Validation Report

12 Duckenfield Road, Morpeth NSW

NEW17P-0221-AA 27 March 2018

27 March 2018

Mr John Crawley 107 Wilton Drive, East Maitland, NSW 2323

Attention: Mr John Crawley

Dear John

RE: UNDERGROUND STORAGE TANK REMOVAL 12 DUCKENFIELD ROAD, MORPETH NSW VALIDATION REPORT

Please find enclosed our Validation Report for the Underground Storage Tank (UST) at 12 Duckenfield Road, Morpeth NSW.

Mr John Crawley obtained consent for the removal of the UST from Maitland City Council (Council). The UST was removed by Aspec Industries Pty Ltd, and Qualtest undertook validation sampling and analysis. This report has been prepared to describe the remediation works carried out, and state whether the excavation area of the former UST is suitable for ongoing residential land use.

This Validation Report was prepared in accordance with the relevant sections of the NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Libby Betz

Senior Environmental Scientist

T: (02) 4968 4468 F: (02)4960 9775 W: www.qualtest.com.au

Table of Contents:

Table	of Con	tents:	i
1.0		Introduction	3
	1.1	General	3
	1.2	Objectives	3
	1.3	Scope of Work	3
2.0		Site Description	3
	2.1	Site Identification	3
	2.2	Topography and Drainage	4
	2.3	Geology and Soils	4
	2.4	Hydrogeology	4
3.0		Remediation Objectives	5
	4.1	Remediation Goal	5
	4.2	Investigation Levels	5
4.0		Validation and Remediation Activities	6
	5.1	Excavation of UST and Contaminated Soils	7
	5.2	Validation Methodology	11
	5.2	Importation of fill material	11
5.0		Quality Assurance and Quality Control	12
6.0		Validation Results	13
	7.1	Excavation	13
	7.2	Stockpile	13
7.0		Discussion	14
8.0		Conceptual Site Model	15
	9.1	Potential Sources of Contamination	15
	9.2	Potentially Affected Media, Receptors and Exposure Pathways	15
	9.3	Potential and Complete Exposure Pathways	16
9.0		Remediation and Validation Conclusion	17
10.0		References	17

Attachments:

Appendix A - Figures: Figure 1: Site Location Plan

Figure 2: Excavation Location

i

Figure 3: Sample Locations

VALIDATION REPORT - 12 DUCKENFIELD ROAD, MORPETH NSW.

Appendix B – Tables: Table 1: Validation Results

Table 2: Quality Control Results

Appendix C: Disposal Docket and VENM Certificate

Appendix D: Data Validation Report

Appendix E: Laboratory Reports

1.0 Introduction

1.1 General

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this Validation Report to Mr John Crawley for the removal of the Underground Storage Tank (UST) at 12 Duckenfield Road, Morpeth NSW. Figure 1 and Figure 2, Appendix A, shows the location of the site.

Mr John Crawley obtained consent for the removal of the UST from Maitland City Council (Council). The UST was removed by Aspec Industries Pty Ltd (Aspec), and Qualtest undertook validation sampling and analysis. This report has been prepared to describe the remediation works carried out, and state whether the excavation area of the former UST is suitable for ongoing residential land use.

This report was prepared in general accordance with the relevant sections of the NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites and the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

1.2 Objectives

The objective of the remediation and validation works was to render the site (the UST excavation area) suitable for ongoing residential land use.

1.3 Scope of Work

In order to achieve the above objective, the following scope of work was carried out:

- Guiding Aspec during the excavation of contaminated soil surrounding the UST;
- Validation sampling and analysis of the excavation and stockpile; and,
- Preparation of a validation report in accordance with the relevant sections of the NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

2.0 Site Description

2.1 Site Identification

The property is located at 12 Duckenfield Road, Morpeth NSW. The property includes a driveway access, an existing house and two storage sheds. A former shed was located on the northwest corner of the property, and the UST was located adjacent to the former shed. For the purposes of this report, the 'site' refers to the location of the former UST and the resultant excavation as shown on Figure 2.

General site information is provided below in Table 2.1.

Table 2.1: Summary of Site Details

Property location:	12 Duckenfield Road, Morpeth NSW
Approximate site area:	Site (UST Excavation): 50 square metres (m²)
	Property: 1,869m ²
Title Identification Details:	Lot 6 of DP 6926, within the Maitland local government area
Current Ownership:	Mr John Crawley
Previous Landuse:	Residential
Current Landuse:	Residential
Proposed Landuse:	Residential
Adjoining Site Uses:	North - Duckenfield Road, followed by residential properties;
	East – Rural-Residential property;
	West - Residential properties;
	South - Vacant rural land
Site Coordinates:	32°43'49 S 151°38'16 E

2.2 Topography and Drainage

Reference to the NSW Land and Property Information Spatial Information Exchange website (https://six.nsw.gov.au/wps/portal/) indicated the elevation of the site was approximately 10m AHD.

During field investigations, the site surface was observed to be relatively flat. Surface water would be expected to infiltrate into site soils or drain towards an unnamed wetland located about 80m south of the site. The wetland drains to Four Mile Creek located about 770m southeast of the site.

2.3 Geology and Soils

Reference to the 1:100,000 Newcastle Geology Sheet indicates the site is underlain by the Tomago Coal Measures, Four Mile Creek Formation which are characterised by sandstone, conglomerate, minor siltstone, claystone, coal and tuff. These rocks typically weather to form clayey gravelly sands, gravelly clays and sandy clays.

2.4 Hydrogeology

Groundwater beneath the site is anticipated be present in semi-confined or confined aquifers in weathered rock between approximately 5m and 10m below ground surface (bgs). Groundwater flow direction from beneath the site is anticipated to flow to the south and discharge to Four Mile Creek located about 770m southeast of the site.

A search of the NSW Department of Primary Industries (Office of Water) registered groundwater bores located within a 500m radius of the site was undertaken. The search revealed that there are no registered bores within this radius.

3.0 Remediation Objectives

4.1 Remediation Goal

The remediation goal for the site, with respect to contamination, was to remediate the site to a condition that was suitable for ongoing residential land use.

4.2 Investigation Levels

The health and ecological investigation levels for soil, presented in the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013) are generally used in NSW when selecting investigation levels for chemical contaminants in soil.

ASC NEPM (2013) provides health and ecological investigation and screening levels for different exposure scenarios based on a proposed land use. Health and ecological investigation and screening levels are applicable to the first stage (Tier 1) of site assessment and are used to assist in the iterative development of a Conceptual Site Model (CSM). They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) and Health Screening levels (HSLs) are applicable for assessing human health risk via relevant exposure pathways.

The HILs were developed for a broad range of metals and organic substances. These are generic to all soil types.

The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact with soil and groundwater. The HSLs depend on specific soil physicochemical properties, building configurations, land use scenarios and the depth that groundwater is encountered.

Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) are applicable for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of soil, which corresponds to the root zone and habitation zone of many species.

The EILs are associated with selected metals and organic compounds. The EILs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site, which are added together to get the EIL. In the absence of ambient background concentration data, a generic ACL, based on the soils pH, Cation Exchange Capacity (CEC) and clay content, has been adopted.

The ESLs are associated with petroleum compounds and fractions and are dependent on specific soil physical properties (i.e. coarse and fine-grained soil).

The following criteria have been adopted:

- HIL A low density residential land use;
- HSL A low density residential land use, Clay, 0-1m and 1-2m depth; and,
- EIL A and ESL A urban residential / public open space.

For validation purposes, the adopted remediation criteria (for residential land use) are listed in Table 4.1 below.

Table 4.1: Adopted Remediation Criteria for Human Health and Environment (mg/kg)

сос	HIL ¹	HSL Clay	HSL Clay	EIL ³	ESL ⁴
Naphthalene	-	5	NL	-	170
TRH C6-C10	-	-	-	-	180
TRH >C10-C16	-	-	-	-	120
TRH >C16-C34	-	-	-	-	1300
TRH >C34-C40	-	-	-	-	5600
TRH C6-C10 minus BTEX (F1)	-	50	90	-	-
TRH >C10-C16 minus Naphthalene	-	280	NL	-	-
Benzene	-	0.7	1	-	65
Toluene	-	480	NL	-	105
Ethylbenzene	-	NL	NL	-	125
Xylenes	-	110	310	-	45
Benzo(a)pyren	3	-	-	1	0.7
Total PAHs	300	-	-	-	-
Lead	300	-	-	1,100	-

Notes:

- 1 ASC NEPM (2013) Table 1A(1): Health Investigation Levels Residential
- 2 ASC NEPM (2013) Table 1A(3): Health Screening Levels Residential, Clay 0-1m and 1-2m
- 3 ASC NEPM (2013) Tables 1B(1) to 1B(5): Ecological Investigation Levels Residential & Open Space
- 4 ASC NEPM (2013) Tables 1B(6): Ecological Screening Levels Residential & Open Space

4.0 Validation and Remediation Activities

The following remediation and validation activities were undertaken on the site:

- Removal and disposal of the UST by Aspec;
- Excavation and stockpiling of contaminated soils by Aspec under guidance from Qualtest;
- Collection and analysis of validation samples from the excavation by Qualtest;
- Collection and analysis of validation samples from material stockpiled on site by Qualtest;
 and
- Importation of Virgin Excavated Natural Material (VENM) to backfill the excavation by Mr John Crawley.

5.1 Excavation of UST and Contaminated Soils

The UST removal and excavations works were carried out by Aspec, under the guidance of the site owner.

The UST was exposed and removed from the excavation prior to Qualtest attending the site. Qualtest observed the UST before it was transported from site. The UST was observed to be approximately 2,000L in a fair condition. A photograph of the UST is provided below. The site owner notified Qualtest that the UST was disposed to Mathews Metal Management, East Maitland on 2 December 2017. A copy of the disposal docket is included in Appendix C.

The contaminated soil was excavated under guidance by Qualtest, who used a Photoionisation Detector (PID) and observations to assess whether contamination had been removed to the extent practical.

The excavation (EX1) was approximately 8.5m long and 5.5m wide, and extended to depths of about 1.5m to 1.9m bgs. Samples were taken from the excavation walls at about 10 lineal metres and at varying depths, and from the base of the excavation at about one sample per $12m^2$ (note, not all samples collected were analysed, see Table 6.1 below). The validation samples collected are summarised in Table 5.1 below.

Table 5.1 - Summary of Validation Sampling

Sample ID	Depth (m bgs)	Description	PID (ppm)	Analysed (Y/N)
EX1-1	1.5	Weathered Sandstone, green/brown	184	Υ
EX1-2	1.0	Weathered Sandstone, green/brown	65	N
EX1-3	0.2	Sandy Clay, low to medium plasticity, dark brown	0.1	N
EX1-4	1.2	Sandy Clay, low to medium plasticity, dark brown	41	Y
EX1-5	0.5	Sandy Clay, low to medium plasticity, dark brown	0.0	N
EX1-6	1.9 (base)	Weathered Sandstone, green/brown	93	Υ
EX1-7	1.9 (base)	Weathered Sandstone, green/brown	125	N
EX1-8	1.8 (bench wall)	Weathered Sandstone, green/brown	256	Y
EX1-9	1.0	Clay, low to medium plasticity, dark brown	91	N
EX1-10 (removed)	1.5	Weathered Sandstone, green/brown	185	N
EX1-11	1.1	Clay, low to medium plasticity, brown	0.0	Υ
EX1-12	0.2	Clay, low to medium plasticity, brown	0.0	N

Sample ID	Depth (m bgs)	Description	PID (ppm)	Analysed (Y/N)
EX1-13	1.9 (base)	Weathered Sandstone, green/brown	200	Υ
EX1-14	1.2	Clay, low to medium plasticity, brown	34	N
EX1-15	1.2	Clay, low to medium plasticity, brown	35	N
EX1-16	0.5	Sandy Clay, low to medium plasticity, brown	0.0	N
EX1-17	0.5	Sandy Clay, low to medium plasticity, brown	0.0	Υ
EX1-18	1.2	Clay, low to medium plasticity, brown	0.0	N
EX1-19	0.6	Sandy Clay, low to medium plasticity, brown	48	Υ

Figure 2, Appendix A, shows the location of the excavation, and Figure 3 shows the sample locations.

Material from EX1 was stockpiled adjacent to EX1 for reuse on the property. The stockpile (SP1) was approximately 90m³ and comprised low to medium plasticity, clay and sandy clay. Sampling of the stockpile was undertaken on two separate occasions.

- Samples SP1-1 to SP1-4 were collected on 23/11/2017 (day of excavation), duplicate soil sample QC4 was collected with primary sample SP1-1.
- Validation samples SP1-5 to SP1-12were collected on 8/03/2018 and 20/03/2018 (following turning of the stockpile, carried out by Mr Crawley), duplicate soil sample QC101 was collected with primary sample SP1-6.

Table 5.2 – Summary of Stockpile Sampling (SP1)

Date	Sample ID	Depth (m)	Description	PID (ppm)	Analysed (Y/N)
	SP1-1	0.5	Clay, low to medium plasticity, dark brown	621.6	Υ
22/11/2017	SP1-2	0.5	Sandy Clay, low to medium plasticity, dark brown	63	Υ
23/11/2017	SP1-3	0.5	Sandy Clay, low to medium plasticity, dark brown	101	Υ
	SP1-4	0.5	Clay, low to medium plasticity, dark brown	217	Y

Date	Sample ID	Depth (m)	Description	PID (ppm)	Analysed (Y/N)
	SP1-5	0.5	Clay, low to medium plasticity, dark brown	0.8	Υ
08/03/2018	SP1-6	0.5	Sandy Clay, low to medium plasticity, brown	0.7	Y
06/03/2016	SP1-7	0.5	Clay, low to medium plasticity, brown	0.9	Y
	SP1-8	0.5	Sandy Clay, low to medium plasticity, brown	1	Y
	SP1-9	0.5	Sandy Clay, low to medium plasticity, brown	0.9	Y
20/03/2018	SP1-10	0.5	Sandy Clay, low to medium plasticity, brown	1.1	Y
	SP1-11	0.5	Sandy Clay, low to medium plasticity, brown	0.6	Y
	SP1-12	0.5	Sandy Clay, low to medium plasticity, brown	0.9	Y

Selected photographs taken during the excavation and validation sampling are presented below.

Photograph 2 – Excavation area (23/11/2017)

Photograph 3 – Material from excavation in Stockpile 1 (8/3/2018)

5.2 Validation Methodology

Validation soil sampling was carried out in accordance with the following guidelines:

- Australian Standard AS 4482.1 (1997) Guide to the Sampling and Investigation of Potentially Contaminated Sites;
- NEPC (2013) National Environmental Protection (Assessment of Site Contamination)
 Measure; and,
- NSW EPA (1994) Guidelines for Assessing Service Station Sites.

In order to assess the effectiveness of the remediation works and assess the suitability of the site (UST excavation) for residential land use, the following validation works were carried out:

- The excavation of the exposed soils across the majority of the site was screened with a PID, and visually assessed to confirm that the there was no obvious evidence of contamination (i.e. stained or odorous soils);
- Validation soil sampling was then undertaken to confirm that impacted material had been excavated to required extents. Validation soil samples were analysed at the following ratios:
 - One sample per 10 linear metres on the walls, or one sample per wall. Where several samples were collected down the soil profile, the sample with the highest PID was generally selected for analysis;
 - One sample per 25m² on the base;
- Validation soil sampling of material stockpiled in Stockpile 1 (SP1). Validation soil samples were analysed at the following ratios:
 - One sample per 25m³ of material.
- Validation soil samples were tested for:
 - o TRH
 - BTEX
 - o PAH
 - Lead.

The validation soil samples were collected using an excavator from the excavation floor and walls, and stockpile SP1. The samples were taken from the centre of the excavation bucket and placed into laboratory supplied glass jars. The samples were stored in an ice-filled chest for transport to the laboratory for analysis. Dedicated disposable nitrile gloves were used to collect each sample.

Figure 3, Appendix A, shows the location of the validation samples.

5.2 Importation of fill material

Following validation sampling, approximately 70-100 tonnes of quarried fine-grained gravel was imported to site to backfill EX1.

The quarried VENM material was sourced from Karuah East Quarry, Blue Rock Close, Karuah, NSW. A copy of the VENM certificate is included in Appendix C.

5.0 Quality Assurance and Quality Control

The assessment of field and laboratory quality assurance / quality control (QA / QC) procedures is included in data validation report, which is attached in Appendix D.

In order to assess field QA / QC procedures the following QC samples were collected and analysed:

Duplicate/Triplicate	Primary Sample	Laboratory	Analysis	Date
QC1 Duplicate	EX1-6	Eurofins MGT	Lead, TRH, BTEX, PAH	23/11/2017
QC2 Triplicate	EX1-6	ALS	Lead, TRH, BTEX, PAH	23/11/2017
QC3 Duplicate	EX1-17	Eurofins MGT	Not Tested	23/11/2017
QC4 Duplicate	SP1-1	Eurofins MGT	Lead, TRH, BTEX, PAH	23/11/2017
QC101 Duplicate	SP1-6	Eurofins MGT	TRH, BTEX	8/03/2018

Table 7.1: Soil QC Samples

The number of duplicate/triplicate samples collected was in accordance with the NEPM (2013) requirement of 1 duplicate per 20 primary samples.

Primary and intra lab duplicate samples were analysed by the NATA-accredited Eurofins-MGT laboratory in Oakleigh, VIC. Inter lab duplicates were analysed by NATA-accredited ALS Global laboratory in Springvale, VIC.

Table 2, Appendix B, presents the relative percentage differences (RPDs) between the primary, duplicate and triplicate samples. A review of the Qualtest QA / QC results indicates that RPDs were within the acceptable range (30%), with the exception of ethylbenzene for duplicate pair SP1-1/QC4 (88%). The RPD exceedance is likely due to the distribution of contaminants in the stockpiled material. The concentration of ethylbenzene was within the adopted criteria in SP1-1 and QC4. Therefore, this RPD is not considered to affect the usability of the results.

It is noted that low analytes concentrations exaggerate the percentage differences with respect to small total concentration differences, therefore where results for the primary and duplicate samples were less than 10 times the LOR, the RPD results were disgregarded.

The laboratory internal QA/QC reports indicated that the appropriate laboratory QA / QC procedures and rates were undertaken for contamination studies, and that:

- Laboratory blank samples were free of contamination;
- Matrix spike recoveries were within the laboratory control limits, with the exception of a spike recoveries for TRHC16-C34 (370%) and TRHC340-C40 (65%) in batch 574801. The lab quoted code Q08, which states: "The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference";
- Laboratory duplicate RPDs were recorded within the laboratory control limits; and

• Surrogates and laboratory control samples were within the laboratories acceptable ranges.

Based on the assessment presented in Appendix D it is considered that the field and laboratory methods for soil are appropriate and that the data obtained is usable and considered to reasonably represent the concentrations at the sampling points at the time of sampling.

6.0 Validation Results

7.1 Excavation

Table 1, Appendix B, presents the results of the soil analysis from the excavation (EX1). The laboratory reports are presented in Appendix E.

The results of the laboratory testing were compared to the criteria outlined in Section 4.0. The final validation results showed concentrations below the adopted criteria, with the exception of the following:

- Concentrations of TRHC10-C16 above the adopted ESL criteria (120mg/kg) in three samples; EX1-1_1.5m (3800mg/kg), EX1-8_1.8m (660mg/kg) and EX1-19_0.6m (200mg/kg); and
- Concentrations of TRHC16-C34 above the adopted ESL criteria (1300mg/kg) in one sample; EX1-1_1.5m (1500mg/kg).

7.2 Stockpile

Table 1, Appendix B, presents the results of the soil analysis from the SP1. The laboratory reports are presented in Appendix E.

The results of the laboratory testing were compared to the criteria outlined in Section 4.0. The final stockpile validation results showed concentrations below the adopted criteria with the exception of TRH > C10-C16 (130mg/kg) in sample SP1-8, which exceed the ESL (120mg/kg).

95% Upper Confidence Limit Calculations

For concentrations of TRH > C10-C16 exceeding the adopted ESL the 95% Upper Confidence Limits (UCLs) of the average concentrations for the sample results were calculated using ProUCL in accordance with the procedures discussed in NEPM (2013) Schedule B2 Section 13 and NSW EPA (1995) Sampling Design Guidelines.

NEPM (2013) Schedule B1, Section 3.2.1 states that:

- "At the very least, the maximum and 95%UCL of the arithmetic mean contaminant concentration should be compared to the relevant Tier 1 screening criteria"
- "The implications of localised elevated values (hotspots) should also be considered. The results should also meet the following criteria:
 - o The standard deviation of the results should be less than 50% of the relevant investigation or screening level, and
 - No single value should exceed 250% of the relevant investigation or screening level."

Calculation sheets for data statistics, including average, standard deviation and 95%UCL of the average, are attached in Appendix F. ProUCL calculates the UCL comparing a number of different methods, including normal distribution, lognormal distribution, gamma distribution and nonparametric. ProUCL then recommends an appropriate method for the data set.

The UCL was calculated for TRH > C10-C16 in stockpiled soils. The calculations showed:

Parameter	Result
No. of samples	8
Average	78.13
Standard deviation	27
95% UCL	96.21
ESL (mg/kg)	120

The 95% UCL calculation shows the average and 95% UCL concentration is below the adopted criteria.

7.0 Discussion

The results of the validation sampling showed that concentrations of contaminants of concern were below the adopted criteria, with the exception of TRHC10-C16 and/or TRHC16-C34 above ESLs in sample locations EX1-1_1.5m, EX1-8_1.8m and EX1-19_0.6m.

EX1-1 was located along the northern boundary of the site (and property). Soil in this area was excavated as close to the boundary as practicable (within approximately 0.3m of the fence) and potential ecological issues would therefore be limited to a small (<0.3m) strip of soil adjacent to the boundary.

The ESLs are applicable to the top 2m of the soil profile and it is noted that the TRH is located from 1.5 to 1.8m depth at two locations (EX1-1 and EX1-8) within weathered rock. Given the depth to rock it is unlikely that the TRH at these two locations would have an ecological impact. The TRH impact in sample EX1-19 only slightly exceeds the ESL and is considered a low risk of ecological impact.

Risks to future plants and vegetation on the site is considered to be low and if deeper-rooted vegetation such as trees are planted on the site in the future, Qualtest considers that soil amendment, such as addition of compost, is likely and this would further reduce potential localised effects.

There is potential for localised concentrations of residual TRH above the ESLs to extend offsite beneath Duckenfield Street road verge beyond the northern property boundary. However, evidence of ecological issues such as vegetation stress associated with contamination has not been observed in the grass verge offsite.

The final stockpile validation results showed concentrations below the adopted criteria, taking into account the 95% UCL calculation for TRH >C10-C16.

8.0 Conceptual Site Model

Based on the works carried out on the site, and results of the validation assessment a conceptual site model (CSM) has been developed.

9.1 Potential Sources of Contamination

Table 9.1 (below) shows the areas of environmental concern (AECs) and associated Chemicals of Concern (COCs) identified for the site.

Table 9.1 - Potential AECs and COCs

AEC	Potentially Contaminating Activity	Potential COCs	Likelihood of Contamination	Sampling Undertaken
1. UST in north eastern portion of property area (the site)	Storage of fuels (leaks and spills)	Lead, TRH, BTEX, PAH	High	EX1-1 to EX1-19 and SP1-1 to SP1-12

9.2 Potentially Affected Media, Receptors and Exposure Pathways

Table 9.2 summarises the potentially affected media, potential receptors to contamination, and potential and complete exposure pathways.

Table 9.2 - Summary of Potentially Affected Media, Receptors and Exposure Pathways

Consideration	Information
Potentially affected media	Soil Surface water Groundwater
Potential transport mechanisms & exposure pathways	Leaching of soil contaminants to surface water and groundwater Direct dermal contact with contaminated soil and/or surface water Ingestion of contaminated soil (as dust) and/or surface water Surface water and groundwater discharge to Four Mile Creek located about 770m southeast of the site.
Potential receptors of contamination	Site occupants & construction/maintenance workers Potential exposure via dermal contact with soil and surface water, and ingestion of soil and surface water. Contact with groundwater is considered unlikely, taking into account the anticipated depth to groundwater (approximately between 5m to 10m bgs), and that groundwater is not currently extracted on site for beneficial use. Surface water Contaminants could leach from soils into surface water in the offsite unnamed wetland.

Consideration	Information
	Groundwater Contaminants could leach from soils into groundwater. This is considered a lower risk due to the anticipated depth of groundwater (between approximately 5m and 10m bgs) and the clayey soil profile observed.
	Four Mile Creek It is considered that groundwater could discharge to the Four Mile Creek, located about 770m south east of the site. Given the low risk of groundwater to be contaminated as a result of site conditions, the risk of site contamination reaching Four Mile Creek is low.

9.3 Potential and Complete Exposure Pathways

Table 9.3 (below) summarises the potential and complete exposure pathways.

Table 9.3 – Potential and Complete Exposure Pathways

Receptor/Media	Exposure Pathway	Comment
Site occupants and construction/maintenance workers	Incomplete	Low contaminant concentrations were reported in soil from EX1 and SP1, meaning it is unlikely site users and workers will be exposed to contaminated soil.
Soil	Incomplete	Low contaminant concentrations were reported in soil from EX1 and SP1.
Groundwater users	Incomplete	Groundwater is anticipated to be at depths between approximately 5m and 10m bgs, and is not considered to be contaminated, meaning a complete exposure pathway probably does not exist.
Surface water ecosystems and users	Incomplete	Based on the results of the validation soil sampling, low contaminant concentrations were reported in EX1 and/or SP1. Therefore, a complete exposure pathway probably does not exist.

9.0 Remediation and Validation Conclusion

Remediation and validation works were carried out to render the site (the UST excavation area) suitable for ongoing residential land use.

Validation soil samples collected from EX1 and SP1 reported concentrations of contaminants of concern below the adopted criteria, with the exception of some TRH analytes above ESLs in three sample locations. The likelihood of ecological issues on the site was considered by Qualtest to be low based on the depth of contamination (in weathered rock) and limited lateral extent of residual contamination. Risks to future plants and vegetation on the site is considered to be low and if deeper-rooted vegetation such as trees are planted on the site in the future, Qualtest considers that soil amendment, such as addition of compost, is likely and this would further reduce potential localised effects.

The final stockpile validation results showed concentrations below the adopted criteria and suitable for reuse on the site.

Based on the above Qualtest considers the site suitable for ongoing residential land use.

This report was prepared in accordance with the relevant sections of the NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites and the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

10.0 References

NEPC (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013, National Environment Protection Council.

NSW OEH (2011). Guidelines for Consultants Reporting on Contaminated Sites.

NSW EPA (1995). Sampling Design Guidelines.

NSW EPA (2014) Investigation of Service Station Sites

APPENDIX A:

Figures

Figure based on image taken from web portal Nearmap (http://maps.au.nearmap.com/) accessed 9 March 2018.

Client:	JOHN CRAWLEY	Drawing No:	FIGURE 1
Project:	Validation assessment	Project No:	NEW17P-0221
Location:	12 DUCKENFIELD ROAD, MORPETH	Scale:	N.T.S.
Title:	SITE LOCATION	Date:	09/03/2018

Client:	JOHN CRAWLEY	Drawing No:	FIGURE 2
Project:	Validation assessment	Project No:	NEW17P-0221
Location:	12 DUCKENFIELD ROAD, MORPETH	Scale:	N.T.S.
Title:	EXCAVATION/ STOCKPILE LOCATION	Date:	09/03/2018

Client:	JOHN CRAWLEY	Drawing No:	FIGURE 3
Project:	Validation assessment	Project No:	NEW17P-0221
Location:	12 DUCKENFIELD ROAD, MORPETH	Scale:	N.T.S.
Title:	SAMPLE LOCATIONS	Date:	09/03/2018

APPENDIX B:

Tables

								Excavation Validation								
						Si	ample ID	EX1-1	EX1-4	EX1-6	EX1-8	EX1-11	EX1-13	EX1-15	EX1-17	EX1-19
							Depth	1.5	1.2	1.9	1.8	1.1	1.9	1.2	0.5	0.6
						V	/all/Base	Wall	Wall	Base	Wall	Wall	Base	Wall	Wall	Wall
						Р	ID (ppm)	184	41	93	256	0.0	200	35	0.0	48
							Soil Type	Sandstone	Sandy Clay	Sandy Clay	Sandstone	Clay	Sandstone	Clay	Sandy Clay	Sandy Clay
							Date	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017	23/11/2017
	Analyte	Units	EQL	HIL	HSL-A	Clay	EIL/ESL									
	Allalyte	Offics	LQL	1111	0-<1m	1-<2m	LIL/LJL									
	Benzene	mg/kg			0.7	1	65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BTEX	Toluene	mg/kg	0.1		480	NL	105	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.5
DILX	Ethylbenzene	mg/kg	_		NL	NL	125	1.3	< 0.1	< 0.1	0.1	< 0.1	0.1	0.1	0.1	0.6
	Xylenes - Total	mg/kg	0.3		110	310	45	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.4	< 0.3	0.4	2.6
Metals	Lead	mg/kg		300			1100	20	10	13	8.3	< 5	7.5	12	26	14
	Acenaphthene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	_					1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5	3			0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ	mg/kg						0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	Benzo(b&j)fluoranthene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAH	Benzo(k)fluoranthene	mg/kg	_					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1 711	Chrysene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	_					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluorene	mg/kg	0.5					3.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5					4.9	< 0.5	< 0.5	1.1	< 0.5	< 0.5	< 0.5	< 0.5	1.1
	Phenanthrene	mg/kg						4.1	< 0.5	< 0.5	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Total PAH*	mg/kg						13.6	< 0.5	< 0.5	2.9	< 0.5	< 0.5	< 0.5	< 0.5	1.1
	Naphthalene	mg/kg	0.5		5	NL	170	6.8	< 0.5	< 0.5	1.7	< 0.5	< 0.5	< 0.5	< 0.5	0.9
	TRH C6-C10	mg/kg	20				180	70	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C6-C10 less BTEX (F1)	mg/kg	20		50	90		69	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH	TRH >C10-C16	mg/kg	50				120	3800	93	120	660	< 50	120	< 50	< 50	200
INI	TRH >C10-C16 less	mg/kg	50		280	NL		3800	93	120		< 50	120	< 50	< 50	200
	Naphthalene (F2)	mg/kg	30		200	INL		3000	33	120		\ 3U	120	\ 3U	\ 3U	200
	TRH >C16-C34	mg/kg	100				1300	1500	< 100	< 100	300	< 100	< 100	< 100	< 100	260
	TRH >C34-C40	mg/kg	100				5600	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Notes:																

Notes:

Result Concentration exceeds Health Investigation Level (HIL)

Concentration exceeds Health Screening Level (HSL) 0-1m

Concentration exceeds Health Screening Level (HSL) 1-2m

Result Concentration exceeds Ecological Investigation/Screening Level (EIL/ESL)
Criteria from ASC NEPM (2013) Schedule B1, Guideline on Investigation Levels for Soil

and Groundwater:

HIL A Residential land use, Table 1A(1)

HSL A Residential land use, Clay soils, 0-1m and 1-<2m, Table 1A(3)

EIL/ESL Residential land use, Tables 1B(5) and 1B(6)

													Sto	ckpile					
						S	ample ID	SP1-1	SP1-2	SP1-3	SP1-4	SP1-5	SP1-6	SP1-7	SP1-8	SP1-9	SP1-10	SP1-11	SP1-12
							Depth	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
						V	/all/Base	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP
						Р	ID (ppm)	622	63	101	217	0.8	0.7	0.9	1	0.9	1.1	0.6	0.9
						,	Soil Type	Clay	Sandy Clay	Sandy Clay	Clay	Clay	Sandy Clay	Clay	Sandy Clay	Sandy Clay	Sandy Clay	Sandy Clay	Sandy Clay
							Date	23/11/2017	23/11/2017	23/11/2017	23/11/2017	8/03/2018	8/03/2018	8/03/2018	8/03/2018	20/03/2018	20/03/2018	20/03/2018	20/03/2018
	Analyte	Units	EQL	HIL	HSL- <i>A</i> 0-<1m		EIL/ESL	. Interim Results - Prior to Biopiling				Final Results - Following Biopiling							
	Benzene	mg/kg			0.7	1	65	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
ВТЕХ	Toluene	mg/kg	0.1		480	NL	105	< 0.1	< 0.1	< 0.1	< 0.1	0.4	0.5	0.5	0.7	0.2	0.1	0.2	0.2
DILA	Ethylbenzene	mg/kg			NL	NL	125	2.3	0.3	1.1	1.4	0.3	0.3	0.4	0.4	0.2	0.2	0.2	0.2
	Xylenes - Total	mg/kg	0.3		110	310	45	2.4	0.6	1.9	2	1.2	1.3	1.5	1.7	0.9	0.5	0.7	1
Metals	Lead	mg/kg	5	300			1100	23	25	9.8	19	-	-	-	-	-	-	-	-
	Acenaphthene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Acenaphthylene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Anthracene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	•	-	-	-	-	-	-	-
	Benz(a)anthracene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Benzo(a)pyrene	mg/kg	0.5	3			0.7	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Benzo(a)pyrene TEQ	mg/kg						0.6	0.6	0.6	0.6	-	-	-	-	-	-	-	-
	Benzo(b&j)fluoranthene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Benzo(g.h.i)perylene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
PAH	Benzo(k)fluoranthene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
IAII	Chrysene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Dibenz(a.h)anthracene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Fluoranthene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Fluorene	mg/kg						0.8	< 0.5	< 0.5	0.8	-	-	-	-	-	-	-	-
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5					< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Naphthalene	mg/kg	0.5					4	0.6	0.7	1.6	-	-	-	-	-	-	-	-
	Phenanthrene	mg/kg						1.3	< 0.5	< 0.5	0.7	-	-	-	-	-	-	-	-
	Pyrene	mg/kg						< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-
	Total PAH*	mg/kg	0.5	300				6.1	0.6	0.7	3.1	-	-	-	-	-	-	-	-
	Naphthalene	mg/kg	0.5		5	NL	170	6.2	1.2	1.1	2.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	TRH C6-C10	mg/kg					180	150	< 20	28	41	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
	TRH C6-C10 less BTEX (F1)	mg/kg	_		50	90		150	< 20	25	38	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH	TRH >C10-C16	mg/kg	50				120	910	350	390	880	69	87	100	130	74	< 50	< 50	65
IKM	TRH >C10-C16 less Naphthalene (F2)	mg/kg			280	NL		900	350	390	880	69	87	100	130	74	< 50	< 50	65
	TRH >C16-C34	mg/kg	100				1300	370	190	130	310	300	540	370	410	290	280	230	280
	TRH >C34-C40	mg/kg					5600	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Notes:		1 0. 0						ı e										1	

Notes:

Result Concentration exceeds Health Investigation Level (HIL)

Concentration exceeds Health Screening Level (HSL) 0-1m

Concentration exceeds Health Screening Level (HSL) 1-2m

Result Concentration exceeds Ecological Investigation/Screening Level (EIL/ESL)
Criteria from ASC NEPM (2013) Schedule B1, Guideline on Investigation Levels for Soil

and Groundwater:

HIL A Residential land use, Table 1A(1)

HSL A Residential land use, Clay soils, 0-1m and 1-<2m, Table 1A(3)

EIL/ESL Residential land use, Tables 1B(5) and 1B(6)

				Ç.	ample ID	EX1-6	QC1		EX1-6	QC2		SP1-1	QC4		SP1-6	QC101		QC5	QC102
				30	Type	Primary	Duplicate	RPD%	Primary	Triplicate	RPD%	Primary	Duplicate	RPD%	Primary	Duplicate	RPD%	Trip Blank	Trip Blank
					Date	23/11/2017	· ·	NFD/0	23/11/2017		NFD/0		23/11/2017	KFD/6	8/03/2018	8/03/2018	KFD/0	<u> </u>	8/03/2018
					Date	23/11/2017	23/11/2017		23/11/2017	23/11/2017		23/11/2017	23/11/2017		8/03/2018	8/03/2018		23/11/2017	8/03/2018
		Ur	nits	E	QL														
	Analyte	Soil	Water	Soil	Water														
	Naphthalene	mg/kg	-	0.5	-	<0.5	<0.5	NA	<0.5	<1	NA	6.2	2.5	85	< 0.5	< 0.5	NA	-	-
	TRH C6-C10	mg/kg	-	20	-	<20	<20	NA	<20	<10	NA	150	48	103	< 20	< 20	NA	-	-
	TRH C6-C10 less BTEX (F1)	mg/kg	-	20	-	<20	<20	NA	<20	<10	NA	150	46	106	< 20	< 20	NA	-	-
TRH	TRH >C10-C16	mg/kg	-	50	-	120	280	80	120	200	50	910	1100	19	87	93	7	-	-
	TRH >C10-C16 less Naphthalene (F2)	mg/kg	-	50	-	120	280	80	120	200	50	900	1100	20	87	93	7	-	-
	TRH >C16-C34	mg/kg	-	100	-	< 100	160	NA	< 100	200	NA	370	550	39	540	660	20	-	-
	TRH >C34-C40	mg/kg	-	100	-	< 100	< 100	NA	< 100	< 100	NA	< 100	< 100	NA	< 100	100	NA	-	-
	Benzene	mg/kg	mg/L	0.1	0.001	< 0.1	< 0.1	NA	< 0.1	<0.2	NA	< 0.1	< 0.1	NA	< 0.1	< 0.1	NA	< 0.001	< 0.001
DTCV	Toluene	mg/kg	mg/L	0.1	0.001	< 0.1	< 0.1	NA	< 0.1	<0.5	NA	< 0.1	< 0.1	NA	0.5	0.4	NA	< 0.001	< 0.001
BTEX	Ethylbenzene	mg/kg	mg/L	0.1	0.001	< 0.1	< 0.1	NA	< 0.1	<0.5	NA	2.3	0.9	88	0.3	0.2	40	< 0.001	< 0.001
	Xylenes - Total	mg/kg	mg/L	0.3	0.003	< 0.3	< 0.3	NA	< 0.3	<0.5	NA	2.4	1.3	59	1.3	1	26	< 0.003	< 0.003
	Acenaphthene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Acenaphthylene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Anthracene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Benz(a)anthracene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Benzo(a)pyrene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Benzo(a)pyrene TEQ	mg/kg	-	0.5	-	0.6	0.6	0	0.6	0.6	0	0.6	0.6	0	-	-	NA	-	-
	Benzo(b&j)fluoranthene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Benzo(g.h.i)perylene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
DALL	Benzo(k)fluoranthene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
PAH	Chrysene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Dibenz(a.h)anthracene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Fluoranthene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	0.8	NA	-	-	NA	-	-
	Fluorene	mg/kg	-	0.5	-	< 0.5	0.5	NA	< 0.5	< 0.5	NA	0.8	0.6	29	-	-	NA	-	-
	Indeno(1.2.3-cd)pyrene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	-	-	NA	-	-
	Naphthalene	mg/kg	-	0.5	-	< 0.5	0.9	NA	< 0.5	< 0.5	NA	4	4.7	16	-	-	NA	-	-
	Phenanthrene	mg/kg	-	0.5	-	< 0.5	0.8	NA	< 0.5	0.6	NA	1.3	1.4	7	-	-	NA	-	-
	Pyrene	mg/kg	-	0.5	-	< 0.5	< 0.5	NA	< 0.5	< 0.5	NA	< 0.5	0.9	NA	-	-	NA	-	-
	Total PAH*	mg/kg	-	0.5	-	< 0.5	2.2	NA	< 0.5	0.6	NA	6.1	8.4	32	-	-	NA	-	-
Metals	Lead	mg/kg	-	5	-	13	8.7	40	13	10	26	23	42	58	-	-	NA	-	-

Notes

RPD % Exceeds RPD control limits

NA RPD not calculated as primary and duplicate samples show concentration below LOR, making it impractical to calculate an RPD RPD control limits: Results less than 10xLOR - 200%, Results greater than 10xLOR - 30%

APPENDIX C:

Disposal Docket and VENM Certificate

CLASSIFICATION TICKET

CT No: 69045

	ndustries	sykg	, kg	By	DEDUCTIONkg	NETT WEIGHTkg	AL 415 18	A/L kg	Brass	Copperkg	Brasskg
DATE 7 / 2	VEHICLE REGO $ASDRC$ (IC)	VEHICLE GROSS WEIGHT	TARE WEIGHT	GROSS NETT WEIGHT	REASON DEDUCTION	NETT WEIGH	Insize S/B/A.c.K. kg	Oversizekg	Oxykg	Black Ironkg	Carskg

Tick when entered MYOB ABN: 90 113 352 720

RECEIPT FOR ALUMINIUM CANS PURCHASES UNDER: \$20.00

.....kg@.....p/kg Total \$:

A Cans NAME:

.... Signature:

MMM NAME: (JUSOM

Certification: Virgin excavated natural material

I Debbie CHARMAN
 of Karuah East Quarry
 Blue Rock Close
 KARUAH NSW 2324

certify that the waste as set out in section 2 of this notice is Virgin Excavated Natural Material (VENM) as defined in Schedule 1 of the *Protection of the Environment Operations Act 1997.*

2. The waste was generated at:

Street address: Blue Rock Close, Karuah, NSW 2324

Title reference
DP 1024564 Lots 12 &13

The amount of waste is: 70 – 100t

- 3. I have made the determination that the waste is VENM because:
 - I have assessed the historical and current land use of the site at which the waste was generated.
 - The waste is not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining or agricultural activities.
 - The waste does not contain any sulfidic ores or soils.
 - The waste does not contain any other waste.
 - The waste does not contain asbestos in any form.

Note: that all sections of this form must be completed including all boxes checked in Section 3 above and signed below for any material to be certified as VENM.

Signature(s)

Name(s) (printed)

Debbie Charman

Date

01/12/17

Warning: There are significant penalties under s.144AA of the *Protection of the Environment Operations Act 1997* for a person who supplies (whether knowingly or not) information that is false or misleading in a material respect about waste.

This certificate is intended to assist waste generators, contractors and/or receivers of VENM to have confidence that a range of relevant factors have been considered in the classification of a waste material as VENM.

APPENDIX D: Data Validation Report

QA/QC DATA VALIDATION REPORT

VALIDATION ASSESSMENT, 12 Duckenfield Road, Morpeth

Eurofins report: 574801-S, 574801-W, 588774-S, 588774-W, 590297-S

ALS report: EM1716432 Job No: NEW17P-0221

1. SAMPLE HANDLING

Item	Yes/No	Comments
Were the sample holding times met?	Yes	-
Were the samples in proper custody between collection in the field and reaching the laboratory?	Yes	-
Were the samples properly and adequately preserved?	Yes	-
Were the samples received by the laboratory in good condition?	Yes	-

Sampling Handling was:

Satisfactory: √	Partially Satisfactory:	Unsatisfactory:
-------------------	-------------------------	-----------------

2. PRECISION AND ACCURACY ASSESSMENT

Item	Yes/No	Comment
Was a NATA registered laboratory used?	Yes	-
Did the laboratory perform the requested tests?	Yes	-
Were the laboratory methods adopted NATA endorsed?	Yes	-
Were the appropriate test procedures followed?	Yes	-
Were the reporting limits satisfactory?	Yes	-
Was the NATA seal on the reports?	Yes	-
Were the reports signed by an authorised person?	Yes	-

Laboratory Precision and Accuracy was:

Satisfactory: ✓	Partially Satisfactory:	Unsatisfactory:
-----------------	-------------------------	-----------------

3. FIELD QA/QC

Item	Sample
Number of Samples Analysed	21 soil
Number of Days Sampling	3
Number of Sampling Events	3

Number and Type of QA/QC Samples Collected

Item	Sample
Field Duplicates (at least one in twenty samples)	4 intra-lab, 1 inter-lab
Trip Blanks (at least one per day or one per sampling event)	2
Wash Blanks (at least one per day, per matrix, or equipment)	0
Other (Trip blank and Trip Spike etc)	0
Were the reporting limits satisfactory?	Yes

Field Duplicates

Item	Yes/No	Comments	
Were an adequate number of field duplicates collected?	Yes	Frequency of 4 per 21	
Were RPDs within control limits? Greater than 10 x LOR – 30% Less than 10 x LOR – 200%	No	One RPD for Ethylbenzene (88%)was recorded above the acceptance limit for duplicate pair SP1-1/QC4. The RPD exceedance is likely due to the distribution of contaminants in the stockpiled material. The concentration of ethylbenzene was within the adopted criteria in SP1-1 and QC4. Therefore, this RPD is not considered to affect the usability of the results. It is noted that low analytes concentrations exaggerate the percentage differences with respect to small total concentration differences, therefore where results for the primary and duplicate samples were less than 10 times the LOR, the acceptable limit was set at 200%.	

Trip Blanks/Trip Spikes

Item	Yes/No	Comments
Were an adequate number of trip blanks and Trip Spikes collected?	Yes	Two trip blanks were collected. No trip spikes were collected.
Were the trip blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals).	N/A	Yes
Were the trip spikes within recovery limits (between 100% and 120%)	N/A	-

Rinsate Samples

Item	Yes/No	Comments
Were an adequate number of rinsate samples used? (1 per day of using reusable sampling equipment – trowel, hand auger etc)	N/A	No equipment rinsate samples were collected. As samples were collected directly from the stockpile or excavation wall, no reusable sampling equipment was used. Based on this, no equipment rinsate samples were required.
Were the rinsate samples free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals).	N/A	-

Field QC was:

Satisfactory: ✓	Partially Satisfactory:	Unsatisfactory:
-----------------	-------------------------	-----------------

4. LABORATORY INTERNAL QUALITY CONTROL PROCEDURES

A) Type of QA/QC Sample	Yes/No	Comments
Laboratory Blanks/Reagent Blanks (at least 1 per batch)	Yes	-
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples)	Yes	-
Matrix Spikes, Matrix Spike Duplicates (1 for each sample type)	Yes	-
Laboratory Control Spike	Yes	-
Surrogate (where appropriate)	Yes	-

Item	Yes/No	Comments
B) Were the laboratory blanks and/or reagent blanks free of contamination?	Yes	-
C) Were the spike recoveries within control limits?	No	Two spike recoveries for TRH > C16 - C34 and TRH > C34 - C40 were outside of the control limits. Lab code Q08 was quoted (in each case): "The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference". Based on this, the spike recoveries are not considered to affect the usability of the results.
D) Were the RPDs of the laboratory duplicates within control limits?	No	In report 574801-S - One laboratory duplicate for lead was outside the control limits. Lab code Q15 was quoted: "The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report". In report 588774-S - One laboratory duplicate for Toluene, Ethylbenzene, m & p - Xylenes, o - Xylene and Xylenes - Total were outside the control limits. Lab code Q15 was quoted: "The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report". In report 590297-S - One laboratory duplicate for TRH C6-C9 and TRH C6-C10 were outside the control limits. Lab code Q15 was quoted: "The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report". Based on this, the laboratory duplicates are not considered to affect the usability of the results.
E) Were the surrogate recoveries within control limits?	NA	-

Laboratory Internal QA/QC was:

Satisfactory : √	Partially Satisfactory:	Unsatisfactory:
--------------------	-------------------------	-----------------

5. DATA USABILITY

Item	Yes/No	Comments
Was the data directly usable?	Yes	-
Was the data usable with the following corrections/modifications? (see comments)	NA	-
Was the data not usable?	NA	-

APPENDIX E: Laboratory Reports

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Qualtest 8 Ironbark Close Warabrook

Attention: Emma Coleman

Report 574801-S

Project name PANACEA MORPETH

Project ID NEW17P-0221 Received Date Nov 28, 2017

Client Sample ID			EX1-1	EX1-4	EX1-6	EX1-8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-No34172	M17-No34173	M17-No34174	M17-No34175
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	37	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	2400	59	73	390
TRH C15-C28	50	mg/kg	3400	96	130	660
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	5800	155	203	1050
BTEX	'	1 0 0				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	1.3	< 0.1	< 0.1	0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	77	83	96
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	6.8	< 0.5	< 0.5	1.7
TRH C6-C10	20	mg/kg	70	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	69	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	3800	93	120	660
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	3800	93	120	660
TRH >C16-C34	100	mg/kg	1500	< 100	< 100	300
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1.1	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			EX1-1 Soil	EX1-4 Soil	EX1-6 Soil	EX1-8 Soil	
Eurofins mgt Sample No.			M17-No34172	M17-No34173	M17-No34174	M17-No34175	
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	3.5	< 0.5	< 0.5	0.7	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	4.9	< 0.5	< 0.5	1.1	
Phenanthrene	0.5	mg/kg	4.1	< 0.5	< 0.5	1.1	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	13.6	< 0.5	< 0.5	2.9	
2-Fluorobiphenyl (surr.)	1	%	63	85	99	87	
p-Terphenyl-d14 (surr.)	1	%	79	93	104	97	
Heavy Metals							
Lead	5	mg/kg	20	10	13	8.3	
% Moisture	1	%	23	13	13	9.6	

Client Sample ID			EX1-11	EX1-13	EX1-15	EX1-17
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-No34176	M17-No34177	M17-No34178	M17-No34179
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	80	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	130	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	210	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Ethylbenzene	0.1	mg/kg	< 0.1	0.1	0.1	0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	0.3	< 0.2	0.3
o-Xylene	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	0.4	< 0.3	0.4
4-Bromofluorobenzene (surr.)	1	%	74	80	79	93
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	120	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	120	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID Sample Matrix			EX1-11 Soil	EX1-13 Soil	EX1-15 Soil	EX1-17 Soil	
Eurofins mgt Sample No.			M17-No34176	M17-No34177	M17-No34178	M17-No34179	
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons	•						
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	94	69	76	103	
p-Terphenyl-d14 (surr.)	1	%	100	70	81	99	
Heavy Metals							
Lead	5	mg/kg	< 5	7.5	12	26	
% Moisture	1	%	20	10	22	15	

Client Sample ID			EX1-19	QC1	QC4	SP1-1	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			M17-No34180	M17-No34181	M17-No34182	M17-No34184	
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	63	
TRH C10-C14	20	mg/kg	130	170	740	650	
TRH C15-C28	50	mg/kg	320	320	1100	760	
TRH C29-C36	50	mg/kg	65	< 50	< 50	< 50	
TRH C10-36 (Total)	50	mg/kg	515	490	1840	1410	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	0.5	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	0.6	< 0.1	0.9	2.3	
m&p-Xylenes	0.2	mg/kg	2.2	< 0.2	1.2	2.3	
o-Xylene	0.1	mg/kg	0.4	< 0.1	0.1	0.1	
Xylenes - Total	0.3	mg/kg	2.6	< 0.3	1.3	2.4	
4-Bromofluorobenzene (surr.)	1	%	91	95	89	88	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.5	mg/kg	0.9	< 0.5	2.5	6.2	
TRH C6-C10	20	mg/kg	< 20	< 20	48	150	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	46	150	
TRH >C10-C16	50	mg/kg	200	280	1100	910	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	200	280	1100	900	
TRH >C16-C34	100	mg/kg	260	160	550	370	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100	

Client Sample ID			EX1-19	QC1	QC4	SP1-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-No34180	M17-No34181	M17-No34182	M17-No34184
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	'	<u>'</u>				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Fluorene	0.5	mg/kg	< 0.5	0.5	0.6	0.8
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	1.1	0.9	4.7	4.0
Phenanthrene	0.5	mg/kg	< 0.5	0.8	1.4	1.3
Pyrene	0.5	mg/kg	< 0.5	< 0.5	0.9	< 0.5
Total PAH*	0.5	mg/kg	1.1	2.2	8.4	6.1
2-Fluorobiphenyl (surr.)	1	%	100	81	93	89
p-Terphenyl-d14 (surr.)	1	%	93	91	99	88
Heavy Metals						
Lead	5	mg/kg	14	8.7	42	23
% Moisture	1	%	9.2	12	13	18

Client Sample ID Sample Matrix			SP1-2 Soil	SP1-3 Soil	SP1-4 Soil
Eurofins mgt Sample No.			M17-No34185	M17-No34186	M17-No34187
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fra	actions				
TRH C6-C9	20	mg/kg	< 20	< 20	20
TRH C10-C14	20	mg/kg	230	260	570
TRH C15-C28	50	mg/kg	350	330	760
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	580	590	1330
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	0.3	1.1	1.4
m&p-Xylenes	0.2	mg/kg	0.5	1.9	2.0
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	0.6	1.9	2.0
4-Bromofluorobenzene (surr.)	1	%	97	85	101

Client Sample ID			SP1-2	SP1-3	SP1-4
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M17-No34185	M17-No34186	M17-No34187
Date Sampled			Nov 23, 2017	Nov 23, 2017	Nov 23, 2017
Test/Reference	LOR	Unit	,		
Total Recoverable Hydrocarbons - 2013 NEPM					
Naphthalene ^{N02}	0.5	mg/kg	1.2	1.1	2.7
TRH C6-C10	20	mg/kg	< 20	28	41
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	25	38
TRH >C10-C16	50	mg/kg	350	390	880
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	350	390	880
TRH >C16-C34	100	mg/kg	190	130	310
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	0.8
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	0.6	0.7	1.6
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	0.7
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	0.6	0.7	3.1
2-Fluorobiphenyl (surr.)	1	%	74	85	82
p-Terphenyl-d14 (surr.)	1	%	69	81	86
Heavy Metals					
Lead	5	mg/kg	25	9.8	19
O/ Maintura	4	0/	40	4.5	20
% Moisture	1	%	13	15	20

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Dec 01, 2017	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Dec 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Dec 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Dec 01, 2017	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soils by GCMS			
Heavy Metals	Melbourne	Dec 01, 2017	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Nov 29, 2017	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Nov 28, 2017 11:24 AM

Company Name: Qualtest Order No.:

 Address:
 8 Ironbark Close
 Report #:
 574801
 Due:
 Dec 5, 2017

 Warabrook
 Phone:
 02 4968 4468
 Priority:
 5 Day

NSW 2304 Fax: 02 4960 9775 Contact Name: Emma Coleman

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

Eurofins | mgt Analytical Services Manager : Andrew Black

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Moisture Set	Eurofins mgt Suite B4
Melbourne Laboratory - NATA Site # 1254 & 14271								Х	Х	Х
Sydney Laboratory - NATA Site # 18217										Х
Brisbane Laboratory - NATA Site # 20794										
Pert	h Laboratory - N	NATA Site # 237	'36							
Exte	rnal Laboratory	,								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	EX1-1	Nov 23, 2017		Soil	M17-No34172		Х		Х	Х
2	EX1-4	Nov 23, 2017		Soil	M17-No34173		Х		Х	Х
3	EX1-6	Nov 23, 2017		Soil	M17-No34174		Х		Х	Х
4	EX1-8	Nov 23, 2017		Soil	M17-No34175		Х		Х	Х
5	EX1-11	Nov 23, 2017		Soil	M17-No34176		Х		Х	Х
6	EX1-13	Nov 23, 2017		Soil	M17-No34177		Х		Х	Х
7	EX1-15	Nov 23, 2017		Soil	M17-No34178		Х		Х	Х
8	EX1-17	Nov 23, 2017		Soil	M17-No34179		Х		Х	Х
9	EX1-19	Nov 23, 2017		Soil	M17-No34180		Х		Х	Х

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 7 of 15

Date Reported:Dec 07, 2017

Address:

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Andrew Black

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Nov 28, 2017 11:24 AM

Company Name: Qualtest Order No.:

 8 Ironbark Close
 Report #:
 574801
 Due:
 Dec 5, 2017

 Warabrook
 Phone:
 02 4968 4468
 Priority:
 5 Day

NSW 2304 Fax: 02 4960 9775 Contact Name: Emma Coleman

NSW 2304 Fax: 02 4900 9775 Contact Name: Eminia Colema

Project Name: PANACEA MORPETH
Project ID: NEW17P-0221

		HOLD	Lead	втех	Moisture Set	Eurofins mgt Suite B4			
Mel	bourne Labo	Х	Х	Х	Х	Х			
Syd	ney Laborat	ory - NATA Site # 18217							Х
Bris	bane Labora	atory - NATA Site # 20794							
Per	th Laborator	y - NATA Site # 23736							
10	QC1	Nov 23, 2017	Soil	M17-No34181		Х		Х	Х
11	QC4	Nov 23, 2017	Soil	M17-No34182		Х		Х	Х
12	QC5	Nov 23, 2017	Water	M17-No34183			Х		
13	SP1-1	Nov 23, 2017	Soil	M17-No34184		Х		Х	Х
14	SP1-2	Nov 23, 2017	Soil	M17-No34185		Х		Х	Х
15	SP1-3	Nov 23, 2017	Soil	M17-No34186		Х		Х	Х
16	SP1-4	Nov 23, 2017	Soil	M17-No34187		Х		Х	Х
17	EX1-2	Nov 23, 2017	Soil	M17-No34188	Х				
18	EX1-3	Nov 23, 2017	Soil	M17-No34189	Х				
19	EX1-5	Nov 23, 2017	Soil	M17-No34190	Х				
20	EX1-7	Nov 23, 2017	Soil	M17-No34191	Х				
21	EX1-9	Nov 23, 2017	Soil	M17-No34192	Х				

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 574801-S

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

574801

02 4968 4468

02 4960 9775

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest Order No.:

Address: 8 Ironbark Close

Warabrook

NSW 2304

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

Date Reported:Dec 07, 2017

Received: Nov 28, 2017 11:24 AM

 Due:
 Dec 5, 2017

 Priority:
 5 Day

Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sai	mple Detail			HOLD	Lead	втех	Moisture Set	Eurofins mgt Suite B4
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217							Х
Bris	bane Laboratory	y - NATA Site #	20794							
Pert	h Laboratory - N	ATA Site # 237	36							
22	EX1-10	Nov 23, 2017		Soil	M17-No34193	Х				
23	EX1-12	Nov 23, 2017		Soil	M17-No34194	Х				
24	EX1-14	Nov 23, 2017		Soil	M17-No34195	Х				
25	EX1-16	Nov 23, 2017		Soil	M17-No34196	Х				
26	EX1-18	Nov 23, 2017		Soil	M17-No34197	Х				
27	QC3	Nov 23, 2017		Soil	M17-No34198	Х				
Test	Counts					11	15	1	15	15

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 574801-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- ${\it 3.} \quad {\it Organochlorine Pesticide analysis where reporting LCS data, Toxaphene \& Chlordane are not added to the LCS.}$
- Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	Hig/kg	\ \ 0.5	0.5	1 433	
Heavy Metals				Т	
Lead	mg/kg	< 5	5	Pass	
LCS - % Recovery	Hig/kg		J J	1 033	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions		T			
	%	00	70 120	Door	
TRH C40 C44		88	70-130	Pass	
TRH C10-C14	%	102	70-130	Pass	
LCS - % Recovery					
BTEX	0/	00	70.400	Pass	
Benzene	%	90	70-130	Pass	
Toluene	%	96	70-130	Pass	
Ethylbenzene	%	103	70-130	Pass	
m&p-Xylenes	%	106	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Xylenes - Total			%	106		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
Naphthalene			%	123		70-130	Pass	
TRH C6-C10			%	88		70-130	Pass	
TRH >C10-C16			%	94		70-130	Pass	
LCS - % Recovery				T				
Polycyclic Aromatic Hydrocarbons	S	I						
Acenaphthene			%	90		70-130	Pass	
Acenaphthylene			%	92		70-130	Pass	
Anthracene			%	97		70-130	Pass	
Benz(a)anthracene			%	98		70-130	Pass	
Benzo(a)pyrene			%	100		70-130	Pass	
Benzo(b&j)fluoranthene			%	105		70-130	Pass	
Benzo(g.h.i)perylene			%	93		70-130	Pass	
Benzo(k)fluoranthene			%	113		70-130	Pass	
Chrysene			%	94		70-130	Pass	
Dibenz(a.h)anthracene			%	95		70-130	Pass	
Fluoranthene			%	85		70-130	Pass	
Fluorene			%	93		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	96		70-130	Pass	
Naphthalene			%	92		70-130	Pass	
Phenanthrene			%	91		70-130	Pass	
Pyrene			%	88		70-130	Pass	
LCS - % Recovery					T			
Heavy Metals								
Lead	T		%	111		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M17-No33955	NCP	%	103		70-130	Pass	
TRH C6-C9 Spike - % Recovery	M17-No33955	NCP	%	1		70-130	Pass	
	M17-No33955	NCP	%	1		70-130	Pass	
Spike - % Recovery	M17-No33955 M17-No33955	NCP	%	103		70-130 70-130	Pass	
Spike - % Recovery BTEX				103 Result 1				
Spike - % Recovery BTEX Benzene	M17-No33955	NCP	%	103 Result 1 106		70-130	Pass	
Spike - % Recovery BTEX Benzene Toluene	M17-No33955 M17-No33955	NCP NCP	% %	103 Result 1 106 114		70-130 70-130	Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	M17-No33955 M17-No33955 M17-No33955	NCP NCP	% % %	103 Result 1 106 114 119		70-130 70-130 70-130	Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP	% % %	103 Result 1 106 114 119 125		70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP	% % % %	103 Result 1 106 114 119 125 117		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP NCP	% % % %	103 Result 1 106 114 119 125 117		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP NCP	% % % %	103 Result 1 106 114 119 125 117 122		70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons -	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP NCP NCP	% % % % %	103 Result 1 106 114 119 125 117 122 Result 1		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP NCP NCP	% % % % % %	103 Result 1 106 114 119 125 117 122 Result 1 85		70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	Q08
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 2013 NEPM Fract M17-No33955 M17-No33955	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	103 Result 1 106 114 119 125 117 122 Result 1 85 97		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	Q08 Q08
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery Polycyclic Aromatic Hydrocarbons	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65 Result 1		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037	NCP	% % % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65 Result 1 93		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthylene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037 M17-No37037	NCP	% % % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65 Result 1 93 100		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037 M17-De04542 M17-De04542 M17-De04542	NCP	% % % % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65 Result 1 93 100 105		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons - Naphthalene TRH C6-C10 TRH >C16-C34 TRH >C34-C40 Spike - % Recovery Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene	M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No33955 M17-No37037 M17-No37037 M17-De04542 M17-De04542 M17-De04542 M17-De04542	NCP	% % % % % % % % % % % % % % % % % % %	Result 1 106 114 119 125 117 122 Result 1 85 97 370 65 Result 1 93 100 105 102		70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene	M17-De04542	NCP	%	78			70-130	Pass	Code
Chrysene	M17-De04542	NCP	%	98			70-130	Pass	
Dibenz(a.h)anthracene	M17-De04542	NCP	%	92			70-130	Pass	
Fluoranthene	M17-De04542	NCP	%	90			70-130	Pass	
Fluorene	M17-De04542	NCP	%	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-De04542	NCP	%	91			70-130	Pass	
Naphthalene	M17-De04542	NCP	%	99			70-130	Pass	
Phenanthrene	M17-De04542	NCP	%	101			70-130	Pass	
Pyrene	M17-De04542	NCP	%	91			70-130	Pass	
Spike - % Recovery	W17-De04342	INCF	/0	<u> </u>			70-130	rass_	
				Result 1			Τ		
Heavy Metals	M47 No22040	NCP	%				75 405	Door	
Lead	M17-No33940	NCP	%	77			75-125	Pass	
Spike - % Recovery	4000 NEDM F			Daguit 4	T		T		
Total Recoverable Hydrocarbons			0/	Result 1			70.400	D	
TRH C10-C14	M17-No34176	СР	%	98			70-130	Pass	
Spike - % Recovery	0040 NEDM 5			D 11.4			T	I	
Total Recoverable Hydrocarbons				Result 1				_	
TRH >C10-C16	M17-No34176	CP	%	97			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-No33954	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M17-No37036	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M17-No37036	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M17-No37036	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M17-No33954	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-No33954	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M17-No33954	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M17-No33954	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M17-No33954	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M17-No33954	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	<u> </u>			•					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M17-No33954	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-No33954	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M17-No37036	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M17-No37036	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M17-No37036	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>		•		<u>'</u>		
Polycyclic Aromatic Hydrocarbon	ıs			Result 1	Result 2	RPD			
Acenaphthene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
		1		< 0.5	< 0.5	<1		Pass	
Acenaphthylene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<u> </u>	30%		
•	M17-De04541 M17-De04541	NCP NCP	mg/kg mg/kg		< 0.5	<1	30%	Pass	
Acenaphthylene		NCP	mg/kg	< 0.5	1				
Acenaphthylene Anthracene Benz(a)anthracene	M17-De04541 M17-De04541	NCP NCP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene	M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	M17-De04541 M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	
Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541 M17-De04541	NCP NCP NCP NCP NCP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarl	oons			Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M17-De04541	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	M17-No34180	CP	mg/kg	14	20	33	30%	Fail	Q15
Duplicate									·
				Result 1	Result 2	RPD			·
% Moisture	M17-No34181	CP	%	12	13	8.0	30%	Pass	·

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Comments

Qualifier C	Codes/Comments
Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference
Q15	The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Andrew Black
Analytical Services Manager
Alex Petridis
Senior Analyst-Metal (VIC)
Alex Petridis
Senior Analyst-Organic (VIC)
Harry Bacalis
Senior Analyst-Volatile (VIC)
Huong Le
Senior Analyst-Inorganic (VIC)
Joseph Edouard
Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Implication or interpretation given in this report, In on case shall Eurofins; Implication for interpretation given in this report, In on case shall Eurofins; Implication for interpretation given in this report, In on case shall Eurofins; Implication for interpretation given in this report, In on case shall Eurofins; Implication for interpretation given in this report. This document shall not be reproduced except in full and reflects only to the tiens tested. Unless, indicated otherwise, the tests were, the feature shall reproduce in darking the performed on the performance of the performance

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Qualtest 8 Ironbark Close Warabrook NSW 2304

Attention: **Emma Coleman**

574801-W Report

PANACEA MORPETH Project name

Project ID NEW17P-0221 Received Date Nov 28, 2017

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			QC5 Water M17-No34183 Nov 23, 2017
Test/Reference	LOR	Unit	
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	70

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B4			
BTEX	Melbourne	Nov 30, 2017	14 Day

- Method: TRH C6-C40 - LTM-ORG-2010

> BTEX Lead HOLD

Eurofins Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest

Address: 8 Ironbark Close

Warabrook

NSW 2304

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

Order No.: Received: Nov 28, 2017 11:24 AM

 Report #:
 574801
 Due:
 Dec 5, 2017

 Phone:
 02 4968 4468
 Priority:
 5 Day

Fax: 02 4960 9775 Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sa	mple Detail						Set	mgt Suite B4
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217							Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - I	NATA Site # 237								
Exte	rnal Laboratory	/								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	EX1-1	Nov 23, 2017		Soil	M17-No34172		Х		Х	Х
2	EX1-4	Nov 23, 2017		Soil	M17-No34173		Х		Х	Х
3	EX1-6	Nov 23, 2017		Soil	M17-No34174		Х		Х	Х
4	EX1-8	Nov 23, 2017		Soil	M17-No34175		Х		Х	Х
5	EX1-11	Nov 23, 2017		Soil	M17-No34176		Х		Х	Х
6	EX1-13	Nov 23, 2017		Soil	M17-No34177		Х		Х	Х
7	EX1-15	Nov 23, 2017		Soil	M17-No34178		Х		Х	Х
8	EX1-17	Nov 23, 2017		Soil	M17-No34179		Х		Х	Х
9	EX1-19	Nov 23, 2017		Soil	M17-No34180		Х		Х	Х

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 574801-W

Page 3 of 8

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 4968 4468

02 4960 9775

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest Order No.:

Address: 8 Ironbark Close

Warabrook

NSW 2304

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

 Order No.:
 Received:
 Nov 28, 2017 11:24 AM

 Report #:
 574801
 Due:
 Dec 5, 2017

 Due:
 Dec 5, 2017

 Priority:
 5 Day

Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

		San	nple Detail			HOLD	Lead	втех	Moisture Set	Eurofins mgt Suite B4
Melk	ourne Laborat	ory - NATA Site #	# 1254 & 142	271		Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 18	3217							Х
Bris	bane Laborator	ry - NATA Site # 2	20794							
Pert	h Laboratory -	NATA Site # 2373	36							
10	QC1	Nov 23, 2017		Soil	M17-No34181		Х		Х	Х
11	QC4	Nov 23, 2017		Soil	M17-No34182		Х		Х	Х
12	QC5	Nov 23, 2017		Water	M17-No34183			Х		
13	SP1-1	Nov 23, 2017		Soil	M17-No34184		Х		Х	Х
14	SP1-2	Nov 23, 2017		Soil	M17-No34185		Х		Х	Х
15	SP1-3	Nov 23, 2017		Soil	M17-No34186		Х		Х	Х
16	SP1-4	Nov 23, 2017		Soil	M17-No34187		Х		Х	Х
17	EX1-2	Nov 23, 2017		Soil	M17-No34188	Х				
18	EX1-3	Nov 23, 2017		Soil	M17-No34189	Х				
19	EX1-5	Nov 23, 2017		Soil	M17-No34190	Х				
20	EX1-7	Nov 23, 2017		Soil	M17-No34191	Х				
21	EX1-9	Nov 23, 2017		Soil	M17-No34192	Х				

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 574801-W

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest

Address: 8 Ironbark Close

Warabrook

NSW 2304

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

Order No.: Received: Nov 28, 2017 11:24 AM

 Report #:
 574801
 Due:
 Dec 5, 2017

 Phone:
 02 4968 4468
 Priority:
 5 Day

02 4960 9775 Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

		Sa	mple Detail			HOLD	Lead	втех	Moisture Set	Eurofins mgt Suite B4
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217							Х
Bris	bane Laborator	y - NATA Site #	20794							
Pert	h Laboratory - N	NATA Site # 237	36							
22	EX1-10	Nov 23, 2017		Soil	M17-No34193	Х				
23	EX1-12	Nov 23, 2017		Soil	M17-No34194	Х				
24	EX1-14	Nov 23, 2017		Soil	M17-No34195	Х				
25	EX1-16	Nov 23, 2017		Soil	M17-No34196	Х				
26	EX1-18	Nov 23, 2017		Soil	M17-No34197	Х				
27	QC3	Nov 23, 2017		Soil	M17-No34198	Х				
Test	Counts					11	15	1	15	15

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 574801-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

1	Гest		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
втех									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	98			70-130	Pass	
Toluene			%	104			70-130	Pass	
Ethylbenzene			%	90			70-130	Pass	
m&p-Xylenes			%	96			70-130	Pass	
Xylenes - Total			%	95			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M17-No30003	NCP	mg/L	0.016	0.016	3.0	30%	Pass	
Toluene	M17-No30003	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M17-No30003	NCP	mg/L	0.003	0.003	10	30%	Pass	
m&p-Xylenes	M17-No30003	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M17-No30003	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M17-No30003	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Comments

Authorised By

Andrew Black Analytical Services Manager
Harry Bacalis Senior Analyst-Volatile (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Qualtest 8 Ironbark Close Warabrook

Attention: **Emma Coleman**

588774-S Report

PANACEA MORPETH Project name

Project ID NEW17P-0221 Received Date Mar 09, 2018

Client Sample ID			SP1-5	SP1-6	SP1-7	SP1-8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Ma11928	M18-Ma11929	M18-Ma11930	M18-Ma11931
Date Sampled			Mar 08, 2018	Mar 08, 2018	Mar 08, 2018	Mar 08, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	50	52	63
TRH C15-C28	50	mg/kg	320	450	390	450
TRH C29-C36	50	mg/kg	< 50	180	68	74
TRH C10-36 (Total)	50	mg/kg	320	680	510	587
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	0.1	0.1
Toluene	0.1	mg/kg	0.4	0.5	0.5	0.7
Ethylbenzene	0.1	mg/kg	0.3	0.3	0.4	0.4
m&p-Xylenes	0.2	mg/kg	0.9	1.1	1.2	1.4
o-Xylene	0.1	mg/kg	0.2	0.2	0.3	0.3
Xylenes - Total	0.3	mg/kg	1.2	1.3	1.5	1.7
4-Bromofluorobenzene (surr.)	1	%	59	59	60	59
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	69	87	100	130
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	69	87	100	130
TRH >C16-C34	100	mg/kg	300	540	370	410
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	8.3	7.3	7.8	5.6

Client Sample ID Sample Matrix			QC101 Soil
Eurofins mgt Sample No.			M18-Ma11932
Date Sampled			Mar 08, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	52
TRH C15-C28	50	mg/kg	540
TRH C29-C36	50	mg/kg	240
TRH C10-36 (Total)	50	mg/kg	832
ВТЕХ			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	0.4
Ethylbenzene	0.1	mg/kg	0.2
m&p-Xylenes	0.2	mg/kg	0.8
o-Xylene	0.1	mg/kg	0.2
Xylenes - Total	0.3	mg/kg	1.0
4-Bromofluorobenzene (surr.)	1	%	57
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	93
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	93
TRH >C16-C34	100	mg/kg	660
TRH >C34-C40	100	mg/kg	100
% Moisture	1	%	10

Report Number: 588774-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 13, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Mar 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 13, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
% Moisture	Melbourne	Mar 10, 2018	14 Day

- Method: LTM-GEN-7080 Moisture

Report Number: 588774-S

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 4968 4468

02 4960 9775

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: Qualtest

8 Ironbark Close Address:

Warabrook

NSW 2304

PANACEA MORPETH **Project Name:**

Project ID: NEW17P-0221

Date Reported:Mar 19, 2018

Order No.: Received: Mar 9, 2018 9:27 AM Report #: 588774

Due: Mar 19, 2018

Priority: 5 Day

Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail								BTEXN and Volatile TRH	
Melb	Х	Х	Х						
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisl	bane Laborator	y - NATA Site #	20794						
Pertl	h Laboratory - I	NATA Site # 237	36						
Exte	rnal Laboratory	/							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SP1-5	Mar 08, 2018		Soil	M18-Ma11928	Х	Х		
2	SP1-6	Mar 08, 2018		Soil	M18-Ma11929	Х	Х		
3	SP1-7	Mar 08, 2018		Soil	M18-Ma11930	Х	Х		
4	SP1-8	Mar 08, 2018		Soil	M18-Ma11931	Х	Х		
5	QC101	Mar 08, 2018		Soil	M18-Ma11932	Х	Х		
6	QC102	Mar 08, 2018		Water	M18-Ma11933			Х	
Test Counts								1	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 588774-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions					
TRH C6-C9			mg/kg	< 20	20	Pass	
TRH C10-C14			mg/kg	< 20	20	Pass	
TRH C15-C28			mg/kg	< 50	50	Pass	
TRH C29-C36			mg/kg	< 50	50	Pass	
Method Blank							
ВТЕХ							
Benzene			mg/kg	< 0.1	0.1	Pass	
Toluene			mg/kg	< 0.1	0.1	Pass	
Ethylbenzene			mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes			mg/kg	< 0.2	0.2	Pass	
o-Xylene			mg/kg	< 0.1	0.1	Pass	
Xylenes - Total			mg/kg	< 0.3	0.3	Pass	
Method Blank							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
Naphthalene			mg/kg	< 0.5	0.5	Pass	
TRH C6-C10			mg/kg	< 20	20	Pass	
TRH >C10-C16			mg/kg	< 50	50	Pass	
TRH >C16-C34			mg/kg	< 100	100	Pass	
TRH >C34-C40			mg/kg	< 100	100	Pass	
LCS - % Recovery			mg/kg	100	100	1 433	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions					
TRH C6-C9	1999 NET WITTACL	10115	%	99	70-130	Pass	
TRH C10-C14			<u> </u>	83	70-130	Pass	
LCS - % Recovery			/0		70-130	1 033	
BTEX							
Benzene			%	80	70-130	Pass	
Toluene			<u> </u>	80	70-130	Pass	
Ethylbenzene			<u> </u>	82	70-130	Pass	
					1		
m&p-Xylenes			%	84	70-130	Pass	
Xylenes - Total			%	83	70-130	Pass	
LCS - % Recovery	0040 NEDM 5	•			1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/		70.400	_	
Naphthalene			%	95	70-130	Pass	
TRH C6-C10			%	101	70-130	Pass	
TRH >C10-C16 Test	Lab Sample ID	QA	% Units	Result 1	70-130 Acceptance	Pass Pass Limits	Qualifying
Spike - % Passyory		Source			Limits	Lilling	Code
Spike - % Recovery	1000 NEDM 5	ions		Descrit 4			
Total Recoverable Hydrocarbons -			0/	Result 1	70.400	Dor-	
TRH C6-C9	M18-Ma15666	NCP	%	76	70-130	Pass	
TRH C10-C14	M18-Ma16839	NCP	%	94	70-130	Pass	
Spike - % Recovery				D 11.4	I		
BTEX	14014 4702	NOS	0/	Result 1	70.466		
Benzene	M18-Ma15666	NCP	%	78	70-130	Pass	
Toluene	M18-Ma15666	NCP	%	84	70-130	Pass	
Ethylbenzene	M18-Ma15666	NCP	%	90	70-130	Pass	
m&p-Xylenes	M18-Ma15666	NCP	%	93	70-130	Pass	
o-Xylene	M18-Ma15666	NCP	%	92	70-130	Pass	
Xylenes - Total	M18-Ma15666	NCP	%	93	70-130	Pass	
Spike - % Recovery							

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-Ma15666	NCP	%	103			70-130	Pass	
TRH C6-C10	M18-Ma15666	NCP	%	79			70-130	Pass	
TRH >C10-C16	M18-Ma16839	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				Result 1	Result 2	RPD			
TRH C10-C14	M18-Ma16838	NCP	mg/kg	31	33	7.0	30%	Pass	
TRH C15-C28	M18-Ma16838	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Ma16838	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				,	, , ,			,	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Ma16838	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Ma16838	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Ma16838	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
	1			Result 1	Result 2	RPD			
% Moisture	M18-Ma11839	NCP	%	7.0	8.6	20	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Ma11932	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Ma11932	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Ma11932	CP	mg/kg	0.4	0.6	45	30%	Fail	Q15
Ethylbenzene	M18-Ma11932	CP	mg/kg	0.2	0.3	49	30%	Fail	Q15
m&p-Xylenes	M18-Ma11932	CP	mg/kg	0.8	1.2	42	30%	Fail	Q15
o-Xylene	M18-Ma11932	CP	mg/kg	0.2	0.3	37	30%	Fail	Q15
Xylenes - Total	M18-Ma11932	CP	mg/kg	1.0	1.5	41	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Ma11932	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Ma11932	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Report Number: 588774-S

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Comments

N02

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Andrew Black Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Qualtest 8 Ironbark Close Warabrook NSW 2304

WORLD RECOGNISED
ACCREDITATION

Attention: **Emma Coleman**

588774-W Report

PANACEA MORPETH Project name

Project ID NEW17P-0221 Received Date Mar 09, 2018

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			QC102 Water M18-Ma11933 Mar 08, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions	_	
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
Total Recoverable Hydrocarbons - 1999 NE	PM Fractions		
TRH C6-C9	0.02	mg/L	< 0.02
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	69

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons	Melbourne	Mar 13, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 13, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Mar 13, 2018	14 Day

- Method: TRH C6-C40 - LTM-ORG-2010

Report Number: 588774-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest

Date Reported:Mar 19, 2018

Address: 8 Ironbark Close

Warabrook

NSW 2304

Project Name: PANACEA MORPETH

Project ID: NEW17P-0221

Order No.: Received: Mar 9, 2018 9:27 AM

 Report #:
 588774
 Due:
 Mar 19, 2018

 Phone:
 02 4968 4468
 Priority:
 5 Day

Fax: 02 4960 9775 Contact Name: Emma Coleman

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail								BTEXN and Volatile TRH
Melbourne Laboratory - NATA Site # 1254 & 14271								Х
Sydr	ney Laboratory	- NATA Site # 1	8217					
Brisl	bane Laborator	y - NATA Site #	20794					
		NATA Site # 237	36					
	rnal Laboratory				1			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	SP1-5	Mar 08, 2018		Soil	M18-Ma11928	Х	Х	
2	SP1-6	Mar 08, 2018		Soil	M18-Ma11929	Х	Х	
3	SP1-7	Mar 08, 2018		Soil	M18-Ma11930	Х	Х	
4	SP1-8	Mar 08, 2018		Soil	M18-Ma11931	Х	Х	
5	QC101	Mar 08, 2018		Soil	M18-Ma11932	Х	Х	
6	QC102	Mar 08, 2018		Water	M18-Ma11933			Х
Test Counts								1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 588774-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram
mg/L: milligrams per litre
ug/L: micrograms per litre
ppm: Parts per million
ppb: Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 588774-W

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1	1 1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions							
Naphthalene			mg/L	< 0.01			0.01	Pass	
TRH C6-C10			mg/L	< 0.02			0.02	Pass	
Method Blank				T	1			I	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions							
TRH C6-C9			mg/L	< 0.02			0.02	Pass	
Method Blank									
BTEX									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes		mg/L	< 0.002			0.002	Pass		
o-Xylene		mg/L	< 0.001			0.001	Pass		
Xylenes - Total		mg/L	< 0.003			0.003	Pass		
LCS - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions							
Naphthalene			%	82			70-130	Pass	
TRH C6-C10			%	106			70-130	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions							
TRH C6-C9			%	106			70-130	Pass	
LCS - % Recovery			7.5					1 3.55	
BTEX									
Benzene			%	86			70-130	Pass	
Toluene			%	76			70-130	Pass	
Ethylbenzene			%	93			70-130	Pass	
m&p-Xylenes			%	99			70-130	Pass	
Xylenes - Total			%	101			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Cource					Lillito	Lillits	Oode
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-Ma12398	NCP	%	87			70-130	Pass	
TRH C6-C10	M18-Ma12398	NCP	%	71			70-130	Pass	
Spike - % Recovery	WITO WATEGOO	110.	70				70 100	1 400	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M18-Ma12398	NCP	%	72			70-130	Pass	
Spike - % Recovery	W10 Wa12550	1401	70	12			70-130	1 433	
BTEX				Result 1					
Benzene	M18-Ma12398	NCP	%	83			70-130	Pass	
Toluene	M18-Ma12398	NCP	%	79			70-130	Pass	
Ethylbenzene	M18-Ma12398	NCP	%	79			70-130	Pass	
				t					
m&p-Xylenes	M18-Ma12398	NCP	%	75			70-130	Pass	
o-Xylene	M18-Ma12398	NCP	%	79			70-130	Pass	
Xylenes - Total Test	M18-Ma12398 Lab Sample ID	NCP QA	% Units	76 Result 1			70-130 Acceptance	Pass Pass	Qualifying
	_us Sample ID	Source	Jints	1.03uit i			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons -			-	Result 1	Result 2	RPD			
Naphthalene	M18-Ma12397	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M18-Ma12397	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocar	rbons - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Ma12397	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Ma12397	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M18-Ma12397	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M18-Ma12397	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M18-Ma12397	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M18-Ma12397	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M18-Ma12397	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Report Number: 588774-W

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Comments

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

Andrew Black Analytical Services Manager Harry Bacalis Senior Analyst-Volatile (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins; Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins; Imgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidence and ost production arising from this report. This document shall be reproducted or expense indicated otherwise, the tests were performed on the sampless are executing. Dut not limited to, lost profits, damages for sindicated otherwise, the tests were performed on the sampless are executing.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

WORLD RECOGNISED
ACCREDITATION

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Qualtest 8 Ironbark Close Warabrook

Attention: **Emma Coleman**

590297-S Report

PANACEA MORPETH Project name

Project ID NEW17P 0221 Received Date Mar 21, 2018

Client Sample ID			SP1-9	SP1-10	SP1-11	SP1-12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Ma24063	M18-Ma24064	M18-Ma24065	M18-Ma24066
Date Sampled			Mar 20, 2018	Mar 20, 2018	Mar 20, 2018	Mar 20, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr	actions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	360	290	250	340
TRH C29-C36	50	mg/kg	54	83	58	< 50
TRH C10-36 (Total)	50	mg/kg	414	373	308	340
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	0.2	0.1	0.2	0.2
Ethylbenzene	0.1	mg/kg	0.2	0.2	0.2	0.2
m&p-Xylenes	0.2	mg/kg	0.7	0.4	0.6	0.8
o-Xylene	0.1	mg/kg	0.2	0.1	0.1	0.2
Xylenes - Total	0.3	mg/kg	0.9	0.5	0.7	1.0
4-Bromofluorobenzene (surr.)	1	%	87	83	88	90
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	74	< 50	< 50	65
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	74	< 50	< 50	65
TRH >C16-C34	100	mg/kg	290	280	230	280
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	2.6	3.3	2.4	2.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 21, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
BTEX	Melbourne	Mar 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 21, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
% Moisture	Melbourne	Mar 21, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Report Number: 590297-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: Qualtest Order No.: Received: Mar 21, 2018 11:41 AM

 Address:
 8 Ironbark Close
 Report #:
 590297
 Due:
 Mar 26, 2018

Warabrook Phone: 02 4968 4468 Priority: 3 Day

NSW 2304 Fax: 02 4960 9775 Contact Name: Emma Coleman

Project Name: PANACEA MORPETH

Project ID: NEW17P 0221

Eurofins | mgt Analytical Services Manager : Andrew Black

Sample Detail								
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	
Sydr	ney Laboratory	- NATA Site # 1	8217					
Brist	oane Laborator	y - NATA Site #	20794					
Perth	n Laboratory - N	NATA Site # 237	36					
Exte	rnal Laboratory	,						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	SP1-9	Mar 20, 2018		Soil	M18-Ma24063	Х	Х	
2	SP1-10	Mar 20, 2018		Soil	M18-Ma24064	Х	Х	
3	SP1-11	Mar 20, 2018		Soil	M18-Ma24065	Х	Х	
4	SP1-12	Mar 20, 2018		Soil	M18-Ma24066	Х	Х	
Test	Counts					4	4	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 590297-S

Page 3 of 7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per kilogram
 mg/L: milligrams per litre

 ug/L: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100mL: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions					
TRH C6-C9			mg/kg	< 20	20	Pass	
TRH C10-C14			mg/kg	< 20	20	Pass	
TRH C15-C28			mg/kg	< 50	50	Pass	
TRH C29-C36			mg/kg	< 50	50	Pass	
Method Blank							
BTEX							
Benzene			mg/kg	< 0.1	0.1	Pass	
Toluene			mg/kg	< 0.1	0.1	Pass	
Ethylbenzene			mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes			mg/kg	< 0.2	0.2	Pass	
o-Xylene			mg/kg	< 0.1	0.1	Pass	
Xylenes - Total			mg/kg	< 0.3	0.3	Pass	
Method Blank			, ,				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions					
Naphthalene			mg/kg	< 0.5	0.5	Pass	
TRH C6-C10			mg/kg	< 20	20	Pass	
TRH >C10-C16			mg/kg	< 50	50	Pass	
TRH >C16-C34			mg/kg	< 100	100	Pass	
TRH >C34-C40			mg/kg	< 100	100	Pass	
LCS - % Recovery			mg/ng	100	100	1 455	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ione					
TRH C6-C9	1555 NET WITTEC		%	116	70-130	Pass	
TRH C10-C14			// //////////////////////////////////	99	70-130	Pass	
LCS - % Recovery			70		70 130	1 433	
BTEX							
Benzene			%	95	70-130	Pass	
Toluene			<u> </u>	99	70-130	Pass	
			<u> </u>	103	70-130	Pass	
Ethylbenzene men Zylonos				103			
m&p-Xylenes			%		70-130	Pass	
Xylenes - Total			%	103	70-130	Pass	
LCS - % Recovery	0040 NEDM E	•					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/	440	70.100	_	
Naphthalene			%	112	70-130	Pass	
TRH C6-C10			%	118	70-130	Pass	
TRH >C10-C16 Test	Lab Sample ID	QA	% Units	93 Result 1	70-130 Acceptance	Pass Pass	Qualifying
		Source			Limits	Limits	Code
Spike - % Recovery	4000 NEDM 5 1	lan-		Descrit 4			
Total Recoverable Hydrocarbons -			0.4	Result 1	70.465		
TRH C6-C9	S18-Ma17649	NCP	%	92	70-130	Pass	
TRH C10-C14	M18-Ma20632	NCP	%	109	70-130	Pass	
Spike - % Recovery							
BTEX		NG-		Result 1		_	
Benzene	S18-Ma17649	NCP	%	72	70-130	Pass	
Toluene	S18-Ma17649	NCP	%	80	70-130	Pass	
Ethylbenzene	S18-Ma17649	NCP	%	89	70-130	Pass	
m&p-Xylenes	S18-Ma17649	NCP	%	90	70-130	Pass	
o-Xylene	S18-Ma17649	NCP	%	92	70-130	Pass	
Xylenes - Total	S18-Ma17649	NCP	%	91	70-130	Pass	

mgt

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1					
Naphthalene	S18-Ma17649	NCP	%	117			70-130	Pass	
TRH C6-C10	S18-Ma17649	NCP	%	94			70-130	Pass	
TRH >C10-C16	M18-Ma20632	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Ma22199	NCP	mg/kg	59	87	39	30%	Fail	Q15
TRH C10-C14	M18-Ma21743	NCP	mg/kg	160	< 20	<1	30%	Pass	
TRH C15-C28	M18-Ma21743	NCP	mg/kg	400	< 50	<1	30%	Pass	
TRH C29-C36	M18-Ma21743	NCP	mg/kg	130	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Ma22199	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Ma22199	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Ma22199	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Ma22199	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Ma22199	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Ma22199	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Ma22199	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Ma22199	NCP	mg/kg	120	180	39	30%	Fail	Q15
TRH >C10-C16	M18-Ma21743	NCP	mg/kg	270	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Ma21743	NCP	mg/kg	340	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Ma21743	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M18-Ma24043	NCP	%	12	12	4.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Andrew Black Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Contact : EMMA COLEMAN

Address : 8 IRONBARK CLOSE WARABROOK

NEW SOUTH WALES 4053

Telephone : 02 4968 4468

Project : NEW17P-0221

Order number : ---C-O-C number : ---Sampler : ----

Site : Panacea, Morpeth
Quote number : SYBQ/388/15

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Melbourne

Contact

Address : 4 Westall Rd Springvale VIC Australia 3171

 Telephone
 : +61-3-8549 9600

 Date Samples Received
 : 30-Nov-2017 12:35

 Date Analysis Commenced
 : 30-Nov-2017

Issue Date : 05-Dec-2017 16:35

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Nancy WangSenior Semivolatile Instrument ChemistMelbourne Organics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Page : 2 of 5 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 5
Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			QC2	 	
,	Cli	ent sampli	ng date / time	23-Nov-2017 00:00	 	
Compound	CAS Number	LOR	Unit	EM1716432-001	 	
				Result	 	
EA055: Moisture Content (Dried @ 10)5-110°C)					
Moisture Content		1.0	%	11.8	 	
EG005T: Total Metals by ICP-AES						
Lead	7439-92-1	5	mg/kg	10	 	
EP075(SIM)B: Polynuclear Aromatic						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	0.6	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydroca	rbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	110	 	
C15 - C28 Fraction		100	mg/kg	280	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	390	 	
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fraction	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
^ C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	 	

Page : 4 of 5
Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC2	 	
	Cli	ent sampli	ng date / time	23-Nov-2017 00:00	 	
Compound	CAS Number	LOR	Unit	EM1716432-001	 	
				Result	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns - Continued			
>C10 - C16 Fraction		50	mg/kg	200	 	
>C16 - C34 Fraction		100	mg/kg	200	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
>C10 - C40 Fraction (sum)		50	mg/kg	400	 	
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	200	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
Sum of BTEX		0.2	mg/kg	<0.2	 	
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP075(SIM)S: Phenolic Compound Su	rrogates					
Phenol-d6	13127-88-3	0.5	%	94.0	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	90.3	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	73.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	97.1	 	
Anthracene-d10	1719-06-8	0.5	%	109	 	
4-Terphenyl-d14	1718-51-0	0.5	%	114	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	83.8	 	
Toluene-D8	2037-26-5	0.2	%	96.7	 	
4-Bromofluorobenzene	460-00-4	0.2	%	93.4	 	

Page : 5 of 5 : EM1716432 Work Order

: QUALTEST LABORATORY(NSW) PTY LTD : NEW17P-0221 Client

Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124

QUALITY CONTROL REPORT

Work Order : **EM1716432**

Client : QUALTEST LABORATORY(NSW) PTY LTD

Contact : EMMA COLEMAN

Address : 8 IRONBARK CLOSE WARABROOK

NEW SOUTH WALES 4053

Telephone : 02 4968 4468
Project : NEW17P-0221

Order number : ---C-O-C number : ---Sampler : ----

Site : Panacea, Morpeth
Quote number : SYBQ/388/15

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Melbourne

Contact

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9600

Date Samples Received : 30-Nov-2017

Date Analysis Commenced : 30-Nov-2017

Issue Date : 05-Dec-2017

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Nancy WangSenior Semivolatile Instrument ChemistMelbourne Organics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Page : 2 of 5 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 1284052)							
EM1716430-001	Anonymous	EA055: Moisture Content		1	%	12.0	12.1	0.00	0% - 50%
EM1716456-003	Anonymous	EA055: Moisture Content		1	%	17.4	18.8	8.08	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lot	: 1282240)							
EM1716393-019	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	13	13	0.00	No Limit
EM1716304-001	Anonymous	EG005T: Lead	7439-92-1	5	mg/kg	11	11	0.00	No Limit
EP075(SIM)B: Polyr	uclear Aromatic Hydro	carbons (QC Lot: 1284027)							
EM1716432-001	QC2	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.6	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons								

Page : 3 of 5 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1283237) - continued							
EM1716432-001	QC2	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EM1716456-009	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 1284028)							
EM1716456-006	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	29200	30000	2.51	0% - 20%
		EP071: C29 - C36 Fraction		100	mg/kg	6920	7210	4.15	0% - 20%
		EP071: C10 - C14 Fraction		50	mg/kg	350	330	7.28	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	36500	37500	2.89	0% - 20%
EM1716432-001	QC2	EP071: C15 - C28 Fraction		100	mg/kg	280	360	24.8	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	110	170	42.0	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	390	530	30.4	0% - 50%
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 1283237)							
EM1716432-001	QC2	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EM1716456-009	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 1284028)							
EM1716456-006	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	33800	34700	2.77	0% - 20%
		EP071: >C34 - C40 Fraction		100	mg/kg	2620	2850	8.18	0% - 20%
		EP071: >C10 - C16 Fraction		50	mg/kg	680	640	6.57	0% - 50%
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	37100	38200	2.90	0% - 20%
EM1716432-001	QC2	EP071: >C16 - C34 Fraction		100	mg/kg	200	220	13.6	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	200	300	37.4	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	400	520	26.1	0% - 50%
EP080: BTEXN (QC	Lot: 1283237)								
EM1716432-001	QC2	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EM1716456-009	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page : 4 of 5 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR Unit		Result	Concentration	LCS	Low	High		
EG005T: Total Metals by ICP-AES (QCLot: 128224	0)									
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	91.8	78	106		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 1284027)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	96.6	80	121		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	99.7	70	130		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	99.4	80	120		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	99.0	70	124		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	103	80	122		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	1.5 mg/kg	110	80	126		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	99.1	70	128		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	102	80	125		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	91.5	70	130		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	104	80	126		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	92.4	70	124		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	99.4	75	125		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	86.1	65	125		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	91.4	65	128		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	92.6	65	126		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	92.3	65	127		
EP080/071: Total Petroleum Hydrocarbons (QCLot	t: 1283237)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	115	70	127		
EP080/071: Total Petroleum Hydrocarbons (QCLo	:: 1284028)									
EP071: C10 - C14 Fraction		50	mg/kg	<50	806 mg/kg	95.4	65	131		
EP071: C15 - C28 Fraction		100	mg/kg	<100	3006 mg/kg	104	70	126		
EP071: C29 - C36 Fraction		100	mg/kg	<100	1584 mg/kg	104	70	122		
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50						
EP080/071: Total Recoverable Hydrocarbons - NEF	PM 2013 Fractions (QCLo	t: 1283237)				'				
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	113	68	125		
EP080/071: Total Recoverable Hydrocarbons - NEF	PM 2013 Fractions (QCLo	t: 1284028)								
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1160 mg/kg	99.3	68	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3978 mg/kg	103	72	116		
EP071: >C34 - C40 Fraction		100	mg/kg	<100	313 mg/kg	106	38	132		
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50						

Page : 5 of 5 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080: BTEXN (QCLot: 1283237) - continued								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	112	74	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	118	77	125
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	115	73	125
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	116	77	128
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	114	81	128
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	113	66	130

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)			
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG005T: Total Me	tals by ICP-AES (QCLot: 1282240)									
EM1716392-001	Anonymous	EG005T: Lead	7439-92-1	50 mg/kg	94.6	76	124			
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons(C	QCLot: 1284027)								
EM1716439-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	95.9	67	117			
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	107	52	148			
EP080/071: Total I	Petroleum Hydrocarbons (QCLot: 12	283237)								
EM1716433-001	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	87.5	42	131			
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 12	284028)								
EM1716433-001	Anonymous	EP071: C10 - C14 Fraction		806 mg/kg	106	53	123			
		EP071: C15 - C28 Fraction		3006 mg/kg	109	70	124			
		EP071: C29 - C36 Fraction		1584 mg/kg	106	64	118			
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2	2013 Fractions (QCLot: 1283237)								
EM1716433-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	83.3	39	129			
EP080/071: Total I	Recoverable Hydrocarbons - NEPM 2	2013 Fractions (QCLot: 1284028)								
EM1716433-001	Anonymous	EP071: >C10 - C16 Fraction		1160 mg/kg	106	65	123			
		EP071: >C16 - C34 Fraction		3978 mg/kg	107	67	121			
		EP071: >C34 - C40 Fraction		313 mg/kg	104	44	126			
EP080: BTEXN (C	CLot: 1283237)									
EM1716433-001	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	109	50	136			
		EP080: Toluene	108-88-3	2 mg/kg	109	56	139			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1716432** Page : 1 of 4

Client : QUALTEST LABORATORY(NSW) PTY LTD Laboratory : Environmental Division Melbourne

Contact: EMMA COLEMANTelephone: +61-3-8549 9600Project: NEW17P-0221Date Samples Received: 30-Nov-2017Site: Panacea, MorpethIssue Date: 05-Dec-2017

Sampler : --- No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Matrix: Soil				Evaluation	i: 🔻 = Holding time	e breach ; 🗸 = vvitni	n nolaing tim	
Method	Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) QC2	23-Nov-2017				01-Dec-2017	07-Dec-2017	✓	
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T) QC2	23-Nov-2017	30-Nov-2017	22-May-2018	✓	30-Nov-2017	22-May-2018	√	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM)) QC2	23-Nov-2017	01-Dec-2017	07-Dec-2017	1	01-Dec-2017	10-Jan-2018	✓	
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP071) QC2	23-Nov-2017	01-Dec-2017	07-Dec-2017	1	01-Dec-2017	10-Jan-2018	√	
Soil Glass Jar - Unpreserved (EP080) QC2	23-Nov-2017	30-Nov-2017	07-Dec-2017	✓	01-Dec-2017	07-Dec-2017	√	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions								
Soil Glass Jar - Unpreserved (EP071) QC2	23-Nov-2017	01-Dec-2017	07-Dec-2017	1	01-Dec-2017	10-Jan-2018	√	
Soil Glass Jar - Unpreserved (EP080) QC2	23-Nov-2017	30-Nov-2017	07-Dec-2017	1	01-Dec-2017	07-Dec-2017	√	
EP080: BTEXN					•	•	:	
Soil Glass Jar - Unpreserved (EP080) QC2	23-Nov-2017	30-Nov-2017	07-Dec-2017	1	01-Dec-2017	07-Dec-2017	√	

Page : 3 of 4 Work Order EM1716432

Client QUALTEST LABORATORY(NSW) PTY LTD

NEW17P-0221 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : EM1716432

Client : QUALTEST LABORATORY(NSW) PTY LTD

Project : NEW17P-0221

ALS

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.