </u>	V		<u> </u>		19:30						
							-							
						1								
				1						· · · · · · · · · · · · · · · · · · ·			-	
					·									
	-													
			[
						1								
	1	1	<u> </u>	<u> </u>	<u>]</u>		<u> </u>	, ,		#****		· ·		

* Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

C Provide name of Lab 3

Envirolab A Prcvide name of Lab 1

B Provide name of Lab 2

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

oject No:				204921	ļ	ect wante	•		Residential	ock Road G	illieston He	eights	
ient:	Walker Co	rporation			Location:			·····	DP Lab Re		By:		ate:
	er:	PH									-)*	- Long - Comp Long -	
roject Manag o samples co	ontain 'pote	ntial' HBM	? Yes 🗆 N	lo 🗆 (If YES	, then hand	le, transpo	rt and store I	n accordar					Ni
o sumpres e				Field			<u></u>	<u></u>	DP Lab	Foi	r Despatch	to	Notes
				T	1					Lab 1 ^A	Lab 2 ⁸	Lab 3 ^C	
			Sample Type	Container Type	ASS		Sampling		Storage				
Sample ID	Depth (m)	Duplicate Sample	S - soil	G - glass	Samples		Date	Time	- Locn *	Date	Date	Date	
IU	(117)	Current	W - water	P - plastic		By				5			
121	0-01		5	GP		LAH	7/2/22	<u></u>		~			
	03		1	1		<u> </u>					······		
124	0.5												
	03												
······	0-5												
	10^{-5}											-	
	0.5-0.75	110.60							Bay 112			-	
La C													
125	0-01	1								<u> </u>		-	
	0.3												
	0.5 0.4-0.5	Bulk						l	Bag112		[
	0.5-0.7								Bag112 Bag 112		ļ		
	0.4/1.0	Bulk_											
120	6-0.1	0131 413								Jight	1		
	<u>)-3</u>	DIALAH											
	<u>U</u> G	Λ.	+ +						Banllz		1		
	D.6-08	and the second se			Janara shalve		n freezer, N	vater samp	les in fridge				
* Default store	-	containers	-	plastic conta	e name of La	-	···· ··· ··· ··· · · · · · · · · · · ·			e name of Lap	3		
A Provide na	me of Lab 1	Envirolat	C	R Llovid	е пате ог са		Page 1 of 1						Rev4/Octol

CHAIN OF CUSTODY FIELD SHEET

				204921	Client Proj	ect Name	: F	roposed	Residential S	Subdivision	Weston He	viahts	
roject No:				204021	Location:					ock Road Gi		.ignio [Date:
lient:	Walker Co	rporation							DP Lab Red		By:		
Project Mana	ger:	PH			then hand	le, transpo	rt and store i	n accordar	nce with FPM	HAZID)			
Project Manag Do samples c	ontain 'pote	ntial' HBM	? Yes 🗆 🖻		, 1.011 1.2112			·····	DP Lab	For	Despatch	to	Notes
			<u></u>	Field		·····]	L L O B	Lab 3 ^C	
	1		Sample	Container			Sampling		Storage	Lab 1 A	Lab 2 ^B	Lab 5	
Sample	Depth	Duplicate	Туре	Туре	ASS Samples		<u> </u>		Locn*	Date	Date	Date	
ID	(m)	Sample	S - soil	G - glass		By	Date	Time					
			W - water	P - plastic		1.A14	712/22		_				
131	0-0.		<u> </u>	GP	+								<u></u>
	0.2			<u> </u>						<u> </u>			
	0.5		ļ	<u> </u>					Barg 1/2				<u></u>
	0.5-9.6	Bulk				1				-/			
123	0-0.1		<u> </u>							V			
	0.2					+						<u> </u>	
	3.5		<u> </u>									-	
	1.0		ļ						Bag1/2				
	9.4.6.4							l					
134	0-01									V+D2LAH			
<u> </u>	12.3	D2ALAH				-				ļ			
	0.5						-		Bayli				
	0.40.6	BULK					-						
						-					ļ		
			<u> </u>										-
			<u>_</u>					1			<u> </u>	<u> </u>	
			U	plastic cont			in freezer,	water sam	oles in fridge				

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

oject No:				204921	Client Proj	ect Nam	e: r	Toposed	Residential	nock Road G	illieston He	eiahts	
ient:	Walker Co	rporation			Location:				DP Lab Re	the second se	By:		ate:
		1774 B									<u> </u>		
	ontain 'pote	ential' HBM	? Yes D N	lo 🛛 (If YES	, then hand	le, transp	ort and store i	n accordar	nce with FPN		·····		
0 Samples 0					······································			······································	DP Lab	Fo	r Despatch	to	Notes
			······································	Field	1	······································					, B		
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	By	Date	Time	LUCII	Date	Date	Date	
176	0-01		5	GP		LAH	7/2/12			\checkmark			
	03		(<u> </u>	ļ							
	0.5												
	1.2								An in				
	0.1-1.0	Bulk						<u></u>	Bayin				
137	0-01									1+931AH			
	0.3	DJALAH		94/1921a									
	0.5												
	1.5	N II		1					Bay 12	. ,			
-1 ~ d -	1	Bulk		1					U				
138	0-2.1	-									ļ		
	10-5 10-5										ļ		<u> </u>
	0-5	1160							Bay1/2	<u></u>			
	<u></u>												
			/								<u> </u>		
		-		V			V				<u> </u>	<u> </u>	

CHAIN OF CUSTODY FIELD SHEET

Geotechnics | Environment | Groundwater

ct No:					Client Pro				527 Cessn	ock Hoad	Gillieston H		
ent:	Walker Co				Location:		<u>,</u>		DP Lab Rei		By:	L	Date:
iect Manac	ner:	PH					t and store it	accordar	nce with FPM	HAZID)			
	ontain 'note	ntial' HBM	? Yes□N	lo 🛛 (If YES	, then hand	le, transpo	rt and store ii	raccorda	DP Lab				Notes
samples c									DP Lab	Fo	or Despatch		
				Field	1	<u> </u>				Lab 1 ^A	Lab 2 ⁸	Lab 3 ^C	
			Sample	Container Type	ASS		Sampling		Storage				
Sample	Depth	Duplicate Sample	Туре	G - glass	Samples		Date	Time	LOCII	Date	Date	Date	
ID	(m)	Sample	S - soil W - water	P - plastic		By			11. 112				
101	0-01		5	17- P		LAHUUS	9/2/12		<u> 2 </u>	1			
122)							
	0.3												
	0.5	l											
	1.0												
119	0-0.1									<u> </u>			
	03												
	6-5	<u> </u>				+				ļ			
	1.0												
	0.8-1.0	1 Balk	ļ										
132	5-0.1			++						<u> </u>			
	03	DSALAH											
	0.5,10	<u>ت</u>						<u></u>					
S	ALTE	5					+						
	0-0.11 D-0												<u></u>
2	0-0-1							1					<u> </u>
<u>~</u>	0-0-4			1		+ -							<u> </u>
4	0		U	Ju Ju					oles in fridge	<u></u>			
		containers	in fridge,	plastic conta			in freezer, N	vater samp	C Provid	e name of La	ab 3		
Default sto	rage: glass ame of Lab 1	Envirola		B Provid	e name of La	ab 2	Page 1 of 1		0				Rev4/Oct

CHAIN OF CUSTODY FIELD SHEET

Douglas Partners Geotechnics | Environment | Groundwater

Geole 🖉							a at Nome	P	roposed l	Residential S	Subdivisior	<u>ן</u>		
oject No:				204	921	Client Proj	ect Name.			527 Cessn	ock Road (Gillieston H	eights	
	Walker Co	rporation				Location:				DP Lab Red		By:	[Date:
ient:	ar:	PH						in	accordan					
oject Manage o samples co	-t-in (note	ntial' HBM	? Yes □ N	o □ (If	YES	, then hand	e, transpo	t and store if	accordan					Notes
o samples co	main pore									DP Lab	Fo	or Despatch	1	
				Field		1					Lab 1 ^A	Lat 2 ^B	Lab 3 ^C	
			Sample	Conta		ASS		Sampling		Storage				
Sample	Depth	Duplicate	Туре	Тур		Samples			Time	Locn *	Date	Date	Date	
ID	(m)	Sample	S - soil· W - water	G - gl P - pla			Ву	Date		0.11	$\overline{\checkmark}$			
			S W - Water	1	p		LAWILG	8/2/22		Baylle				
1200-12.8	0-2.		<u> </u>		<u> </u>	1	ſ	1		<u> </u>		<u> </u>	-	
	0.2,0.5			┝──┼	<u> </u>						a			
	0.1													
	0.4-1.3	balk_		┞──┼─			<u>├</u>				\checkmark			
129	0-0.1			╞╾┾╴			┼╌┼───				ļ			
	03	D4LAH					+				<u> </u>			
	0.5			<u></u>			+		<u>, ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </u>					
·····	10													
	0:55-12	Balk									. S			
123	0-0.1						<u> </u>							
(L)	0:3.0.5						<u>_</u>							
		<u></u>						<u> </u>						
	0.4-0.9	n. ilk									1			
1.0.0	2-21,23	T DAMA												
127	1.2.2.0			-					<u> </u>		-			
	0.5-67				1			4-1/			_			
	0.5-4	-1 <u>10~~~</u>	+		J		V		<u> </u>	<u> </u>				
			in fridaa	nlastic		ainers shelv	ed, ASS	in freezer, N	vater samp	oles in fridge	le name of La	ab 3		
* Default stor	•	s containers		B P	rovid	e name of La	ab 2			C Provid	IE HAINE OF L	··		Rev4/Octob
A ⊃rcvide na	me of Lab 1	Envirola	a					Page 1 of 1						

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY FIELD SHEET

Ductorst Mark				204921	Client Pro	ject Nam	e:	Proposed	Residential	Subdivisio	n		
Project No:	Walker Co	rporation			Location:				527 Cess	nock Road	Gillieston He	eights	
Client:									DP Lab Re	eceived	By:		Date:
Project Manag Do samples c	ger:	PH			then hand	le transn	ort and store	in accordar	ice with FPN	1 HAZID)			
Do samples c	ontain 'pote	ential' HBIV						· · · · · · · · · · · · · · · · · · ·					Notes
				Field					DP Lab	Fo	or Despatch	to	WOIES
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Storage	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Date	Time	Locn *	Date	Date	Date	
301	0-0.05		S	P	~	LAH	2113/21	7:30		_√			
	015		ľ	1									
302	0-0.05									J			
303	0-0.05		The second		<u></u>				_	/			
204	0-0.05						ļ			Ĵ,	<u> </u>		
305	0-0.05		¥	₩			Y_	¥		L_/			
301/A			U U	V		V	5	V		√			<u></u>
						<u> </u>							·····
						<u></u>							
													<u></u>
		ļ	<u> </u>			<u> </u>		····					
		1	1	1		1			1	<u> </u>	1	لـــــــــــــــــــــــــــــــــــــ	

* Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	20492	1.00			Suburt): 	Gilliesto	n Height	6	То:	Env	irolab		
Project Name:	Gilliest	ton Heights			Order I	Number			- Ru ,		12 /	Ashley Str	eet Chats	swood
Project Manager	r:PH		••		Sample	er:	LAH/JR	K	×.	Attn:	Sim	on Song	•	
Emails:										Phone:	02 9	1006200	•	
Date Required:			24 hours		ours 🛛	72 hou		Standard	X	Email:	•			4
Prior Storage:	`Esky	/ 🗆 Fridg	ge 🗆 Sh	nelved	Do sam	oles contai	n 'potentia	I' HBM?	Yes 🛛	No 🗆	(If YES, the			d store in accordance with FPM HAZID)
		pled	Sample Type	Container Type					Analytes		envirou	AB Chatswo	olab Service 12 Ashley S od NSW 206	
Sample ID	Lâb ID	Date Sampled	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and [«] BTEX	РАН	Total Phenols	Asbestos 500 ml	<u>Job No</u> Date Re Time Re Benelver	eived: 4/	12) 9910 620 SUSZ 2/VZ 40	Notes/preservation
6/0.0-0 1	· (25/01/22	·S	G/P	¥ .		✓	 ✓ 		¥	Temp: 0	ol/Ambient	PC.	combo 6a (500 ml asb)
6/0.4	.2		•	J. J	~		~	✓			Cooling: Security:	Ce/Conart		combo 3
. 7/0.0-0.1	3				✓	~	1	. 🗸		✓			5 ×	combo 6a (500 ml asb)
<u>.</u>	4			بر بر	<u> </u>		11	✓		✓	-			combo 3a (500 ml asb)
10/0.4	5						· 🗸	✓						combo 3
11/0.3	6		•		~	✓	1		ı.	✓				combo 6a (500 ml asb)
12/0.3	:7				· 🗸	~	~	~		✓ .		ı'		combo 6a (500 ml asb)
13/0.0-0_1	8				√	-	✓.	✓	- x	·	-	-		combo 3
15/0.5	9		-		✓	_	 ✓ 	✓			-		1.	combo 3
101/0.0-0.05	10		.** <u>.</u>		√	✓	✓	<u> </u>		✓				combo 6
102/0.05	1				., V		✓ 	_ ✓						combo 3
103/0.05	12			· · ·	. ✓		✓ ³	✓			·			combo 3
104/0.5	13			<u>.</u>	✓		✓							combo 3
105/0.05	14	~ 1			✓		✓	✓					·	combo 3
106/0.05	IS				✓		 ✓ 	✓						combo 3
PQL (S) mg/kg	·		16			Ļ								req'd for all water analytes 🛛
PQL = practical of Metals to Analys	e: 8HM	unless sp	ecified he	ere:		· ·	hod Detec					erence N	o: 78	
Total number of Send Results to:					nquished	by:		Iranspo	rted to la	poratory	<u>by:</u>	Phone:		<u>.</u>
Signed:	<u> </u>	ouglas,Parti		Received b		Sasa	<u> </u>	Jan	1	S SHOT	Date & T		12/2	Fax: 2 1040
				Ticocived D	<u></u>		- HUJ		- 04				1-1-1-	9°C

. .

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	20492		· · · · · · · · · · · · · · · · · · ·		Suburb		Gilliesta	n Height	2	To:	Env	irolab		
Project Name:		ton Heights			- 1. LAT	, lumber							reet Chats	wood
Project Manage			<u>,</u>		Sample		LAH/JF	K		Attn:		on Song		
	irn.		·	·	Sample		LAUIJI			Phone:		9100620		90 (An
Emails:	Come	doi: 🗆	24 hours		urs 🛛	72 hou		Standard		Email:	<u>, </u>	1000200		
Date Required: Prior Storage:	Barne □ Eskv		·				n 'potentia		Yes 🛛		(If YES, the	en handle,	transport and	I store in accordance with FPM HAZID)
		Date	Sample Type	Container Type	••••	:		÷	Änalytes					
Sample ID	Lab ID	Sampling D	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	РАН	Total Phenols	Asbestos 500 ml				¹ Notes/preservation
107/0.05	16	· · · ·	і				· .	4						combo 3
108/0.05	17	V.			1	1		1			·			combo 6a (500 ml asb)
109/0.5	18	:			1		1	1	· · · ·			<u> </u>		combo 3
410/0.05	19		h	•	1	· 🗸	<u> </u>	, Z		✓	•			combo 6a (500 ml asb)
111/0.05	20					A.	, f ei	1						combo 3
₀ 112/0.05	21						<u> </u>	·				ļ	<u> </u>	combo 3
			· · · · · · · · · · · · · · · · · · ·		° ✓	×		* /		÷			·.	combo 3
114/0.05	22			and a straight of the second sec	1		1	<u>`</u>						combo 3
116/0.05	23				√	×		× ¥.				ļ	,	combo 6
118/0.05	24	· · ·	. :	(A	✓	· · · · ·		1						combo 3
* 120/0.05	25				√		\checkmark	√				ļ		combo 3
		4		2 ² 5 2 ¹² 7	✓			√						combo 3
135/0.05	26					·	✓	✓		<u>`</u>			· ·	combo 3
		· · · · · · · · · · · · · · · · · · ·			······									
DOI (0)					· · ·	\$				9	· · ·			reg'd for all water analytes 🏾
PQL (S) mg/kg			 f		tolober	l otony Met	L bod Data	l tion' l imi	I		7			
PQL = practical Metals to Analys				ere:						-		ference	No: 288	1002
Total number of					nquishec	l by:		Transpo	orted to la	boratory	by:			
Send Results to	<u>:</u> D	ouglas Part				_				C/-	D-t- 0	Phone		Fax: 10そひ
Signed:	•			Received b	y: 30	<u>65 6</u>	<u>ban</u>	JOH	EUS	STA	Date &	i ime:	4/2/22	1070

12

1.127

.

Page 2 of 2

.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	20492	21.00			Suburb):	Gilliesto	n Height	s	To:	Envi	rolab	-	
Project Name:	Gillies	ton Heights	 ;		Order I	Number					12 A	shley St	reet Chats	swood
Project Manage			<u></u>		Sample	er:	LAH/TL	G		Attn:	Simo	on Song		
Emails:	patrie	ck. <u>heads@d</u>	ouglaspartn							Phone	: 02 9	1006200)	
Date Required:			-24 hours		ours 🛛	72 hou		Standar		Email:				
Prior Storage:	□ Esk	y 🗗 Frid	ge 🗆 SI		Do samp	oles contai	in 'potenti <u>a</u>	<u>' HBM?</u>	Yes 🗹	Ó No □	(If YES, the	en handle,	transport an	d store in accordance with FPM HAZID;
		pled	Sample Type	Container Type			, ,		Analytes		ET. KULAE	} Chatswo	12 Ashizy Si od NSW 2007 2) 9910 5200	
Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	PAH	Total Phenols	Asbestos 500 ml	Job No: Date Rece Time Rece Peceived B Temp: Cool Cooling/for Security Eff	28	7028	Nister for a second second
1/0.0-0.1	t	08/02/22	S	G/P	√		×	✓			Cooling/1cs	Ambient		combo 3
2/0-0.1	2_				~		× .	~			Security: Int	act/Broken/	N'one	combo 3
3/0.3	3				~		✓ ¹	-		✓	÷			combo 3a (500 ml asb)
/ 4/0-0.1	Ŷ				~		× ''	\checkmark			_			combo 3
5/0-0.1	5				✓		✓ .	· 🗸		~				combo 3a (500 ml asb)
119/0.3	6				✓	~	× '	✓						combo 6
/	٦				✓		×	_ ✓						combo 3
122/0.3	8.	,	· ·		√			✓			_		-	combo 3
123/0-0.1	9					_ ✓	~	√						combo 6
124/0.5	(O)				× `		 ✓ 	✓						combo 3
125/0.3	<u>(</u> 1	1	p		✓		<pre></pre>	✓						combo 6
127/0-0.1	12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۰ ۱	~	~	✓	_ ✓		~				combo 6a (500 ml asb)
128/0-0.1	13	ر يەتھ	1 1		✓		× .	✓					L	combo 3
129/0-0.1	(4		, ¹⁴¹	,	✓		✓ 1							combo 3
130/0.3	(5	يد - م 	1.1		√	✓	 ✓ * 	<u> </u>						combo 6
PQL (S) mg/kg		<u> </u>	The second se			L <u></u>			<u> </u>			ANZEC	C PQLs	req'd for all water analytes 🛛
PQL = practical	-				t to Labo	ratory Me	thod Dele	ction Lim	nt	Lab R	eport/Ref	erence l	lo:	
Metals to Analys					nquished	by:		Transpo	rted to la	boratory	v by:			ź
Send Results to		ouglas Part					! _					Phone	:	Fax:
Signed:		اللهي أو ا م التي		Received b	y: P	+31,1	FIS N	10			Date & T	ime: <u>(</u> 7	1/2/2	2 110
FPM - ENVID/Form CC	DC 02		\$				Pàg	e 1 of 2			_			Rev4/October2

1

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	20492	21.00			Suburb):	Gilliest	on Heights	S .	To:	Env	/irolab	4	
Project Name:	Gillies	ton Heights	S		Order I	Number					12	Ashley Sti	reet Chat	swood
Project Manage					Sample	er: ,	LAH/TL	.G		Attn:	Sin	non Song		
Emails:		<u>ck.heads@d</u>	louglaspartr	ners.com.au						Phone:	02	91006200		
Date Required:		day 🛛	24 hours		ours 🛛	72 hou		Standard		Email:				
Prior Storage:	🗆 Esk	y 🗆 Frid	lge 🗆 S		Do sam	oles contai	in 'potentia	ıl' HBM?	_Yes 🛛	No 🗆	(If YES, t	hen handle,	transport a	nd store in accordance with FPM HAZID)
		Date	Sample Type	Туре					Analytes					
Sample ID	Lab ID	Sampling Date	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	PAH	Total Phenols	Asbestos 500 ml				Notes/preservation
, 131/0.5	16				✓		✓	✓						combo 3
	17		- 54	1 m	~	✓	1	~						combo 6
133/0.3	18				~	_	- 1	✓				ļ		combo 3
134/0.3	(9				✓	✓	×	~						combo.6
136/0-0.1	20				✓ ,		_ <u>✓</u>	✓		~				combo 3a (500 ml asb)
/ 137/0.3	21				<u>✓</u>	~	×	 ✓ 		~		ļ		combo 6a (500 ml asb)
138/0-0.1	22					 ✓ 	_ ✓	<i>✓</i>				-		combo 6
WWD1LAH	23	·		ر میں دور میں اور	14 J	<u> </u>	✓	✓						combo 6
Hully D2LAH	24		*-		~	~	✓	<i>✓</i>						combo 6
Hullendilah	25_				_ ✓	✓	_ ✓	✓		~		ļ		combo 6a (500 ml asb)
			:	بهت من المراجع . 								\ 		
PQL (S) mg/kg			: 									ANZEC	C PQLs	req'd for all water analytes 🏾
PQL = practical	_				t to Labo	ratory Me	thod Dete	ction Lim	it	Lab Re	enort/Re	ference N	lo:	289028
Metals to Analys				ere: 25 Relir	nguished	L hv: Will		Transpo	rted to la	boratory	•			
Send Results to	-	ouglas Part					<u>7441 1</u>	Tanapu		solutory	~y.	Phone:		Fax:
Signed:	·			Received b	y: A·	M,E	W 54	0 .		T	Date &	۔ ۲ ۲ime	2/21	22- 1110

17 5

*1

5

. . .

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	20492				Suburb): <u> </u>	Gilliesto	on Heights	6	To:	Envirolab
Project Name:		ston Heights	<u> </u>		Order N	lumber					12 Ashley Street Chatswood
Project Manage	r:PH				Sample	er:	LAH/TL	.G		Attn:	Simon Song
Emails:								_		Phone:	02 91006200
Date Required:			24 hours	□ 48 hc	ours 🛛	72 hou	irs 🛛 ,	Standard	X	Email:	
Prior Storage:	□ Esk	y 🛛 Frid	ge 🗆 Si	nelved	Do samp	oles contai	n 'potentia	II' HBM?	Yes 🛛	No 🗆	(If YES, then handle, transport and store in accordance with FPM HAZIE
·		pled	Sample Type	Container Type				2 1	Analytes		
Sample ID	Lab ID	Date Sampled	S - soil W <i>-</i> water	G - glass, P - plastic	, Heavy Metals	OCP/OPP PCB	TRH and BTEX	РАН	•Total Phenols	Asbestos 500 ml	Notes/preservation
3/0.3	1	08/02/22	S	Р						1	
5/0-0.1	r	08/02/22	S	P _{est}	, ,		}			✓	
127/0-0.1	3	08/02/22	S	_ P						✓	
136/0-0.1	4	08/02/22	S	P.						~	
137/0.3	5	08/02/22	, S				. <u>i</u>			1	
DSLAH-		08/02/22	S	_ P						✓	Exclude, not taken
Helling		-		·							
					i si u			_			
	_					.:			_		Envitolab Services 12 Ashley St Chatsubod NSW 2967 Chatsubod NSW 2967
				,,						-	PH. 102/ 3610
	_					-				_	JOD NG: 189 446
								_		a	Date Received: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
								<u>. </u>		_	Time Received: Received by: TUTAV
											Temp: Cool/Ambient
							1				Security Intact Broken/None
PQL (S) mg/kg											ANZECC PQLs req'd for all water analytes D
PQL = practical					to Labor	atory Met	hod Dete	ction Limi	it:	Lah Re	eport/Reference No:
Metals to Analys					auichad			Trene			•
Total number of Send Results to		ouglas Parti				by: Ne		Tanspo	ried to la	boratory	Phone: Fax:
		Jugido I alti		Received by		THAV	V (a) E	15 50	Idny		Date & Time: 2 - 2 - 2 2 (0 4 Δ
Signed: Juliu	9				<u>, </u>	<u> </u>			<u>, ,,, , , , , , , , , , , , , , , , , </u>		

4

• •

•

. .^{....}

۹.

.

CHAIN OF CUSTODY DESPATCH SHEET

Γ	Project No:	20492	1.00			Suburb):	Gilliesto	on Height	s	To:	Env	irolab		
Ī	Project Name:	Gillies	ton Heights	;			lumber					12 A	Ashley Street	Chats	wood
ľ	Project Manage		<u>v</u>			Sample		LAH			Attn:		on Song		
	Emails:		k.heads@	douglasp	artners.con	n.au					Phone:	02 9	1006200		
	Date Required:	Same	day 🛛	24 hours	0 48 ho	ours 🗆	72 hou	irs 🛛	Standar	d 🗵	Email:	<u>Ssc</u>	ong@enviro	lab.co	m.au
	Prior Storage:	X Esky	/ 🗆 Fridg			Do sam	oles contai	n 'potentia	I' HBM?	Yes X	No□ (lf YES, the	n handle, transp	ort and	store in accordance with FPM HAZID)
			pled	Sample Type	Container Type					Analytes	i				
ŝ.	Sample ID	Lab ID	Date Sampled	S - soil W - water	G - glass P - plastic	Heavy Metals	OCP/OPP PCB	TRH and BTEX	РАН	Total Phenois	Asbestos ID 500 ml	Asbestos ID Material	Faecal Coliforms and E. Coli		Notes/preservation
ſ	301/0-0.05	F	21/3/22	5	0						✓				
ſ	301/A	2		material								~			
ſ	302	3		5									~		
Γ	303	4		ς									~		
	304	S		5				1					~		
	. 305	Q	\checkmark	5	J.			۰.	•				~		
Γ			7					4							Envirolab Services
ſ		•												E	Ci atswood NSW 2007
														}	ob No: # 291536
-			. <u></u>							├──					Date Received: 22/03/22 Ime Received:
	×		<u></u>											<u>۱</u>	emp: CoetAmbient
						7									ecurity: Intest/Bir con "inte
										L					
	PQL (S) mg/kg									,				PQLs r	eg'd for all water analytes D
-	PQL = practical Metals to Analys	quantit				t to Labo	atory Me	thod Dete	ction Lim	it	Lab Re	eport/Ref	erence No:	-	9(536
┢	Total number of					nquished	by:	AH T	Transpo	orted to la	l boratory	by:			vernight - 21/3/22
	Send Results to): De	ouglas Part	ners Pty L			ils Above		_				Phone:		9609600 Fax:
Ĺ	Signed:				Received b	y: ELS	Syda	ey c	lisen	an		Date & T	ime: 22/	03/2	2 (130)
6	PM - ENVID/Form C(C 02					v		e 1 of 2						Rev4/October201

• .

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads

Sample Login Details	
Your reference	204921.00, Gillieston Heights
Envirolab Reference	289028
Date Sample Received	17/02/2022
Date Instructions Received	17/02/2022
Date Results Expected to be Reported	28/02/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	25 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12
Cooling Method	Ice
Sampling Date Provided	YES

Comments

No NEPM bags received - for Asbestos 500 ml analysis NEPM bags to be received - 22/2/2022

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in so	Organophosphorus Pesticides i Soil	PCBsin Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM
1-0.0-0.1	✓	\checkmark	\checkmark				\checkmark	
2-0.0-0.1	✓	\checkmark	\checkmark				✓	
3-0.3	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark
4-0.0-0.1	\checkmark	\checkmark	\checkmark				\checkmark	
5-0.0-0.1	✓	\checkmark	\checkmark				✓	\checkmark
119-0.3	✓	✓	\checkmark	✓	\checkmark	\checkmark	✓	
121-0.0-0.1	\checkmark	\checkmark	\checkmark				\checkmark	
122-0.3	\checkmark	\checkmark	\checkmark				\checkmark	
123-0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
124-0.5	\checkmark	\checkmark	\checkmark				\checkmark	
125-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
127-0.0-0.1	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
128-0.0-0.1	\checkmark	\checkmark	\checkmark				\checkmark	
129-0.0-0.1	✓	\checkmark	\checkmark				\checkmark	
130-0.3	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark	
131-0.5	\checkmark	✓	\checkmark				\checkmark	
132-0.0-0.1	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	
133-0.3	\checkmark	✓	\checkmark				✓	
134-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
136-0.0-0.1	✓	\checkmark	\checkmark				✓	\checkmark
137-0.3	✓	✓	✓	✓	\checkmark	✓	✓	✓
138-0.0-0.1	✓	✓	✓	✓	\checkmark	✓	✓	
D1LAH	✓	✓	✓	✓	\checkmark	✓	✓	
D2LAH	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark	
D3LAH	✓	✓	✓	✓	\checkmark	✓	✓	✓

=

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads

Sample Login Details	
Your reference	204921.00, Gillieston Heights
Envirolab Reference	289446
Date Sample Received	22/02/2022
Date Instructions Received	22/02/2022
Date Results Expected to be Reported	01/03/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	25
Cooling Method	None
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Asbestos ID - soils NEPM
3/0.3	\checkmark
5/0-0.1	\checkmark
127/0-0.1	\checkmark
136/0-0.1	\checkmark
137/0.3	\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Patrick Heads

Sample Login Details	
Your reference	204921.00 Gillieston Heights
Envirolab Reference	291536
Date Sample Received	22/03/2022
Date Instructions Received	22/03/2022
Date Results Expected to be Reported	29/03/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Soil, 1 Material
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

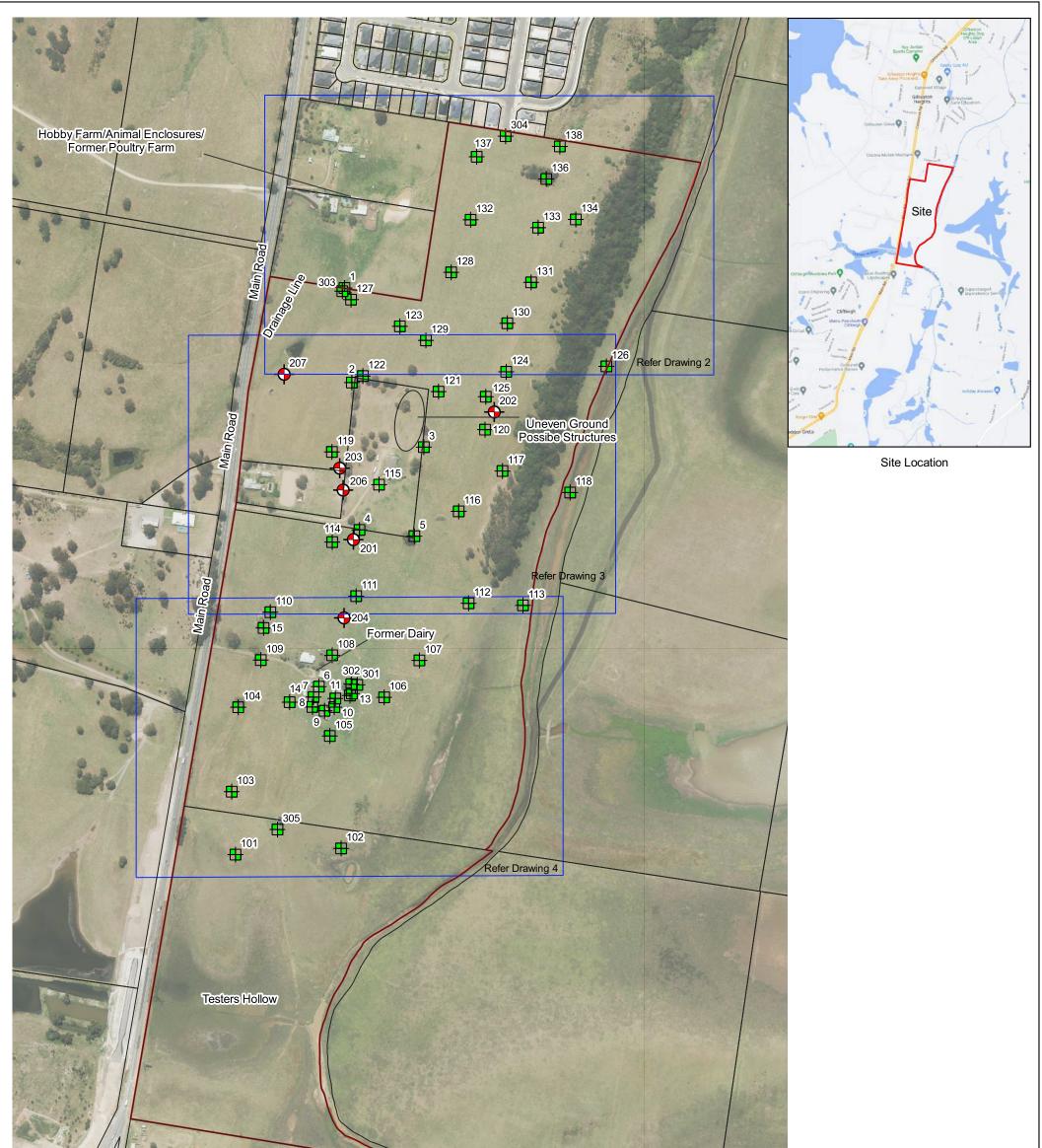
Analysis Underway, details on the following page:

Sample ID	Micro testing in soil Asbestos ID - soils NEPM - ASB- 001 Asbestos ID - materials
301/0-0.05	✓
301/A	✓
302	\checkmark
303	\checkmark
304	\checkmark
305	✓

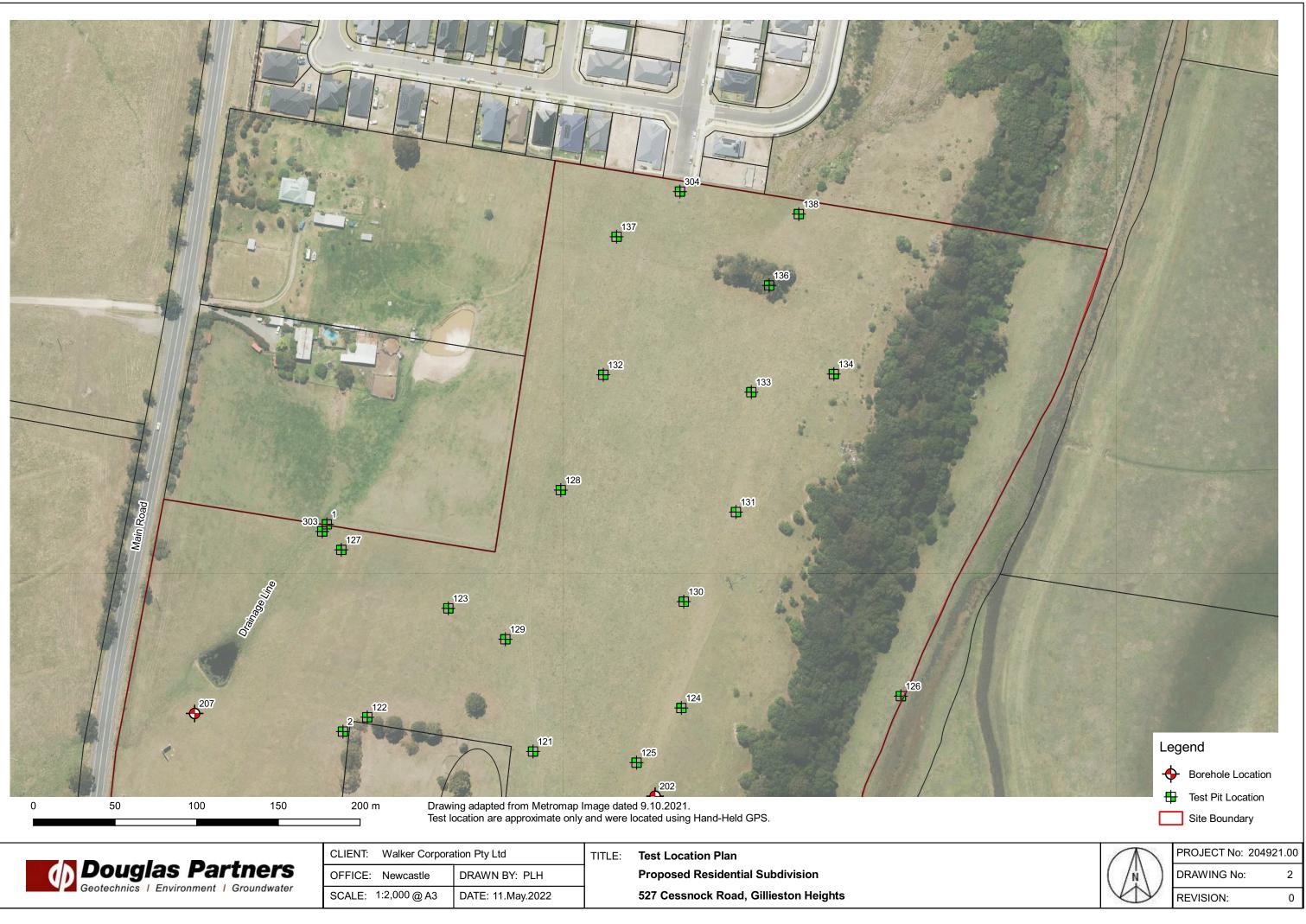
The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

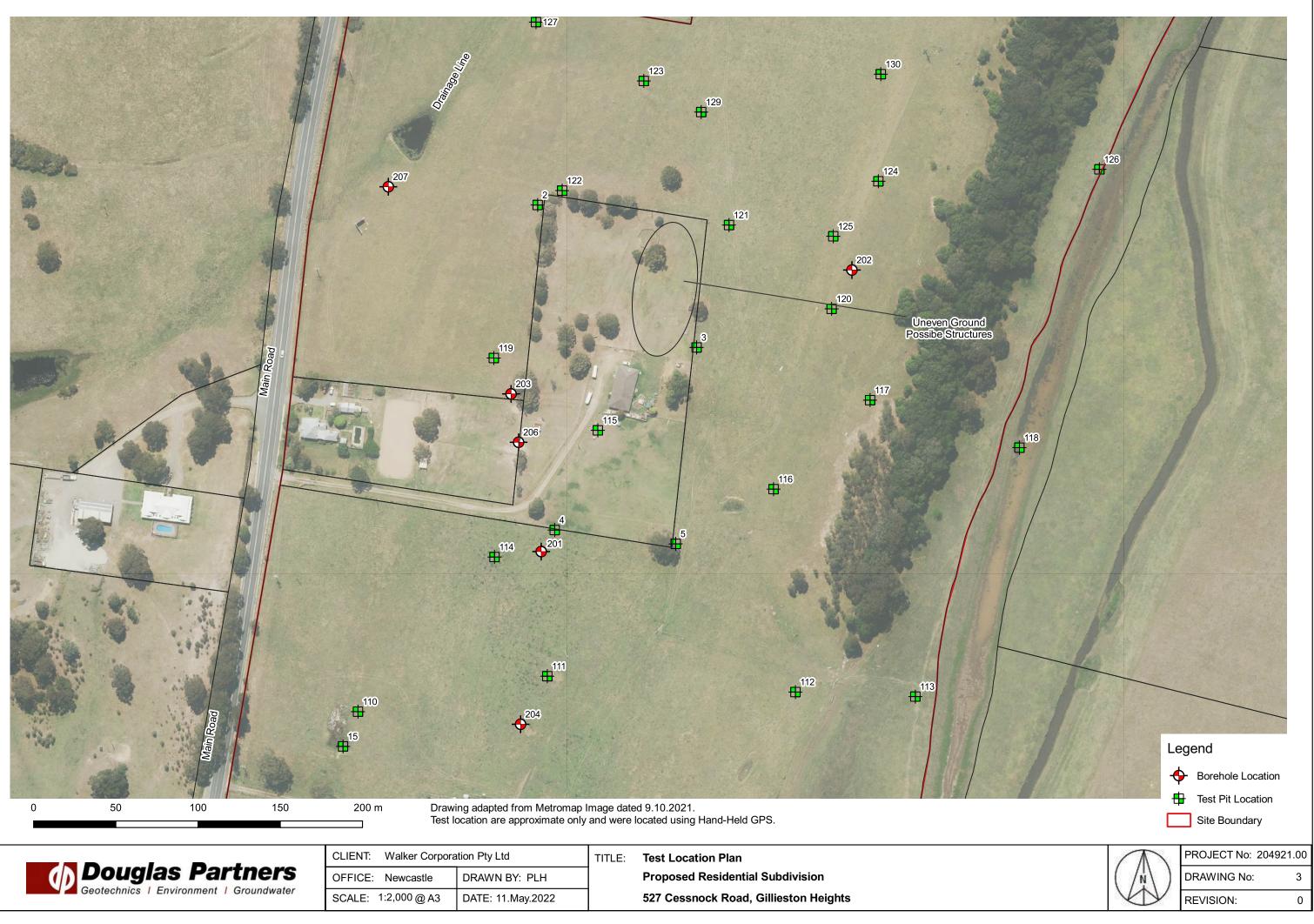

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

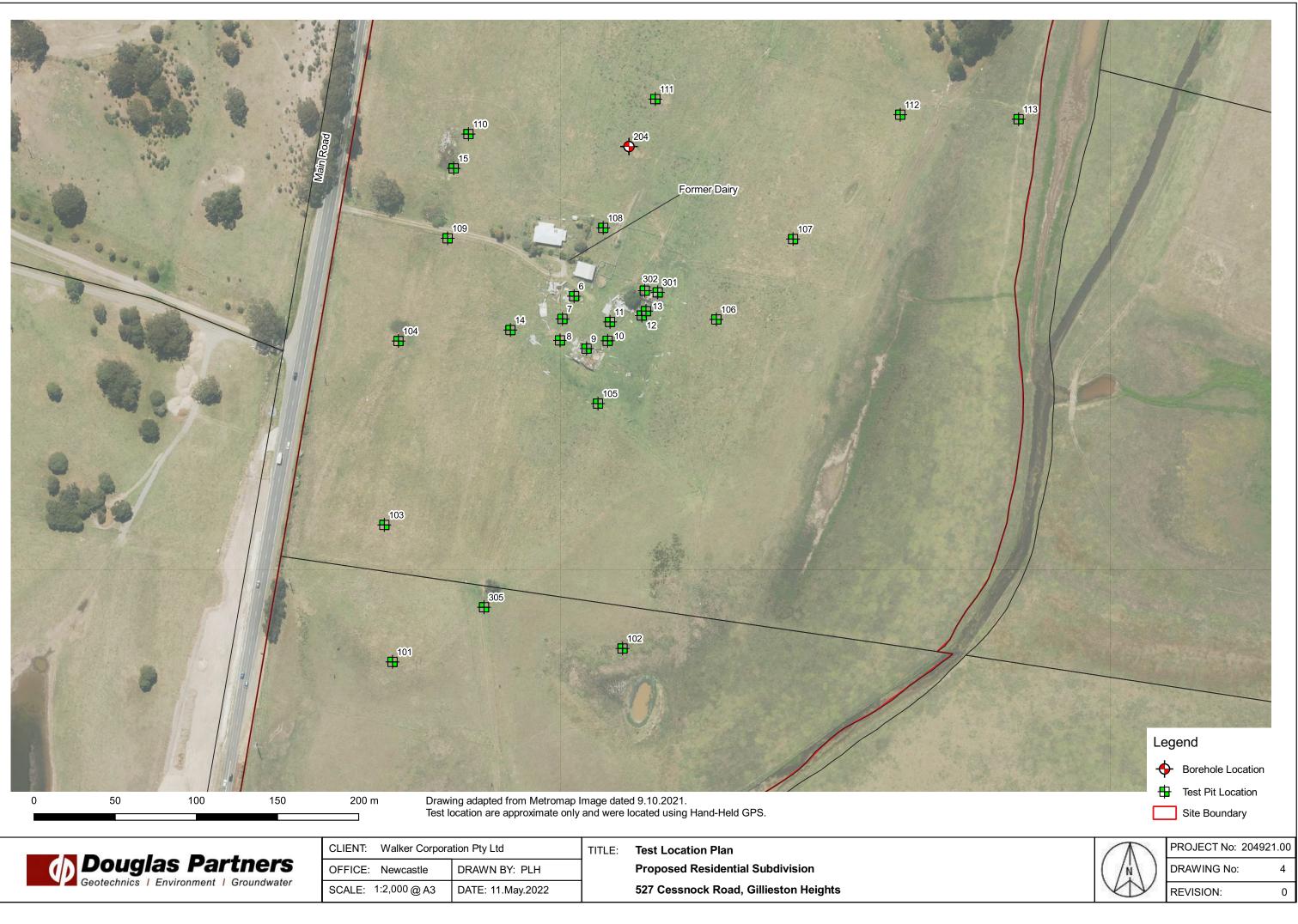

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix G

Drawings 1 to 4 – Test Location Plan Preliminary Subdivision Plan (PCB, reference 118763, 26 August 2016)

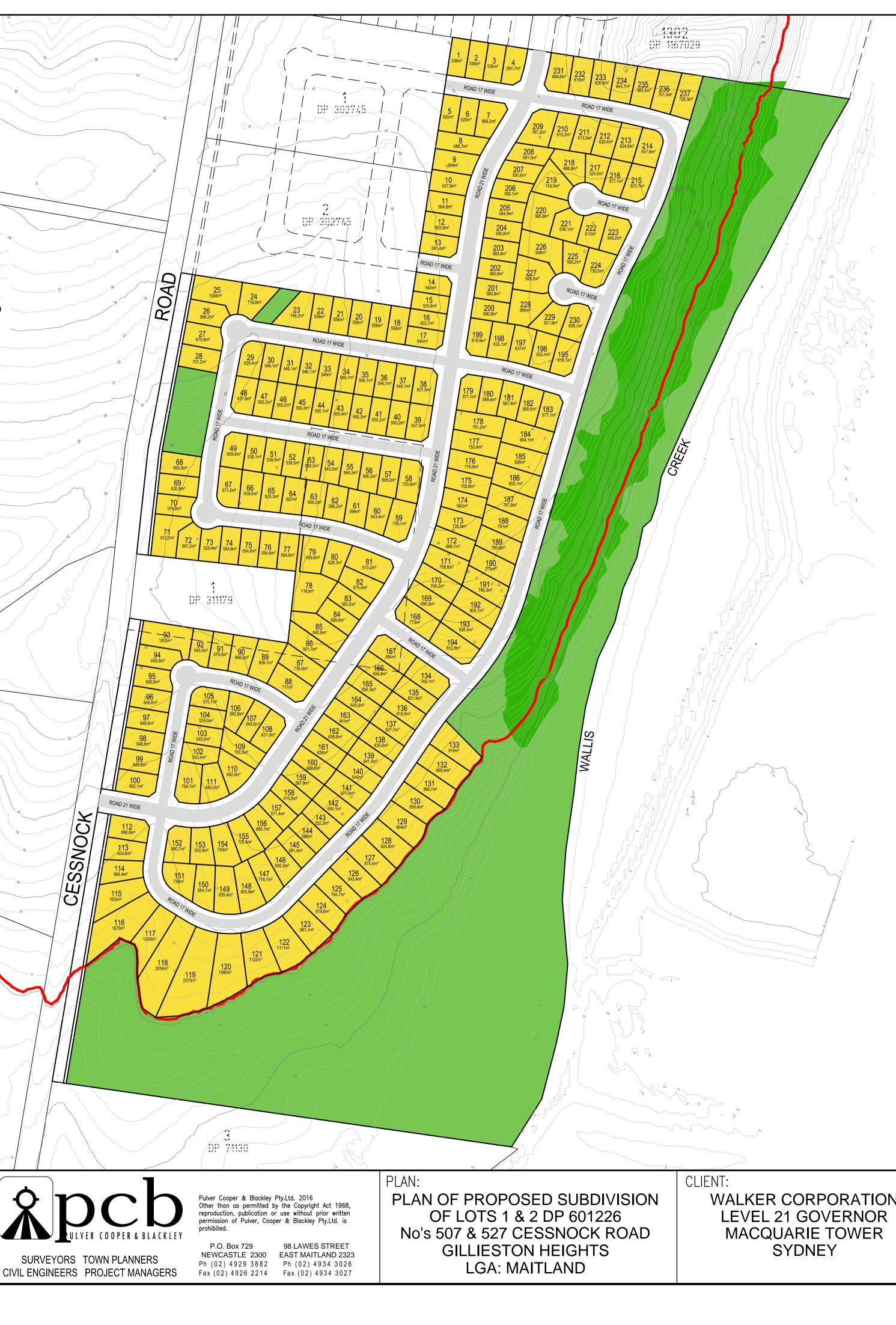


0 50 100 150 200 m	Drawing ada	apted from Metromap Image da	ated 9.10.2021	
Douglas Partners Geotechnics Environment Groundwater	TITLE: Test Location Plan Proposed Resider 527 Cessnock Ro	n - Key Plan ntial Subdivision ad, Gillieston Heights		OFFICE: Newcastle DRAWN BY: PLH DATE: 11.May.2022
CLIENT: Walker Corporation Pty Ltd	PROJECT No: 204921.00	DRAWING No: 1	REVISION: 0	SCALE: 1:5,000 (A3 Sheet)



CLIENT: Walker Corpora	tion Pty Ltd	TITLE:	Test Location Plan
OFFICE: Newcastle	DRAWN BY: PLH		Proposed Residential Subdivision
SCALE: 1:2,000 @ A3	DATE: 11.May.2022		527 Cessnock Road, Gillieston Heights

CLIENT: Walker Corpora	ation Pty Ltd	TITLE:	Test Location Plan
OFFICE: Newcastle	DRAWN BY: PLH		Proposed Residential Subdivision
SCALE: 1:2,000 @ A3	DATE: 11.May.2022		527 Cessnock Road, Gillieston Heights



CLIENT: Walker Corpora	ation Pty Ltd	TITLE:	Test Location Plan
OFFICE: Newcastle	DRAWN BY: PLH		Proposed Residential Subdivision
SCALE: 1:2,000 @ A3	DATE: 11.May.2022		527 Cessnock Road, Gillieston Heights

PRELIMINARY ONLY FOR DISCUSSION PURPOSES

LAYOUT A DESKTOP EXERCISE ONLY NO SURVEY OR PRELIMINARY ENGINEERING DESIGN UNDERTAKEN

INSTRUCTION NUMBER: 07/49	F				
FILE ID: 118763	E] .
SURVEYED: N/A	D				
DESIGNED: MAC	С				
DRAWN: MAC CHECKED: BDK	В				
DATUM: AHD	А	INITIAL ISSUE	MAC	26/08/16	
CONTOUR INTERVAL: 1.0m	NO.	DESCRIPTION	DRAWN	DATE	CI\

Plot Date: 29/08/2016 Cad File: 07_49_Warby — Subdivision Plan (ID 118668)

CONTOURS - FROM LIDAR INFORMATION

FLOOD LEVEL RL 10.2m (ADOPTED) (CURRENT FLOOD LEVEL 9.73m AHD - MCC UNDER REVIEW)

J	40 20 0 40 80 120	No. OF SHEETS
		SHEET No.
	Horizontal Scale 1:2000 (A1) 1:4000 (A3)	1

APPENDIX

PRACTICAL ENVIRONMENTAL SOLUTIONS REPORT

Preliminary Site Investigation for Contamination

457-463 Cessnock Road, GILLIESTON HEIGHTS NSW

Prepared for:

ROTER SAND UNIT TRUST

14 FEBRUARY 2020

Prepared by:

Practical Environmental Solutions Pty Ltd 1/2 Frost Drive, MAYFIELD WEST PO BOX 167 MAYFIELD NSW 2304 www.practicalenvirosolutions.com P: 02 4967 6888 M: 0401 507 517 ACN 1400 75994 ABN 35 578 413 720

DISTRIBUTION

DOCUMENT STATUS & REVIEW

Revision	Prepared By	Reviewed By	Date Issued
0	David McQueeney Environmental Scientist B.EnvScMgt. Practical Environmental Solutions Pty Ltd	Anthony Milligan Managing Director BConMgt (Building), Eng Surv., Occupational Hygiene (BOHS) SafeWork NSW Asbestos Assessor Licence No. 000161 Practical Environmental Solutions Pty Ltd.	14 February 2020

DISTRIBUTION OF COPIES

Revision	Electronic	Paper	Issued To	Date Issued
0	1	0	Mr. Lee Bateman DEVELOPMENT MANAGER Roter Sand Unit Trust. 81 Mustang Drive RUTHERFORD NSW 2320	14 February 2020
0	1	0	Practical Environmental Solutions Pty Ltd (PES) Project File	14 February 2020

1 EXECUTIVE SUMMARY

Practical Environmental Solutions (PES) has been commissioned by Mr. Lee Bateman on behalf of Roter Sand Unit Trust (the client) to complete a *Preliminary Site Investigation* (PSI) on two (2) adjoining parcels of land in Gillieston Heights NSW.

The adjoining sites are, respectively, described as Lot 1 & 2 DP 302745 standing at 457 (Lot 1) & 463 (Lot 2) Cessnock Road, Gillieston Heights NSW respectively. The site is located within the Maitland City Council (MCC) LGA.

The site covers an approximate area of 4.95 hectares (Ha) and is graphically represented in Drawing 1, Appendix A. Attached in Appendix B are site identification photographs.

With access to architectural design plans, PES understands that a manufactured housing estate (MHE) development is proposed for the site.

Consequently, this investigation seeks to develop an understanding of the current and historical activities that either have been or are being conducted on the land and its surrounds. This will include assessing Areas of Environmental Concern (AECs) and Potential Contaminants of Concern (PCOCs) and report on the potential for contamination on the site, if any, to impact on the planned, future residential use of the land. Additionally, the investigation will establish the need for further assessment or remediation, if considered necessary.

On Wednesday 29 January 2020, an environmental scientist from PES undertook the field assessment phase of our investigation. The scope of work included a site history investigation, a site 'walkover' and the production of a series of targeted bore holes across both allotments.

Following a review of historical site aerial imagery, PES identified six (6) long sheds (all now demolished) standing on Lot 1. After interviewing the owner of Lot 2, it was confirmed to us that these sheds constituted the built infrastructure of a commercial chicken farm. As a result of this new information, PES returned to site on Monday 03 February 2020 to conduct a more targeted assessment of the areas determined to be the footprint, generally, of the now demolished sheds.

In total, eight (8) soil samples + 1 QA/QC sample were retrieve for analysis from eight (8) discrete locations across the site for the identified PCoCs.

PES compared the results of analysis to the NEPC (2013) Health Investigation / Screening Level 'A' criteria. Following analysis of the samples, no exceedances of the adopted criteria were identified.

Also. PES identified AECs for the hazard, asbestos. These included two (2) small pockets of bonded asbestos fragments in the area of a now demolished shed footprint on Lot 1 (identified in Appendix A, Drawing 3).

PES did not identify any other AECs, including no evidence of contamination such as staining or odours, or agricultural uses such as cattle tick dips or petroleum storage tanks (above or below ground).

The current land use of both sites is equine breeding, with a review of the site history and aerial photographs showing the past history of Lot 1 as a chicken breeding facility with no other indication of intensive agriculture, such as orchards, market gardening or cropping conducted on the land in the past for both Lot 1 and Lot 2.

PES concludes that based on the site history, site walkover and results of the limited sampling, the site is suitable for the proposed redevelopment as a manufactured housing estate following the completion of the below recommendations.

Following the removal of the identified bonded asbestos 'pockets' and issue of an Asbestos Clearance Certificate for this operation, PES recommends an *Unexpected Finds Protocol* be developed to account for any undiscovered ACMs that might be encountered on the site during future construction activities. Also, a hazardous materials audit (HSA) be conducted on the built infrastructure of both properties prior to their demolition.

LIST OF ABBREVIATIONS

- ACM Asbestos Containing Material
- AEC Area of Environmental Concern
- AHD Australian Height Datum
- ANZECC Australian and New Zealand Environment and Conservation Council
- B(a)P TEQ Total equivalents of Benzo(a)Pyrene (carcinogenic compounds)
- BGL Below Ground Level
- BH Borehole
- BTEX Benzene, Toluene, Ethylbenzene and Xylenes
- COC Chemical of Concern
- DQI Data Quality Indicators
- DQO Data Quality Objectives
- ENM Excavated Natural Material
- ESA Environmental Site Assessment
- HIL NEPM Schedule B1 Health Investigation Level, 2013.
- LOR Limit of Reporting
- µg/L micrograms per litre
- mg/kg milligrams per kilogram
- mg/L milligrams per litre
- NATA National Association of Testing Authorities
- NEHF National Environmental Health Forum
- NEPM National Environment Protection Measure
- NSW DECCW NSW Department of Environment, Climate Change and Water (currently NSW OEH)
- NSW OEH NSW Office of Environment and Heritage
- NSW EPA Environment Protection Authority of New South Wales (part of NSW OEH)
- PAH Polycyclic Aromatic Hydrocarbon
- PCB Polychlorinated biphenyls
- PID Photoionization Detection
- RAPE Reclaimed Asphalt Pavement Exemption
- TCLP Toxicity Characteristic Leachate Procedure
- TP Bore hole
- VENM Virgin Excavated Natural Material

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	3
2 INTRODUCTION	8
2.1 Goals and Objectives	8
2.2 Scope of Works	9
3 SITE IDENTIFICATION & DESCRIPTION	9
4 PUBLISHED DATA AND SITE HISTORY SUMMARY	
4.1 Regional Geology	
4.2 Hydrogeology	
4.3 Acid Sulphate Soils	11
4.4 Topography	11
4.5 Extent of Site History Review	11
4.6 Maitland City Council (MCC) Section 10.7 Planning Certificate	
4.7 Historical Title Search	
4.8 SafeWork NSW Dangerous Goods Search	
4.9 Review of Historical Aerial Photographs	
4.10 NSW EPA Records – Contaminated Site Notified to the EPA or	Records of Notice 16
4.11 Interview with Owners	
4.12 Site History Summary	
5 CONCEPTUAL SITE MODEL	
6 POTENTIAL CONTAMINANTS	
7 FIELD WORK	
7.1 Sampling Rationale	
7.2 Methods	
8 DATA QUALITY OBJECTIVES (DQOS)	21
9 FIELD QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)26
9.1 Internal Intra-Laboratory Duplicate Assessment	
9.2 Data evaluation	
10 ASSESSMENT CRITERIA	
10.1 Reference Guidelines	
10.2 Soil Assessment Criteria	

11 LABORATORY TESTING	31
11.1 Analytical Programme	31
12 ASSESSMENT OF RESULTS AND FIELD INVESTIGATION	32
12.1 Subsurface Conditions	32
12.2 Observations	32
12.3 Soil Analytical Results	33
12.4 95% Upper Confidence Limit Calculations	34
13 DISCUSSION	35
14 CONCLUSIONS AND RECOMMENDATIONS	36
15 LIMITATIONS OF THIS REPORT	38
16 REFERENCES	39
APPENDIX A4	40
SITE MAP, BOREHOLE & SAMPLE LOCATIONS, & AECs4	40
APPENDIX B4	14
SITE PHOTOGRAPHS	44
APPENDIX C4	47
SOIL ANALYSIS RESULTS4	47
APPENDIX D	52
SOIL LABORTORY RESULTS AND QUALITY ASSURANCE/QUALITY CONTROL	52
APPENDIX E	36
CHAIN OF CUSTODY (FIELD & DESPATCH)8	36
APPENDIX F	39
HISTORICAL TITLE INFORMATION	89
APPENDIX G	99
PID CALIBRATION CERTIFICATE	99
APPENDIX H1	101
LAND INSIGHT & RESOURCES ENVIRO SCREEN REPORT, REPORT MAPS & HISTORICA	٩L
IMAGERY1	101

2 INTRODUCTION

This report presents the findings of a Preliminary Site Investigation for adjoining parcels of land in Gillieston Heights, a suburb of the City of Maitland in the Hunter Region of the State of New South Wales. These allotments are described as Lot 1 & 2 DP 302745 standing at 457 (Lot 1) & 463 (Lot 2) Cessnock Road, respectively.

The field investigation phase of the investigation was conducted on Wednesday 29 January and Monday 03 February 2020, to identify past and present contaminating activities, if any, report on site condition(s) and provide a preliminary assessment of site contamination. We understand that a manufactured housing estate is planned for the land.

The assessment has been developed in reference to guidelines made or approved by the NSW Environment Protection Authority (EPA), *National Environmental Protection (Assessment of Site Contamination) Measure* (NEPM) 2013 Schedule B1 (NEPC 2013) and consistent with EPA (1998) planning guidelines relevant to NSW State Environmental Planning Policy 55 – Remediation of Land (SEPP 55).

2.1 Goals and Objectives

The goals and objectives of this environmental contamination assessment are:

- Identify potential, past and present forms of contamination;
- Identify potential types of contamination;
- Evaluate the site for the potential of various types of contamination;
- Determine the appropriateness of the site for the proposed land use (equivalent to residential land development with soil access) through soil analysis;
- Provide results and conclusions of the potential contamination at the site; and
- Calculate the need for further assessment, management or remediation.

2.2 Scope of Works

This assessment comprised the following scope of works:

- Review of documents provided by the current landowner and/or previous owners (if available);
- Assessment of site geology, hydrogeology and topography;
- Review of site history through Maitland City Council records, NSW DECC records, SafeWork NSW, Historical Title Information (past and present), historical aerial photographs and EPA records;
- A thorough site inspection to identify potential areas of environmental concern (AEC) or possible environmental contaminants;
- From deemed AECs, produce below-ground test pits with retrieval of representative samples of soils for analysis;
- Preparation of a *Preliminary Site Investigation* report which discusses the findings of the assessment; in reference to the NEPC (2013) guidelines.

3 SITE IDENTIFICATION & DESCRIPTION

The combined investigation area (site) is identified as Lot 1 & 2 DP 302745 standing at 457 (Lot 1) & 463 (Lot 2) Cessnock Road, Gillieston Heights, a of suburb of City of Maitland in the Hunter Region of the State of New South Wales and is shown in **Drawing 1, Appendix A**.

The overall site covers an approximate area of 4.95 Ha.

Both adjoining sites currently house residential dwellings with associated outbuildings, including sheds and horse stables. They would be described as lifestyle blocks or hobby farms.

4 PUBLISHED DATA AND SITE HISTORY SUMMARY

Information provided in this section of the report is predominately sourced from Enviro Screen Report (Land & Insight Resources 2019 – LIR - 01094). A copy of the report is attached in Appendix H.

4.1 Regional Geology

The 1:100,000 scale Newcastle Geological Map indicates the site geology as Permian – conglomerate, sandstone and siltstone.

4.2 <u>Hydrogeology</u>

The regional groundwater flow regime is inferred to be to the south-west of the site into dams on neighbouring properties, leading into an ephemeral creek on the other side of Cessnock Road (~ 400m from site boundary).

Two (2) registered bores are located within a 2 km radius of the site and are summarised in the table below:

Well Number	Intended Purpose	Completion Date	Depth of Bore (m)	Standing Water Level (m)	Proximity to Site (m)
GW21010164	Unknown	Unsure	Unsure	unknown	267m SE
GW051647	Stock water supply	01-Sept-80	12	unknown	717m NE

 Table 1: Register Groundwater Bore Search Summary.

4.3 Acid Sulphate Soils

Further review of the *Acid Sulfate Soils Risk Maps* indicates that the site is classified as Class 5 land for potential occurrence of ASS. Class 5 indicates that development consent is required for works within 500 metres of adjacent Class 1, 2, 3 or 4 land that is below 5 metres Australian Height Datum and by which the water table is likely to be lowered below 1 metre Australian Height Datum on adjacent Class 1, 2, 3 or 4 land.

Based on review data Acid Sulfate Soils are unlikely to be encountered onsite.

4.4 <u>Topography</u>

The site is sloping to the north and lies, variously, between 34 - 44m Australian Height Datum (AHD).

4.5 Extent of Site History Review

The brief review of site history comprised the following:

- City Council Historical Record Search;
- Summary of Owners;
- Review of Historical Aerial Photographs; and
- Searches with NSW Environmental Protection Authority (EPA) for Contaminated Land Notices.

Details are presented in the following sections.

4.6 <u>Maitland City Council (MCC) Section 10.7 Planning Certificate</u>

Following a review of the site's Planning Certificate pursuant to Section 10.7 of the *Environmental Planning and Assessment Act* 1979 indicates that there are no matters under Section 59 (2) of the *Contaminated Land Management Act* 1997 to be disclosed. With no other issues with respect to site contamination identified.

4.7 Historical Title Search

Table 2 is a summary of the past owners report (Info Track 2020) concerning Address: - 457 to 463 Cessnock Road, Gillieston Heights, Description: - Lots 1 & 2 D.P. 302745

Attached in Appendix F is a copy of the Historical Title information.

Date of Acquisition	Registered Proprietor(s) & Occupations where	Reference to Title at Acquisition	
and term held	<u>available</u>	and sale	
01.12.1921	John Henry Rix (Miner)	Vol 3257 Fol 75	
(1921 to 1940)	Eliza Ann Rix (Married Woman)	V0I 3257 F0I 75	
25.09.1940	Frank Dadar Hellers (France Driver)		
(1940 to 1982)	Frank Baden Hallam (Engine Driver)	Vol 3257 Fol 75	
30.04.1982	Constance Ford		
(1982 to 1988)	(Transmission Application not investigated)	Vol 3257 Fol 75	
30.11.1988	Mark Jongerden	Vol 3257 Fol 75	
		Now	
(1988 to 2002)	Maxine Gay Jongerden	1/302745	
23.09.2002	Joffroy Mark Brown	1/302745	
(2002 to 2004)	Jeffrey Mark Brown	1/502745	
27.07.2004	Margaret Helen Sewell	4/200745	
(2004 to 2006)	Trevor Andrew Maltman	1/302745	
03.10.2006	# Margarat Holon Sowoll	1/302745	
(2006 to date)	# Margaret Helen Sewell	1/302743	

Table 2: Past Owners Summary - As regards Lot 1 D.P. 302745.

Denotes current registered proprietor

Easements and Leases: - NIL

Date of Acquisition	Registered Proprietor(s) & Occupations where	Reference to Title at Acquisition	
and term held	<u>available</u>	and sale	
18.09.1924 (1924 to 1945)	William Turner Rix (miner)	Vol 3640 Fol 89	
24.03.1945 (1945 to 1972)	Ernest Laing (Gas Works Employee)	Vol 3640 Fol 89	
07.03.1972 (1972 to 1981)	Mabel Parsons Reynolds (Married Woman) (Section 93 Application not investigated)	Vol 3640 Fol 89	
22.07.1981 (1981 to 1992)	Raymond Charles Reynolds	Vol 3640 Fol 89 Now 2/302745	
22.12.1992 (1992 to 1992)	Raymond Reynolds (Linesman)	2/302745	
22.12.1992 (1992 to date)	# Raymond Reynolds (Linesman) # Vicki Sheryl Reynolds	2/302745	

Table 2: Past Owners Summary (Continued) - As regards Lot 2 D.P. 302745.

Denotes current registered proprietor

Easements and Leases: - NIL

4.8 SafeWork NSW Dangerous Goods Search

A search of Dangerous Goods licenses was not undertaken.

After visiting the site. PES contends that there is no evidence to suggest that the land would have any records pertaining to it in the records held by SafeWork NSW for the site.

4.9 Review of Historical Aerial Photographs

PES reviewed aerial photographs of the site from 1958, 1966, 1971, 1975, 1987, 1993, 2004, 2010, 2014, 2016 and 2019.

Copies of the historical imagery is attached in Appendix H. A precis of key observations is detailed in Table 3: (over page).

Table 3: Historical Aerial Imagery Review

Year	Onsite	Offsite
1958	Lot 1: Long sheds (approximately 6) are visible across the site. The residential dwelling appears in the same location as the current dwelling. Lot 2: A single building and a small shed are visible on the site, on the footprint of the current building. Dam is visible in same position of the current dam. Both sites are cleared of vegetation.	No built infrastructure appears within the surrounding 500m of the site. To the north the early township of Gillieston Heights is visible. Cessnock Road runs along the front (western elevation) of the sites (s), although does not appear to be sealed. A driveway (present currently) runs away from the site on the opposite side of the road – to the west.
1966	Limited changes have occurred on site.	Minor development of Gillieston Heights to the north and a house constructed ~300m to the south.
1971	Lot 1: Three of the long sheds appear to have been removed / demolished. No other changes identified. Lot 2: No apparent changes identified.	The land to the west of the site has had vegetation cleared and some contour banks installed. No other changes identified.
1975	Lot 1: No observable changes identified on site. Lot 2: No observable changes identified on site.	Two chicken sheds or similar have been conducted over 500m to the north west of the site. Limited notable changes.
1987	Lot 1: Only two of the long sheds remain. Some beehives appear at the rear (east) elevation of the site. Lot 2: Since 1975 a pool, current shed, including stables and yards surrounding the sheds have been constructed on the site.	Another residential dwelling has been constructed to the south of the site (~300 m). Another two chicken sheds have been constructed nest to the existing two shed to the north west of the site.
1993	Lot 1: All long sheds removed. All remaining built infrastructure is the dwelling and shed near house (still standing). Lot 2: No observable changes identified on site.	No notable changes.
2004	Lot 1: Construction of a small horse shelter in the front paddock. The dam appears to have its volume increased (dam wall larger and lengthened dam footprint). A contour bank or similar has been constructed up gradient of the dam. Lot 2: A new car garage / shed to the front of the house has been constructed, the dam wall has increased in height from the widening of the dam.	No notable changes.

2010	Lot 1: No notable changes. Lot 2: No notable changes.	No notable changes.
2014	Lot 1: Construction of small 'granny flat' to rear of dwelling. No other changes notable. Lot 2: No notable changes.	Demolition of old chicken sheds to the north west of the site. Residential development of the land surrounding the sheds, including runoff dam / retention basin (north-west of site).
2016	Lot 1: No notable changes. Lot 2: No notable changes.	Continued residential development to the north of the site (suburb of Gillieston Heights).
2019	Lot 1: No notable changes. Lot 2: No notable changes.	Continued residential development to the north of the site (suburb of Gillieston Heights), with development now to the boundary of Lot 1.

4.10 NSW EPA Records - Contaminated Site Notified to the EPA or Records of Notice

A review and search of the EPA public register indicated the site has no statutory notices issued under the provision of the *Protection of the Environment Operations Act* 1997 (POEO Act). Under the CLM Act 1997 the site and surrounds (within 1000m) have not been notified to the EPA.

A search of the Public Register revealed no licenced activities within a one (1) km radius of the site. No other potentially contaminated sites were identified within a one (1) km radius from the site.

4.11 Interview with Owners

Aerial imagery showed a cluster of structures on Lot 1. Consequently, and knowing he was available, PES conducted an interview with the current owner of Lot 2 to discuss past uses of the allotment (Lot 1) adjoining his property. We know from records that the property had been in the owner's family since 1972. The owner of Lot 2 confirmed the sheds previously standing on Lot 1 were used for chicken breeding and egg production.

4.12 Site History Summary

Based on a review of historical data, public searches and site investigations, the site history can be summarised as follows:

- The site prior to its current land use was agricultural, with what appears to be chicken sheds covering the Lot 1 of the site.
- Lot 2 appears to not have had any intensive agricultural uses.
- All chicken sheds were removed by 1993 on Lot 1.
- Both sites appear to have only been used recently as hobby farms; including adjustment and breeding of horses.

5 CONCEPTUAL SITE MODEL

The NEPC (2013) details that a conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. Presented below in Table 4 is the preliminary CSM developed for the site.

Table 4: Conceptual Site Model

Potential Contaminant Sources

Pesticide, petroleum and heavy metals associated with past use as a chicken breeding operation (Lot 1), imported fill (not identified), ACMs remaining in residual soils from past poor demolition practices, potential contaminated soils to footprints of demolished building pads, improper disposal of old oils and petroleum products, emissions from passing traffic or from industrial practices, flaking paint from old buildings.

Pathways

Earthworks, service trenches, cracks in hardstand, stormwater runoff, rainwater infiltration / leaching, top down migration through soil, dust mobilisation.

Receptors

Workers involved in the potential remediation / restoration or development of the site (onsite), future site users (onsite), current site users, surface water runoff (offsite) into adjacent drainage channels and creek lines, nearby local residents and surrounding properties (offsite).

6 POTENTIAL CONTAMINANTS

Based on the available site history information and observations made during the site inspection the principal sources of potential contamination are considered to be:

 Possible fill materials of an unknown origin that may contain a range of contaminants including heavy metals, total recoverable hydrocarbons (TPHs), Benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), Organophosphorus (OPPs), and Asbestos.

The potential for contamination from the above sources is considered to be medium for Lot 1 and low for Lot 2. Determination for this classification was reached as a result of the site history for Lot 1 revealing the land to have been used, primarily, as a chicken breeding facility.

Based on the potential risk presented by the past site uses PES proceeded to assess the material for chemical contamination.

7 FIELD WORK

7.1 Sampling Rationale

For this investigation PES stipulated a targeted (judgemental) sampling procedure targeting the locations of former shed, and any other potential AECs identified, to address the potential sources of contamination described above.

Sampling frequency and locations were considered in reference to the NSW EPA *Contaminated Sites Sampling Design Guidelines* (1995) and AS4482.1:2005 *Guide to the sampling and investigation of potentially contaminated soil.*

Using a hand auger, PES produced eighteen (18) below ground bore holes, generally, over the site including eight (8) across the targeted area of site (identified in Appendix A, Drawing 2).

Accordingly, a total of eight (8) soil samples were selected for analysis based on the contention that they were representative of surface and below ground conditions across the site and such that likely contamination, if any, would be detected. The samples consisted of material from the natural soils across the site. Selection criteria included:

- Material type and depth;
- Visual or olfactory evidence of possible contamination (i.e. odour or staining);
- Proximity to a known or potential source of contamination.

During our investigation, PES observed small 'pockets' of materials that were identified (based on our considerable professional experience) as being asbestos containing. Consequently, PES did not take any confirmatory samples testing for the presence or not of asbestos. This material shall be regarded henceforth as asbestos-containing material (ACM) and treated accordingly.

7.2 <u>Methods</u>

Fieldwork for this investigation was carried out on Wednesday 29 January 2020 and later, on Monday 03 February 2020 and comprised the following:

 Production below ground of eight (8) bore holes to depths of up to 300mm b.g.l over the site using a combination of spade & hand auger to assess subsurface conditions and collect samples for contamination analysis.

The bore hole locations were set out by an environmental scientist from PES. The approximate locations of the hole are shown on **Drawing 3**, **Appendix A**.

Soil profiles were recorded; including observations and the material types.

As no visible fill was present, sampling was targeted to surface soils only, therefore complete soil profile descriptions are not required to be produced.

All sampling data was recorded on PES chain of custody sheets, and the general sampling procedure comprised:

- The use of high nitrile disposable gloves for each sampling event;
- Transfer of samples into laboratory-prepared glass jars, and capping immediately;
- Transfer of samples into snap-lock plastic backs for screening of volatile organic compounds (VOCs) using a calibrated photoionisation detector (PID) – a calibration certificate is provided in Appendix G.
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;
- Placement of sample jars and replicate sample bags into a cooled, insulated and sealed container for transport to the laboratory;
- Use of chain of custody (C-O-C) documentation ensuring the sample tracking and custody could be cross-checked at any point in the transfer of samples from the field to the laboratory.

The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on a PES standard chain-of-custody form. Copies of completed forms are contained in **Appendix E**.

8 DATA QUALITY OBJECTIVES (DQOS)

It is accepted practice that the nature and quality of the data produced in an investigation will be determined by the Data Quality Objectives (DQOs). The DQO process is detailed in the United States Environmental Protection Agency (US EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QAIG-4: EPA/240/B-06/001), February 2006.

The seven-step DQO process developed by the US EPA, shown in Table 5 below, is recommended by NEPC (2013) when site contamination data is being relied upon to make risk-based decisions as part of a detailed site investigation. They are designed to clarify the study objectives, define the appropriate data types and specify tolerable levels of potential errors.

8.1 <u>The 7 Steps in Defining DQOs</u>

Table 5: Seven Step DQO Process

Step	Data Quality Objective Step
1	State the problem – The first step in the DQO process is to define the problem that has initiated the investigation and to identify the resources available to resolve the problem
2	Identify the goal of the study – Identify the objectives or decisions that need to be made about the contamination problem and the new environmental data required to make them.
3	Identify information inputs – Identify data and information needed to answer study questions.
4	Define the boundaries of the study – Define the spatial and temporal boundaries of the environmental media that the data must represent.
5	Develop the analytical approach – Define the parameter of interest, specifying the action levels, and integrating information in Steps 1 – 4 into a single statement that gives a logical basis for choosing between alternative actions. This includes decision making based on the outcome of hypothesis testing and estimation through appropriate statistical means.
6	Specify performance or acceptance criteria – Specify the decision rule and decision- maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data. Criteria must be specific to both existing and new data.
7	Develop the plan for obtaining data – Identify a resource effective sampling and analysis plan for generating data that is expected to satisfy the DQOs.

For the purpose of establishing the overall project goals, stakeholder and applicable environmental context, the first four (4) steps of the DQO process have been adapted to communicate the framework under which particular questions of study are addressed through individual DQOs. This is referred to as systematic planning and is defined as an integral part of the process by US EPA (2006).

8.1 <u>Step 1: State the problem</u>

Historical land use activities on the site present potential contamination risk that could impact the suitability of the site's proposed use. The aim of this assessment is to investigate the site, including conducting limited below ground intrusive sampling to establish whether contamination is present or not.

Subsequently, the Client has requested a contaminated land assessment be conducted in line with SEPP 55 and guidance endorsed by NSW state and local Government regulators to appropriately investigate environmental media of concern and make justifiable conclusions on site suitability.

8.2 <u>Step 2: Identify the decision / goal of the study</u>

The ultimate goal of the study is to determine if the site is suitable for its proposed use as a manufactured housing estate, identify options for remediation if required to render the site suitable for the proposed use, or determine particular land uses that the site is suitable for in its current state.

8.3 <u>Step 3: Identify the information inputs</u>

Information inputs relevant to the study questions include:

- Site history and environmental setting;
- CSM refined through the findings of intrusive sampling;
- Soil analytical data for investigations completed previously on the site.

These factors have contributed to the identification of the Potential Contaminants of Concern (PCoC) described in Table 6 below:

	Table	6:	Description	of	PCoC
--	-------	----	-------------	----	------

PCoC	Description and relationship
OPPs / OCPs	Organochlorine pesticides (OCPs) and organophosphorus pesticides (OPPs). Pest controls and wastes.
Heavy Metals	Elements that are naturally occurring and environmentally persistent. Often found in chemicals, paints, pest control, timber treatment products, wastes, and as a product of industrial processes (smelting etc.). The typical analytical suite includes arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. Additional PES included Manganese, Beryllium, Boron and Selenium for samples GH06 – GH08 as these were in areas near the demolished shed.
TRHs, BTEXN and PAHs	Total recoverable hydrocarbons (TRHs) F1 ($C_6 - C_{10}$), F2 (> $C_{10} - C_{16}$), F3 (> $C_{16} - C_{34}$), and F4 (> $C_{34} - C_{40}$); benzene, toluene, ethylbenzene, metapara & ortho- xylenes, naphthalene (BTEXN); polycyclic aromatic hydrocarbons (PAHs). Typical contaminants associated with fuels, oils and lubricants. PAHs may also be present in combusted material (ash or char) and coal products.
Asbestos	A mineral associated with general building products such as cladding and lining materials, insulations, piping, gaskets and brake pads. Totally banned in building products in 1989, and fully banned after 31 December 2003.

8.4 <u>Step 4: Define the boundaries of the study</u>

Vertical - The environmental media of concern will be sites soils, and groundwater if encountered sampled at varying depths with the purpose of assessing the vertical extent of potential contamination. Sampling depths will vary spatially however, soil sampling will focus on the shallow subsurface (up to 0.30m b.g.l.).

The spatial (lateral) boundaries of the site are identified in Appendix A, Drawing 1.

Constraints within the study boundary – the following issues present limitations upon sampling strategy for the site:

• Location of belowground services.

The boundaries of the study area are subject to some alteration with each location presented as indicative. Any changes will consider the rationale of the location of the sampling location and endeavour to obtain the same information for the CSM from the alternate location.

8.5 <u>Step 5: Develop the analytical approach</u>

The decision rules for this investigation are as follows:

- If a review of the data obtained from this investigation indicate a degree of uncertainty on contamination delineation and distribution, then the proposed remedial strategies will be refined to provide remediation and/or management of those uncertainties and limitations with respect to the proposed redevelopment.
- If it is determined that additional information is required to further reduce the uncertainties associated with the distribution and characteristics of soil and fill requiring remediation and/or management, with respect to the proposed redevelopment, then appropriate recommendations for further technical assessment or investigation will be provided.

8.6 Step 6: Specify performance or acceptance criteria

The acceptable limits on decision errors to be applied in the investigation and the manner of addressing possible decision errors have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness (PARCC) and are presented in Table 8 (sub-section 9.1 below).

The tolerable limits on decision errors are as follows:

• Probability that 95% of data will satisfy the DQOs, therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect.

In applying statistical analysis of a data set: The performance / acceptance criteria for each study question varies.

- No individual sample result should have a concentration that exceeds 250% of Site assessment criteria (SAC);
- A normal distribution will only be used if the coefficient of variance is not greater than 1.2; and
- The standard deviation of a sample population should not exceed 50% of the SAC.

The potential for significant decision errors are to be minimised by completing a robust Quality Assurance/Quality Control (QA/QC) program and by completing an investigation that has an appropriate sampling and analytical density for the purposes of the investigation and that the representative sampling is undertaken.

8.7 Step 7: Develop the plan for obtaining data

The historical use of part of the Site for commercial breeding and raising of chickens presents the potential for contamination to be present on the Site (Lot 1). Given the history of the Site the general contamination history the PCOCs include, but may not be limited to, heavy metals, PAHs, TRH, BTEXN, organochlorine pesticides (OCPs), organophosphorus pesticide (OPPs), and asbestos. Many of these chemicals may be mobile within the unconsolidated fill materials and able to migrate vertically and laterally to local waterways. The overall design of the investigation on the Site requires considerations of these factors.

PES will work closely with the analytical laboratories and sampling equipment suppliers to ensure that appropriate procedures and processes are developed and implemented prior to and during the field work, to ensure that sample handling, and transport to and processing by the analytical laboratories is appropriate

9 FIELD QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

9.1 Internal Intra-Laboratory Duplicate Assessment

In order to assess field quality assurance / quality control (QA/QC) procedures, one (1) duplicate field sample (QA01) was collected and analysed with primary sample GH01 for metals, TRH, BTEXN, PAHs, and OPPs/OCPs. The results of the field duplicate sampling are presented in Table 7 (below). The results of the field duplicate sampling indicated that Relative Percentage Differences (RPD's) were unable to be calculated for TRH and BTEXN as results were below the laboratory limit of reporting.

	GH01	QA01	RPD %	LOR mg/kg	10 X
	Onor	QAUI	IXF D 70		LOR
Arsenic	3	4.9	48.1	2	20
Cadmium	0.4	0.7	54.5	5	5
Chromium	11	17	42.9	5	50
Copper	20	35	54.5	5	50
Mercury	< 0.1	< 0.1	<0.1	0.1	1
Lead	130	220	51.4	5	50
Nickel	23	36	44.1	5	50
Zinc	370	590	45.8	5	50
PAHs					
Fluoranthene	0.7	0.9	25.0	0.5	5
Pyrene	0.7	0.8	13.3	0.5	5
Sum of reported PAH	1.4	1.7	19.4	0.5	5
OCPs					
Dieldrin	0.27	0.34	23.0	0.05	0.5

Table 7: Validation Field Duplicate Assessment

The results in the field duplicate analysis indicate the duplicates were acceptable when compared to the appropriate criteria (see below).

The overall precision of laboratory split samples and laboratory duplicates is generally assessed by their Relative Percentage Difference ('RPD'). The RPD of duplicated analyses were calculated and compared to the following criteria for acceptability. The acceptance criteria are listed in AS4482.1 (2005). PES has utilised the duplicate results produced by the laboratory internal Quality Control Review.

RPDs were calculated between the primary sample concentration and its corresponding intralaboratory duplicate. As stipulated by the NEPM, the RPD acceptance criteria is 30% however it is noted that higher variations can be expected for organic analysis, samples with low analyte concentrations or non-homogenous samples (NEPC 2013). As such, the primary laboratory RPD acceptance criteria were used and are as follows:

- 1. Results <10 times the LOR: No Limit;
- 2. Results between 10-20 times the LOR: RPD must lie between 0-50%; and
- 3. Results >20 times the LOR: RPD must lie between 0-30%

The laboratory produced one intra-laboratory duplicate sample during analysis. Given that the purpose of the sampling works was to provide preliminary indications as to the presence/absence of contamination, this was deemed appropriate. Of the valid RPDs (where concentrations were above the laboratory LOR), none of them were reported outside of the acceptable limits defined above. Analytical results for intra-laboratory duplicate sample and RPDs are included in Appendix C. See Table 6 (over page) for the quality control procedures adopted by PES.

Quality control sample	Frequency	Results ¹
Precision		
Field duplicates	≥ 5%	≤ 30 - 50% ²
Inter-laboratory duplicates	≥ 5%	≤ 30 - 50% ²
Laboratory duplicates	≥ 10%	Lab specified ³
Accuracy		
Surrogate spikes	Organics by GC	70 – 130% ⁴
Matrix spikes (MSs)	≥ 1/media type	70 - 130% ⁵
Laboratory control samples (LCSs)	≥ 1/lab batch	70 - 130% ⁶
Certified reference material (CRM)	LCS for metals	Lab specified ⁷
Representativeness		
Rinsate samples	≥ 1/field batch	< LOR
Trip blanks	≥ 1/field batch (volatiles)	< LOR
Trip spikes	≥ 1/field batch (volatiles)	70 - 130%, ≤ 30 - 50% ⁸
Laboratory blanks	≥ 1/lab batch	< LOR

Table 8: Quality Control Procedures

Table notes:

- 1. Where results are laboratory specified, the laboratory analytical reports should be consulted for specific information.
- 2. Relative percentage differences (RPDs) for field duplicates from AS 4482.1-2005.
- RPDs for laboratory duplicates specified by the laboratory. Based on the magnitude of the results compared to the level of reporting (LOR), e.g. laboratory result < 10 x laboratory limit of reporting (LOR) = no limit, 10 20 x LOR = 0-50%, > 20 x LOR = 0-20%.
- 4. Surrogate recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 5. MS recoveries specified by laboratory based on global acceptance criteria.
- 6. LCS recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 7. CRM recoveries specified by laboratory based on global acceptance criteria.
- 8. Trip spike results are specified as either recoveries or RPDs.

9.2 Data evaluation

The data evaluation is discussed in *sub-section* 12.4.

10 ASSESSMENT CRITERIA

10.1 Reference Guidelines

This preliminary site investigation was undertaken in reference with the following guidelines:

- AS4482.1:2005 Guide to the sampling and investigation of potentially contaminated soil
- National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended 2013, National Environment Protection Council (NEPC 2013)
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995)
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 1997 (EPA 1997)
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006 (DEC 2006)
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW DECC, June 2009 (DECC 2009).

10.2 Soil Assessment Criteria

As the affected site is to be developed for use that includes a tertiary educational facility (nearest land use setting is secondary schools), the contaminants for soil sampling were assessed against the following criteria:

- Health based Investigation and Screening Levels for residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools, in this instance equivalent to Health Investigation Level 'A' (HIL 'A') (NEPC 2013).
- Health Screening Levels 'A & B' (HSLs equivalent to HIL 'A' criteria) for vapour intrusion, at various depths (NEPC 2013):
- Vapour Intrusion Soil HSL 'A & B' Clay 0m <1m;
- Management limits for hydrocarbons for residential, parkland and public open space, Fine soil texture (NEPC 2013); and
- Site Specific Ecological Investigation / Screening Levels (EILs / ESLs) for Urban residential and public open space use (URPOS), aged soils (NEPC 2013)

11 LABORATORY TESTING

11.1 Analytical Programme

Laboratory testing was undertaken by MGT - Eurofins, a National Association of Testing Authorities, Australia (NATA) registered laboratory and Australian Safer Environment and Technology (NATA) registered laboratory. Analytical methods used are shown on the laboratory sheets in **Appendix D**.

A total of eight (8) soil samples were selected to provide a detailed assessment of the below ground conditions. The samples were selected to target identified potential sources of contamination arising from the sites historical usage and surrounding site uses.

The selected samples were analysed for the following potential contaminants:

- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Organochlorine Pesticides (OCPs);
- Organophosphorus Pesticides (OPPs);
- Benzene, Toluene, Ethyl Benzene, Xylene & Naphthalene (BTEXN); and
- Metals: Arsenic (As); Cadmium (Cd); Chromium (Cr); Copper (Cu); Lead (Pb); Mercury (Hg); Nickel (Ni); Zinc (Zn), Manganese (Mn), Beryllium (Be), Boron (B) and Selenium (Se); and
- Asbestos.

12 ASSESSMENT OF RESULTS AND FIELD INVESTIGATION

12.1 Subsurface Conditions

The subsurface conditions are presented in detail in **Table 9** and in the laboratory results in **Appendix D.** These should be read in conjunction with the general notes preceding them. These explain definitions of the classification methods and descriptive terms.

A summary of the subsurface conditions encountered in the bore holes are presented below in **Table 9**:

FROM (m)	TO (m)	DESCRIPTION
0.00	0.1	Natural – brown silty topsoils, minor gravels.
0.1	0.5	Natural – gravelly clays.

 Table 9 – Soil Profile Summary

12.2 Observations

PES observed no apparent imported fill on the site, only the natural soil profile comprising a brown silty clay with minor gravel material into a dense yellow gravelly clay.

An area near the car shed / garage on Lot 1 contained a cut / fill area, from the shed to level a small section of the land.

The site is undulating with a ridge from which the land is sloping either side to the west and east with a shared dam in the gully to the east of the built infrastructure. The dam wall has been excavated from the footprint of the dam.

Visual and olfactory signs of gross contamination (i.e. staining and odour) were not observed across the site or within any of the bore holes produced. No visual or olfactory evidence of oil or grease staining was observed, or evidence of above or underground storage tanks (USTs).

PES identified two (2) empty 44-gallon, or 205 litre, drums near the rear stables / shed of Lot 2 although there was no evidence of spillage surrounding the drums. PID sampling surrounding the drums confirmed no volatiles were present.

Our investigations reveal there to be no immediate (within 500m) surrounding site uses that have, or would have had, the potential to cause contamination on the site.

PES did not encounter groundwater in any bore holes produced.

12.3 Soil Analytical Results

The analysis of the eight (8) + one (1) QA / QC soil samples from the site are detailed in Tables 11 - 13 **Appendix C – Soil Analysis Results.** These results are tabulated for comparison against the adopted Tier 1 investigation levels stipulated in the ASC NEPM (2013) Guidelines.

Presented below is a summary of the soil analytical results:

Heavy Metals

There were no exceedances of the adopted Soil Health Investigation Levels 'A'.

Polycyclic Aromatic Hydrocarbons (PAH)

There were no exceedances of the adopted Soil Health Investigation Levels 'A'. All results were below the PQL.

Organophosphorus Pesticides & Organochlorine Pesticides

There were no exceedances of the adopted Soil Health Investigation Levels 'A'. All results were below the PQL.

Benzene, Toluene, Ethylbenzene & Xylene

There were no exceedances of the adopted Soil Health Screening Levels 'A & B'. All results were below the PQL.

Total Recoverable Hydrocarbons

There were no exceedances of the adopted Soil Health Screening Levels 'A & B'. All results were below the PQL.

Asbestos

Two pockets of bonded asbestos were identified.

VOC Measurements (PID)

PID screening was undertaken on all collected soil samples; the maximum VOC concentration was 1.1 ppm which is considered negligible.

12.4 95% Upper Confidence Limit Calculations

The 95% Upper Confidence Limits (UCLs) of the average concentrations for the soil results were calculated using ProUCL for soil analytical results exceeding the adopted investigation levels in reference to the procedures discussed in NEPC (2013) Schedule B2 Section 13 and NSW EPA (1995) Sampling Design Guidelines.

The criteria stipulate the results should meet the following criteria:

- The standard deviation of the results should be less than 50% of the relevant investigation or screening level, and
- No single value should exceed 250% of the relevant investigation or screening level.

As all results were below the adopted criteria, PES did not conduct a 95% UCL calculation for these results.

13 DISCUSSION

The historical use of Lot 1 for agricultural uses (chicken 'farm' / breeding) is identified as the main source of potential contamination on the site. The main recent site uses have been for hobby farming, including horse breeding.

No fill materials nor indications of hydrocarbons including staining or olfactory odours were identified. Two (2) small pockets of bonded ACMs were encountered on Lot 1, but not observed in any other bore holes across the adjoining sites. PES suspects the ACMs encountered were as a result of poor demolition practices and are, consequently, limited to the immediate surface layer. They appear to have been buried sometime in the past and, most likely, when previously existing built infrastructure was demolished. Two (2) empty 44-gallon drums were identified on Lot 2 near the rear sheds / stables.

PES did not identify any other potentially contaminating activities across the site.

The results of analysis did not identify any exceedances of the adopted criteria (HILs 'A', HSLs 'A & B' and EIL/ESL URPOS). Although the sampling focussed on potential AECs and were not sufficient in number to detect a hotspot, PES contends these results are representative of site conditions and characterise the land with respect to contamination.

Based on the analytical testing conducted and historical analysis the Site does not indicate gross contamination above the adopted Tier 1 investigation or screening levels stipulated in NEPC (2013).

14 CONCLUSIONS AND RECOMMENDATIONS

The site observations, historical information and below-ground observations support the contention that the land on which our Client proposes to develop a manufactured housing estate has only ever been used, historically, for agricultural purposes. We've learned that Lot 1 previously housed a commercial chicken farm.

This historical use has a medium potential for contamination. Site soils did not display physical indicators of gross contamination during the site investigation, with the exception of a small find of bonded ACMs in an area of Lot 1.

Following sampling from targeted site soils PES compared the sampling results to the NEPC (2013) - HIL 'A' & HSL 'A & B' and EIL / ESL URPOS criteria for Metals, TRH, BTEXN, PAHs, OCPs/OPPs and Asbestos. With the results analysed, no exceedances of the above-mentioned criteria were observed.

PES concludes that based on the site history, site walkover and soil analysis results of the targeted area of site; the site presents a low human health and environmental risk and is suitable for the proposed redevelopment as a manufactured housing estate provided the following recommendations are complied with.

PES recommends the following:

- Removal of the drums, and isolated and ACM pockets confirmed by the issue of an *Asbestos Clearance Certificate* (ACC) for the operation. This activity may be completed at the same time as the pre-demolition removal of asbestos from the current, built infrastructure.
- Any ACMs encountered during construction activities shall be dealt with under an *Unexpected Finds Protocol* developed for the site arising from the fact that an encounter with ACM is now <u>not</u> an unforeseen occurrence.
- Any material generated by construction activity that is surplus to requirement and destined for offsite disposal shall be appropriately classified in accordance with the NSW EPA (2014) Waste Classification Guidelines, including NSW EPA approved resource recovery orders and exemptions.

• Any material being imported to the site should be classified as *VENM* or *ENM* in accordance with NSW EPA Resource Recovery Orders and Exemptions.

15 LIMITATIONS OF THIS REPORT

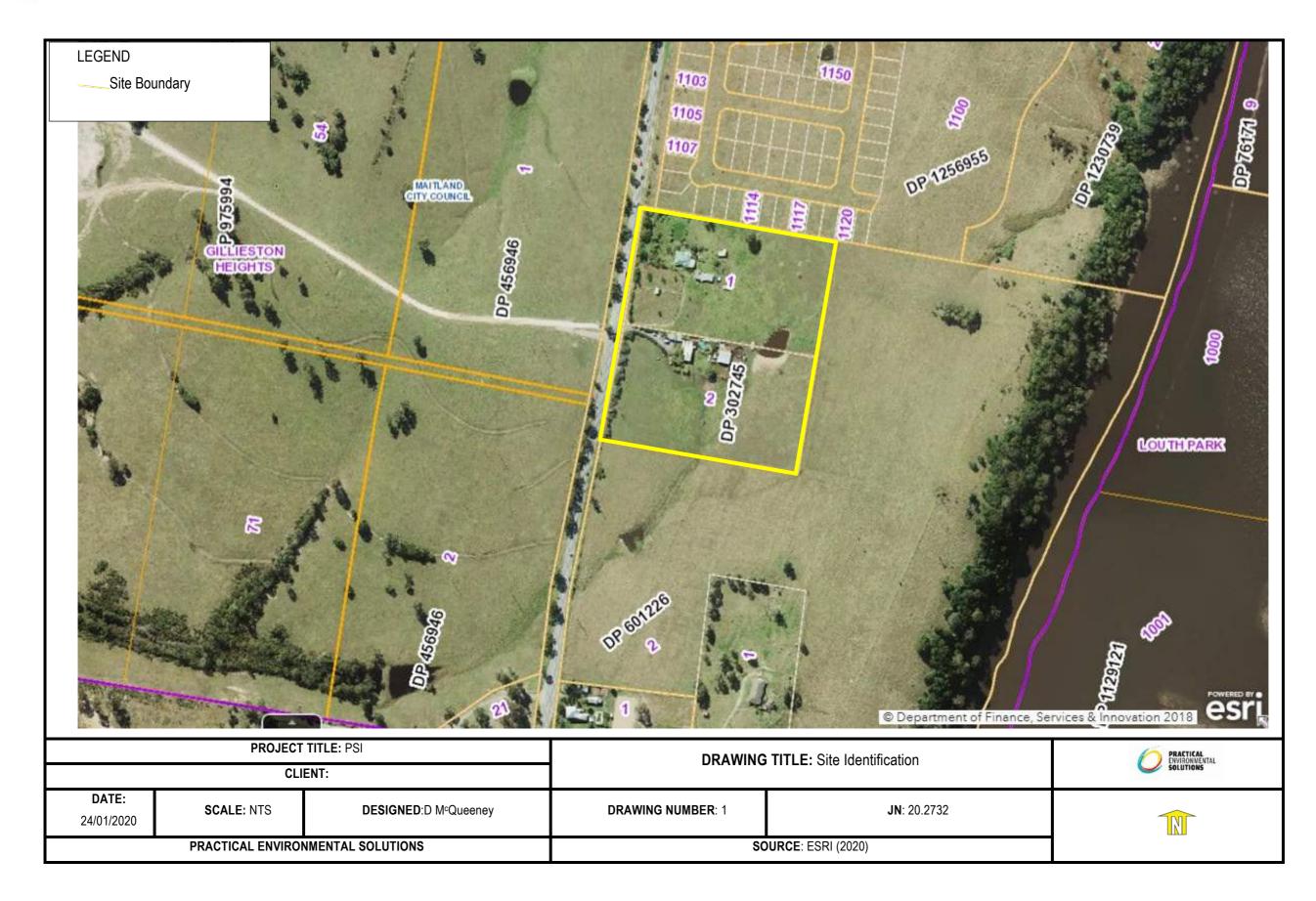
PES have performed investigation and consulting services for this project with reference to current professional and industry standards for assessment of site contamination.

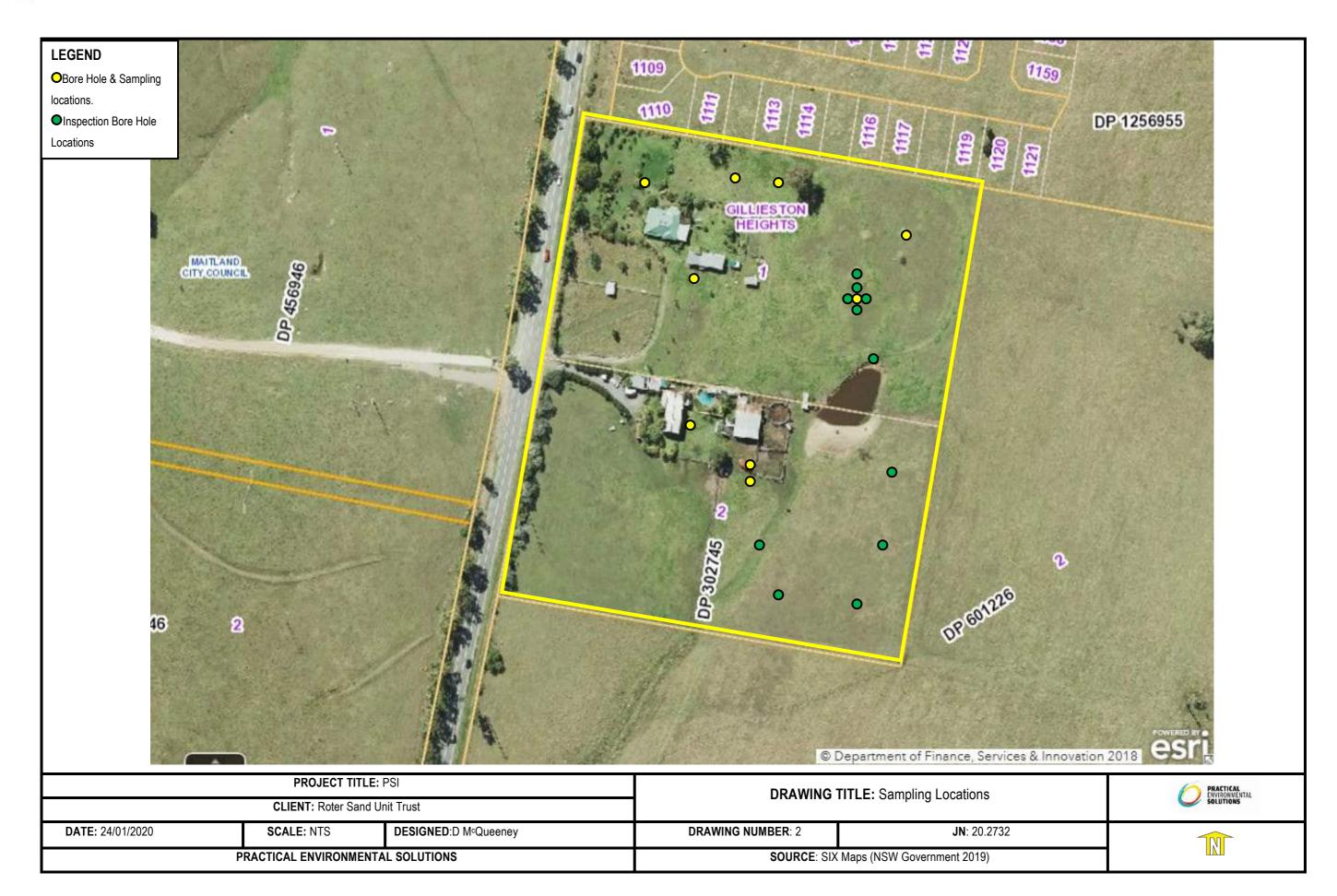
Whilst every effort has been made to ensure a representative programme of field and laboratory sampling and testing, conditions different to those identified during these tasks may exist. Therefore, PES cannot provide unqualified warranties, nor does PES assume any liability for site conditions not observed or accessible during the time of the investigation.

Despite all reasonable care and diligence, the ground conditions encountered, and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change over time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and/or spillages of contaminating substances. These changes may occur subsequent to PES's investigations and assessment.

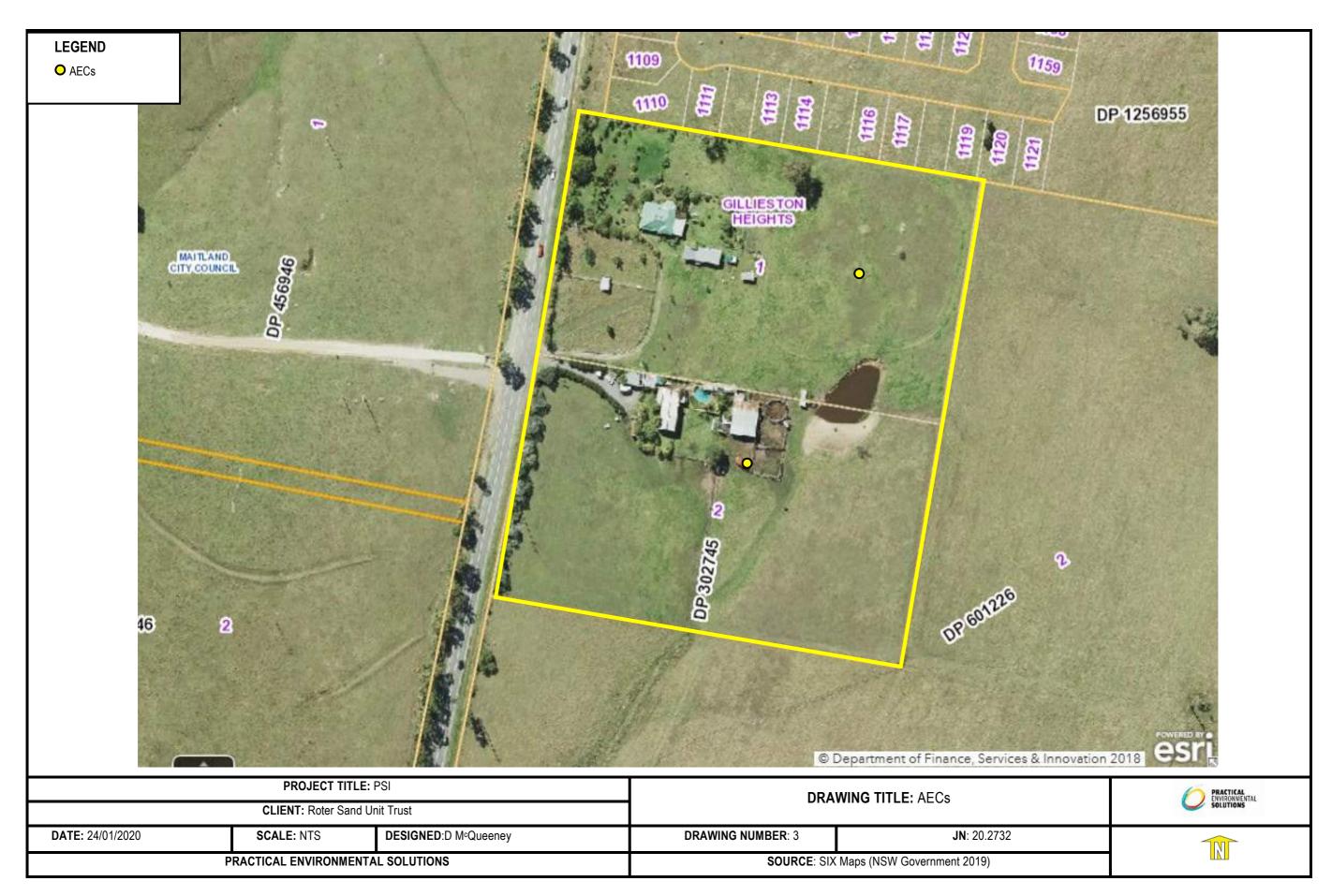
This report and associated documentation and the information herein have been prepared solely for the use of Roter Sand Unit Trust. The report and the information contained herein may be further relied on by Maitland City Council solely for the purpose of approving the development application/construction certificate for the residential development proposed for this site. Any reliance assumed by other parties on this report shall be at such party's own risk. Any ensuing liability resulting from use of the report by other parties cannot be transferred to PES.

16 **REFERENCES**


- National Environment Protection Council (NEPC), (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2:
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995)
- Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites, NSW EPA, 1997 (EPA 1997)
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 2nd Edition, NSW EPA, 2006 (DEC 2006)
- Contaminated Sites: Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997, NSW DECC, June 2009 (DECC 2009).
- Australian Government Bureau of Meteorology (2016) Australian Groundwater Explorer.
 http://www.bom.gov.au/water/groundwater/explorer/map.shtml accessed 26/04/18.
- Australian Government Department of the Environment (2016) Australian Heritage Database http://www.environment.gov.au/cgi-bin/ahdb/search.pl accessed 26/04/18.
- Australian Government Department of the Environment (2016) Protected Matters Search Tool https://www.environment.gov.au/epbc/protected-matters-search-tool accessed 26/04/18.
- Australian Standard AS 4482.1-2005 (2005) Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1 – Non-volatile and Semi-Volatile Compounds.
- NSW EPA (2018) Contaminated Land Record http://www.epa.nsw.gov.au/prcImapp/searchregister.aspx accessed 26/04/18. NSW EPA (2016)
- List of NSW Contaminated Sites Notified to the EPA http://www.epa.nsw.gov.au/clm/publiclist.htm accessed 26/04/18.
- NSW EPA Protection of the Environment Operation Act Public Register http://www.epa.nsw.gov.au/prpoeoapp/ accessed 26/04/18.
- Ochd. J., Jones D. C, Uren R. E. & Hughes K. S. (compilers) 2015. Gosford- Lake Macquarie Special 1:100000 Geological Sheet 9131 & part sheet 9231. Geological Survey of New South Wales, Maitland.


APPENDIX A

SITE MAP, BOREHOLE & SAMPLE LOCATIONS, & AECs



APPENDIX B

SITE PHOTOGRAPHS

Site Photographs (Lot 2)

Photograph 7: Site Identification

Photograph 8: Cut / Fill Area

Photograph 9: Sewage Transpiration Bed

Photograph 10: Paddock

APPENDIX C

SOIL ANALYSIS RESULTS

Sample Identification		G	uideline	GH01	GH02	GH03	GH04	GH05	QA01	GH06	GH07
Sample Depth (m)	PQL			0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.
Date	1	HIL 'A' A	EIL URPOS ^B	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	3/2/20	3/2/20
Polycyclic Aromatic Hydrocarbo	ons (P	AH)									
Acenaphthene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a) pyrene			0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b)&(j)fluoranthene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g,h,i)perylene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a,h)anthracene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene				0.7	< 0.5	< 0.5	< 0.5	< 0.5	0.9	< 0.5	< 0.5
Fluorene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene			170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene				0.7	< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5
Carcinogenic PAH (B(a)P equivalent)	0	3		0	0	0	0	0	0	0	0
Sum of reported PAH	0	300		1.4	< 0.5	< 0.5	< 0.5	< 0.5	1.7	< 0.5	< 0.5
Metals					-	-		-		-	
Arsenic		100	100	3	2.4	3.5	5.7	6.3	4.9	4.2	2
Beryllium		60		n/a	n/a	n/a	n/a	n/a	n/a	< 2	< 2
Boron		4500		n/a	n/a	n/a	n/a	n/a	n/a	< 10	< 10
Cadmium		20		0.4	< 0.4	< 0.4	< 0.4	< 0.4	0.7	< 0.4	< 0.4
Chromium		100	190	11	7.6	8	14	12	17	7.5	7
Cobalt		100		n/a	n/a	n/a	n/a	n/a	n/a	< 5	< 5
Copper		6000		20	8.3	< 5	7.2	6	35	< 5	7.1
Mercury		40		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Manganese		3800		n/a	n/a	n/a	n/a	n/a	n/a	49	110
Lead		300	1100	130	17	18	17	7	220	19	14
Nickel		400	30	23	< 5	< 5	5.9	9.2	36	< 5	< 5
Selenium		200		n/a	n/a	n/a	n/a	n/a	n/a	< 2	< 2
Zinc		7400		370	200	44	46	42	590	310	310

 Table 10: PAH and Metals Analysis (see table notes below)

107	GH08
-0.1	0.0-0.1
2/20	3/2/20
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0.5	< 0.5
0	0
0.5	< 0.5
2	3.5
2 10	< 2
	< 10
0.4	< 0.4
7	15
5 .1	< 5
'.1	16
0.1	< 0.1
10	190
14	22
5 2	7.7
2	< 2
10	880

Sample Identification		G	uideline	GH01	GH02	GH03	GH04	GH05	QA01	GH06	GH07	GH08
Sample Depth (m)	PQL			0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date	┥` ፝	HIL 'A' A	EIL URPOS ^B	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	3/2/20	3/2/20	3/2/20
Organochlorine Pesticides (OC	·D)	ļ		20/1/20	23/1/20	20/1/20	20/1/20	23/1/20	23/1/20	0/2/20	0/2/20	0/2/20
Chlordane	<u>,r)</u>	50		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
DDD		50		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDE				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDT			180	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
alpha-BHC			100	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin				0.27	< 0.05	< 0.05	< 0.05	< 0.05	0.34	< 0.05	< 0.05	< 0.05
Endosulfan 1				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.04	< 0.05	< 0.05	< 0.05
Endosulfan 2				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulfate				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin Aldehyde				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor		6		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide				< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
HCB		10		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor		300		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene		20		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 0.00	< 0.00
DDT+DDD+DDE	0	240		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin + Dieldrin	0	6		0.27	< 0.05	< 0.05	< 0.05	< 0.05	0.34	< 0.05	< 0.05	< 0.05
Endosulfan	0	270		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.04	< 0.05	< 0.05	< 0.05
Organophosphorous Pesticide		•	<u> </u>	• 0.00			10.00	1 0.00	10.00	.00	10.00	10.00
Dichlorvos		1		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos (Phosdrin)				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Demeton (total)				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Phorate	1			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	1			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel		1		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion		1		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Malathion		1		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos		160		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Parathion				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Stirofos				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Prothiofos				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Azinophos methyl				< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

 Table 11: OCPs and OPPs Analysis (see table notes below)

All results are in units of mg/kg, except for asbestos.		
Blank Cell indicates no criterion available		
PQL = Practical Quantitation Limit. Where PQL is for a summation, PQL of all components is summed and may be different from that presented by laboratory		
^A NEPM 1999 (amended April 2013) Health Investigation Levels (HIL) 'A' (Residential), 'B' (Minimal Soil Access Residential), 'C' (Parks/Open space), 'D' (Commercial/II	ndustrial)	
^B NEPM 1999 (amended April 2013) Ecological Investigation Levels (EIL) AES (Area of Ecological Significance), URPOS (Urban Residential and Public Open Space),	C&I (Commercia	I and Ind
HIL for Chromium are for Chromium VI		
EL for Chromium are the added contaminant limit for aged (>2years) Chromium III in soils of 1% clay, the most conservative of the criteria. The background level ha	s been assume	d to be z
EL for Nickel are the added contaminant limit for aged (>2years) Nickel in soils of 5% clay, the most conservative of the criteria. The background level has been as	sumed to be zer	o for the
EL for Lead are the added contaminant limit for aged (>2years) Lead. The background level has been assumed to be zero for the Tier 1 assessment.		
EL for Arsenic are for aged (>2years) Arsenic		
ElL for DDT and Naphthalene are for fresh (<2years) DDT and Naphthalene		
PCB analysis includes non-Dioxin like and Dixin-like compounds compared to a guideline of non-Dioxin like PCB		
Results show n in BOLD are in excess of the primary acceptance criteria		
Results show n in shading are >250% of the primary acceptance criteria		
Results show n in <u>underline</u> are in excess of primary EL		
Where summation required (PAH, OCP, PCB) calculation includes components reported as non detected as 1/2 PQL.		

ndustrial)	
,	
,	U T 4
zero for	the Tier 1 asses
he Tier 1 a	assessment.

Sample Identification						Gu	ideline [/]	4			GH01	GH02	GH03	GH04	GH05	QA01	GH06	GH07	GH08
Sample Depth (m) ^B	1			HS	SL 'A' HSL	_ 'B'			ESL U	IRPOS	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date	PQL	SILT 1-<2m	SILT 2-<4m	SILT >4m	CLAY 0-<1m	CLAY 1-<2m	CLAY 2-<4m		Coarse	Fine	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	29/1/20	3/2/20	3/2/20	3/2/20
Benzene, Toluene, Eth	ylbenz	zene, Xy	lene (B1	EX)							,								
Benzene	<0.1	0.7	1	2	0.7	1	2	3	50	65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	<0.1	NL	NL	NL	480	NL	NL	NL	85	85	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	<0.1	NL	NL	NL	NL	NL	NL	NL	70	125	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
meta- and para-Xylene	<0.2										< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
ortho-Xylene	<0.1										< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Xylenes	0	210	NL	NL	110	310	NL	NL	105	45	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Polycyclic Aromatic Hy	droca	rbons (P	AH)																
Naphthalene	<0.5	NL	NL	NL	5	NL	NL	NL	170	170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Recoverable Hyd	rocarb	ons (TR	H)								•								
TRH C ₆ -C ₁₀	<20										< 20	< 20	< 20	< 20	< 20	< 100	< 20	< 20	< 20
TRH >C ₁₀ -C ₁₆	<50								120	120	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
TRH >C ₁₆ -C ₃₄	<100								300	1300	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
TRH >C ₃₄ -C ₄₀	<100								2800	5600	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
F1	<20	65	100	190	50	90	150	290	180	180	< 20	< 20	< 20	< 20	< 20	< 100	< 20	< 20	< 20
F2	<50	NL	NL	NL	280	NL	NL	NL			< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50

 Table 12: BTEXN and TRH Analysis Results (see table notes below)

tion, PQL of all c	for a summation, PQL	of all components is sun	nmed and may be diff	erent from that prese	ented by laborator	гу					
l clean up	_{sg} = silica gel clean up										
eening Levels (H	d Health Screening Lev	evels (HSL) 'A' (Residenti	ial), 'B' (Minimal Soil A	ccess Residential), '	C' (Parks/Open sp	oace), 'D' (Comme	ercial/Industrial)				
els (ESL) AES (A	reening Levels (ESL) A	AES (Area of Ecological	Significance), URPO	S (Urban Residential	and Public Open S	Space), C&I (Com	mercial and Ind	ustrial)			
Sensitive Sites (F	Limits (ML) Sensitive S	Sites (Residential, open s	pace), Non-Sensitive	e Sites (Commercial a	nd Industrial)						
act (DC) Health §	Direct Contact (DC) H	Health Screening Levels	'A' (Residential), 'B' (Minimal Soil Access F	Residential), 'C' (P	arks/Open space	e), 'D' (Commerc	ial/Industrial)			
ng to the HSL cri	e of comparing to the H	HSL criteria. Where two	strata equally repres	ented, most conserv	ative criterion use	ed					
centration requir	e water concentration	n required to constitute a	vapour risk is higher	than the solubility ca	pacity for that co	mpound based o	n a petroleum n	ixture. Vapour i	s therefore not a	risk for this comp	ound.
Level	nvestigation Level										
	lelines.										
	reliability										
ISL	our based HSL										
SL	our based HSL										
	ESL										
nit	nagement limit										
ontact HSL	f the direct contact HS	SL									
contact HSL	nagement limit f the direct contact HS	stsi	ion detected as 1/2 F	QL.							

APPENDIX D

SOIL LABORTORY RESULTS AND QUALITY ASSURANCE/QUALITY CONTROL

Certificate of Analysis

Environment Testing

Practical Environmental Solutions P/L 11 Ulick St Mereweather NSW 2291

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

David McQueeney

Report Project name Project ID Received Date **699511-S** GILLIESTON HEIGHTS 20.2732 Jan 30, 2020

Client Sample ID			GH01	GH02	GH03	GH04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja31926	M20-Ja31927	M20-Ja31928	M20-Ja31929
Date Sampled			Jan 29, 2020	Jan 29, 2020	Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	-				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX	ł.					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	60	58	96	141
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			GH01	GH02	GH03	GH04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja31926	M20-Ja31927	M20-Ja31928	M20-Ja31929
Date Sampled			Jan 29, 2020	Jan 29, 2020	Jan 29, 2020	Jan 29, 2020
•		11.21	Jan 29, 2020	Jan 29, 2020	Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	0.5		0.5	.05	.0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene Phenanthrene	0.5	mg/kg	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	0.7	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg mg/kg	1.4	< 0.5	< 0.5	< 0.5
	1	111g/kg %	1.4	130	84	< 0.5 88
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	122	133	110	123
Organochlorine Pesticides		/0	120	135	110	125
Chlordanes - Total	0.1	maller	-01	- 0.1	- 0.1	-0.1
Chlordanes - I otal 4.4'-DDD		mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	
4.4'-DDE	0.05	mg/kg	< 0.05			< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrinb-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	0.27	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulian subhate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 0.05	< 1	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	0.27	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.00	mg/kg	0.27	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	111g/kg %	90	86	134	147
Tetrachloro-m-xylene (surr.)	1	%	109	103	80	83
Organophosphorus Pesticides		70	100	100		
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 0.2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			GH01	GH02	GH03	GH04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M20-Ja31926	M20-Ja31927	M20-Ja31928	M20-Ja31929
Date Sampled			Jan 29, 2020	Jan 29, 2020	Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•					
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	86	88	127	138
Heavy Metals						
Arsenic	2	mg/kg	3.0	2.4	3.5	5.7
Cadmium	0.4	mg/kg	0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	7.6	8.0	14
Copper	5	mg/kg	20	8.3	< 5	7.2
Lead	5	mg/kg	130	17	18	17
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	23	< 5	< 5	5.9
Zinc	5	mg/kg	370	200	44	46
% Moisture	1	%	14	20	5.6	7.5

Client Sample ID Sample Matrix			GH05 Soil	QA01 Soil
Eurofins Sample No.			M20-Ja31930	M20-Ja31931
Date Sampled			Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50

Client Sample ID			GH05	QA01
Sample Matrix			Soil	Soil
Eurofins Sample No.			M20-Ja31930	M20-Ja31931
Date Sampled			Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	101	86
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	0.9
Fluorene	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	0.8
Total PAH*	0.5	mg/kg	< 0.5	1.7
2-Fluorobiphenyl (surr.)	1	%	91	82
p-Terphenyl-d14 (surr.)	1	%	124	110
Organochlorine Pesticides		1		
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	0.34

Client Sample ID			GH05	QA01
Sample Matrix			Soil	Soil
Eurofins Sample No.			M20-Ja31930	M20-Ja31931
Date Sampled			Jan 29, 2020	Jan 29, 2020
•	100	11.21	Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit		
Organochlorine Pesticides	0.05		0.05	0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05 < 0.05	< 0.05
Endrin aldehyde Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg mg/kg	< 0.05	< 0.05
Heptachlor	0.05		< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05		< 0.05	< 0.05
Methoxychlor	0.05	mg/kg mg/kg	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	0.34
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.1	0.34
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	145	131
Tetrachloro-m-xylene (surr.)	1	%	85	80
Organophosphorus Pesticides		70	00	00
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID Sample Matrix			GH05 Soil	QA01 Soil
Eurofins Sample No.			M20-Ja31930	M20-Ja31931
Date Sampled			Jan 29, 2020	Jan 29, 2020
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	130	129
Heavy Metals				
Arsenic	2	mg/kg	6.3	4.9
Cadmium	0.4	mg/kg	< 0.4	0.7
Chromium	5	mg/kg	12	17
Copper	5	mg/kg	6.0	35
Lead	5	mg/kg	7.0	220
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	9.2	36
Zinc	5	mg/kg	42	590
% Moisture	1	%	8.1	14

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B10			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 31, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8081)			
Metals M8	Melbourne	Jan 31, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Jan 31, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

	50 005 085 521	tins web : www.eurofin		nment Te	esting	Monter Monter Pandeno Phone : - IATA # 2 Site # 12	ne ey Road ng Sout +61 3 85 1261	Sydney Unit F3, Building F 1175 16 Mars Road 0 Lane Cove West NSW 206 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	New Zealand Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7 Phone : 0800 856 450 IANZ # 1290
	ompany Name: Idress:	Practical Env 11 Ulick St Mereweathe NSW 2291	vironmental S r	olutions P/L			-	No.: #: 699511 0401 507 517		Received: Due: Priority: Contact Name:	Jan 30, 2020 3:50 P Feb 6, 2020 5 Day David McQueeney	м
	oject Name: oject ID:	GILLIESTON 20.2732	N HEIGHTS									
						Moisture	Ш				Services Manager : And	
			mple Detail			Set	Eurofins mgt Suite B10					
	oourne Laborato			271		X	X					
	ney Laboratory bane Laboratory					-						
	h Laboratory - N					-	-					
	ernal Laboratory		50									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
	GH01	Jan 29, 2020		Soil	M20-Ja31926	Х	Х					
2	GH02	Jan 29, 2020		Soil	M20-Ja31927	Х	Х					
3	GH03	Jan 29, 2020		Soil	M20-Ja31928	Х	Х					
1	GH04	Jan 29, 2020		Soil	M20-Ja31929	Х	Х					
5	GH05	Jan 29, 2020		Soil	M20-Ja31930	Х	Х					
6	QA01	Jan 29, 2020		Soil	M20-Ja31931	Х	Х					
_	Counts					6	6					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Ace	ceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM F	Fractions					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		4 010		0.0		
Total Recoverable Hydrocarbons - 2013 NEPM F	Fractions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank	ing/kg	100		100	1 400	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank	Ing/kg	< 0.5		0.0	1 435	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Δ	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Organophosphorus Pesticides						
Azinphos-methyl	mg/kg	< 0.2		0.2	Pass	
Bolstar	mg/kg	< 0.2		0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2		0.2	Pass	
Coumaphos	mg/kg	< 2		2	Pass	
Demeton-S	mg/kg	< 0.2		0.2	Pass	
Demeton-O	mg/kg	< 0.2		0.2	Pass	
Diazinon	mg/kg	< 0.2		0.2	Pass	
Dichlorvos	mg/kg	< 0.2		0.2	Pass	
Dimethoate	mg/kg	< 0.2		0.2	Pass	
Disulfoton	mg/kg	< 0.2		0.2	Pass	
EPN	mg/kg	< 0.2		0.2	Pass	
Ethion	mg/kg	< 0.2		0.2	Pass	
Ethoprop	mg/kg	< 0.2		0.2	Pass	
Ethyl parathion	mg/kg	< 0.2		0.2	Pass	
Fenitrothion	mg/kg	< 0.2		0.2	Pass	
Fensulfothion	mg/kg	< 0.2		0.2	Pass	
Fenthion	mg/kg	< 0.2		0.2	Pass	
Malathion	mg/kg	< 0.2		0.2	Pass	
Merphos	mg/kg	< 0.2		0.2	Pass	
Methyl parathion	mg/kg	< 0.2		0.2	Pass	
Mevinphos	mg/kg	< 0.2		0.2	Pass	
Monocrotophos	mg/kg	< 2		2	Pass	
Naled	mg/kg	< 0.2		0.2	Pass	
Omethoate	mg/kg	< 2		2	Pass	
Phorate	mg/kg	< 0.2		0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2		0.2	Pass	
Pyrazophos	mg/kg	< 0.2		0.2	Pass	
Ronnel	mg/kg	< 0.2		0.2	Pass	
Terbufos	mg/kg	< 0.2		0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2		0.2	Pass	
Tokuthion	mg/kg	< 0.2		0.2	Pass	
Trichloronate	mg/kg	< 0.2		0.2	Pass	
Method Blank						
Heavy Metals	<u>.</u>					
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	118		70-130	Pass	
TRH C10-C14	%	97		70-130	Pass	
LCS - % Recovery						
втех						
Benzene	%	96		70-130	Pass	
Toluene	%	115		70-130	Pass	
Ethylbenzene	%	113		70-130	Pass	
m&p-Xylenes	%	112		70-130	Pass	
Xylenes - Total	%	113		70-130	Pass	
LCS - % Recovery		-				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	-					
Naphthalene	%	113		70-130	Pass	
TRH C6-C10	%	108		70-130	Pass	
TRH >C10-C16	%	92		70-130	Pass	
LCS - % Recovery		-				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	106		70-130	Pass	
Acenaphthylene	%	107		70-130	Pass	
Anthracene	%	101		70-130	Pass	
Benz(a)anthracene	%	84		70-130	Pass	
Benzo(a)pyrene	%	108		70-130	Pass	
Benzo(b&j)fluoranthene	%	110		70-130	Pass	
Benzo(g.h.i)perylene	%	107		70-130	Pass	
Benzo(k)fluoranthene	%	106		70-130	Pass	
Chrysene	%	88		70-130	Pass	
Dibenz(a.h)anthracene	%	103		70-130	Pass	
Fluoranthene	%	101		70-130	Pass	
Fluorene	%	108		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	104		70-130	Pass	
Naphthalene	%	80		70-130	Pass	
Phenanthrene	%	97		70-130	Pass	
Pyrene	%	97		70-130	Pass	
LCS - % Recovery		1	1 1 1			
Organochlorine Pesticides						
Chlordanes - Total	%	82		70-130	Pass	
4.4'-DDD	%	116		70-130	Pass	
4.4'-DDE	%	87		70-130	Pass	
4.4'-DDT	%	105		70-130	Pass	
a-BHC	%	110		70-130	Pass	
Aldrin	%	100		70-130	Pass	
b-BHC	%	107		70-130	Pass	
d-BHC	%	97		70-130	Pass	
Dieldrin	%	108		70-130	Pass	
Endosulfan I	%	92		70-130	Pass	
Endosulfan II	%	116		70-130	Pass	
Endosulfan sulphate	%	95		70-130	Pass	
Endrin	%	99		70-130	Pass	
Endrin aldehyde	%	80		70-130	Pass	
Endrin ketone	%	106		70-130	Pass	
g-BHC (Lindane)	%	87		70-130	Pass	

Tes	st		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor			%	101		70-130	Pass	
Heptachlor epoxide			%	82		70-130	Pass	
Hexachlorobenzene			%	82		70-130	Pass	
Methoxychlor			%	78		70-130	Pass	
LCS - % Recovery								
Organophosphorus Pesticides								
Diazinon			%	71		70-130	Pass	
Dimethoate			%	78		70-130	Pass	
Ethion			%	81		70-130	Pass	
Fenitrothion			%	75		70-130	Pass	
Methyl parathion			%	78		70-130	Pass	
Mevinphos			%	81		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	94		80-120	Pass	
Cadmium			%	104		80-120	Pass	
Chromium			%	93		80-120	Pass	
Copper			%	94		80-120	Pass	
Lead			%	87		80-120	Pass	
Mercury			%	100		75-125	Pass	
Nickel			%	92		80-120	Pass	
Zinc			%	92		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery						-		
Polycyclic Aromatic Hydrocarb				Result 1				
Acenaphthene	S20-Ja30329	NCP	%	106		70-130	Pass	
Acenaphthylene	S20-Ja30329	NCP	%	109		70-130	Pass	
Anthracene	S20-Ja30329	NCP	%	107		70-130	Pass	
Benz(a)anthracene	S20-Ja30329	NCP	%	117		70-130	Pass	
Benzo(a)pyrene	S20-Ja30329	NCP	%	109		70-130	Pass	
Benzo(b&j)fluoranthene	S20-Ja30329	NCP	% %	104		70-130	Pass	
Benzo(g.h.i)perylene	S20-Ja30329	NCP	%					
	000 1-00000			70		70-130	Pass	
Benzo(k)fluoranthene	S20-Ja30329	NCP	%	93		70-130	Pass	
Chrysene	S20-Ja30329	NCP	% %	93 93		70-130 70-130	Pass Pass	
Chrysene Dibenz(a.h)anthracene	S20-Ja30329 S20-Ja30329	NCP NCP	% % %	93 93 83		70-130 70-130 70-130	Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene	S20-Ja30329 S20-Ja30329 S20-Ja30329	NCP NCP NCP	% % %	93 93 83 110		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329	NCP NCP NCP NCP	% % % %	93 93 83 110 112		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329	NCP NCP NCP NCP NCP	% % % % %	93 93 83 110 112 88		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene	S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329	NCP NCP NCP NCP NCP NCP	% % % % %	93 93 83 110 112 88 102		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene	S20-Ja30329	NCP NCP NCP NCP NCP NCP NCP	% % % % % %	93 93 83 110 112 88 102 101		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329 S20-Ja30329	NCP NCP NCP NCP NCP NCP	% % % % %	93 93 83 110 112 88 102		70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery	S20-Ja30329	NCP NCP NCP NCP NCP NCP NCP	% % % % % %	93 93 83 110 112 88 102 101 105		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides	S20-Ja30329	NCP NCP NCP NCP NCP NCP NCP	% % % % % %	93 93 83 110 112 88 102 101 105 Result 1		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total	S20-Ja30329 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	93 93 83 110 112 88 102 101 105 Result 1 101		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S20-Ja30329 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % %	93 93 83 110 112 88 102 101 105 Result 1 101 119		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	S20-Ja30329 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % % % % %	93 93 83 110 112 88 102 101 105		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	S20-Ja30329 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % % % % % %	93 93 83 110 112 88 102 101 105 Result 1 101 119		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin	S20-Ja30329 S20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	93 93 83 110 112 88 102 101 105		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC	S20-Ja30329 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % % % % % %	93 93 83 110 112 88 102 101 105 Result 1 101 119 113 118		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC	S20-Ja30329 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	93 93 83 110 112 88 102 101 105 Result 1 105 Result 1 101 119 113 118 114 83 98		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC d-BHC	S20-Ja30329 M20-Ja30329 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	93 93 83 110 112 88 102 101 105	Image: set of the set of th	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE a-BHC Aldrin b-BHC d-BHC Dieldrin	S20-Ja30329 S20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076 M20-Ja30076	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% %	93 93 83 110 112 88 102 101 105 Result 1 101 119 113 118 114 83 98 106	Image: Constraint of the sector of the se	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin	M20-Ja30076	NCP	%	80		70-130	Pass	
Endrin aldehyde	M20-Ja30076	NCP	%	89		70-130	Pass	
Endrin ketone	M20-Ja30076	NCP	%	85		70-130	Pass	
g-BHC (Lindane)	M20-Ja30076	NCP	%	114		70-130	Pass	
Heptachlor	M20-Ja30076	NCP	%	77		70-130	Pass	
Heptachlor epoxide	M20-Ja30076	NCP	%	111		70-130	Pass	
Hexachlorobenzene	M20-Ja30076	NCP	%	116		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S20-Ja28390	NCP	%	106		75-125	Pass	
Cadmium	S20-Ja28390	NCP	%	101		75-125	Pass	
Chromium	S20-Ja28390	NCP	%	110		75-125	Pass	
Copper	S20-Ja28390	NCP	%	106		75-125	Pass	
Lead	S20-Ja28390	NCP	%	100		75-125	Pass	
Mercury	S20-Ja28390	NCP	%	108		70-130	Pass	
Nickel	S20-Ja28390	NCP	%	103		75-125	Pass	
Zinc	S20-Ja28390	NCP	%	105		75-125	Pass	
Spike - % Recovery	•							
Organochlorine Pesticides				Result 1				
4.4'-DDT	M20-Ja28863	NCP	%	78		70-130	Pass	
Methoxychlor	M20-Ja28863	NCP	%	75		70-130	Pass	
Spike - % Recovery			,.		1 1			
Organophosphorus Pesticides				Result 1				
Diazinon	M20-Ja20710	NCP	%	102		70-130	Pass	
Dimethoate	M20-Ja20710	NCP	%	93		70-130	Pass	
Ethion	M20-Ja20710	NCP	%	83		70-130	Pass	
Fenitrothion	M20-Ja20710	NCP	%	89		70-130	Pass	
Methyl parathion	M20-Ja20710	NCP	%	86		70-130	Pass	
Mevinphos	M20-Ja20710	NCP	%	71		70-130	Pass	
Spike - % Recovery	11120 00207 10		/0	1 1		10 100	1 455	
Total Recoverable Hydrocarbons	1999 NEPM Fract	tions		Result 1				
TRH C10-C14	M20-Ja31929	CP	%	87		70-130	Pass	
Spike - % Recovery	10120-5851525		70	01		70-130	1 435	
Total Recoverable Hydrocarbons -	2013 NEPM Eract	lions		Result 1				
TRH >C10-C16	M20-Ja31929	CP	%	78		70-130	Pass	
Spike - % Recovery	10120-5851525		70	10		70-130	1 435	
Total Recoverable Hydrocarbons -	1000 NEPM Eract	tions		Result 1				
TRH C6-C9	M20-Ja31930	CP	%	75		70-130	Pass	
Spike - % Recovery	10120-5851950		70	15		70-130	1 435	
BTEX				Result 1			[
	M20- 1021020	CP	%	72		70-130	Pass	
Benzene	M20-Ja31930		<u>%</u>					
Toluene	M20-Ja31930	CP		78		70-130	Pass	
Ethylbenzene	M20-Ja31930	CP CP	%	82		70-130	Pass	
m&p-Xylenes	M20-Ja31930		%	86		70-130	Pass	
o-Xylene	M20-Ja31930	CP	%	85		70-130	Pass	
Xylenes - Total	M20-Ja31930	CP	%	85		70-130	Pass	
Spike - % Recovery				D. 11.1				
Total Recoverable Hydrocarbons			<i></i>	Result 1				
Naphthalene	M20-Ja31930	CP	%	83		70-130	Pass	
TRH C6-C10	M20-Ja31930	CP	%	72		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-			-		
Polycyclic Aromatic Hydrocarbon	S			Result 1	Result 2	RPD			
Acenaphthene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Ja27226	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				I	1		1	1	
Organochlorine Pesticides	•			Result 1	Result 2	RPD			
Chlordanes - Total	S20-Ja27226	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S20-Ja27226	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1	1			1	
Organophosphorus Pesticides	1	1		Result 1	Result 2	RPD			
Azinphos-methyl	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S20-Ja27226	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
EPN	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S20-Ja27226	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S20-Ja27226	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S20-Ja27226	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				1			1		
Heavy Metals	1	1		Result 1	Result 2	RPD			
Arsenic	S20-Ja28390	NCP	mg/kg	17	18	1.0	30%	Pass	
Cadmium	S20-Ja28390	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S20-Ja28390	NCP	mg/kg	9.1	9.2	1.0	30%	Pass	
Copper	S20-Ja28390	NCP	mg/kg	37	37	1.0	30%	Pass	
Lead	S20-Ja28390	NCP	mg/kg	24	24	1.0	30%	Pass	
Mercury	S20-Ja28390	NCP	mg/kg	0.1	0.1	<1	30%	Pass	
Nickel	S20-Ja28390	NCP	mg/kg	10	11	2.0	30%	Pass	
Zinc	S20-Ja28390	NCP	mg/kg	45	47	3.0	30%	Pass	
Duplicate				_ _			1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	000/	Dese	
TRH C6-C9	M20-Ja31928	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M20-Ja31928	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M20-Ja31928	CP CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36 Duplicate	M20-Ja31928		mg/kg	< 50	< 50	<1	30%	Pass	
BTEX				Result 1	Result 2	RPD			
Benzene	M20-Ja31928	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M20-Ja31928	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M20-Ja31928	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M20-Ja31928	CP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
o-Xylene	M20-Ja31928	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total	M20-Ja31928	CP	mg/kg	< 0.3	< 0.1	<1	30%	Pass	
Duplicate	1 WIZO-0401920		i iiig/kg	0.5	< 0.5	~1	0070	1 435	
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M20-Ja31928	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M20-Ja31928	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M20-Ja31928	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M20-Ja31928	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M20-Ja31928	CP	mg/kg	< 100	< 100	<1	30%	Pass	
	11120 0001020			1 100	100		0070	1 400	

Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M20-Ja31931	CP	%	14	14	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Andrew Black	Analytical Services Manager
Emily Rosenberg	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

N/

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Practical Environmental Solutions P/L 11 Ulick St Mereweather NSW 2291

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

David McQueeney

Report Project name Project ID Received Date 699958-S GILLIESTON HEGIHTS 20.2732 Feb 04, 2020

Client Sample ID			GH06	GH07	GH08
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N20-Fe02453	N20-Fe02454	N20-Fe02455
Date Sampled			Feb 03, 2020	Feb 03, 2020	Feb 03, 2020
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50
втех					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	119	120	67
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5

Client Sample ID			GH06	GH07	GH08
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N20-Fe02453	N20-Fe02454	N20-Fe02455
Date Sampled			Feb 03, 2020	Feb 03, 2020	Feb 03, 2020
Test/Reference		Linit	1 65 03, 2020	1 60 03, 2020	1 60 03, 2020
Polycyclic Aromatic Hydrocarbons	LOR	Unit			
	0.5		0.5	0.5	0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
	1	mg/kg %	< 0.5 71	< 0.5	< 0.5
2-Fluorobiphenyl (surr.) p-Terphenyl-d14 (surr.)	1	%	112	114	87
		%	112	114	67
Organochlorine Pesticides	0.4		0.4	0.4	0.4
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor Heptachlor epoxide	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 0.05	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.03	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	131	142	105
Tetrachloro-m-xylene (surr.)	1	%	98	98	55
Organophosphorus Pesticides		70			00
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 0.2	< 0.2	< 0.2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2

Client Sample ID			GH06	GH07	GH08
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N20-Fe02453	N20-Fe02454	N20-Fe02455
Date Sampled			Feb 03, 2020	Feb 03, 2020	Feb 03, 2020
Test/Reference	LOR	Unit	, i		
Organophosphorus Pesticides	Lon	Onit			
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 0.2	< 2	< 0.2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 0.2	< 0.2	< 0.2
	0.2			< 0.2	
Phorate		mg/kg	< 0.2		< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	110	110	125
Total Recoverable Hydrocarbons - 2013 NEPM Fra		1			
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
Heavy Metals		1			
Arsenic	2	mg/kg	4.2	2.0	3.5
Beryllium	2	mg/kg	< 2	< 2	< 2
Boron	10	mg/kg	< 10	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	7.5	7.0	15
Cobalt	5	mg/kg	< 5	< 5	< 5
Copper	5	mg/kg	< 5	7.1	16
Lead	5	mg/kg	19	14	22
Manganese	5	mg/kg	49	110	190
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	7.7
Selenium	2	mg/kg	< 2	< 2	< 2
Zinc	5	mg/kg	310	310	880
% Moisture	1	%	7.2	7.6	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B10			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Feb 05, 2020	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8081)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 05, 2020	
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Melbourne	Feb 05, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Melbourne	Feb 05, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Feb 04, 2020	14 Days
- Method: LTM-GEN-7080 Moisture			

eurofine				Austral	lia								New Zealand			
ABN - 50 005 085 521 web : www.eurofins.com.au e.mail : EnviroSales@eurofins.com			esting	Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271			175 0	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217		st NSW 2066 9900 8400	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290		
	Company Name: Practical Environmental Solutions P/L Address: 11 Ulick St Mereweather NSW 2291						R	rder N eport hone: ax:	#:)9995)401 5	8 507 517		Received: Due: Priority: Contact Name:	Feb 4, 2020 9:50 AM Feb 11, 2020 5 Day David McQueeney	
	oject Name: oject ID:	GILLIESTON 20.2732	N HEGIHTS											Eurofins Analytical S	Services Manager : And	rew Black
		Sa	mple Detail			Beryllium	Boron	Cobalt	Manganese	Selenium	Moisture Set	Eurofins mgt Suite B10				
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	х	Х	х	Х	х	x				
	ney Laboratory															
Brisbane Laboratory - NATA Site # 20794																
	h Laboratory - N		/36			-										
	rnal Laboratory															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	GH06	Feb 03, 2020		Soil	N20-Fe02453	Х	Х	Х	Х	Х	х	х				
2	GH07	Feb 03, 2020		Soil	N20-Fe02454	Х	Х	Х	х	Х	х	х				
3	GH08	Feb 03, 2020		Soil	N20-Fe02455	Х	Х	Х	Х	Х	Х	х				
Tool	Counts					3	3	3	3	3	3	3				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank			· ·			
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		0	I I		1 0.00	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
		< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	1		0.5		
Benzo(a)pyrene	mg/kg	< 0.5			Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1	1		1	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		30.2	0.2	1 400	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	y, wg			1 435	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Beryllium	mg/kg	<2	2	Pass	
	I IIY/NY	~ 4	۷ ۷	1 033	
Boron	mg/kg	< 10	10	Pass	

Test	Units	Result 1	Acceptar Limits	ce Pass Limits	Qualifying Code
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	115	70-130	Pass	
TRH C10-C14	%	87	70-130		
LCS - % Recovery					
BTEX					
Benzene	%	115	70-130	Pass	
Toluene	%	106	70-130	Pass	
Ethylbenzene	%	101	70-130		
m&p-Xylenes	%	103	70-130		
Xylenes - Total	%	103	70-130		
LCS - % Recovery	•		· · ·	•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	112	70-130	Pass	
TRH C6-C10	%	109	70-130		
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	107	70-130	Pass	
Acenaphthylene	%	104	70-130		
Anthracene	%	125	70-130		
Benz(a)anthracene	%	93	70-130		
Benzo(a)pyrene	%	78	70-130		
Benzo(b&j)fluoranthene	%	83	70-130		
Benzo(g.h.i)perylene	%	92	70-130		
Benzo(k)fluoranthene	%	104	70-130		
Chrysene	%	94	70-130		
Dibenz(a.h)anthracene	%	75	70-130		
Fluoranthene	%	117	70-130		
Fluorene	%	104	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	74	70-130		
Naphthalene	%	101	70-130		
Phenanthrene	%	110	70-130		
Pyrene	%	105	70-130		
LCS - % Recovery		·			
Organochlorine Pesticides					
Chlordanes - Total	%	101	70-130	Pass	
4.4'-DDD	%	88	70-130		
4.4'-DDE	%	111	70-130		
4.4'-DDT	%	76	70-130		
a-BHC	%	127	70-130		
Aldrin	%	97	70-130		
b-BHC	%	115	70-130		
d-BHC	%	118	70-130		
			70-130		
Dieldrin	%	83	/11_1 31	I Pace	

Test	Test		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	118		70-130	Pass	
Endosulfan sulphate			%	106		70-130	Pass	
Endrin			%	111		70-130	Pass	
Endrin aldehyde			%	93		70-130	Pass	
Endrin ketone			%	107		70-130	Pass	
g-BHC (Lindane)			%	92		70-130	Pass	
Heptachlor			%	109		70-130	Pass	
Heptachlor epoxide	· ·					70-130	Pass	
Hexachlorobenzene	Hexachlorobenzene			98		70-130	Pass	
Methoxychlor			%	76		70-130	Pass	
LCS - % Recovery							_	
Organophosphorus Pesticides								
Diazinon			%	107		70-130	Pass	
Dimethoate			%	92		70-130	Pass	
Ethion			%	103		70-130	Pass	
Fenitrothion			%	112		70-130	Pass	
Methyl parathion			%	110		70-130	Pass	
Mevinphos			%	92		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	80		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic	%	97		80-120	Pass			
Beryllium	%	102		80-120	Pass			
Boron	%	101		80-120	Pass			
Cadmium	%	96		80-120	Pass			
Chromium			%	98		80-120	Pass	
Cobalt			%	104		80-120	Pass	
Copper			%	103		80-120	Pass	
Lead			%	102		80-120	Pass	[
Manganese			%	97		80-120	Pass	[
Mercury			%	106		75-125	Pass	[
Nickel			%	96		80-120	Pass	
Selenium			%	95		80-120	Pass	[
Zinc			%	96		80-120	Pass	[
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M20-Fe04870	NCP	%	107		70-130	Pass	
TRH C10-C14	M20-Fe07044	NCP	%	98		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M20-Fe04870	NCP	%	110		70-130	Pass	
Toluene	M20-Fe04870	NCP	%	104		70-130	Pass	
Ethylbenzene	M20-Fe04870	NCP	%	101		70-130	Pass	
m&p-Xylenes	M20-Fe04870	NCP	%	102		70-130	Pass	
o-Xylene	M20-Fe04870	NCP	%	105		70-130	Pass	
Xylenes - Total	M20-Fe04870	NCP	%	103		70-130	Pass	
Spike - % Recovery					· · ·			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
		-			1 1		_	[
r	M20-Fe04870	NCP	%	99		70-130	Pass	1
Naphthalene TRH C6-C10	M20-Fe04870 M20-Fe04870	NCP NCP	%	99 103		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M20-Fe06513	NCP	%	106	70-130	Pass	
4.4'-DDD	M20-Fe06513	NCP	%	104	70-130	Pass	
4.4'-DDE	M20-Fe06513	NCP	%	118	70-130	Pass	
4.4'-DDT	M20-Fe06513	NCP	%	87	70-130	Pass	
a-BHC	M20-Fe06513	NCP	%	128	70-130	Pass	
Aldrin	M20-Fe06513	NCP	%	104	70-130	Pass	
b-BHC	M20-Fe06513	NCP	%	111	70-130	Pass	
d-BHC	M20-Fe06513	NCP	%	120	70-130	Pass	
Dieldrin	M20-Fe06513	NCP	%	99	70-130	Pass	
Endosulfan I	M20-Fe06513	NCP	%	117	70-130	Pass	
Endosulfan II	M20-Fe06513	NCP	%	80	70-130	Pass	
Endosulfan sulphate	M20-Fe06513	NCP	%	83	70-130	Pass	
Endrin	M20-Fe06513	NCP	%	92	70-130	Pass	
Endrin aldehyde	M20-Fe06513	NCP	%	85	70-130	Pass	
Endrin ketone	M20-Fe06513	NCP	%	86	70-130	Pass	
g-BHC (Lindane)	M20-Fe06513	NCP	%	98	70-130	Pass	
Heptachlor	M20-Fe06513	NCP	%	119	70-130	Pass	
Heptachlor epoxide	M20-Fe06513	NCP	%	113	70-130	Pass	
Hexachlorobenzene	M20-Fe06513	NCP	%	97	70-130	Pass	
Methoxychlor	M20-Fe06513	NCP	%	91	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1			
TRH >C10-C16	M20-Fe07044	NCP	%	93	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	M20-Fe04517	NCP	%	73	75-125	Fail	Q08
Beryllium	M20-Fe04517	NCP	%	68	75-125	Fail	Q08
Boron	M20-Fe04517	NCP	%	76	75-125	Pass	
Cadmium	M20-Fe04517	NCP	%	96	75-125	Pass	
Chromium	M20-Fe04517	NCP	%	78	75-125	Pass	
Cobalt	M20-Fe04517	NCP	%	74	75-125	Fail	Q08
Copper	M20-Fe04517	NCP	%	82	75-125	Pass	
Lead	M20-Fe04517	NCP	%	75	75-125	Pass	
Manganese	M20-Fe04517	NCP	%	378	75-125	Fail	Q08
Mercury	M20-Fe04517	NCP	%	102	70-130	Pass	
Nickel	M20-Fe04517	NCP	%	74	75-125	Fail	Q08
Selenium	M20-Fe04517	NCP	%	66	75-125	Fail	Q08
Zinc	M20-Fe04517	NCP	%	94	75-125	Pass	
Spike - % Recovery	•						
Polycyclic Aromatic Hydrocarbons	5			Result 1			
Acenaphthene	M20-Fe07053	NCP	%	91	70-130	Pass	
Acenaphthylene	M20-Fe07053	NCP	%	93	70-130	Pass	
Anthracene	M20-Fe07053	NCP	%	72	70-130	Pass	
Benz(a)anthracene	M20-Fe07053	NCP	%	79	70-130	Pass	
Benzo(a)pyrene	M20-Fe07053	NCP	%	90	70-130	Pass	
Benzo(b&j)fluoranthene	M20-Fe07053	NCP	%	84	70-130	Pass	
Benzo(g.h.i)perylene	M20-Fe07053	NCP	%	78	70-130	Pass	
Benzo(k)fluoranthene	M20-Fe07053	NCP	%	105	70-130	Pass	
Chrysene	M20-Fe07053	NCP	%	93	70-130	Pass	
Dibenz(a.h)anthracene	M20-Fe07053	NCP	%	84	70-130	Pass	
Fluoranthene	M20-Fe07053	NCP	%	78	70-130	Pass	
Fluorene	M20-Fe07053	NCP	%	60	70-130	Fail	Q08
			/0		1 10-130	ומו	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	M20-Fe07053	NCP	%	91			70-130	Pass	
Phenanthrene	M20-Fe07053	NCP	%	101			70-130	Pass	
Pyrene	M20-Fe07053	NCP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				i	1		1	1	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	B20-Fe02582	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M20-Fe03643	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M20-Fe03643	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M20-Fe03643	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1			1		
BTEX				Result 1	Result 2	RPD			
Benzene	B20-Fe02582	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	B20-Fe02582	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	B20-Fe02582	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	B20-Fe02582	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	B20-Fe02582	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	B20-Fe02582	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	B20-Fe02582	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	B20-Fe02582	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				•				•	
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M20-Fe06512	NCP	mg/kg	0.9	0.9	6.0	30%	Pass	
Benzo(a)pyrene	M20-Fe06512	NCP	mg/kg	1.0	1.1	4.0	30%	Pass	
Benzo(b&j)fluoranthene	M20-Fe06512	NCP	mg/kg	0.9	1.0	5.0	30%	Pass	
Benzo(g.h.i)perylene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M20-Fe06512	NCP	mg/kg	0.9	1.1	20	30%	Pass	
Chrysene	M20-Fe06512	NCP	mg/kg	0.9	0.9	3.0	30%	Pass	
Dibenz(a.h)anthracene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M20-Fe06512	NCP	mg/kg	1.7	1.8	7.0	30%	Pass	
Fluorene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M20-Fe06512	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M20-Fe06512	NCP	mg/kg	1.4	1.5	4.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M20-Fe06512	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate]
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M20-Fe06512	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	M20-Fe06512	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	M20-Fe06512	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	M20-Fe06512	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M20-Fe06512	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		+	
TRH >C10-C16	M20-Fe03643	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				Des list	Durke	DEE			
Heavy Metals		NOD		Result 1	Result 2	RPD	0.00/		
Arsenic	M20-Fe04517	NCP	mg/kg	3.5	4.4	22	30%	Pass	
Beryllium	M20-Fe04517	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M20-Fe04517	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M20-Fe04517	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M20-Fe04517	NCP	mg/kg	33	42	24	30%	Pass	

Environment Testing

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Cobalt	M20-Fe04517	NCP	mg/kg	14	17	23	30%	Pass	
Copper	M20-Fe04517	NCP	mg/kg	26	34	25	30%	Pass	
Lead	M20-Fe04517	NCP	mg/kg	6.5	7.9	19	30%	Pass	
Manganese	M20-Fe04517	NCP	mg/kg	440	560	22	30%	Pass	
Mercury	M20-Fe04517	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M20-Fe04517	NCP	mg/kg	26	33	26	30%	Pass	
Selenium	M20-Fe04517	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	M20-Fe04517	NCP	mg/kg	82	100	20	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Fe01869	NCP	%	15	14	9.0	30%	Pass	

Environment Testing

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
	The matrix snike recovery is outside of the recommended accentance criteria. An accentable recovery was obtained for the laboratory control sample indicating a sample matrix

 The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

 Q08
 interference.

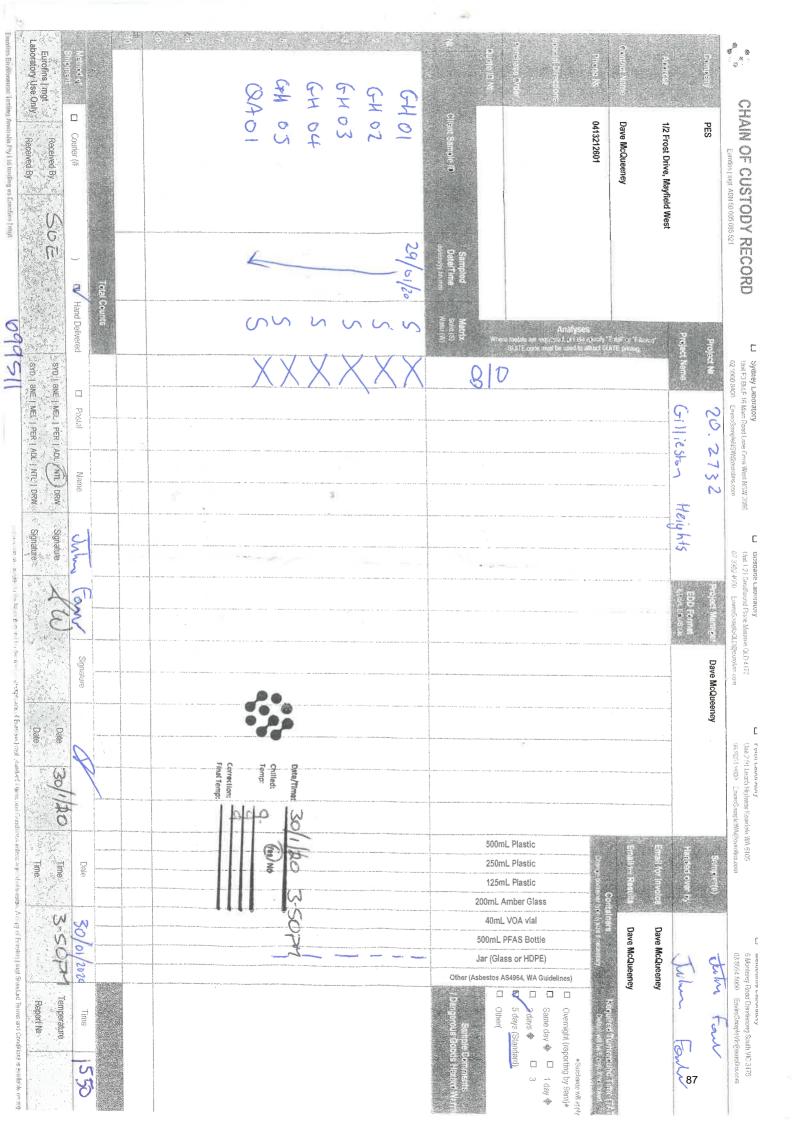
Authorised By

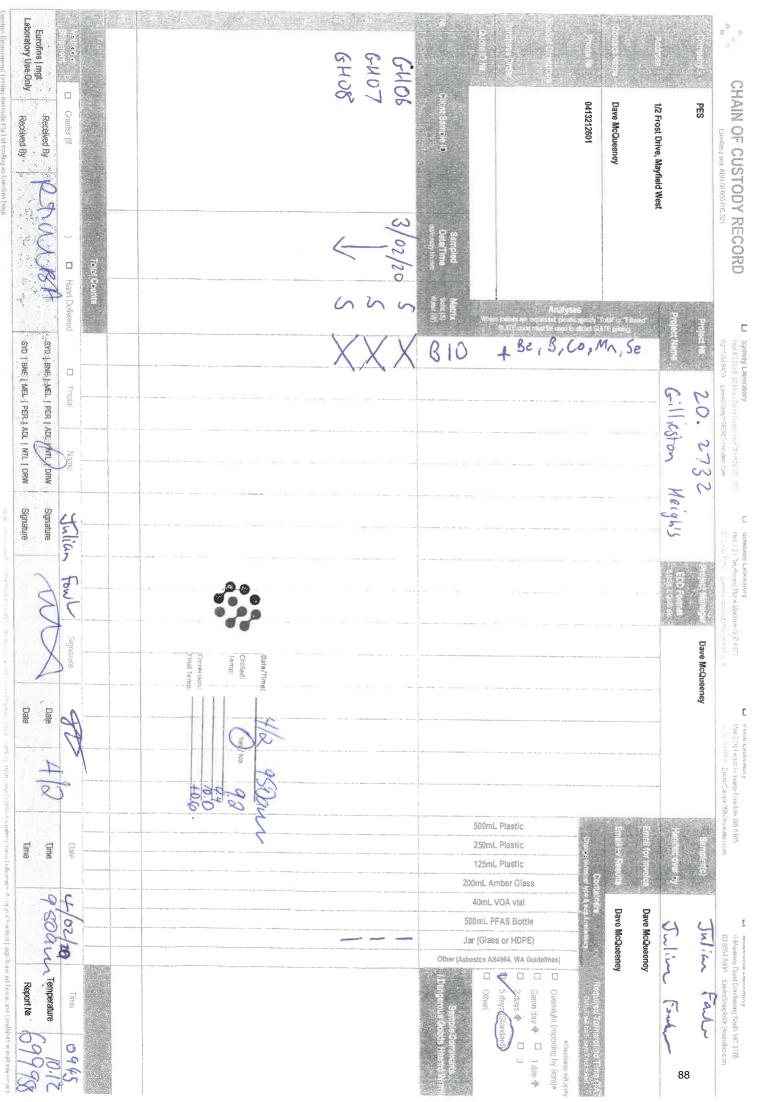
Andrew Black Emily Rosenberg Harry Bacalis Joseph Edouard Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Volatile (VIC) Senior Analyst-Organic (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

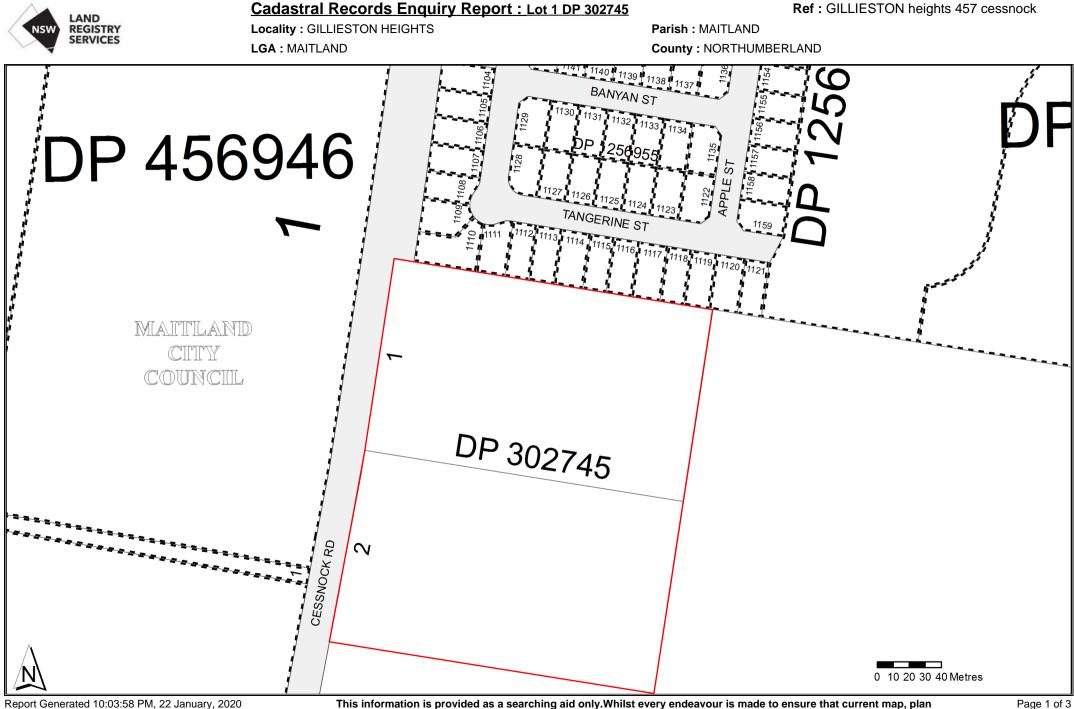
* Indicates NATA accreditation does not cover the performance of this service


Measurement uncertainty of test data is available on request or please click here.


Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

APPENDIX E

CHAIN OF CUSTODY (FIELD & DESPATCH)



APPENDIX F

HISTORICAL TITLE INFORMATION

Report Generated 10:03:58 PM, 22 January, 2020 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

C 90

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE ------22/1/2020 10:04PM

FOLIO: 1/302745

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 3257 FOL 75

LAND

REGISTRY

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
18/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
18/6/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
4/7/2000	6919804	MORTGAGE	EDITION 1
23/9/2002	8976078	DISCHARGE OF MORTGAGE	
23/9/2002	8976079	TRANSFER	
23/9/2002		MORTGAGE	EDITION 2
8/10/2002	9015723	DISCHARGE OF MORTGAGE	EDITION 3
20/10/2003	AA83015	CAVEAT	
8/12/2003	AA127703	APPLICATION FOR PREPARATION OF LAPSING NOTICE	
27/7/2004	AA833312	TRANSFER	EDITION 4
3/10/2006	AC637864	TRANSFER	EDITION 5

*** END OF SEARCH ***

GILLIESTON heights 457 cessnock

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

		General / 1	STC:INFOTRACK /Ref:GI	Real Property Act 19	essnock ER 900		
	STAMP DUTY			on is legally required an		<u> </u>	<u>079K</u>
			STAMP DUTY	02-3002 DA	TAMP No. 75 GNATURE ATE	V Hard	
(A)	TORRENS TITLE	If approp	priate, specify the part	transferred Folio		ier 1/302745	
(B)	LODGED BY	Delivery Box 208X	St Ge : DX 11	r DX and Telephone orge Bank Lim 139 KOGARA 2) 9236 9580 nal):			CODES T TW (Sheriff)
(C)	TRANSFEROR	MARK		AXINE GAY JONGER	DEN		
(D)	CONSIDERATION	The transfer	ror acknowledges receipt	t of the consideration of \$	310,000.	00	and as regards
(E)	ESTATE			rs to the transferee an es			
(F)	SHARE TRANSFERRED						
(G)		Encumbra	nces (if applicable):	1	2		3
(H) (I)	TRANSFEREE	JEFFR TENANCY	EY MARK BROWN				
	DATE		08 /2002	· · · · · · · · · · · · · · · ·			
	DATE	dd	mm yyyy				
(J)	whose identity I a	am otherwis	e satisfied, signed this	ally acquainted or as to transfer in my presence.		ertified correct for operty Act 1900 by	the purposes of the Real the transferor.
	Signature of with	ness:	Bul		Si	gnature of transfero	r:
	Name of witness	:	ARL HULIF	/		Marthe	right
	Address of witne	ess: 417	ARL HULIG Migh Street	f Maillard		gnature of transpero Mar 4 Mge 200	
				ally acquainted or as to transfer in my presence.		ertified correct for operty Act 1900 by	the purposes of the Real the transferee.
	Signature of witr	ness:			Si	gnature of transfere	e:
	Name of witness Address of witne				or fui	licensed conveyand ll name and capacit	
	· · · · · · · · · · · · · · · · · · ·			Bano 4 of	CR	AIG STUART MU	NTER, SOLICITOR
				Page 1 of	ا ۵۹	et of notes on this f	form (01T-2) is available

All handwriting must be in block capitals.

number additional pages sequentially

A set of notes on this form (01T-2) is available from Land and Property Information NSW.

:

÷ 4

			2 /REV:03-AUG-2004 /NSW LRS /PG eneral /Src:INFOTRACK /Ref:GILL	s:ALL /Prt:22-Jan-2020 22:05 /S JESTON heights 457 cessnock TRANSFER		
		www.lpi.nsw.go	w.au	New South Wales Real Property Act 1900		
· ·		STAMP DUTY		is legally required and will becou	AA833312G	
	,	STANP DUTY	Office of State Revenue use only Office of State Revenue use only NSW Treasury Client No: 1406780		<u>20-07-2004</u> 0002074690-001 SECTION 18(2)	
		Revenue Au			DUTY \$ ***********************************	
<u>)</u>	(A)	TORRENS TITLE	Identifier 11/302	<u>KFF</u> 2745 1/302745		
	(B)		Delivery Name, Address or I	DX and Telephone	CODES	
			Box	L. J. KANE		
			30 Reference: WH	. sewer LTO BO)		
	(C)	TRANSFEROR				
			JEFFREY MARK BROW	/ N		
	(D)	CONSIDERATION	The transferor acknowledges receipt	of the consideration of \$ 510, (000.00 and as regards	
	(E)		- of the second s	to the transferee an estate in fee simp		
	(F)	SHARE TRANSFERRED				
	(G)		Encumbrances (if applicable):		······································	
	(H)	TRANSFEREE				
					ee-quarter share and	
		· · · ·		TMAN as to one one-	-quarter share as	
	(1)		TENANCY: tenants in	common.		
	(J)	DATE				
		I am personally ac	erson(s) signing opposite, with who equainted or as to whose identity I a I, signed this instrument in my prese	m Property Act 1900	or the purposes of the Real by the transferor.	
		Signature of witne	ss: hothder	Signature of transf	eror:	
		Name of witness:	WILLIAM NEIL AND	DERSON	Brown	
		Address of witness	Z 31. 110012 3	TREET		
			MAITLAND	· · · · · · · · · · · · · · · · · · ·	·····	
					poses of the Real Property Act whose signature appears below.	~_ <i>~</i>
			· · · ·	/		
				Signature:		
				Signatory's name: Signatory's capacity	WAYNE JOHN HODGINS Solicitor	
:	; .			Page 1 of		
		All handwriting mu	ist be in block capitals.	number additional pages sequentially	Land and Property Information NSW. A	1
			<u>د</u> .	• • • • • • • • • • • • • • • • • • •]
		` .				
					93	

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 1/302745

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2020	10:04 PM	5	3/10/2006

LAND ____

LOT 1 IN DEPOSITED PLAN 302745 LOCAL GOVERNMENT AREA MAITLAND PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP302745

FIRST SCHEDULE

MARGARET HELEN SEWELL

(T AC637864)

SECOND SCHEDULE (2 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1
- A757345 LAND EXCLUDES MINERALS AND IS SUBJECT TO RIGHTS TO 2 MINE

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

GILLIESTON heights 457 cessnock

PRINTED ON 22/1/2020

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 22/1/2020 10:04PM

FOLIO: 2/302745

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 3640 FOL 89

LAND

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
16/2/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
29/6/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
2 <mark>2/12/1992</mark> 22/12/1992			EDITION 1
31/10/1997	3542373	MORTGAGE	EDITION 2
11/7/2001	7762288	MORTGAGE	EDITION 3
23/5/2002	8624837	DISCHARGE OF MORTGAGE	EDITION 4
20/1/2004 20/1/2004	AA343818 AA343819	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 5
21/3/2004	AA501351	DEPARTMENTAL DEALING	
28/11/2008 28/11/2008	AE353846 AE353847	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 6
14/1/2009	AE438561	DEPARTMENTAL DEALING	EDITION 7
24/11/2011 24/11/2011	AG640265 AG640266	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 8
2/9/2018	AN678864	DEPARTMENTAL DEALING	EDITION 9 CORD ISSUED
3/10/2019	AP575151	CAVEAT	

*** END OF SEARCH ***

GILLIESTON heights 457 cessnock

PRINTED ON 22/1/2020

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

RP3			GILLIESTON heights 457 ces				E
STATE A						77	452
	· · · · · · · · · · · · · · · · · · ·						
Sourn W	میر بر مرابع المراجع المنظر الم	Saut 7 TRANSI	AISSION APPLICATION	N		of	1
GEL C		SECTIO	N 93, REAL PROPERTY ACT, 1900	TA		or	
OUTYS /	0-00		ctions for Completion on back of form)		\$		[`` /
OUTYS		·	LAND of which deceased is registered propri	-tor		I	_
DESCRIPTION	Torrens	Title reference	If Part Only, Delete Whole and Give Deta			Location	
OF LAND Note (a)	CERTIFICATE	OF TITLE	WHOLE		Parish of	Maitland	
					County of		rland
		40 Folio 89					
	NOW 2	3-2745					
		LEASE, MORT	GAGE, OR CHARGE of which deceased is re-	jistered pr	oprietor		
REGISTERED DEALING	Type of Dealing	Registered Number	Torrens Title Reference			Location	
Note (b)							
	l	1	· · · · · · · · · · · · · · · · · · ·				
DECEASED REGISTERED	RAYMOND CH	ARLES REYNOLDS					
PROPRIETOR Note (c)	ARTINOID OIL	ANDES NEINOLDS					
		n manana provins attant per surf surf (s. e dun con substituto — se acon cod Mercusika, Millionada e advan	na ma liferati kak ana sa shara sa shi afakina atao 1 m ata a sa				
Note (d)	(the abovenamed DECEA	SED) is registered as proprietor of	the land above described The A	PPLICAN1	r -		
APPLICANT Note (e)	[······································	OF	FICE USE OF
,	RAYMOND RE	YNOLDS Main Road. G	Illieston Heights, Linesma	n n			
		allowers transfer towards	erreant lerdinel menerus	111			
							sel.
						11	151
ENTITLEMENT	being entitled as De	evisee			of the culture	mail the should	
Note (I) and (j)	Probate No 114004		of whose wi	li unitat		te-of the abovena	
	Lottore of Administration A		ef where se	tete wore	granted on 281	th Septemb	er, 19
	to RAYMOND REY	NOLDS					
Note (d)	hereby applies to be regist	ered as proprietor of the estate or i	nterest of the said deceased in the land above				
	[A Bavere	konos rogi	storad dealwng .		
	DATE 7th Desemit						
	Signed in my presence by	Non to be correct for the purposes					
\backslash	A	The Hard					
	× LUI	Jano					
	SOBERT HENRY	FAULRNER					
EXECUTION Note (g)		S (BLOCK LETTERS)			1	1	
	11 BOURKE STRE	ET, MAITLAND, ccupation of Witness			R	Signature of Appli	i
	SOLICITOR.					Signature of Appli	cant
TO BE COMPLETED BY LODGING PARTY			PROBA	TE No. L	OCATION OF DO	CUMENTS	ى مەركىيى مەركىيى مەك
Notes (g) and (h)	G. ji	ENYON & SOI LAW STATIONERS	NS CT AND/OF		ATE OF DEATH		
		STLEREAGH ST. SYDNEY		oouly	12	Herewith.	
	OX 45	6 SYDNEY Phone 267-86	544	4	lala	In L.T.O. wit	
	Ref:	32 K		• •	1114 At		.n
OFFICE USE ONLY	Delivery Box Number	32 Reynolds	5 ld	tedys	rehned 1	Produced by	<u> </u>
ľ	Checked Passed	REGISTERED -	-19 Secondary	1	b		
ŀ	Signed ^o Extra Fee		Directions		-		
	Signeor Extra ree						
	1		Delivery	!	l l		

RP 3 1987	
I/We RAYMOND REYNOLDS executor of the will of RAYMOND CHARLES REYNOLDS edministrator of the estate of Consent to this application Signature of Wilness Revealed and the estate of Signature of Wilness Revealed and the estate of Address and Occupation of Wilness 11 BOURKE STREET, MAITLAND SOLICITOR.	CONSENT OF EXECUTOR OR ADMINISTRATOR Note (j)

Before jodgment at the Land Titles Office this application-

- (i) Should be marked "Registration not Opposed" by the Commissioner of Stamp Duties if the deceased registered proprietor died before 31st December, 1982; and (ii) Where applicable, stamp duty should be paid and the application appropriately stamped.
- Typewriting and handwriting should be clear, legible and in permanent dense black or dark blue non-copying ink.

Alterations are not to be made by erasure; the words rejected are to be ruled through and initialled by the parties to the dealing in the left hand margin.

If the space provided is insufficient, additional sheets of the same size and quality of paper and having the same margins as this form should be used. Each additional sheet must be identified as an annexure and signed by the applicant and the attesting witness

Rule up all blanks.

The following instructions relate to the side notes on the form

(a) Description of land. (If application is only in respect of a registered dealing, rule through this panel.)

- (i) TORRENS TITLE REFERENCE Insert the ourrent reference to the Folio of the Register for the land the subject of the application e.g. 12/701924 or Vol. 12364 Fol. (26
- (ii) PART/WHOLE if part only of the land in the Folio of the Register is the subject of the application, deteld the word "WHOLE" and insert the lot and plan number, portion, &c
- (iii) LOCATION Insert the locality shown on the Polici of the Register, e.g. at Chullora if the locality is not shown insert the Parish and County e.g. Ph. Lismon Co. Rous
- (b) Registered dealing. (If application is only in respect of a Certificate of Title, rule through this panel)
 - Show the registered number of the lease, mortgage, or charge, the title reference affected thereby, and the location of the land involved, e.g. Lease-W123456-Vol. 12634 Fol. 124-at Camperdown.
- (c) Show the full name of the deceased registered proprietor.
- (d) Strike out "land above described" or "abovementioned registered dealing", whichever does not apply.
- Show the full name, address and description of the applicant. If devisees or beneficiaries apply, indicate whether they hold as joint tenants or tenants in common, and, if as tenants in common, state the shares in which they hold. (e)
- Insert executor, administrator, trustee, devisee or beneficiary as appropriate. If letters of administration have been granted, e.g., "cum testamento annexo" or "de bonis non", the entitlement may be abbreviated, e.g. administrator c.t.a., administrator d.b.n., &c. Applicants should not claim as executor and devisee or executor and (f) trustee.

(g) Execution.

GENERALLY (i) Should there be insufficient space for the execution of this dealing, use an annexure sheet

- (ii) The certificate of corructness under the Real Property Act, 1900, must be signed by all the applicants, each applicant to execute the dealing in the presence of an adult writness, not being a party to the application, to whom he/she is personally known. Any person falsely or negligently certifying is liable to the penalties provided by section 117 of the Real Property Act, 1900.
- (iii) If the application is executed by an attorney for the applicant pursuant to a registered power of attorney, the form of attestation must attorn of attestation must attorney for the attorney registered power of execution must indicate the source of his/her authority, e.g. "AB by his/her attorney (or receiver or delegate, as the case may be), XY pursuant to power of attorney registered Book. No ATTORNEY

AUTHORITY (iv) If the application is executed pursuant to an authority (other than specified in (iii)), the form of execution must indicate the statutory, judicial or other authority pursuant to which the application has been executed.

CORPORATION (v) If the application is executed by a corporation under seal, the form of execution should include a statement that the seal has been properly affixed, e.g. in accordance with the Articles of Association of the corporation. Each person attesting the affixing of the seal must state his/her position (e.g., director, secretary) in the corporation.

(h) Insert the name, postal address, Document Exchange reference, telephone number and delivery box number of the lodging party.

The lodging party is to complete the LOCATION OF DOCUMENTS panel. Place a tick in the appropriate box to indicate the whereabouts of the Certificate of Title or duplicate registered dealing. List, in an abbreviated form, other documents lodged, e.g. stat. dec. for statutory declaration, pbte for probate, L/A for letters of administration.

(j) Consent of the executor or administrator is required only where the applicant claims otherwise than as executor, administrator, or trustee.

OFFICE USE ONLY

			FIRST SCH		CTIONS			
(A) FOLIO IDENTIFIER	(B) DIRECTION	(Ĉ)			NAME			
·····	<u></u>	ļ						
					<u> </u>			
		ļ						
		SECO	OND SCHEDUL	E AND OTHE	R DIRECTIONS			
(D) FOLIO IDENTIFIER (OR REGD. DEALING & FOLIO IDENTIFIER)		^(F) NOTFN TYPE	(G) DEALING NUMBER	(H)		DETAILS		
			r	1				
				1				
			l (1				
				1			_	
				1				
				1				97

AUSDOC Commercial & Law Stationary P/L 1969

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 2/302745

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
22/1/2020	10:03 PM	9	2/9/2018

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY COMMONWEALTH BANK OF AUSTRALIA.

LAND ____

LOT 2 IN DEPOSITED PLAN 302745 AT EAST GRETA LOCAL GOVERNMENT AREA MAITLAND PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP302745

FIRST SCHEDULE

_____ RAYMOND REYNOLDS VICKI SHERYL REYNOLDS AS JOINT TENANTS

(T E996453)

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- LAND EXCLUDES MINERALS AND IS SUBJECT TO RIGHTS TO 2 B122225 MINE
- 3 AG640266 MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA
- AP575151 CAVEAT BY ROTER SAND PTY LTD * 4

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

GILLIESTON heights 457 cessnock

PRINTED ON 22/1/2020

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

APPENDIX G

PID CALIBRATION CERTIFICATE

CALIBRATION CERTIFICATE

Date of Calibration: - 12th June 2019

Calibrated by: - T.Payne

Customer: - Air-Met Scientific Pty Ltd

Description: - Tiger

Manufacturer: - ION Science Ltd

Type Number: - N/A

Serial Number: - T-115093

Service Due date: - June 2020

Certificate Number: - 247279 Signed: -

This instrument has been factory calibrated to fully documented procedures in accordance with our ISO 9001:2008 Quality Management System.

Measurement standards are derived from volumetric and time sources which have been calibrated at an accredited laboratory traceable to National or International standards. The following list indicates the serial numbers of equipment used during the calibration procedure.

BAR02 C9559 / A124461

¹ Gas mixtures prepared using equipment traceable to N.P.L. standards against Suppliers Certificate No.

The instrument has been calibrated at a temperature of 19.1°C ± 0.25°C and a barometric pressure of 1006.4 mbar ± 2 mbar.

ION Science hereby certify that on the day of calibration the instrument was working according to the manufacturer's original sales specification as checked by the calibration procedure, unless otherwise stated.

Copies of this certificate may only be reproduced in full.

Calibrations are valid as certified only on date of Calibration. For correct instrument operation please see the User Manual.

RESULTS ON DESPATCH

Applied Concentration

100.3 ppm Isobutylene

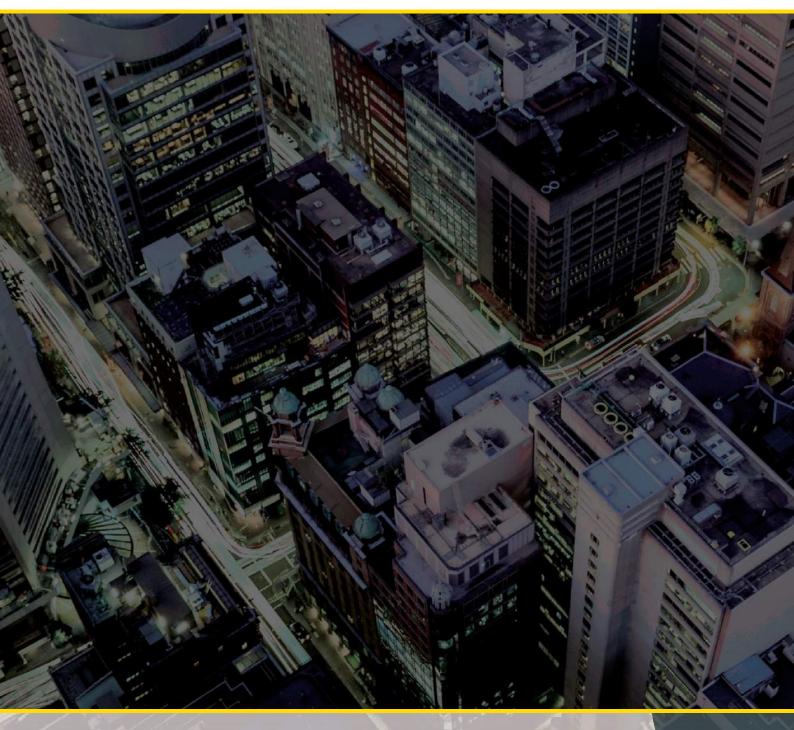
Instrument Indication

101.2 ppm Isobutylene

The estimated applied gas uncertainty is ± 2.0%

Comments: -PD-FM-086-07

Unrivalled Gas Detection.


ION Science Ltd, The Hive, Butts Lane, Fowlmere, Cambs, SG8 7SL, UK T +44 (0)1763 208503 E info@ionscience.com W ionscience.com

APPENDIX H

LAND INSIGHT & RESOURCES ENVIRO SCREEN REPORT, REPORT MAPS & HISTORICAL IMAGERY

ENVIRO-SCREEN

Property Details

457-463 Cessnock Road, Gillieston Heights NSW

Search Date: 23 January 2019

Understanding your Report

Your Report has been produced by Land Insight and Resources (LI Resources).

Your Report is based on information available from public databases and sources at the date of reporting. The information gathered relates to land that is within a **200 to 2000 m radius** (buffer zone) from the boundaries of the Property. A smaller or larger radius may be applied for certain records (as listed under records and as shown in report maps).

While every effort is made to ensure the details in your Report are correct, LI Resources cannot guarantee the accuracy or completeness of the information or data provided.

The report provided by LI Resources includes data listed on page 3 (table of contents). All sources of data and definitions are provided on the report maps and as listed in the Product Guide (Attached). For a full list of references, metadata, publications or additional information not provided in this report, please contact LI Resources at info@liresources.com.au.

The report does not include title searches; dangerous good searches or; property certificates (unless requested); or information derived from a physical inspection, such as hazardous building materials, areas of infilling or dumping/spilling of potentially contaminated materials. It is important to note that these documents and an inspection can contain information relevant to contamination that may not be identified by this Report.

This Report, and your use of it, is regulated by LI Resources Terms and Conditions (See LIR Product Guide).

Land Insight and Resources

ABN 70 167 080 837

phone: + 61 2 9979 1720 e-mail: info@liresources.com.au https://liresources.com.au/

INDEX

Section 1 - Property Setting	4
1.1 SITE LOCATION MAP AND SENSITIVE RECEPTORS Map 1 (200m Buffer) 1.2 PLANNING CONTROLS Map 2 (onsite) Zoning	4 4 4
Environmental Planning Instruments	4
1.3 SOIL AND LAND USE INFORMATION Map 3a/3b (onsite) Soil Landscape Salinity Hazard Acid Sulfate Soil	4 4 5
1.4 GEOLOGY AND TOPOGRAPHY Map 4 (onsite) Geology Topography	6 6 6
Section 2 - Hydrogeology	7
2.1 HYDROGEOLOGY AND GROUNDWATER BORES Map 5a (500m - 2000m Buffer) 2.2 HYDROGEOLOGY AND OTHER BOREHOLES Map 5b (500m Buffer)8 Groundwater Dependent Ecosystems	7 8
Section 3 – Environmental Registers, Licences and Incidents	g
3.1 CONTAMINATED LAND PUBLIC REGISTER Map 6 (1000m Buffer) Contaminated Land Record of Notices Sites Notified as Contaminated to the EPA	g g
3.2 POTENTIALLY CONTAMINATED AREAS Map 6 (1000m Buffer) Defence Sites Former Gasworks Sites PFAS Sites	<i>10</i> 10 10 10
3.3 LICENSING UNDER THE POEO ACT Map 7 (500m Buffer) Licences Surrendered Licences still Regulated by EPA Clean Up and Penalty Notices	<i>10</i> 10 11 11
3.4 NATIONAL POLLUTANT INVENTORY (NPI) Map 7 (500m Buffer) 3.5 PUBLIC REGISTER OF PROPERTIES AFFECTED BY LOOSE-FILL ASBESTOS INSULATION Map 7 (onsite)	11 11
Section 4 – Other Potentially Contaminating Activities	12
4.1 FORMER POTENTIALLY CONTAMINATED LAND Map 8a (500m Buffer) Contaminated Legacy Areas Derelict Mines and Quarries Historical Landfills Unexploded Ordnance (UXO) Areas	<i>12</i> 12 12 12 12
 4.2 POTENTIALLY CONTAMINATING ACTIVITIES Map 8b (500m Buffer) Aviation Fuel Depots/Terminals Cattle Dip Sites Mines and Quarries Dry Cleaners Liquid Fuel Depots/Terminals Fire and Rescue Sites Power Stations Service Stations Substation / Switching Stations Telephone Exchanges Waste Management Facilities Wastewater Treatment Facilities 	12 12 13 13 13 13 13 13 13 13 13 13 13 14 14
4.3 CURRENT COMMERCIAL AND TRADE DATA Map 8c (200m Buffer) Current Commercial and Trade Data Tanks (AST/UST)	<i>14</i> 14 14
 4.4 HISTORICAL COMMERCIAL AND TRADE DATA (not mapped) 1932 Historical Commercial & Trade Directory Data 1940 Historical Commercial & Trade Directory Data 1950 Historical Commercial & Trade Directory Data 1965 Historical Commercial & Trade Directory Data 	<i>15</i> 15 15 15 15

1970 Historical Commercial & Trade Directory Data 1971 Historical Commercial & Trade Directory Data 1974 Historical Commercial & Trade Directory Data 1980 Historical Commercial & Trade Directory Data 1981 Historical Commercial & Trade Directory Data 1990 Historical Commercial & Trade Directory Data	15 15 15 15 15 16 16
1991 Historical Commercial & Trade Directory Data 2005 Historical Commercial & Trade Directory Data	16 16
Section 5 - Other Environmental Constraints	17
5.1 FEDERAL, STATE AND LOCAL HERITAGE Map 9 (200m Buffer) Local Environment Plan (LEP) Heritage National Heritage List (NHL) Register of the National Estate (RNE) Non-Aboriginal heritage item (Local) Non-Aboriginal heritage item (SHR)* Commonwealth Heritage List (CHL) World Heritage Area (WHA)	<i>17</i> 17 17 17 17 17 17 17 17
5.2 NATURAL HAZARDS Map 10 (500m Buffer) Bush Fire Prone Land (BLP) Fire History Flood Hazard	<i>18</i> 18 18 18
5.3 COASTAL MANAGEMENT (STATE ENVIRONMENTAL PLANNING POLICY) Map 10 (500m Buffer)	18
ATTACHMENTS	

ATTACHMENTS Attachment A - Report Maps Attachment B - Historical Imagery LIR Product Guide and Terms and Conditions

Section 1 - Property Setting

1.1 SITE LOCATION MAP AND SENSITIVE RECEPTORS

Sensitive receptor	Category	Distance (m)*	Direction
Not identified	-	-	-
* Distance from the constitute recenter point feature to the site boundary contraid			

*Distance from the sensitive receptor point feature to the site boundary centroid.

1.2 PLANNING CONTROLS

Zoning

Zoning	RU2	Rural Landscape
Loning	HOL	Hurdi Editoloupo

Environmental Planning Instruments

Туре	Local Environmental Plan	Classification
Not identified	-	-

1.3 SOIL AND LAND USE INFORMATION

Map 3a/3b (onsite)

Soil Landscape

Soil Landscape	ERbh	BOLWARRA HEIGHTS	Soil Group	EROSIONAL
Description	Hunter Region. Slo forest. Soils — Moderatel Kurosols and Chro cm), moderately p very deep (150 – 5 Podzolic Soils); de drained Brown and (50 - <150 cm), p drained Leptic Ten Qualities and limit moisture availabilit movement hazard, localised salinity h	ulating low hills to rolling low hills pes 5 - 20%, local relief <80 m, e y deep (50 - <100 cm), moderate mosols (Brown Podzolic Soils and ermeable poorly drained Brown De 500 cm), moderately permeable we ep (100 - <150 cm), slowly perm I Yellow Kurosols (Yellow Podzolic boorly drained Natric Brown Kuroso osols (Lithosols) occur. tations— localised shallow soils, y, localised steep slopes, localised widespread foundation hazard, loc azard, localised gully erosion hazar alised seasonal waterlogging.	levation < 100 m. ly permeable, moo Non-calcic Brown rmosols (Structure ell-drained Brown a eable moderately Soils and Soloths ols (Soloths); and widespread comp I rock outcrop haze calised woody wee	Extensively cleared tall open- derately well-drained Brown in Soils); deep (100 - <150 ed Loams and Earthy Loams); and Yellow Kurosols (Yellow well-drained to imperfectly); moderately deep to deep shallow (25 - <50 cm), well- lex soils, localised poor ard, localised mass eds, localised discharge zone,

Salinity Hazard

Hydrologic Soil Group	C - Slow rate	Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.
Salinity Hazard	-	Not identified

106

Map 2 (onsite)

Acid Sulfate Soil

ASS Risk Maps (Table 1.3.1)	On the Property?		Within R	ecord Search Buffer?
Class	Class 5			Class 5
Atlas of Australian Acid Sulfate Soil (Table 1.3.2)	Bn(p4)	ASS in inland lakes, waterways, wetlands and riparian zones	Probability of Occurrence	Low Probability of occurrence

Table 1.3.1. Classification scheme in the ASS Planning Maps

	Class of Land as shown on ASS Planning Maps
1	Acid sulfate soils in a class 1 area are likely to be found on and below the natural ground surface.
2	Acid sulfate soils in a class 2 area are likely to be found below the natural ground surface.
3	Acid sulfate soils in a class 3 area are likely to be found beyond 1 metre below the natural ground surface.
4	Acid sulfate soils in a class 4 area are likely to be found beyond 2 metres below the natural ground surface.
5	Acid sulfate soils are not typically found in Class 5 areas. Areas classified as Class 5 are located within 500 metres on adjacent class 1,2,3 or 4 land.

For each class of land, the maps identify the type of works likely to present an environmental risk if undertaken in the particular class of land. If these types of works are proposed, further investigation is required to determine if ASS are actually present and whether they are present in such concentrations as to pose a risk to the environment.

T-61- 100 M	Han of Aughter line	Asid Cultate Callel		
Table 1.3.2. Al	lias of Australian A	ACIO SUITATE SOIIS'	(ASRIS)	(CSIRO/NatCASS)

Code	Distinguishing soil/sediment properties, vegetation, landforms, or other characteristics			
	Probability of Occurrence of ASS ¹			
А	High Probability of occurrence - (>70% chance of occurrence in mapping unit)			
В	Low Probability of occurrence - (6-70% chance of occurrence in mapping unit)			
C	Extremely low probability of occurrence - (1-5% chance of occurrence in mapping unit)			
D	No probability of occurrence - (<1% chance of occurrence in mapping unit)			
x	Disturbed ASS ¹ terrain - (ASS ¹ material present below urban development).			
u	Unclassified - (Insufficient information to classify map unit)			
	Zones			
а	Potential acid sulfate soil material and/or Monosulfidic Black Ooze (MBO).			
b, c	Potential acid sulfate soil generally within upper 1 m.			
c, d, e	ASS ¹ generally within upper 1 m.			
f	ASS ¹ generally below 1 m from the surface			
g	ASS ¹ , generally below 3 m from the surface.			
h	ASS ¹ generally within 1 m of the surface.			
i, j	ASS ¹ generally below 1 m of the surface.			
k	ASS ¹ material and/or Monosulfidic Black Ooze (MBO).			
l, m, n, o, p, q	ASS ¹ generally within upper 1 m in wet / riparian areas.			
	Subscripts to codes			
(a)	Actual acid sulfate soil (AASS) = sulfuric material.			
(p)	Potential acid sulfate soil (PASS) = sulfidic material.			
(q)	Monosulfidic Black Ooze (MBO) is organic ooze enriched by iron monosulfides.			
	Confidence levels			
(1)	All necessary analytical and morphological data are available			
(2)	Analytical data are incomplete but are sufficient to classify the soil with a reasonable degree of confidence			
(3)	No necessary analytical data are available, but confidence is fair, based on a knowledge of similar soils in similar environments			
(4)	No necessary analytical data are available, and classifier has little knowledge or experience with ASS, hence classification is provisional			

¹Acid Sulfate Soils (ASS) are all those soils in which sulfuric acid may be produced, is being produced, or has been produced in amounts that have a lasting effect on main soil characteristics (Pons 1973). Acid sulfate soil (ASS) may include PASS or AASS + PASS. Potential acid sulfate soil (PASS) = sulfidic material. Actual acid sulfate soil (AASS) = sulfuric material.

1.4 GEOLOGY AND TOPOGRAPHY

Geology

Map Sheet	Symbol	Formation	Group	Era	Period	Description
Newcastle 1:100 000 Geological Map	Pmb	Branxton Formation	Maitland Group	Palaeozoic	Permian	Conglomerate, sandstone, siltstone

Topography

Topogra	bhy	34-44mAHD	
---------	-----	-----------	--

108

Map 4 (onsite)

Section 2 - Hydrogeology

2.1 HYDROGEOLOGY AND GROUNDWATER BORES

Map 5a (500m - 2000m Buffer)

	On the Property?	Within Record Search Buffer?	
Aquifer Type	Fractured or fissured, extensive aquifers of low to moderate productivity	Fractured or fissured, extensive aquifers of low to moderate productivity Porous, extensive highly productive aquifers	
Drinking Water Catchments	Not identified	Not identified	
Protected Riparian Corridor	Not identified	Wallis Creek / Buttai Creek/ Swamp Creek	
UPSS Environmentally sensitive zone	Northern NSW area 2 UPSS	Northern NSW area 2 UPSS	
Wetlands	Not identified	Testers Hollow / Wentworth Swamps	
Groundwater Bores	Not identified	Yes, see 2.1.1 and 2.1.2	

¹ - Groundwater bore buffer size will change depending on the number of GW bores found within buffer; if there are less than 7 bores within buffer, buffer will increase to max 2km until bores are found.

Table 2.1.1. Groundwater Bore Details

Groundwater Bore ID	Authorised Purpose	Completion Date	Drilled Depth (m)	Final Depth (m)	SWL (m)	Salinity	Yield (L/s)	Distance (m)	Direction
21010164	Unknown	-	-	-	-	-	-	267	South-east
GW051647	Water supply for livestock	01-Sep-80	12	12				717	North-east

Table 2.1.2. Groundwater Bore Driller Lithology Details

Groundwater Bore ID	From Depth (m)	To Depth (m)	Lithology	Description	Distance (m)	Direction
GW051647	0	0.15	TPSL	Topsoil	717	North-east
GW051647	0.15	3	CLAY	Clay	717	North-east
GW051647	3	3.81	SAND	Sand yellow	717	North-east
GW051647	3.81	4.57	SAND	Sand white	717	North-east
GW051647	4.57	6.1	CLAY	Clay sand	717	North-east
GW051647	6.1	12	SDSN	Sandstone hard	717	North-east

2.2 HYDROGEOLOGY AND OTHER BOREHOLES

Map 5b (500m Buffer)

	On the Property?	Within Record Search Buffer?	
Groundwater Vulnerability	Not identified	Not identified	
Groundwater Exclusion Zones ^{1,2}	Not identified	Not identified	
Hydrogeologic Unit	Palaeozoic and Pre-Cambrian Fractured Rock Aquifers (Iow permeability)	Palaeozoic and Pre-Cambrian Fractured Rock Aquifers (low permeability) Surficial Sediment Aquifer (porous media unconsolidated)	
Other known borehole investigations (500m buffer)	Not identified	Not identified	

¹ - Botany Groundwater Management Zones (BGMZ): Zone 1 – the use of groundwater remains banned; Zones 2 to 4 – domestic groundwater use is banned, especially for drinking water, watering gardens, washing windows and cars, bathing, or to fill swimming pools.

² - Williamtown Groundwater Management Zones (WGMZ): Primary Management Zone – this area has significantly higher levels of PFAS detected and therefore, the strongest advice applies. Secondary Management Zone – this area has some detected levels of PFAS; Broader Management Zone – the topography and hydrology of the area means PFAS detections could occur now and into the future.

Groundwater Dependent Ecosystems

Site	On the Property?	Within Record Search Buffer?	
Ecosystems that rely on the Surface expression of Groundwater	Not identified	Not identified	
Ecosystems that rely on Subsurface presence of Groundwater	Not identified	Not identified	

 Table 2.2.1. Other known borehole investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) (500m buffer)

Borehole ID	Purpose	Project	Client/License	Date Drilled	Depth (m)	Distance (m)	Direction
Not identified	-	-	-	-	-	-	-

Section 3 – Environmental Registers, Licences and Incidents

3.1 CONTAMINATED LAND PUBLIC REGISTER

Map 6 (1000m Buffer)

Contaminated Land Record of Notices

Site Name ²	Site ID	Address ¹	Notices	Distance (m)	Direction
Not identified	-	-	-	-	-

1. Some addresses do not contain specific street numbers. Records identified as being in the surrounding area have been added for information.

2. Former NSW EPA sites. These sites have been removed from the Record of Notices and/or the Sites Notified lists and are kept here for information purposes only.

Sites Notified as Contaminated to the EPA

Site Name ²	Address ¹	Activity that caused Contamination	EPA Site Management Class ³	Distance (m)	Direction
Not identified	-	-	-	-	-

1. Some addresses do not contain specific street numbers. Records identified as being in the surrounding area have been added for information.

2. Former NSW EPA sites. These sites have been removed from the Record of Notices and/or the Sites Notified lists and are kept here for information purposes only. 3. The EPA maintains a record of sites that have been notified to the EPA by owners or occupiers as contaminated land. The sites notified to the EPA and recorded on the register are at various stages of the assessment and/or remediation process. Table 5 outlines the possible management status that can be attributed to a registered contaminated site.

Table 3.3.1. EPA Site Management Class Explanation

	EPA Site Management Class
Under Assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Contamination currently regulated under the CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record.
Contamination currently regulated under the POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).

EPA Site Management ClassContamination was
addressed via the
planning process
(EP&A Act)The EPA has determined that the contamination is no longer significant enough to warrant regulation. The
contamination was addressed by the appropriate consent authority via the planning process under the
Environmental Planning and Assessment Act 1979 (EP&A Act).Ongoing maintenance
required to manage
residual contamination
(CLM Act)The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM
Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the
EPA's Contaminated Land Public Record.

3.2 POTENTIALLY CONTAMINATED AREAS

Map 6 (1000m Buffer)

Defence Sites

Site name	RCIP*	Description	Status [*]	Distance (m)	Direction				
Not identified	-		-	-	-				
*DCID (Decional Contemination Inv	PCID (Decional Contamination Investigation Program)								

*RCIP (Regional Contamination Investigation Program)

Former Gasworks Sites

Site	Location	Distance (m)	Direction
Not identified	-	-	-

PFAS Sites

Site name	Description	Source	Distance (m) *	Direction
Not identified	-	-	-	-

*2km search

3.3 LICENSING UNDER THE POEO ACT

Map 7 (500m Buffer)

Licences

EPL Number	Licence holder	Location Name	Premise Address ¹	Fee Based Activity	Distance (m)	Direction
Not identified	-		-	-	-	

¹. Some sites do not contain specific addresses. Records identified as being in the surrounding area have been added for information.

Surrendered Licences still Regulated by EPA

Licence Nº	Licence holder	Location Name	Premise Address ¹	Fee Based Activity	Status	Distance (m)	Direction
12439	STATE OF NEW SOUTH WALES (Department of Primary Industries - Lands)	Waterways within the Hunter Valley Flood Mitigation Scheme, MAITLAND, NSW 2320	MAITLAND, NSW 2320	Other activities	Surrendered	Not mapped	-

¹. Some sites do not contain specific addresses. Records identified as being in the surrounding area have been added for information.

Clean Up and Penalty Notices

Penalty N ^o	Licence holder	Location Name	Premise Address ¹	Fee Based Activity	Status	Distance (m)	Direction
Not identified	-		-	-	-	-	-

¹. Some sites do not contain specific addresses. Records identified as being in the surrounding area have been added for information.

3.4 NATIONAL POLLUTANT INVENTORY (NPI)

Map 7 (500m Buffer)

Facility name	Address	Primary ANZSIC Class	Latest report	Distance (m)	Direction
Not identified	-		-	-	-

3.5 PUBLIC REGISTER OF PROPERTIES AFFECTED BY LOOSE-FILL ASBESTOS INSULATION

Map 7 (onsite)

Address	Match Found
Not identified	-

Section 4 – Other Potentially Contaminating Activities

4.1 FORMER POTENTIALLY CONTAMINATED LAND

Map 8a (500m Buffer)

Contaminated Legacy Areas

Site Name	Description	Status	Distance (m)	Direction
Not identified	-	-	-	-

Note: This section includes known contaminated areas such as James Hardies Asbestos waste legacy areas, Pasminco Smelter and Uranium processing site.

Derelict Mines and Quarries

Site name	Method	Description	Status [*]	Distance (m)	Direction
Not identified	-	-	-	-	-

Historical Landfills

Site name	Description	Status [*]	Distance (m)	Direction
Not identified	-		-	-

Unexploded Ordnance (UXO) Areas

Site name	Category	Description	Status [*]	Distance (m)	Direction
Not identified	-	-	-	-	-

4.2 POTENTIALLY CONTAMINATING ACTIVITIES

Map 8b (500m Buffer)

Aviation Fuel Depots/Terminals

Site name	Location	Status*	Distance (m)	Direction
Not identified	-	-	-	-

Cattle Dip Sites

Site name	Location	Status*	Distance (m)	Direction
Not identified	-	-	-	-

Mines and Quarries

Deposit Name	Method	Description	Status*	Distance (m)	Direction
Not identified	-	-	-	-	-

Dry Cleaners

Site name	Location	Status*	Distance (m)	Direction
Not identified	-	-	-	-

Liquid Fuel Depots/Terminals

Site name	Owner	Location	Status⁺	Distance (m)	Direction
Not identified	-	-	-	-	-

Fire and Rescue Sites

Site name	Location	Status [*]	Distance (m)	Direction
Not identified	-	-	-	-

Power Stations

Site name	Owner	Primary Fuel Type	Status*	Distance (m)	Direction
Not identified	-	-	-	-	-

Service Stations

Site name	Owner	Location	Status⁺	Distance (m)	Direction
Not identified	-	-	-	-	-

Substation / Switching Stations

Site name	Owner	Location	Status⁺	Distance (m)	Direction
Not identified	-	-	-	-	-

Telephone Exchanges

Site name	Location	Status [*]	Distance (m)	Direction
Not identified	-	-	-	-

Waste Management Facilities

Site name	Owner	Class	Status*	Distance (m)	Direction
Not identified	-	-	-	-	-

Wastewater Treatment Facilities

Site name	Operator	Class	Status [*]	Distance (m)	Direction
Not identified	-	-	-	-	-

*Status:

Data is current as when this report was created. However due to the turnover of business locations, some addresses may be former.

Current: business that are operational on the day this report was issued.

Former: business that have been closed or discontinued 1 to 2 years from the day this report was issued. All former sites older than 2 years will be reported in the historical business section in this report.

4.3 CURRENT COMMERCIAL AND TRADE DATA

Map 8c (200m Buffer)

Current Commercial and Trade Data

Site name ¹	Category	Location	Status ²	Distance (m)	Direction
Not identified	-		-	-	-

¹ Data includes categories associated with potentially contaminating activities. All negligible risk data is not reported.

² Status: Data is current as when this report was created. However due to the turnover of business locations, some addresses may be former. Current: business that are operational on the day this report was issued.

Former: business that have been closed or discontinued 1 to 2 years from the day this report was issued. All former sites older than 2 years will be reported in the historical business section in this report.

Tanks (AST/UST)

ID	Tank type	Description	Status	Distance (m)	Direction
Not identified	-		-	-	-

Note: This is not an exhaustive list of all existing tanks.

4.4 HISTORICAL COMMERCIAL AND TRADE DATA

1932 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1940 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1950 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1965 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1970 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1971 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1974 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1980 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1981 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1990 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

1991 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

2005 Historical Commercial & Trade Directory Data

Activity	Name	Address	Positional accuracy	Distance (m)	Direction
Not identified	-	-	-	-	-

Note: Directories for the years 1932, 1940, 1950, 1965, 1970, 1980 and 1990 cover the Sydney CBD and greater Sydney area only. Directories for 1971, 1981 and 1991 cover regional NSW, but may also contain data for the Sydney area.

Historical data positional accuracy and georeferencing results explanation

Positional accuracy	Georeferenced	Description
Address	Located to the address level	When street address and names fully match.
Street	Located to the street centroid	When street names match but no exact address was found. Location is approximate.
Place	Located to the structure, building or complex	When building, residential complex or structure name match but no exact address was found. Location is approximate.
Suburb	Located to the suburb area	When suburb name match but no exact address was found. Location is approximate.
Not georeferenced	Not found	When it was not georeferenced, and address could not be found.

Land Insight and Resources use a number of different address georeferencing methods and characterised them according to the following criteria: completeness (match rates) and positional accuracy. When address do not contain specific street numbers or a match is not found, records identified as being in the surrounding areas are included for reference.

Section 5 - Other Environmental Constraints

5.1 FEDERAL, STATE AND LOCAL HERITAGE

Map 9 (200m Buffer)

Local Environment Plan (LEP) Heritage

Site ID	Site Name	Significance	Туре	Distance (m)*	Direction
Not identified	-	-	-	-	-

National Heritage List (NHL)

Site ID	Site Name	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Register of the National Estate (RNE)

Site ID	Site Name	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Non-Aboriginal heritage item (Local)

Site ID	Site Name	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

Non-Aboriginal heritage item (SHR)*

Site ID	Site Name	Listing n ^o	Plan n⁰	Distance (m)	Direction
Not identified	-	-	-	-	-

*State Heritage Register

Commonwealth Heritage List (CHL)

Site ID	Site Name	Class	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

World Heritage Area (WHA)

Site ID	Site Name	IUCN	Status	Distance (m)	Direction
Not identified	-	-	-	-	-

5.2 NATURAL HAZARDS

Bush Fire Prone Land (BLP)

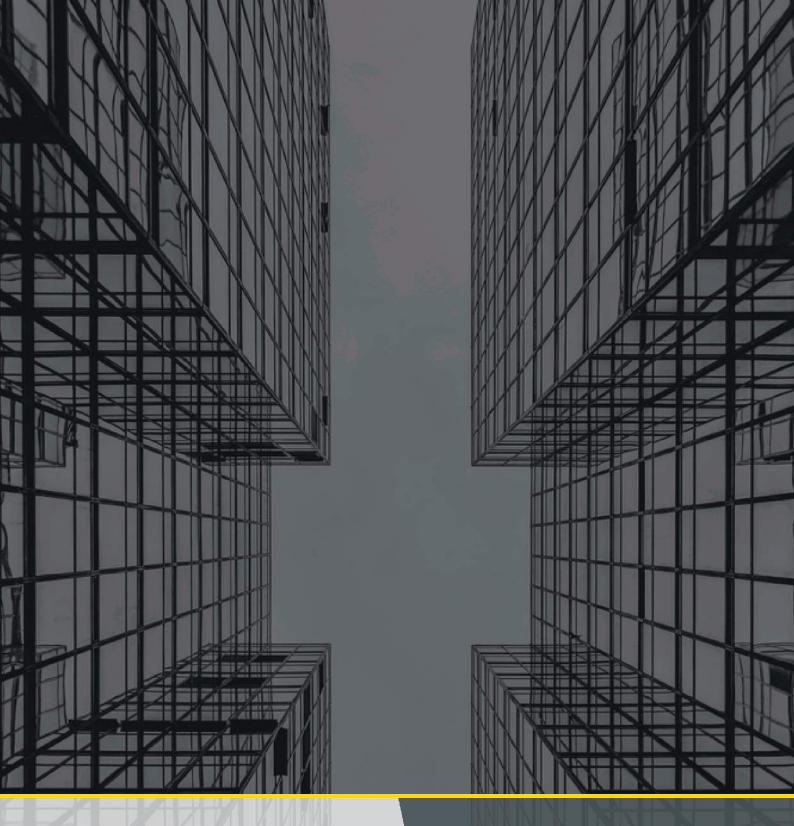
Category	On the Property?	Within Record Search Buffer?
Vegetation Buffer	Not identified	Yes
Vegetation Category 1	Not identified	Yes
Vegetation Category 3	Not identified	Yes

Fire History

Category	On the Property?	Within Record Search Buffer?
Not identified	-	-

Flood Hazard

Category	On the Property?	Within Record Search Buffer?
Maitland Local Environmental Plan 2011	Not identified	Yes


5.3 COASTAL MANAGEMENT (STATE ENVIRONMENTAL PLANNING POLICY)

Map 10 (500m Buffer)

Туре	On the Property?	Within Record Search Buffer?
Coastal Wetlands Proximity Area	Not identified	Not identified
Coastal Wetlands	Not identified	Not identified
Coastal Environment Area Map	Yes	Yes
Coastal Use Area Map	Not identified	Yes

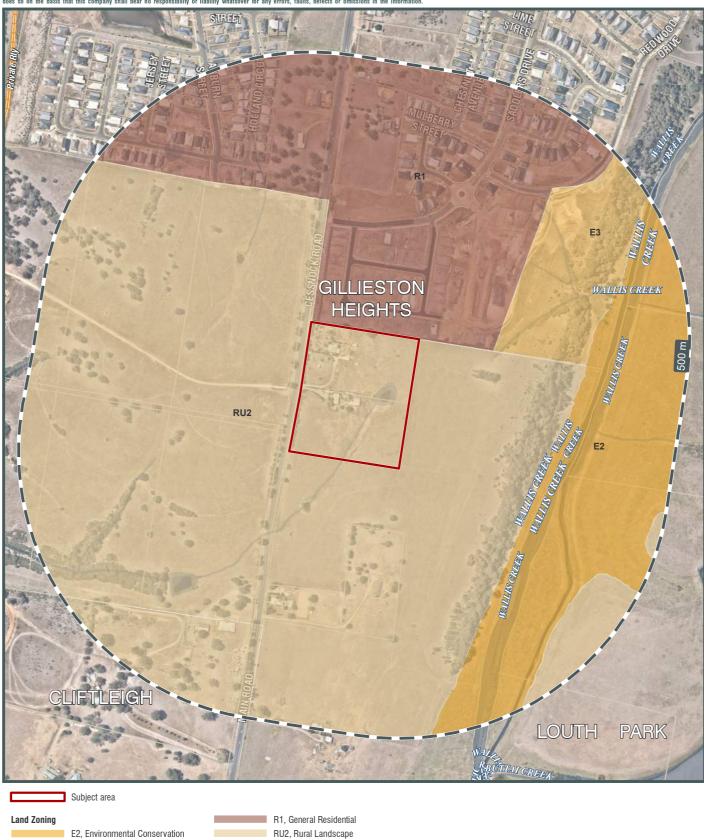
120

- A Suite 602, Level 6, 122 Arthur Street, North Sydney NSW 2060
- **T** 02 9979 1720
- E info@liresources.com.au
- W www.liresources.com.au

122

ATTACHMENT A

Report Maps



	Subject area Cadastral boundary
	Transmission Line Stormwater channel Sewer Main Water Main Pipeline
0	100

SUBJECT AREA AND SENSITIVE RECEPTORS

Ballina

Coffs Harbour Dubbo

SITE •Newcastle SYDNEY • CANBERRA

Broken

Mount MELBOURNE

Hill

Gambie

MAP 2

PLANNING CONTROLS

LAND INSIGHT & Resources

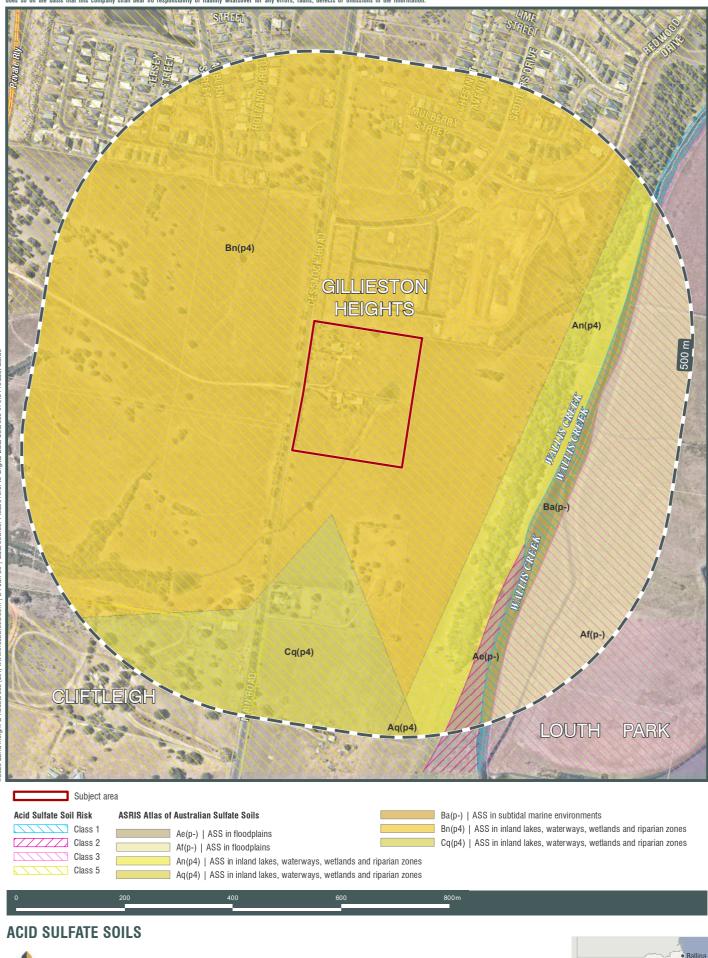
E3, Environmental Management

Ballina

Coffs Harbour Dubbo

SITE • Newcastle • SYDNEY • CANBERRA

Broken


Mount 125 Gambier MELBOURNE

Hill

Gambie

MAP 3a

Broken

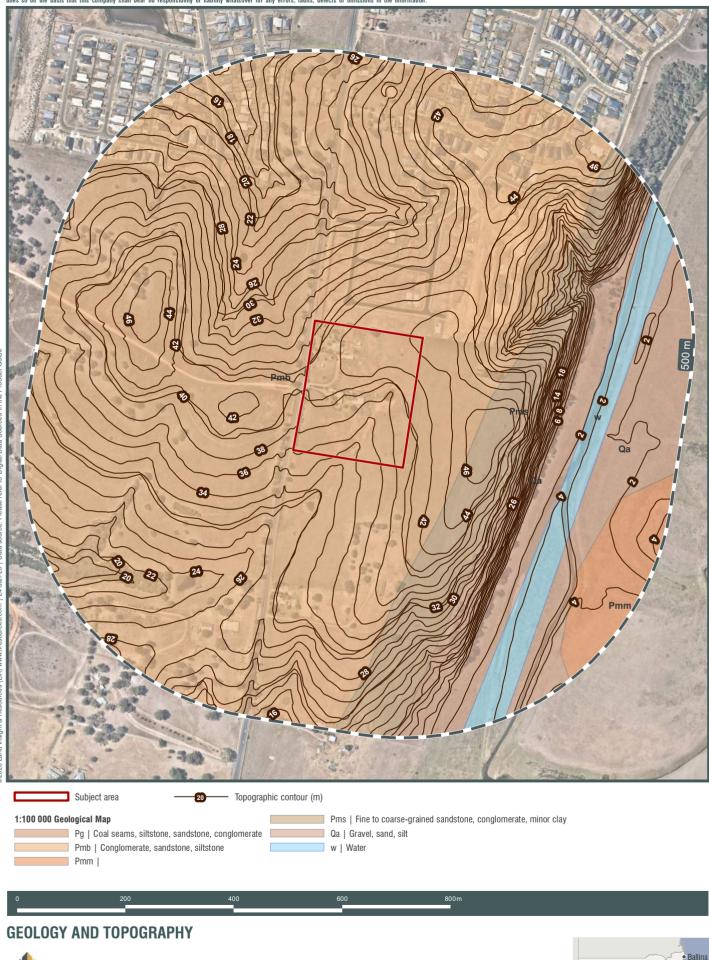
Hill

Gambie

Coffs Harbour

lewcastle

SYDNEY • CANBERRA


Dubbo

ŜITE 🥊

Mount MELBOURNE

MAP 3b

AND INSIGHT

Broken

Hill

Gambie

Coffs Harbour

ewcastle

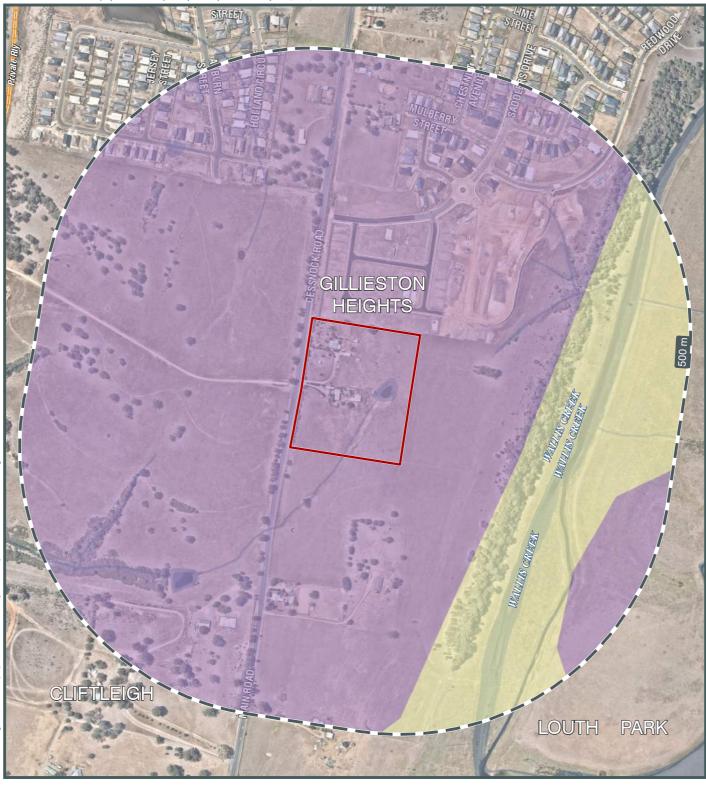
SYDNEY BERRA CAN

Dubbo

SITE

Mount 127 Gambier MELBOURNE

MAP 4


LAND INSIGHT & RESOURCES

SYDNEY • CANBERRA

Mount 128 MELBOURNE

s refer to 'Digital Data Sources' in the Product Guide Data 20 2020 Land Insight &

Ballina

Coffs Harbour Dubbo

SITE • Newcastle • SYDNEY • CANBERRA

Broken

Mount MELBOURNE

Hill

Gambie

LAND INSIGHT & Resources

Subject area

Surficial Sediment Aquifer (porous media - unconsolidated)

HYDROGEOLOGY AND OTHER BOREHOLES

Palaeozoic and Pre-Cambrian Fractured Rock Aquifers (low permeability)

Hydrogeologic Unit

MAP 5b

Contaminated Land Register (EPA)

Current - Sites notified as contaminated Former - Sites notified as contaminated Contaminated Land Record of Notices

Potentially Contaminated Areas

1,500m

CONTAMINATED LAND REGISTER AND POTENTIALLY CONTAMINATED AREAS

MAP 6

Land Insight & Resources do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsover for any errors, faults, defects or omissions in the information.

Ballina

Coffs Harbour Dubbo

SITE Newcastle SYDNEY • CANBERRA

Broken

Mount 131

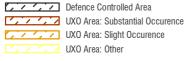
Hill

Gambie

MAP 8

Land Insight & Resources do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsover for any errors, faults, defects or omissions in the information.

Contaminated Legacy Areas


efer to 'Digital Data Sources' in the Product Guide

-20 | Data

ces (LIB)

Contaminated Legacy Areas Derelict Mines and Quarries Historical (Legacy) Landfills

Unexploded Ordnance (UXO) Areas

FORMER POTENTIALLY CONTAMINATED LAND

Broken Hill NEW SOUTH WALES Mewcastle STE SYDNEY CANBERRA Mount Mount MeLBOURNE Sea

MAP 8a

Land Insight & Resources do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsover for any errors, faults, defects or omissions in the information.

SITE 🖣

Mount 133 MELBOURNE

Gambie

SYDNEY • CANBERRA

efer to 'Digital Data Sources' in the Product Guide Data 20 ces (LIB)

MAP 8b

SITE •Newcastle SYDNEY • CANBERRA

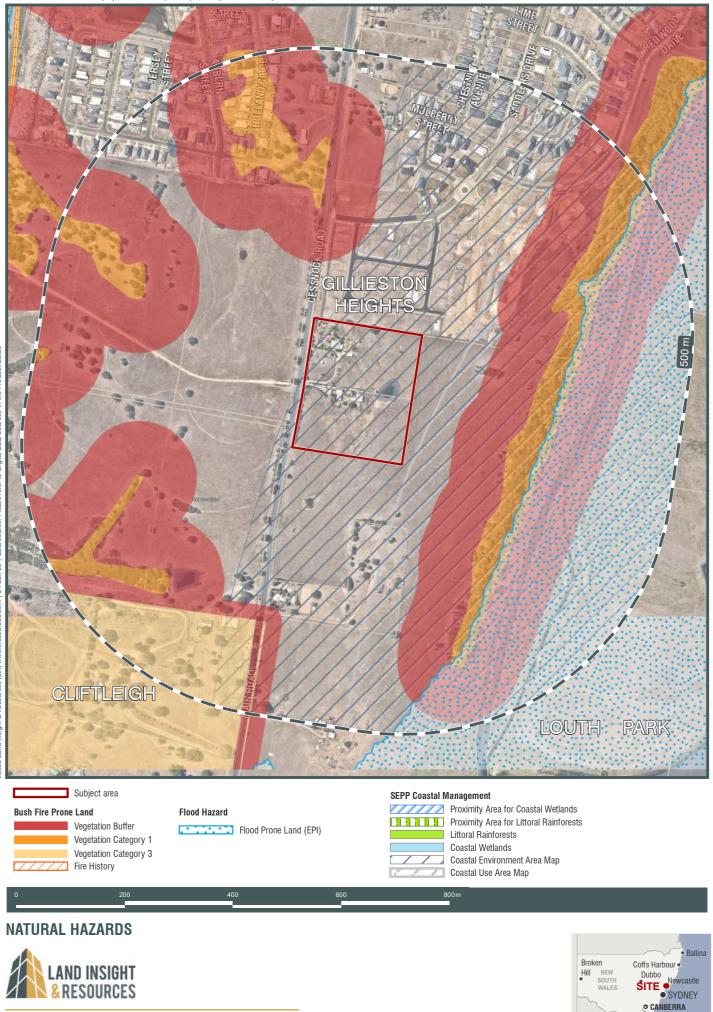
Mount 134 MELBOURNE

Gambie

MAP 8c

Subject area

Federal, State and Local Heritage


Non-Aboriginal heritage item (Local) Non-Aboriginal heritage item (SHR) Commonwealth Heritage List (CHL) World Heritage Area (WHA)

HERITAGE

MAP 9

Mount MELBOURNE

Gambie

MAP 10

137

ATTACHMENT B

Historical Imagery

HISTORIC AERIAL PHOTOGRAPH - 1958

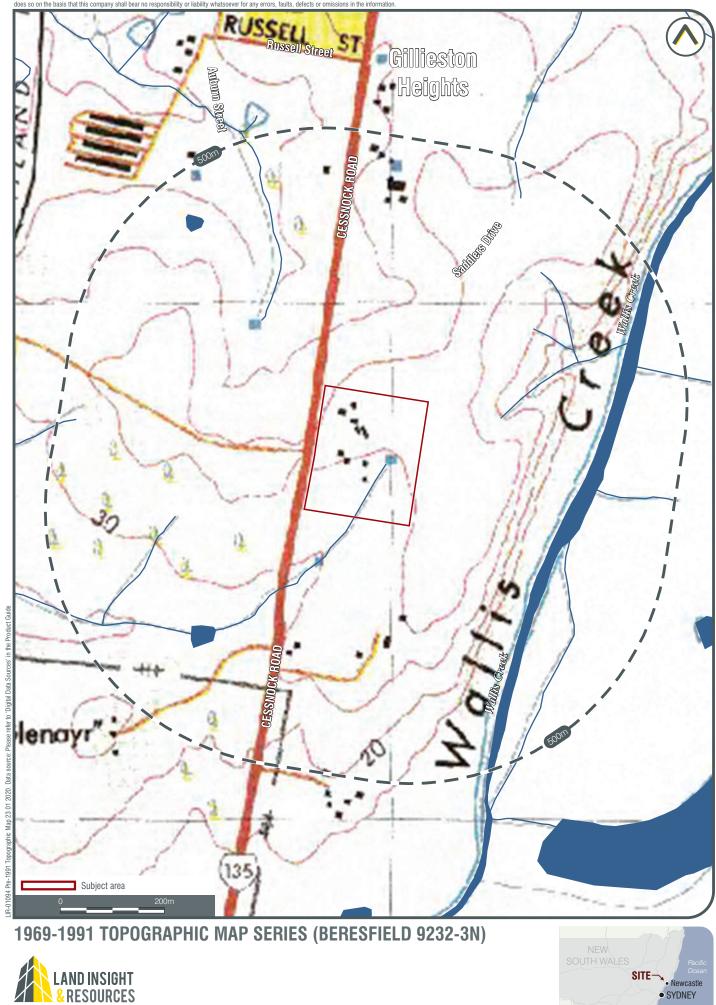


142

HISTORIC AERIAL PHOTOGRAPH - 1993

HISTORIC AERIAL PHOTOGRAPH - 2014

1094 Aerial Photooraph 2014 23 01 2020. Data source: Please refer to 'Dioital Data Sources' in



HISTORIC AERIAL PHOTOGRAPH - 2019

• SYDNEY

• Canberra 149