Preliminary & Detailed Site Investigation

34 Wyndella Road, Lochinvar NSW

NEW23P-0216-AA 28 November 2023

Document control record

Document prepared for:

AEP Developments Pty Ltd PO BOX 236 Baulkham Hills NSW 1755

Document prepared by: Qualtest Laboratory (NSW) Pty Ltd ABN 98 153 268 896 2 Murray Dwyer Circuit Mayfield West, NSW 2304

T 02 4968 4468

W <u>www.qualtest.com.au</u>

Docu	Document Control						
Report Title		Preliminary & Detai	Preliminary & Detailed Site Investigation				
Document ID		NEW23P-0216-AA	NEW23P-0216-AA				
Project			Proposed Manufactured Homes Estate 34 Wyndella Road, Lochinvar NSW				
Rev	Date	Revision details/status	Prepared by	Author	Reviewer		
0	28/11/2023	Original	Qualtest	E. Coleman	L. Betz		

Executive Summary

Qualtest Laboratory NSW Pty Ltd (Qualtest) has carried out a Preliminary and Detailed Site Investigation (PDSI) on behalf of AEP Developments Pty Ltd, for the site located at 34 Wyndella Road, Lochinvar NSW (the site).

The site is zoned RU2 Rural Landscape and currently contains a residential dwelling in the eastern portion of the site. It is understood that the site is proposed to be developed into Manufactured Homes Estate (MHE) and that the PDSI Is required to assist with the Development Application (DA).

It is noted that Qualtest have carried out a geotechnical assessment on the site in conjunction with the PDSI (ref: NEW23P-0216-AB). Information on subsurface conditions from the geotechnical investigation have been included in this report.

The objectives of the works were to:

- Assess former and current site uses and/or activities, that have the potential to cause contamination;
- Assess the location and extent of potential soil and surface water contamination on the site (if any); and,
- Provide recommendations on the need for further assessment, management and/or remediation (if required).

In order to achieve the above objectives, Qualtest carried out the following scope:

- Desktop and site history assessment;
- Collection of soil samples from 34 surface sample locations, 18 stockpile samples from 5 stockpiles, and a surface water sample;
- Laboratory analysis of selected soil samples for the Contaminants of Potential Concern (COPC); and
- Data assessment and preparation of a Preliminary and Detailed Site Investigation Report.

The site history review showed the site has been used for grazing farm land since the early 1900s until at least 1991. A residence and associated sheds and swimming pool were constructed on the site between 1991 and 2001. Five stockpiles of fill material were observed on the site, ranging in size from 5m³ to 230m³. Materials/equipment are stored on the site around the dwelling and associated sheds. Two dams are also present on the site.

Three Areas of Environmental Concern (AECs) were identified based on the site history and site observations:

- Agricultural practices, potential use of pesticides Potential for pesticide use and other farming related contamination;
- 2. Storage of vehicles, equipment and waste materials: Potential leaks and spills and flaking of metals etc; and
- 3. Filling on the site: Use of fill of unknown quality and origin.

To provide an assessment of potential soil contamination, 34 surface soil sampling locations, 18 stockpile soil samples, and one surface water sampling location were carried out across the site. The sampling locations targeted the AECs identified.

The laboratory results reported concentrations of arsenic and copper above the HIL/EIL in one surface soil sample location (SS01A), and asbestos (FA and ACM) above the HSL in one

28 November 2023 1 NEW 23P-0216-AA

stockpile, SP01. The surface soil sample was located under waste materials adjacent to a shed in the eastern portion of the site. Stockpile SP01 is also located in the eastern portion of the site.

Other than stockpiled materials, fill material was not identified on site in test pits excavated as part of the geotechnical assessment.

Based on the preliminary and detailed assessment completed, it is considered that the site can be made suitable for the proposed residential development, provided the following recommendations are implemented:

- Preparation of a Remediation Action Plan (RAP) will be required to outline the remediation
 for the soil contamination identified, including the arsenic and copper in surface soils, and
 asbestos (FA and ACM) in stockpile SP01, above the adopted criteria in the eastern portion
 of the site. Based on the proposed development, it is likely that remediation will comprise
 excavation and offsite disposal. The RAP will include assessment of remediation options,
 and information on what management plans are required;
- Preparation of an Asbestos Removal Control Plan to be implemented during remediation and earthworks. The plan should outline the procedures for the handling and removal of soils containing asbestos. Care must be taken to prevent spreading asbestos onto other areas of the site. It is envisaged that the ARCP would be prepared by the contractor undertaking the removal works; and
- Preparation of an Unexpected Finds Procedure to manage potential unexpected finds of contamination during earthworks and construction for the proposed development.

This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013). The report comprises a stage 1 and 2 assessment in accordance with SEPP (Resilience and Hazards) 2021, Chapter 4.

Table of Contents:

1.0		Introduction	3
	1.1	Objectives	3
	1.2	Scope of Works	3
2.0		Site Description	4
	2.1	Site Identification	4
	2.2	Topography and Drainage	4
	2.3	Regional Geology	5
	2.4	Hydrogeology	5
	2.5	Acid Sulfate Soils	5
3.0		Site History Review	5
	3.1	Historical Titles Search	6
	3.2	Aerial Photograph Review	6
	3.3	Site Observations	8
	3.4	NSW EPA Records & Environment Protection Licenses	9
	3.5	Anecdotal Information	9
	3.6	Section 10.7 Certificate	9
	3.7	Previous Reports	
	3.8	Summary of Site History	
	3.9	Potential Offsite Sources of Contamination	
	3.10	Gaps in the Site History	
	3.11	Areas of Environmental Concern	
4.0		Data Quality Objectives	
	4.1	Step 1 – State the Problem	
	4.2	Step 2 – Identify the Decisions/Goal of the Study	
	4.3	Step 3 – Identify the Information Inputs	
	4.4	Step 4 – Define the Boundaries of the Study	
	4.5	Step 5 – Develop the Analytical Approach	
	4.6	Step 6 – Specify Performance or Acceptance Criteria	
	4.7	Step 7 – Develop the Plan for Obtaining Data	
5.0	- 1	Field and Laboratory Investigations	
	5.1	Sampling Plan	
	5.2	Soil Sampling	
	5.3	Surface Water Sampling	
	5.4	Laboratory Analysis	
6.0		Investigation Criteria	. 15
	6.1 Soil	15	

	6.2	Surface Water	18
7.0		Quality Assurance/Quality Control	19
8.0		Results	19
	8.1	Subsurface Conditions	19
	8.2	Surface Water Field Parameters	22
	8.3	Laboratory Results	23
9.0		Conceptual Site Model	24
10.0		Conclusions and Recommendations	27
11.0		Limitations	28
12.0		References	28

Attachments:

Appendix A - Figures: Figure 1 - Site Location Plan

Figure 2 – Lot Location Plan

Figure 3A – Site Features Plan

Figure 3B – Site Features Plan

Figure 4A – Sample Location Plan

Figure 4B – Sample Location Plan

Figure 5 – Identified Contamination

Appendix B: Groundwater Bore Search

Appendix C: Historical Titles

Appendix D: Aerial Photographs

Appendix E: Site Photographs

Appendix F: NSW EPA Records

Appendix G: Section 10.7 Certificates

Appendix H: Logs

Appendix I: Tables: Table 1 – Soil Analytical Results – Metals, OCPs

Table 2 – Soil Analytical Results – PAHs, BTEX, TRH

Table 3 – Asbestos

Table 4 – Surface Water Analytical Results

Table 5 – Quality Control Results

Appendix J: Data Validation Report

Appendix K: Laboratory Documentation

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) has carried out a Preliminary and Detailed Site Investigation (PDSI) on behalf of AEP Developments Pty Ltd, for the site located at 34 Wyndella Road, Lochinvar NSW (the site). The site location is shown on Figure 1, Appendix A.

The site is zoned RU2 Rural Landscape and currently contains a residential dwelling in the eastern portion of the site. It is understood that the site is proposed to be developed into Manufactured Homes Estate (MHE) and that the PDSI Is required to assist with the Development Application (DA).

It is noted that Qualtest have carried out a geotechnical assessment on the site in conjunction with the PDSI (ref: NEW23P-0216-AB). Information on subsurface conditions from the geotechnical investigation have been included in this report.

This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013). The report comprises a Stage 1 and Stage 2 assessment in accordance with SEPP (Resilience and Hazards) 2021, Chapter 4.

1.1 Objectives

The objectives of the works were to:

- Assess former and current site uses or activities, that have the potential to cause contamination;
- Assess the location and extent of potential soil and surface water contamination on the site (if any); and,
- Provide recommendations on the need for further assessment, management and/or remediation (if required).

1.2 Scope of Works

In order to achieve the above objectives, Qualtest carried out the following scope:

- Desktop and site history assessment;
- Collection of soil samples from 34 surface sample locations, 18 stockpile samples from 5 stockpiles, and a surface water sample;
- Laboratory analysis of selected soil samples for the Contaminants of Potential Concern (COPC); and
- Data assessment and preparation of a Preliminary and Detailed Site Investigation Report.

2.0 Site Description

2.1 Site Identification

General site information is provided below in Table 2.1. The site location is shown in Figure 1, Appendix A.

Table 2.1: Summary of Site Details

Site Address:	34 Wyndella Road, Lochinvar NSW	
Approximate site area and dimensions:	Approx. 10 ha Approx. 130m wide (north to south) by 800m long (east to west) at its widest and longest points	
Title Identification Details:	Lot 225 DP246447 within the Maitland local government area	
Current Zoning	RU2 Rural Landscape	
Current Ownership: David Troy Heien Gail Alison Heien		
Current Occupier and Land Use:	Rural Residential	
Previous Landuse: Rural Residential, agricultural (grazing land)		
Proposed Landuse: Proposed Manufactured Homes Estate		
Adjoining Site Uses: North – Rural residential land East – Low density residential South – Rural residential land leading to New England Highway West – Rural residential land		
Site Coordinates for approx. centre of site:	32°41'52.51"S 151°28'08.02"E	

2.2 Topography and Drainage

Reference to the NSW Land and Property Information Spatial Information Exchange website (https://six.nsw.gov.au/wps/portal/) indicated the elevation of the site was approximately 40m AHD in the western portion with a gentle incline to 50m AHD in the eastern portion.

The site was observed to be on south to west facing gentle slopes of a locally prominent hill formation, rising to the north of the site.

The ground surface consisted of grass with a dwelling in the eastern portion of the site, and dams in the central and western portions of the site. Rain falling on the site would be expected to infiltrate into the site surface. Excess surface water is expected to flow west into the site dams. During high rainfall, excess surface water would flow into stormwater drains on Wyndella Road and then into Lochinvar Creek located about 1km west of the site.

2.3 Regional Geology

The 1:100,000 Newcastle Hunter Area Coastal Quaternary Geological Maps indicates that the site is underlain Permian aged Dalwood Group: sandstone, lithic sandstone, conglomerate, siltstone, basalt.

2.4 Hydrogeology

Groundwater beneath the site is anticipated to be present in a semi-confined aquifer within residual soils/weathered rock at depths greater than 5m below ground surface (bgs).

Groundwater flow direction is anticipated to flow to the north-west discharging to the Hunter River located about 3km north-west of the site.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

A search of the NSW Department of Primary Industries (Office of Water) registered groundwater bores located within a 500m radius of the site was undertaken. The search revealed that there were three bores within this radius. A copy of the search is provided in Appendix B.

Bore ID	Installation Date	Purpose	Approx. Distance and Gradient from Site	Final Depth (m)	Water Bearing Zones (m)
GW022693	01/01/1865	Stock, Irrigation, Monitoring bore	450m, down gradient	12.2	-
GW072724	31/12/1992	Stock, Domestic, Farming	250m, down gradient	70	-
GW071829	01/10/1992	Town Water Supply	250m, down gradient	16	16

Table 2.4 – Groundwater Bore Search

2.5 Acid Sulfate Soils

Reference to the Acid Sulfate Soil online database from State of NSW and Department of Planning, Industry and Environment, 2021 (espade.environment.nsw.gov.au) the site is located in an area of 'no known occurrence' of acid sulfate soils.

3.0 Site History Review

A site history review was undertaken as part of the PCA, and included:

- A review of historical ownership of the site (Lot 225 DP246447);
- A review of aerial photography from the past 47 years;
- A review of Section 10.7 Certificate from Maitland City Council;
- Search of the NSW EPA's list of contaminated sites applying to the site and nearby properties; and

 A site walkover to help identify current and previous activities carried out on the site, identify surrounding land uses, and assess Areas of Environmental Concern (AECs) and Chemicals of Potential Concern (COPCs).

The information provided from the above reviews is summarised in the sections below.

3.1 Historical Titles Search

A search of historical titles for Lot 225 DP246447 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the site dating back to 1909, was obtained. The results of the search are included in Appendix C. A summary of ownership is presented below in Tables 3.1

Table 3.1: Summary of Historical Titles – 34 Wyndella Road (Lot 225 DP246447)

Date	Owner
23 Dec 1988 todate	David Troy Heien Gail Alison Heien
21 Dec 1979 to 23 Dec 1988	Dino Cosmo, cellarman Edda Cosmo, his wife
6 Feb 1974 to 21 Dec 1979	Jones Nominees Pty Limited
14 Jul 1958/ 20 Feb 1959 to 6 Feb 1974	Christopher Michael John Wootton, grazier Jeremy Wootton, grazier
16 May 1955 to 14 Jul 1958/ 20 Feb 1959	Winifred Elizabeth Fuge Capp, widow Norman Edward Weeks, solicitor
19 Apr 1945 to 16 May 1955	Roy Lyle Capp, grazier
31 Aug 1943 to 19 Apr 1945	William Hooke Mackay, grazier John Julian Augustus Mackay, grazier Francis Keith Mackay, grazier
23 May 1940 to 31 Aug 1943	William Hooke Mackay, (jnr) grazier / trustee John Julian Augustus Mackay, grazier / trustee Francis Keith Mackay, grazier / trustee William Hooke Mackay, estate
30 Sep 1909 to 23 May 1940	William Hooke Mackay, grazier

The historical title search indicated that the site has mainly been owned by private individuals (graziers) from 1909 to date. The Jones Nominees Pty Ltd owned the site from 1974 to 1979. The current site owners, the Heien family, purchased the site in 1988.

3.2 Aerial Photograph Review

Aerial photographs of the site from 1976, 1984, 1991, and 2001 were obtained from the NSW Government Spatial Portal (https://portal.spatial.nsw.gov.au/), and satellite images from Google Earth for 2015 and 2023, were assessed by a Qualtest Environmental Scientist. The results of the aerial photograph review are summarised below in Table 3.2. The aerial photographs are presented in Appendix D.

Table 3.2: Aerial Photograph Review

Year	The Site	Surrounding Land
1976	The site appears to consist of vacant cleared agricultural land, with a single dam in the central portion of the site.	The surrounding land uses appear to consist of cleared agricultural land in each direction. The New England Highway appears to the south with some rural residential properties. Saint Joseph's College is present to the south west of the site.
1984	Potential eroded soil appears in north- western portion of the site. Remainder of the site appears relatively similar to 1976 aerial photograph.	Rural residential dwellings appear on the bordering northern and southern allotments of the site. Three dams have been excavated to the north of the site and an additional dam to the south. Continued residential development to the south and south-east around the New England Highway.
		The remaining surrounding area appears relatively unchanged from the 1976 aerial photograph.
1991	Two small structures/pieces of equipment appear stored in the eastern and western portions of the site. The remainder of the site appears relatively similar to the 1984 aerial photograph.	Low density residential dwellings appear to the north east of the site. The remaining surrounding area appears relatively unchanged from the 1984 aerial photograph.
2001	The small structures/pieces of equipment appear to have been removed. A residential dwelling, gardens and small sheds appear in the north eastern portion of the site. A Dam has been excavated in the north-western portion of the site.	Continued residential development to the north-east. The remaining surrounding area appears relatively unchanged to the 1991 photograph.
2015	The site appears similar to the 2001 aerial photograph.	Continued residential development to the north-east and east. The remaining surrounding area appears relatively unchanged from the 2001 aerial photograph.
2023	The site appears similar to the 2015 aerial photograph.	Large increase in residential development to the north-east, east, and south.

3.3 Site Observations

A Qualtest Environmental Scientist visited the site on 2 and 6 November 2023. Selected site photographs are presented in Appendix E. The location of site features are shown on Figures 3A and 3B, Appendix A. A summary of the site features is outlined below:

- A residential dwelling constructed of brick with corrugated tin roof was observed in the north-eastern portion of the site. Vehicles were parked on the western side of the dwelling, and equipment (fuel drums, boat motors, power tools, gardening tools etc) were observed on the southern and eastern sides of the dwelling (see Photographs 1 and 2).
- A fenced off area was observed on the north-eastern side of the dwelling which encompassed a paved area with a pool and garden shed (Shed 3), which contained gardening equipment and chairs (see Photograph 3).
- A shed (Shed 1) was observed to the north-east of the dwelling, with a timber frame, corrugated tin roof and earthen floor. The shed contained an old tractor and some possible oil staining was present (see Photograph 4).
- A shed (Shed 2) was observed east of the dwelling, constructed of corrugated metal with a concrete floor. The shed contained gardening equipment including a lawn mower, gardening equipment, bikes, hoses, cement mixer, ladders, timber fencing, and tyres. An IBC was observed on the northern side of Shed 2 (see Photographs 5 to 8).
- A storage area was observed north-east of the dwelling, and comprised timber, plastic, plastic tanks (IBCS, and drums (full and empty, contents unknown), metal drums, scrap metal, farm equipment, bricks, batteries(x2), water tanks, bathtubs, ash pile, and tyres (see Photographs 9 to 14).
- Metal, timber and tyres were observed on the northern boundary of the site, west of the dwelling (see Photographs 15 and 16).
- Water tanks were observed to the east of the dwelling with tarps and hoses also placed on top of them. A septic tank was observed to the east of the water tanks. (see Photographs 17 and 18).
- A cubby house was observed to the east of the dwelling, constructed of timber (see Photograph 19).
- A stockpile (Stockpile SP01, approx. 230m³) was observed west of the dwelling, with exposed concrete and brick on its western edge (see Photographs 20 and 21).
- A dam (Dam 1) was observed in the north-western portion of the site with tyres beneath the water surface (see Photograph 22).
- A dam (Dam 2) was observed in the central portion of the site. A stockpile (SP02, approx. 200m³) was observed north of Dam 2, and a stockpile (SP03, approx. 200m³) was observed south-west of Dam 2. The stockpiles possibly comprised material excavated to construct Dam 2 (see Photographs 23 and 24).
- A stockpile and stone wall (Stockpile SP04, approx. 125m³) was observed to the north-east of Dam 1 in the north-western portion of the site and was comprised of concrete, asphalt, timber, vegetation and brick (see Photographs 25 to 27).
- A road crossing was observed in the central portion of the site on the southern boundary, constructed with brick and concrete. The drainage line to the north of the road crossing had been partially filled in with asphalt and concrete (see Photographs 28 and 29).
- A stockpile (Stockpile SP05, approx. 5m³) was observed on the southern boundary comprised of gravel and asphalt (see Photograph 30).

3.4 NSW EPA Records & Environment Protection Licenses

Contaminated Land Records

A search of the NSW EPA database of notices issued under the Contaminated Land Management Act, 1997 (CLM Act) revealed there were no properties listed as having current and/or former notices within the Lochinvar suburb.

A search of sites that have been notified to NSW EPA as contaminated (as of 9 November 2023) was also carried out. The search identified no properties within the Lochinvar suburb which have been notified to the NSW EPA as being contaminated.

A copy of the above searches is provided in Appendix F.

Environment Protection Licenses (EPLs)

The Protection of the Environment Operations (POEO) register under Section 308 of the POEO Act 1997, was searched for Environment Protection Licenses (EPLs) for the suburb of Lochinvar NSW. The search revealed no properties within the suburb of Lochinvar which had current and/or former EPLs.

A copy of the above search is provided in Appendix F.

NSW EPA PFAS Investigation Program

Based on a review of the NSW EPA Government PFAS Investigation Program (<u>ref:</u> <u>https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program</u>), there are no properties in the suburb of Lochinvar that have been identified as a site that is likely to have used large quantities of PFAS.

NSW EPA Former Gasworks Sites

Based on a review of the NSW EPA website <u>(ref: https://www.epa.nsw.gov.au/your-environment/contaminated-land/other-contamination-issues/former-gasworks-sites</u>), there were no former gasworks identified in the suburb of Lochinvar.

3.5 Anecdotal Information

The site is currently leased to tenants, and no one was available to interview about the site history. Based on the information obtained via historical titles, aerial photographs and publicly available information, it is considered that the absence of an interview does not affect the outcome of the assessment.

3.6 Section 10.7 Certificate

A Section 10.7 Certificate for the site was obtained from Maitland City Council, and is presented in Appendix G.

Relevant information is summarised below:

Contaminated land	a) The land to which this certificate relates is NOT significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.
	b) The land to which this certificate relates is NOT subject to a management order within the meaning of the Contaminated Land Management Act 1997.
	c) The land to which this certificate relates is NOT the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.

d) The land to which this certificate relates is NOT the subject ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.	
	e) Council has NOT been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this Certificate relates.
Loose fill asbestos insulation	If the land includes residential premises, within the meaning of the Home Building Act 1989, Part 8, Division 1A, that are listed on the Register kept under that Division, a statement to that effect. There are no premises on the subject land listed on the register.

3.7 Previous Reports

Qualtest has not been provided with, or been made aware of any previous contamination assessments conducted on the site.

3.8 Summary of Site History

The assessed uses of the site, based on the site history review, have been summarised below:

- Aerial imagery and historical titles indicate the site was vacant farmland (grazing) until at least 1991.
- A residential dwelling was constructed in the eastern portion of the site between 1991 and 2001. The site remained relatively similar from 2001 onwards with the addition of a variety of different machinery/equipment (tractor, boat gardening equipment, lawnmowers, vehicles) stored around the dwelling.
- Five stockpiles of soil/material were observed on the site ranging in size from 5m³ to 230m³.

3.9 Potential Offsite Sources of Contamination

No potential offsite sources of contamination have been identified.

3.10 Gaps in the Site History

Whilst the site history is reasonably comprehensive there are some gaps identified in the review as follows:

- The uses of the site prior to the early 1900s is not known, but given the historical titles search
 of owner occupations being grazier, it is likely the land was cleared land used for cattle
 grazing;
- Whether previous buildings were located on the site prior to the 1970s is not known;
- The extent of fill material on the site, and the origin and quality of fill materials is not known; and
- The potential agricultural practices conducted on the site and use of pesticides.

3.11 Areas of Environmental Concern

Table 3.11 (below) shows the areas of environmental concern (AECs) and associated Chemicals of Potential Concern (COPCs) identified for the site.

Table 3.11 – Areas of Environmental Concern and Chemicals of Potential Concern

AEC	Potentially Contaminating Activity	Potential COCs	Likelihood of Contamination
Agricultural practices, potential use of pesticides	Potential for pesticide use and other farming related contamination	TRH, BTEX, PAH, OCPs, metals	Low
2. Storage of vehicles, equipment and waste materials	Potential leaks and spills, flaking of metals etc	TRH, BTEX, PAH, OCPs, metals, asbestos	Low to medium
		(CoPCs dependent on material/waste type)	
3. Filling on the site	Use of imported fill of unknown quality and origin	TRH, BTEX, PAH, OCPs, metals, asbestos	Low to medium

4.0 Data Quality Objectives

4.1 Step 1 – State the Problem

There is a potential for soil and surface water contamination to exist from past site uses. Three AECs were identified for the site, as described in Table 3.11, above.

4.2 Step 2 – Identify the Decisions/Goal of the Study

The decisions to be made based on the contamination assessment are:

- Is the site characterisation sufficient to provide adequate confidence to make decisions regarding remediation and or management?
- Are the concentrations of COPCs above the adopted landuse criteria?
- Do potential risks associated with contamination exist, and if so, what are they?
- Will the site require remediation, and if so, what level and type of remediation will be required to make the site suitable for the proposed land use, from a contamination perspective?

4.3 Step 3 – Identify the Information Inputs

Inputs into the decisions are:

- Have samples been collected in the required areas of the site (the identified AECs)?
- Have samples been collected at the required frequencies and adequately represent the conditions on site?
- Is the data set adequate to perform statistical analysis, if required (i.e. calculate 95% UCL)?
- Have the samples been analysed for the COPCs identified?
- Have concentrations exceeding the adopted criteria been reported in the samples?

• If concentrations exceeding adopted criteria have been reported, will these areas require remediation and/or management?

The informational inputs into the decision are:

- Field observations and field screening results;
- Laboratory results (concentrations of contaminants in soil);
- QA/QC documentation and data:
- Adopted assessment criteria (see Section 6); and,
- Relevant NSW EPA endorsed Guidelines.

The media to be sampled and analysed is:

- Soil; and
- Surface water.

4.4 Step 4 – Define the Boundaries of the Study

The study boundary is defined laterally as the site boundary, Lot 225 DP246447, within the Maitland City local government area. The site is located at 34 Wyndella Road, Lochinvar NSW and covers an area of approximately 10ha (refer to Figure 1, Appendix A). Vertically, the study boundary will be defined by the depth of fill, anticipated to be a maximum of 2m bgs.

Temporally, the study boundary is the date of sampling, 2 and 6 November 2023.

4.5 Step 5 – Develop the Analytical Approach

The analytical approach can be defined as: -

- If the laboratory quality assurance/ quality control data are within the acceptable ranges, the data will be considered suitable for use;
- If the COPCs are reported above the adopted criteria and/or at elevated levels (where no criteria are available) then it will be considered whether further assessment, remediation and/or management measures are required;
- Where practical and/or appropriate, the 95% Upper Confidence Limit (UCL) of the
 validation samples will be calculated. If the 95% UCL is above the adopted criteria, then it
 will be considered whether further assessment, remediation and/or management measures
 are required; and,
- Where concentrations are below the assessment criteria, then no further assessment, remediation and/or management of that contaminant, in that area, in that media, is required. This is provided samples have been collected at the required frequencies (as per NSW EPA guidelines) and adequately represent the conditions on site, if not, additional sampling may be required.

4.6 Step 6 – Specify Performance or Acceptance Criteria

There are two types of errors:

- Type 1 finding that the site is contaminated, when it is not;
- Type 2 finding that the site is uncontaminated, when it is.

To reduce the potential for errors, the following will be applied:

 Appropriate field sampling methodologies and collection of field data (including sampling frequency);

- Robust QA/QC assessment of field procedures and laboratory data;
- Appropriate sampling and analytical density;
- Use of statistics (i.e. 95% UCL) to assess arithmetic average of COPCs. Use of statistics will also take into account:
 - o No sample should report a concentration more than 250% of the adopted criteria; and,
 - The standard deviation of a sample population should not exceed 50% of the adopted criteria.

The adopted criteria are shown in Section 6 below.

4.7 Step 7 – Develop the Plan for Obtaining Data

The methodologies presented in this report are designed to meet the nominated DQOs. Optimisation of the data collection process will be achieved by:

- Working closely with the analytical laboratories and sampling equipment suppliers so that
 appropriate procedures and processes are developed and implemented prior to and
 during the field work and that sampling, handling, and transport to, and processing by, the
 analytical laboratories is appropriate.
- Conduct sampling in accordance with industry best practice and Standard Operating Procedures (SOPs) for the type of sampling being conducted.

5.0 Field and Laboratory Investigations

5.1 Sampling Plan

The site is about 10 ha in area. The NSW EPA (2022) Sampling Design Part 1 – Application, Contaminated Land Guidelines recommends a minimum of 131 soil sampling locations for a site up to 11.0ha. As the majority of the site is vacant grazing land, a reduced sampling plan, targeting the Areas of Environmental Concern, was adopted.

Borehole and test pit locations were also completed as part of the geotechnical assessment, and are included below as they provided information on subsurface conditions across the site.

The following sampling was completed. The sampling locations are shown on Figure 4A and 4B, Appendix A.

Area	Sampling Locations
Dam 1	SW01
Dwelling including pool area and shed and car park, approx. 1,000m ²	SS19, SS21 to SS25
Shed 1, approx. 20m ²	SS07 to SS10
Shed 2, approx. 60m ²	SS11 to SS18
Shed 3, approx. 5m ²	SS20
Waste/Material Storage Areas, approx. 150m ²	SS01 to SS06, SS01A, SS26 to SS28

Area	Sampling Locations
SP01, approx. 230m ³	SP1-1 to SP1-10
SP02 (approx. 200m³, appeared to be natural material excavated from Dam 2	SP2-1
SP03 (approx. 200m³, appeared to be natural material excavated from Dam 2	SP3-1
SP04, approx. 125m ³	SP4-1 to SP4-5
SP05, approx. 5m ³	SS30
Fill in road crossing, approx. 5m ²	SS31
Fill in drainage line leading to Dam 2, approx. 100m long	SS32, SS3
General site coverage	SS29, SS34
Geotechnical test pits and boreholes across the site	TP01 to TP05, TP09 to TP11, BH06 to BH08, BH12 to BH14.
	No environmental samples collected from geotechnical locations.

5.2 Soil Sampling

Soil sampling was carried out on 2 and 6 November 2023 under the full-time attendance of an environmental scientist from Qualtest.

Samples from stockpiles SP01 to SP04 were collected using an excavator. The test pits were excavated to depths between 0.5m to 1.0m terminating in natural soils.

Surface samples (SS01A, and SS01 to SS34) were collected using hand tools or with the assistance of an excavator.

Gravimetric asbestos sampling was carried out each surface sample locations, and each stockpile sample. Gravimetric sampling comprised collection of a 10L soil sample, which was sieved through a 6.7mm sieve, and potential Asbestos Containing Material (ACM) fragments weighed. The results of the gravimetric testing are included in Section 8.3, below.

The soil samples were placed into 250mL laboratory supplied glass jars and zip locked bags for laboratory analysis. Each sample was collected using a clean pair of nitrile gloves. Each soil sample was placed directly into an ice-chilled esky and remained chilled during fieldwork and transportation to the laboratory.

5.3 Surface Water Sampling

One surface water sample (SW01) was collected from Dam 1 in the western portion of the site.

The surface water sample was collected directly into laboratory supplied jars and bottles. Each sample was placed directly into an ice-chilled esky and remained chilled during transportation to the laboratory.

Field water quality readings for pH, electrical conductivity (EC), dissolved oxygen (DO), redox potential and temperature, were taken using a handheld water quality meter.

5.4 Laboratory Analysis

The samples were dispatched to the NATA-accredited Eurofins laboratory under chain of custody conditions. Soil samples were selected for analysis based on field observations, and providing a spread across the site. The soil samples were analysed for the following:

- Total Recoverable Hydrocarbons (TRH) 12 primary samples;
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) 12 primary samples;
- Polycyclic Aromatic Hydrocarbons (PAHs) 12 primary samples;
- Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury) 52 primary samples;
- Asbestos (%w/w) 26 soil samples;
- Organochlorine Pesticides (OCPs) 5 primary samples; and
- Cation Exchange Capacity and pH 2 primary samples.

The surface water sample was analysed for the following:

- Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury); and
- Organochlorine Pesticides (OCPs) 5 primary samples.

6.0 Investigation Criteria

6.1 Soil

6.1.1 Health and Ecological Investigation and Screening Levels

To assess whether the material is suitable for re-use on-site, the laboratory results were compared to the health and ecological investigation levels for soil, presented in the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013).

ASC NEPM (2013) provides health and ecological investigation and screening levels for different exposure scenarios based on a proposed land use. They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) and Health Screening levels (HSLs) are applicable for assessing human health risk via relevant exposure pathways. The HILs were developed for a broad range of metals and organic substances. These are generic to all soil types. The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact with soil and groundwater. The HSLs depend on specific soil physicochemical properties, building configurations, land use scenarios and the depth that groundwater is encountered.

Ecological Investigation Levels (ElLs) and Ecological Screening Levels (ESLs) are applicable for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of soil, which corresponds to the root zone and habitation zone of many species.

The EILs are associated with selected metals and organic compounds. The EILs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an

Added Contaminant Limit (ACL) for the site, which are added together to get the EIL. In the absence of ambient background concentration data, a generic ACL, based on the soil's pH, Cation Exchange Capacity (CEC) and clay content, has been adopted. Background levels have been adopted from Olszowy et al (1995) Trace Element Concentrations in Soils from Rural and Urban Areas of Australia.

The ESLs are associated with petroleum compounds and fractions and are dependent on specific soil physical properties (i.e. coarse and fine-grained soil).

Based on the proposed site use the investigation and screening levels for Residential land use have been adopted, and are shown in Table 6.1.3 below.

6.1.2 Asbestos Materials in Soil

The assessment of known and suspected asbestos contamination in soil is based on:

- ASC NEPM (2013); and
- WA DoH (2009) Guidelines of the assessment and management of asbestos contaminated sites in Western Australia, WA Department of Health and Department of Environment and Conservation.

Schedule B1, Section 4 ASC NEPM (2013) provides guidance on the assessment of both friable and non-friable forms of asbestos in soil. This guidance is based on the WA DoH (2009) Guidelines that presented risk based screening levels for asbestos in soil under various landuse scenarios.

For the purpose of assessing asbestos impacts in soil, three groups are recognised:

- Asbestos Containing Material (ACM) which is in sound condition although possibly broken
 or fragmented and the asbestos is bound in a matrix. This is restricted to material that
 cannot pass through a 7mm x 7mm sieve;
- Fibrous asbestos (FA) friable asbestos material, such as severely weathered ACM, and asbestos in the form of loose fibrous material such as insulation products;
- Asbestos fines (AF) includes free fibres of asbestos, small fibre bundles and also ACM fragments that pass through a 7mm x 7mm sieve.

The health screening levels for asbestos in soil for residential land use have been adopted.

6.1.3 Adopted Soil Investigation Criteria

The adopted soil criteria are presented in Table 6.1.3 below.

Table 6.1.3 – Adopted Soil Criteria

Contaminant	HIL / HSL^ A (mg/kg) ¹	EIL / ESL A ²		
Arsenic	100	100		
Cadmium	20	-		
Chromium Total	100	640*		
Copper	6000	270*		
Lead	300	1100		
Nickel	40	630		

Contaminant	HIL / HSL^ A (mg/kg) ¹	EIL / ESL A ²		
Zinc	400	2,000*		
Mercury	7400	-		
Benzene	0.7	50		
Toluene	480	85		
Ethylbenzene	NL	70		
Xylenes	110	105		
Naphthalene	5	-		
TRH C6-C10	-	180		
TRH C6-C10 minus BTEX	50	-		
TRH >C10-C16	-	120		
TRH >C10-C16 minus naphthalene	280	-		
TRH >C16-C34	NL	1,300		
TRH >C34-C40	NL	5,600		
Benzo(a)pyrene (CRC Care)	-	0.7		
Benzo(a)pyrene TEQ	3	-		
Total PAHs	300	-		
4.4'-DDT	-	180		
DDD+DDT+DDE	240	-		
Aldrin & dieldrin	6	-		
Chlordane	50	-		
Endosulfan	270	-		
Endrin	10	-		
Heptachlor	6	-		
Hexachlorobenzene	10	-		
Methoxychlor	300	-		

Contaminant	HIL / HSL^ A (mg/kg) ¹	EIL / ESL A ²
Toxaphene	20	-
Bonded ACM %	0.01%	-
FA and AF %	0.001%	-
All forms of asbestos	No visible evidence for surface soil (top 10cm)	-

Notes:

^ Based on a pH of 8, a CEC of 71meq/100ml, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 25% percentile.

- 1 ASC NEPM (2013) Health Investigation Levels- HIL A
- 2 ASC NEPM Soil Health Screening Levels for Vapour Intrusion, Residential, Clay 0m to <1m 3 ASC NEPM (2013) Ecological Investigation and Screening Levels, Urban Residential/Public Open Space, Fine textured

6.2 Surface Water

For assessing surface water quality, it is first necessary to assess the beneficial uses of surface water for the site and down gradient of the investigation area being assessed. Potential beneficial uses are considered to include:

- Aquatic ecosystems discharge to surface water bodies with the nearest water bodies being the Lochinvar creek, located approx. 1km to the west of the site. The Lochinvar creek is expected to flow to the north and discharge to the Hunter River, located 3km to the north-west of the site. Lochinvar Creek and the Hunter River sustain freshwater ecosystems;
- Stock watering Use of dams located on the site to water stock (cattle); and
- Irrigation Potential for the dams to be used for irrigation purposes on site.

Given the above, the potential beneficial use of surface water is considered to be sustaining aquatic ecosystems, stock watering and irrigation.

The applicable guidelines are:

- ANZECC (2000) Australian and New Zealand Guidelines on Fresh and Marine Water Quality (Primary Industries Stock Watering and Irrigation;
- ANZECC (2018) Australian and New Zealand Guidelines on Fresh and Marine Water Quality;
 and
- National Environmental Protection Council (NEPC) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (ASC NEPM, 2013).

The trigger values for freshwater species presented in the ANZECC (2018) and ANZG (2018) (and ASC NEPM, 2013) are considered applicable for the protection of aquatic ecosystems of the receiving waters, as Lochinvar Creek and Hunter River are freshwater ecosystems.

The short-term trigger values (up to 20 years) for agricultural irrigation water have been adopted, as irrigation is not expected to occur for longer than 20 years.

ASC NEPM (2013) has adopted the trigger values for the protection of 95% of aquatic ecosystems, except where contaminants are potentially bio-accumulative in which case the trigger values for protection of 99% of species are used.

7.0 Quality Assurance/Quality Control

Sampling activities were undertaken in accordance with normal, industry accepted practices and standards. The assessment of field and laboratory quality assurance / quality control (QA / QC) procedures is provided below, and a data validation report is presented in Appendix J.

In order to assess field quality assurance / quality control (QA/QC) procedures, the following quality control samples were collected and analysed:

QC Sample	Туре	Lab	Analysis
D.6.11.23	Duplicate of SS01	Eurofins	TRH, BTEX, PAH, Metals

Primary duplicate samples were analysed by the NATA-accredited Eurofins laboratory.

Table 5, Appendix I, presents the relative percentage differences (RPDs) between the primary and duplicate sample. A review of the Qualtest QA / QC results indicates that RPDs were within the acceptable range. It is noted that low concentrations can exaggerate the percentage differences with respect to small total concentrations, therefore where results for primary and duplicate sample were less than 10 time the LOR, the RPDs have been disregarded.

The laboratory internal QA/QC reports indicated that the appropriate laboratory QA / QC procedures and rates were undertaken for contamination studies, and that:

- Laboratory blank samples were free of contamination;
- Matrix spike recoveries were within the laboratory control limits;
- Laboratory duplicate RPDs were recorded within the control limits, with exception for a
 range of metals, PAHs, and TRH for duplicate sample were outside control limits. The lab
 quoted Q15 which states "The RPD reported passes Eurofins Environment Testing's QC Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of
 this report". Based on this the duplicate RPDs are not considered to affect data usability.
- Surrogates and laboratory control samples were within the laboratories acceptable range

Based on the above, and the data validation report in Appendix J, it is considered that the field and laboratory methods for soil sampling are appropriate and that the data obtained is usable and considered to reasonably represent the concentrations at the sampling points at the time of sampling.

8.0 Results

8.1 Subsurface Conditions

The soils observed during test pitting and surface sampling are summarised below in Tables 8.1.1, 8.1.2, and 8.1.3. The test pit logs are presented in Appendix H.

Table 8.1.1 – Summary of Geotechnical Units and Soil Types

Unit	Soil Type	Description
Unit 1A	TOPSOIL	CLAY – medium to high plasticity, dark grey, dark brown, greybrown, brown, root affected.
Unit 1B	TOPSOIL - FILL	Sandy CLAY – low to medium plasticity, brown to grey-brown, fine grained sand, root affected.
Unit 2A	FILL	Gravelly Sandy CLAY – medium plasticity, brown to orange-brown, fine to coarse grained sand, fine to medium grained angular to sub-angular gravel.
Lipit 2B COLLUVIUM/ angular, grey-brown, fine to coarse		Silty Sandy GRAVEL – fine to coarse grained, angular to sub- angular, grey-brown, fine to coarse grained (mostly fine to medium grained) sand, fines of low plasticity, trace angular cobbles.
Unit 3A	RESIDUAL SOIL/ COLLUVIUM	CLAY – medium to high plasticity, dark brown, dark grey, greybrown, brown. Sandy CLAY – medium to high plasticity, dark grey to grey-brown. CLAY – medium to high plasticity, grey-brown
Unit 3B	RESIDUAL SOIL/ EXTREMELY WEATHERED ROCK	Sandy CLAY – low to medium plasticity, pale grey-white and pale orange, fine grained sand. Silty CLAY – low to medium plasticity, pale grey-white, pale brown, trace orange. Gravelly Clayey SAND – fine to coarse grained, orange, and pale grey, trace red-brown, fines of low plasticity.
Unit 4	EXTREMELY TO SLIGHTLY WEATHERED ROCK	Sandy SILTSTONE with soil properties: breaks down into Silty Sandy CLAY – low to medium plasticity, pale grey-white and pale orange, fine grained sand. ANDESITE: breaks down into Sandy Gravelly CLAY, Clayey Sandy GRAVEL, Sandy CLAY, Clayey Gravelly SAND, dark grey, brown, pale brown, red-brown, grey

Table 8.1.2 – Summary of Geotechnical Units Encountered at Each Test Pit Location

Location	Unit 1A - Topsoil	Unit 1B — Topsoil - Fill	Unit 2A - Fill	Unit 2B – Colluvium/Possible Fill	Unit 3A – Residual Soil/Colluvium	Unit 3B — Residual Soil	Unit 4 – Weathered Rock					
		Depth in metres (m)										
TP01	0.0-0.3	-	-	-	0.3-0.7	-	0.7-2.8					
TP02	0.0-0.1	-		-	0.1-0.8	-	0.8-1.5					
TP03	0.0-0.1	-	-	-	0.1-0.8	-	0.8-2.1					
TP04	0.0-0.15	-	-	0.15-0.5	-	1.4-2.3	0.5-1.4					
TP05	0.0-0.1	-	-	-	0.1-0.6	-	0.6-1.0					
BH06	0.0-0.1	-	-	-	0.1-0.8	0.8-1.5	1.5-3.5					
ВН07	0.0-0.1	-	-	-	0.1-2.6	-	-					
ВН08	0.0-0.1	-	-	-	0.1-0.6	0.6-0.8	0.8-1.4					
TPO9	-	0.0-0.15	0.15-1.2	-	1.2-2.3	2.3-2.6	2.6-3.3					
TP10	-	0.0-0.15	0.15-0.7	-	0.7-2.3	-	2.3-3.5					
TP11	0.0-0.15	-	=	-	0.15-2.0	-	2.0-2.6					
BH12	0.0-0.1	-	=	-	0.1-1.0	-	1.0-1.75					
BH13	0.0-0.1	-	=	-	0.1-0.5	-	0.5-3.5					
BH14	0.0-0.1	-	-	-	0.1-0.6	-	0.6-2.5					

Table 8.1.3 – Summary of Soils in Surface Samples

Sample ID	Material Description
SS01, SS03 to SS05, SS07 to SS25, SS31 to SS34	Sandy CLAY – Low to medium plasticity, brown to red-brown, fine to coarse grained sand, root affected.
SS01A	Sand – fine grained, pale yellow-grey.
SS02	Sandy CLAY - Low to medium plasticity, brown to red-brown and pale yellow-brown, fine to coarse grained sand, root affected.
SS06	Clayey SAND – fine to coarse grained, pale yellow-brown with some redbrown, fines of low plasticity, root affected.
SS21	SAND – fine to coarse grained, pale yellow-brown, root affected.
SS26 to SS28	Sandy CLAY – low to medium plasticity, dark brown, fine to coarse grained sand, root affected.
SP05/SS30	Sandy GRAVEL – fine to coarse grained angular to sub-angular, grey to greybrown, fine to coarse grained sand, with some asphalt.
SP01	Clayey Gravelly SAND/ Gravelly Sandy CLAY – fine to coarse grained, brown to pale brown, and pale red-brown, fine to coarse grained angular to subangular gravel, fines of low plasticity, with some brick, concrete, plastic, wire, asphalt, metal, ACM.
SP02 and SP03	Sandy CLAY – medium to high plasticity, dark brown to dark grey-brown, fine to medium grained sand, root affected.
SP04	Sandy CLAY – low to medium plasticity, brown to red-brown and dark brown, fine to coarse grained sand, with some fine to coarse grained angular to subangular gravel, with some concrete, brick, asphalt, root affected.

Anthropogenic materials including; concrete, bricks, metal, wire, asphalt, and plastic were observed in SP01 to SP04 during excavation. Fragments of PACM were observed in SP01 during gravimetric asbestos testing. The gravimetric testing results (%w/w ACM) are presented in Section 8.2 below, and Table 3, Appendix B.

8.2 Surface Water Field Parameters

The surface water quality parameters are summarised in Table 8.2 below.

Table 8.2 – Summary of Surface Water Quality Parameters

Sample Location	SW01 (Dam 1 – western portion of the site)
Dissolved Oxygen (mg/L)	0.63
Redox potential (mV)	117.1
Electrical conductivity (µ\$/cm)	218.1
рН	8.03
Comments	Yellow tinge, no odour

The field water quality readings indicate the water is fresh, neutral to slightly alkaline, and aerobic.

8.3 Laboratory Results

Soil Analytical Results

Soil analytical results for the contamination assessment are summarised in Tables 1, 2, and 3, Appendix I. The laboratory analytical reports are also included in Appendix K.

The soil laboratory results were compared to the investigation levels described in Section 6.1. The analytical results indicated that concentrations of contaminants were reported below the adopted criteria, with the exception of:

- Concentration of Arsenic exceeded the adopted HIL and EIL (100mg/kg) in sample SS01A (760mg/kg);
- Concentrations of Copper exceeded the adopted EIL (270mg/kg) in sample SS01A (570mg/kg);
- Fibrous Asbestos (FA) exceeded the adopted HSL (0.001%) in sample SP1-7 (0.13%); and
- Bonded ACM exceeded the adopted HSL (0.01%) in samples SP1-2 (0.019%), SP1-6 (0.06%), and SP1-8 (0.02%).

Surface Water Results

The surface water analytical results were compared to the investigation levels described in Section 6.2. The analytical results indicated that concentrations of contaminants were reported below the adopted criteria.

9.0 Conceptual Site Model

Based on the results of the preliminary and detailed contamination assessment carried out on the site, a Conceptual Site Model (CSM) has been developed.

Table 9.1 – Conceptual Site Model

AEC	COPC	Mechanism of Contamination	Potentially Affected Media	Human & Ecological Receptors	Potential mechanisms of exposure	Sampling Completed	Potential & Complete Exposure Pathways
Agricultural practices, potential use of pesticides. Potential for pesticide use and other farming related contamination	Metals, OCPs TRH, BTEX, PAH	Top-down leaks/spills, flakes/fibres onto soil. Leaching of soil contaminants to surface water and groundwater	SoilsGroundwaterSurface waterSediments	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Surface and ground water depended ecosystems Offsite surface water and groundwater – Lochinvar Creek, located 200m to the south-west of the site. 	 Direct dermal contact with contaminated soil or surface water Ingestion of contaminated soil or surface water Inhalation of contaminated soil (as dust) Leaching of soil contaminants to surface water and/or groundwater Surface water and groundwater discharge to Lochinvar Creek. 	SS29, SS34, SW01	 Incomplete exposure pathway for current site visitors, future construction workers, site users, and ecological receptors, as no contamination identified. Incomplete exposure pathway for soil contaminants to leach to surface water, as no contamination identified in soil or surface water. Incomplete exposure pathway for soil contaminates to leach to groundwater due to depth of groundwater (>5m bgs), likely clayey subsoils, and no contamination identified.
2. Storage of vehicles, equipment, and waste materials. • Potential leaks and spills, flaking of metals etc	TRH, BTEX, PAH, Metals, Asbestos, OCP (CoPCs dependent on material/waste type)	Top-down and to depth of fill Leaching of contaminants from waste material into underlying soils Leaching of soil contaminants to groundwater	 Surface soil Fill soils Underlying soils Surface water Groundwater 	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Ecosystem in Lochinvar Creek, located 200m to the south-west of the site. Offsite groundwater discharge point – Lochinvar Creek, located 200m to the south-west of the site. 	 Direct dermal contact with contaminated soil Ingestion of contaminated soil Inhalation of asbestos fibres, or contaminated soil (as dust) Inhalation of hydrocarbon vapours Leaching of soil contaminants to surface water and/or groundwater Groundwater discharge to Boatman Creek. 	SS01A, SS01 to SS28	 Complete exposure pathway for current site visitors and users and, future construction workers due to arsenic contamination within surface soils at SS01A. Complete exposure pathway for ecological receptors, due to arsenic and copper contamination within surface soils at SS01A. Likely incomplete exposure pathway for soil contaminants to migrate to surface water via run-off, due to localised nature of contamination (around buildings), distance to onsite dams and Lochinvar Creek from contamination sources (>200m), and no contamination identified in surface water. Likely incomplete exposure pathway for soil contaminants to migrate to groundwater due to top-down nature of contamination, depth of groundwater (>5m bgs), and clayey sub-soils.

AEC CC	COPC	Mechanism of Contamination	Potentially Affected Media	Human & Ecological Receptors	Potential mechanisms of exposure	Sampling Completed	Potential & Complete Exposure Pathways
Use of imported fill of	Metals, TRH, STEX, PAH, Asbestos, OCP	 Leaching of contaminants into underlying soils Leaching of soil contaminants to groundwater 	 Fill Soils Underlying soils Surface water Groundwater 	 Current site visitors Future construction workers & site users Soil biota/plants and transitory wildlife Ecosystem in Lochinvar Creek, located 200m to the south-west of the site. Offsite groundwater discharge point – Lochinvar Creek, located 200m to the south-west of the site. 	 Direct dermal contact with contaminated soil Ingestion of contaminated soil Inhalation of hydrocarbon vapours Leaching of soil contaminants to surface water and/or groundwater – Boatman Creek Groundwater discharge to Boatman Creek. 	SP01 to SP05/SS30, SW01, SS31 to SS33	 Complete exposure pathway for current site visitors and users, and future construction workers receptors due to asbestos (FA and ACM) contamination in stockpile SP01. Incomplete exposure pathway for ecological receptors, due to no contamination identified in fill above adopted criteria. Incomplete exposure pathway for soil contaminants to migrate to surface water via run-off, due to localised nature of contamination (SP01), and distance to onsite dams and Lochinvar Creek from contamination source (>100m), and no contamination identified in surface water. Incomplete exposure pathway for soil contaminants to leach to groundwater, due to no leachable contamination identified, likely depth of groundwater (>5m bgs), and clayey sub-soils.

10.0 Conclusions and Recommendations

The site history review showed the site has been used for grazing farm land since the early 1900s until at least 1991. A residence and associated sheds and swimming pool were constructed on the site between 1991 and 2001. Five stockpiles of fill material were observed on the site, ranging in size from 5m³ to 230m³. Materials/equipment are stored on the site around the dwelling and associated sheds. Two dams are also present on the site.

Three Areas of Environmental Concern (AECs) were identified based on the site history and site observations:

- Agricultural practices, potential use of pesticides Potential for pesticide use and other farming related contamination;
- 2. Storage of vehicles, equipment and waste materials: Potential leaks and spills and flaking of metals etc; and
- 3. Filling on the site: Use of fill of unknown quality and origin.

To provide an assessment of potential soil contamination, 34 surface soil sampling locations, 18 stockpile soil samples, and one surface water sampling location were carried out across the site. The sampling locations targeted the AECs identified.

The laboratory results reported concentrations of arsenic and copper above the HIL/EIL in one surface soil sample location (SS01A), and asbestos (FA and ACM) above the HSL in one stockpile, SP01. The surface soil sample was located under waste materials adjacent to a shed in the eastern portion of the site. Stockpile SP01 is also located in the eastern portion of the site.

Other than stockpiled materials, fill material was not identified on site in test pits excavated as part of the geotechnical assessment.

Based on the preliminary and detailed assessment completed, it is considered that the site can be made suitable for the proposed residential development, provided the following recommendations are implemented:

- Preparation of a Remediation Action Plan (RAP) will be required to outline the remediation
 for the soil contamination identified, including the arsenic and copper in surface soils, and
 asbestos (FA and ACM) in stockpile SP01, above the adopted criteria in the eastern portion
 of the site. Based on the proposed development, it is likely that remediation will comprise
 excavation and offsite disposal. The RAP will include assessment of remediation options,
 and information on what management plans are required;
- Preparation of an Asbestos Removal Control Plan to be implemented during remediation
 and earthworks. The plan should outline the procedures for the handling and removal of
 soils containing asbestos. Care must be taken to prevent spreading asbestos onto other
 areas of the site. It is envisaged that the ARCP would be prepared by the contractor
 undertaking the removal works; and
- Preparation of an Unexpected Finds Procedure to manage potential unexpected finds of contamination during earthworks and construction for the proposed development.

This report was prepared in general accordance with the relevant sections of the NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land and the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013). The report comprises a stage 1 and 2 assessment in accordance with SEPP (Resilience and Hazards) 2021, Chapter 4.

11.0 Limitations

This report has been prepared by Qualtest for AEP Developments Pty Ltd based on the objectives and scope of work list in Sections 1.1 and 1.2. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to their particular situation.

The opinions, conclusions and recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. Qualtest has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

In preparing this report Qualtest has relied on information contained in searches of government websites and has not independently verified or checked the data contained on these websites.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. The conclusions reached in this report are dependent on the limitations inherent in all subsurface investigations where horizontal and vertical variation in contaminant concentrations can occur. No subsurface assessment can accurately predict the contaminant concentration at all points.

Site conditions may change after the date of this Report. Qualtest does not accept responsibility arising from, or in connection with, any change to the site conditions.

12.0 References

NSW Department of Primary Industries (Office of Water) Registered Groundwater Bore Map, accessed from http://allwaterdata.water.nsw.gov.au/water.stm.

NSW Land and Property Information, Spatial Information eXchange (SIX) Maps - Topographic Map, accessed from https://maps.six.nsw.gov.au/.

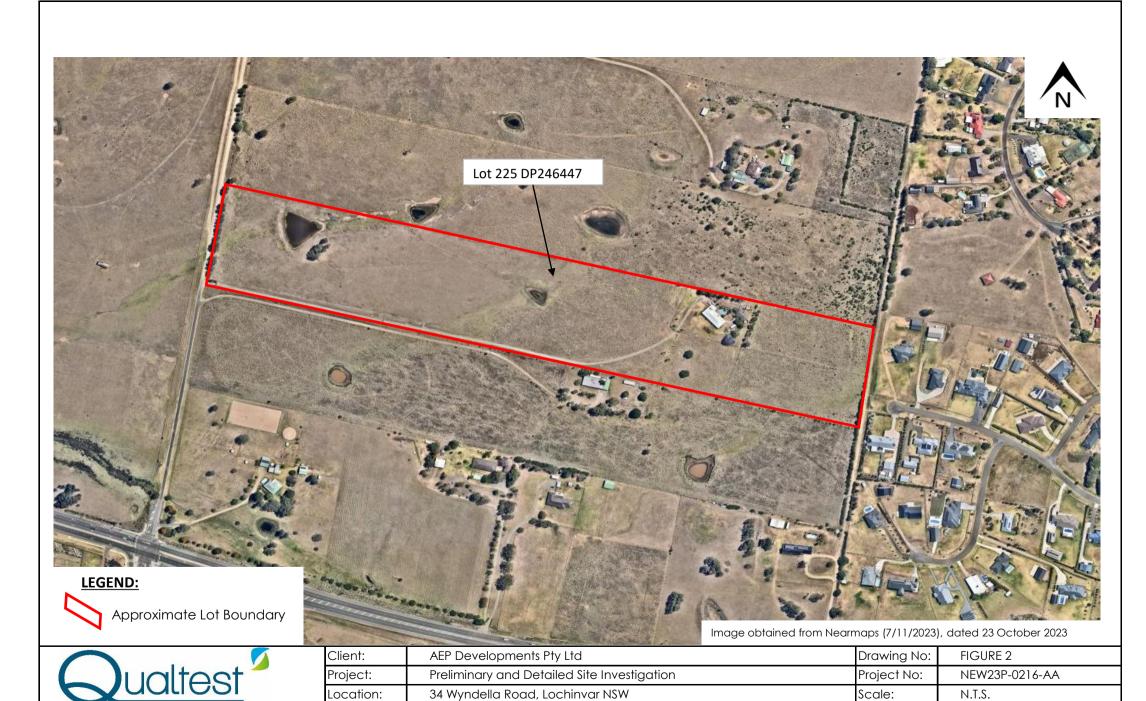
State of NSW and Department of Planning, Industry and Environment Acid Sulfate Soil online database, accessed from https://www.environment.nsw.gov.au/eSpade2Webapp

NSW EPA (2020) Guidelines for Consultants Reporting on Contaminated Land.

NSW EPA (2022) Sampling Design Part 1 – Application, Contaminated Land Guidelines

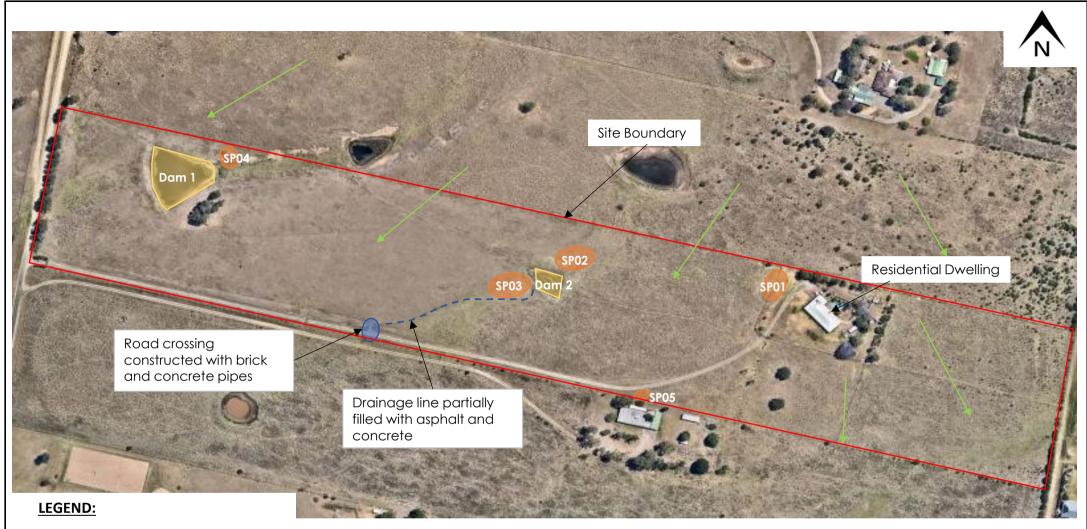
NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), Canberra (ASC NEPM 2013).

WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia, WA Department of Health and Department of Environment and Conservation.


WA DoH (2021) Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia, WA Department of Health and Department of Environment and Conservation.

APPENDIX A: Figures

Client:	AEP Developments Pty Ltd	Drawing No:	FIGURE 1
Project:	Preliminary and Detailed Site Investigation	Project No:	NEW23P-0216-AA
Location:	34 Wyndella Road, Lochinvar NSW	Scale:	N.T.S.
Title:	Site Location Plan	Date:	7/11/2023


Date:

7/11/2023

LABORATORY (NSW) PTY LTD

Title:

Lot Location Plan

4

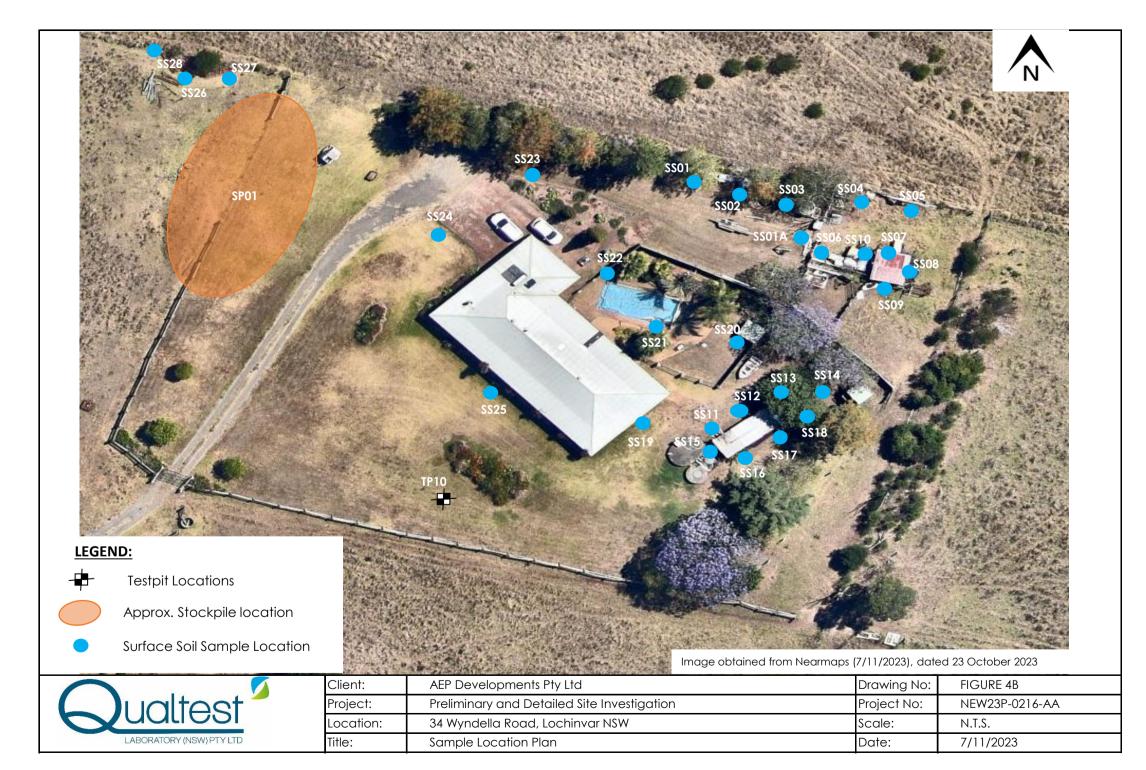
Slope Direction

Dam Locations

Approx. Stockpile location

Image obtained from Nearmaps (7/11/2023), dated 23 October 2023

Client:	AEP Developments Pty Ltd	Drawing No:	FIGURE 3A
Project:	Preliminary and Detailed Site Investigation	Project No:	NEW23P-0216-AA
Location:	Location: 34 Wyndella Road, Lochinvar NSW		N.T.S.
Title:	Site Features Plan	Date:	7/11/2023



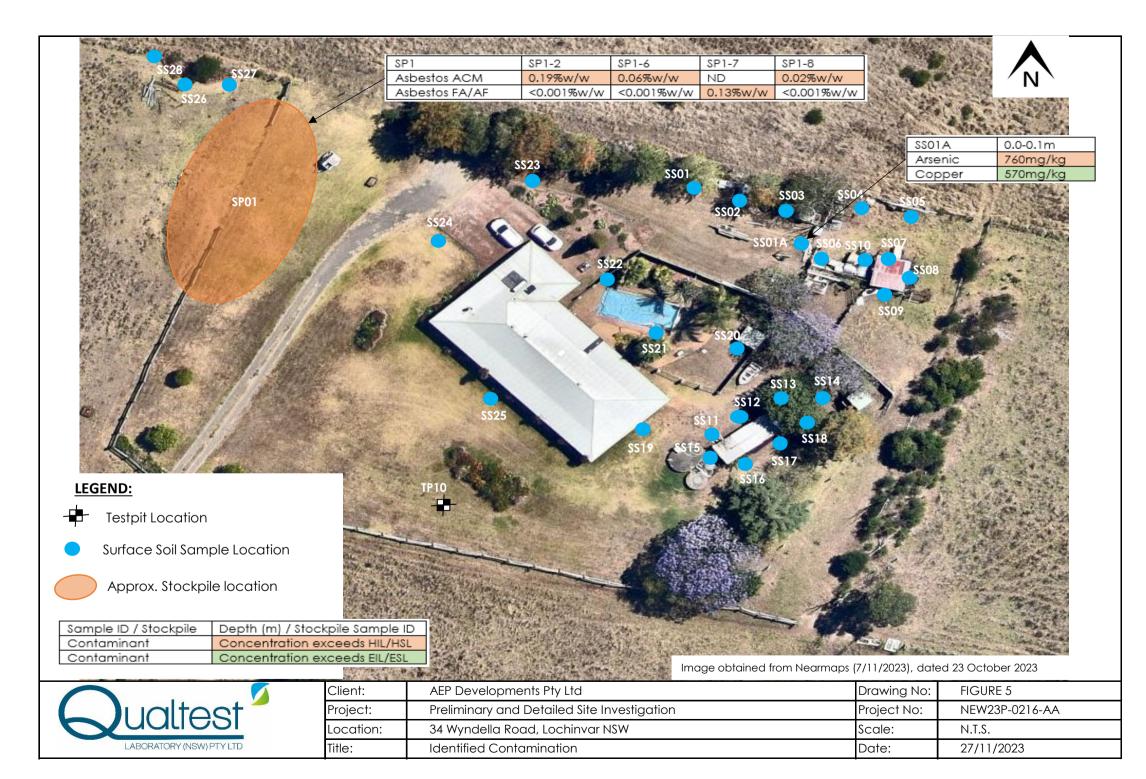
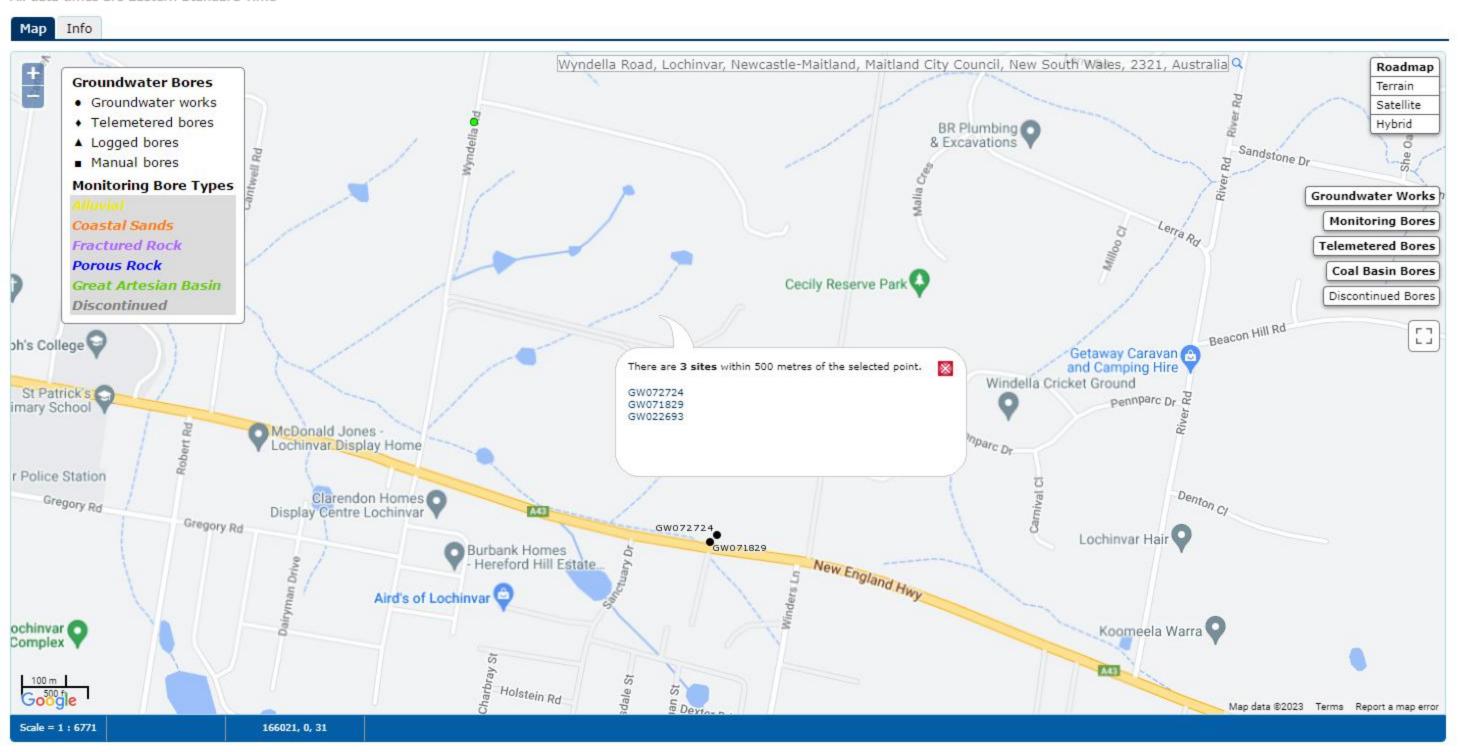

- Testpit Locations
- Surface Water Sample Location
- Approx. Stockpile location
- Surface Soil Sample Location

Image obtained from Nearmaps (7/11/2023), dated 23 October 2023


Client:	AEP Developments Pty Ltd	Drawing No:	FIGURE 4A
Project:	Preliminary and Detailed Site Investigation	Project No:	NEW23P-0216-AA
Location:	34 Wyndella Road, Lochinvar NSW	Scale:	N.T.S.
Title:	Sample Location Plan	Date:	7/11/2023

APPENDIX B: Groundwater Bore Search

All data times are Eastern Standard Time

APPENDIX C: Historical Titles

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

18/36 Osborne Road, Mobile: 0412 169 809
Manly NSW 2095 Email: search@alsearchers.com.au

06th November, 2023

QUALTEST PTY LTD 2 Murray Dwyer Circuit, MAYFIELD WEST, NSW 2304

Attention Emma Coleman,

RE: 34 Wyndella Road,

Lochinvar

Purchase Order NEW23P-Lochinvar

Current Search

Folio Identifier 225/246447 (title attached)
DP 246447 (plan attached)
Dated 02nd November, 2023
Registered Proprietor:
DAVID TROY HEIEN
GAIL ALISON HEIEN

Title Tree Lot 225 DP 246447

Folio Identifier 225/246447

Certificate of Title Volume 12381 Folio 188

(a) (b)

CTVol 9938 Folio 34

CTVol 10541 Folio 198

CTVol 9938 Folio 35

See Notes (ai), (bi) & (aii) & (bii)

(ai) & (bi)

(aii) & (bii)

CTVol 7530 Folio 32

CTVol 7648 Folio 25

Certificate of Title Volume 5489 Folio 235

Certificate of Title Volume 5390 Folio's 125 to 127

PA 34901

New Trustee Deed Book 1872 No 806

Conveyance Book 892 No 516

Index

T – Transfer
TA – Transmission Application
NT – New Trustees
C – Conveyance

Summary of proprietor(s) **Lot 225 DP 246447**

Year Proprietor

	(Lot 225 DP 246447)	
23 Dec 1988	David Troy Heien	
todate	Gail Alison Heien	
03 Dec 1987	Dino Cosmo, cellarman	
	Edda Cosmo, his wife	
	(Lot 225 DP 246447 – CTVol 12381 Fol 188)	
21 Dec 1979	Dino Cosmo, cellarman	T
	Edda Cosmo, his wife	
22 Mar 1974	Jones Nominees Pty Limited	

See Notes (a) & (b)

Note (a)

	(Lot 1 DP 224407 – CTVol 9938 Fol 34)	
06 Feb 1974	Jones Nominees Pty Limited	T
25 May 1967	Christopher Michael John Wotton, grazier	T
02 Mar 1965	Christopher Michael John Wootton, grazier	
	Jeremy Wootton, grazier	

See Notes (ai) & (aii)

Note (ai)

	(Lots A & B DP 404617 – Area 270 Acres 2 Rood 4 Perches –	
	CTVol 7628 Fol 25)	
20 Feb 1959	Christopher Michael John Wootton, grazier	T
	Jeremy Wootton, grazier	
	(Part Portion 54, 57, 58 & 68 Parish Gosforth and other	
	lands – Area 979 Acres 2 Roods – CTVol 5489 Fol 235)	
16 May 1955	Jodete Pty Limited	T
16 May 1955	Winifred Elizabeth Fuge Capp, widow	TA
	Norman Edward Weeks, solicitor	
19 Apr 1945	Roy Lyle Capp, grazier	
-	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – CTVol 5390 Fol's 125 to 127)	
31 Aug 1948	William Hooke Mackay, grazier	T
_	John Julian Augustus Mackay, grazier	
	Francis Keith Mackay, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – New Trustees Deed 1872 No 806)	
23 May 1940	William Hooke Mackay, (jrn) grazier / trustee	NT
	John Julian Augustus Mackay, grazier / trustee	
	Francis Keith Mackay, grazier / trustee	
	William Hooke Mackay, estate	
	(Part Portion 68 Parish Gosforth and other lands – Conv Bk	
	892 No 516)	
30 Sep 1909	William Hooke Mackay, grazier	C

Note (aii)

	(Lot C DP 404617 – Area 619 Acres – CTVol 7530 Fol 32)	
14 Jul 1958	Christopher Michael John Wootton, grazier	T
	Jeremy Wootton, grazier	
	(Part Portion 54, 57, 58 & 68 Parish Gosforth and other	
	lands – Area 979 Acres 2 Roods – CTVol 5489 Fol 235)	
16 May 1955	Jodete Pty Limited	T
16 May 1955	Winifred Elizabeth Fuge Capp, widow	TA
	Norman Edward Weeks, solicitor	
19 Apr 1945	Roy Lyle Capp, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – CTVol 5390 Fol's 125 to 127)	
31 Aug 1948	William Hooke Mackay, grazier	T
	John Julian Augustus Mackay, grazier	
	Francis Keith Mackay, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – New Trustees Deed 1872 No 806)	
23 May 1940	William Hooke Mackay, (jrn) grazier / trustee	NT
	John Julian Augustus Mackay, grazier / trustee	
	Francis Keith Mackay, grazier / trustee	
	William Hooke Mackay, estate	
	(Part Portion 68 Parish Gosforth and other lands – Conv Bk	
	892 No 516)	
30 Sep 1909	William Hooke Mackay, grazier	C

Note (b)

	(Lot 20 DP 231443 – CTVol 10541 Fol 198)	
06 Feb 1974	Jones Nominees Pty Limited	
25 May 1967	Christopher Michael John Wotton, grazier	T
01 May 1967	Christopher Michael John Wootton, grazier	
-	Jeremy Wootton, grazier	
	(Lot 2 DP 224407 – CTVol 9938 Fol 35)	
02 Mar 1965	ar 1965 Christopher Michael John Wootton, grazier	
	Jeremy Wootton, grazier	

See Notes (bi) & (bii)

Note (bi)

		I
	(Lots A & B DP 404617 – Area 270 Acres 2 Rood 4 Perches –	
	CTVol 7628 Fol 25)	
20 Feb 1959	Christopher Michael John Wootton, grazier	T
	Jeremy Wootton, grazier	
	(Part Portion 54, 57, 58 & 68 Parish Gosforth and other	
	lands – Area 979 Acres 2 Roods – CTVol 5489 Fol 235)	
16 May 1955	Jodete Pty Limited	T
16 May 1955	Winifred Elizabeth Fuge Capp, widow	TA
J	Norman Edward Weeks, solicitor	
19 Apr 1945	Roy Lyle Capp, grazier	
*	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – CTVol 5390 Fol's 125 to 127)	
31 Aug 1943	William Hooke Mackay, grazier	Т
C	John Julian Augustus Mackay, grazier	
	Francis Keith Mackay, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – New Trustees Deed 1872 No 806)	
23 May 1940	William Hooke Mackay, (jrn) grazier / trustee	NT
J	John Julian Augustus Mackay, grazier / trustee	
	Francis Keith Mackay, grazier / trustee	
	William Hooke Mackay, estate	
	(Part Portion 68 Parish Gosforth and other lands – Conv Bk	
	892 No 516)	
30 Sep 1909	William Hooke Mackay, grazier	С
	J / C	1

Note (bii)

	(Lot C DP 404617 – Area 619 Acres – CTVol 7530 Fol 32)	
14 Jul 1958	Christopher Michael John Wootton, grazier	T
	Jeremy Wootton, grazier	
	(Part Portion 54, 57, 58 & 68 Parish Gosforth and other	
	lands – Area 979 Acres 2 Roods – CTVol 5489 Fol 235)	
16 May 1955	Jodete Pty Limited	T
16 May 1955	Winifred Elizabeth Fuge Capp, widow	TA
	Norman Edward Weeks, solicitor	
19 Apr 1945	Roy Lyle Capp, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – CTVol 5390 Fol's 125 to 127)	
31 Aug 1943	William Hooke Mackay, grazier	T
	John Julian Augustus Mackay, grazier	
	Francis Keith Mackay, grazier	
	(Lots 11 to 23 & 47 to 54 Wyndella Estate – Area 453 Acres 2	
	Roods 32 Perches – New Trustees Deed 1872 No 806)	
23 May 1940	William Hooke Mackay, (jrn) grazier / trustee	NT
	John Julian Augustus Mackay, grazier / trustee	
	Francis Keith Mackay, grazier / trustee	
	William Hooke Mackay, estate	
	(Part Portion 68 Parish Gosforth and other lands – Conv Bk	
	892 No 516)	
30 Sep 1909	William Hooke Mackay, grazier	C

Locality: LOCHINVAR

Parish: GOSFORTH

LGA: MAITLAND **County**: NORTHUMBERLAND

Report Generated 1:15:20 AM, 3 November, 2023 Copyright © Crown in right of New South Wales, 2017

This information is provided as a searching aid only. Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Ref: NOUSER

Locality: LOCHINVAR

Parish: GOSFORTH

Ref: NOUSER

LGA: MAITLAND County: NORTHUMBERLAND

Status Surv/Comp Purpose DP162193 Lot(s): 3 CA147421 - LOT 3 DP162193 DP246447 Lot(s): 224 DP1137872 SURVEY **EASEMENT** REGISTERED DP818314 Lot(s): 2 REGISTERED SURVEY **EASEMENT** DP1137872 DP1238395 REGISTERED SURVEY **EASEMENT UNAVAILABLE** DP1299958 PRE-ALLOCATED SUBDIVISION DP1107022 Lot(s): 21 CA103245 - LOT 21 DP1107022 DP1159523 Lot(s): 10 DP1178574 REGISTERED **SURVEY** SUBDIVISION Lot(s): 2, 3 DP1147220 HISTORICAL SURVEY SUBDIVISION Lot(s): 2 DP248728 **COMPILATION CROWN FOLIO CREATION** HISTORICAL Lot(s): 2, 3, 10 DP136187 **DEPARTMENTAL** HISTORICAL COMPILATION DP550026 HISTORICAL SURVEY SUBDIVISION DP1178574 Lot(s): 207, 208, 209, 211, 212, 213 CROWN FOLIO CREATION HISTORICAL COMPILATION DP248728 SUBDIVISION DP1147220 HISTORICAL SURVEY Lot(s): 204, 205, 206, 207, 208, 209, 211, 212, 213, 214, 215, 216 COMPILATION **DEPARTMENTAL** DP136187 HISTORICAL DP550026 **HISTORICAL** SURVEY SUBDIVISION **CROWN FOLIO CREATION** DP1127197 HISTORICAL **SURVEY** DP1159523 SURVEY SUBDIVISION HISTORICAL DP1195506 Lot(s): 301, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333 DP1127197 **HISTORICAL SURVEY CROWN FOLIO CREATION** Lot(s): 301, 302, 303, 304 **COMPILATION CROWN FOLIO CREATION** DP248728 **HISTORICAL** DP1147220 **HISTORICAL** SURVEY SUBDIVISION Lot(s): 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333 DP136187 HISTORICAL COMPILATION DEPARTMENTAL DP550026 **HISTORICAL SURVEY** SUBDIVISION DP1159523 HISTORICAL **SURVEY** SUBDIVISION DP1178574 HISTORICAL SURVEY SUBDIVISION DP1218447 Lot(s): 10 DP162193 HISTORICAL SURVEY UNRESEARCHED DP1285925 **UNAVAILABLE** SUBDIVISION PRE-ALLOCATED DP1219648 Lot(s): 11 DP1229692 REGISTERED **SURVEY EASEMENT** DP1238395 REGISTERED **SURVEY EASEMENT** DP1240754 REGISTERED **SURVEY FASEMENT** CA101842 - LOT 2 DP1102770 Lot(s): 11, 14 DP818314 HISTORICAL SURVEY SUBDIVISION

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Locality: LOCHINVAR

Parish: GOSFORTH

Ref: NOUSER

LGA: MAITLAND County: NORTHUMBERLAND

	County: NORTHUMBERLAND		NORTHUMBERLAND		
			Status	Surv/Comp	Purpose
ot(s)	: 11, 12, PDP7		HISTORICAL	SURVEY	OLD SYSTEM CONVERSION
)P12	56730	11001	THOTORIONE	CORVET	OLD OTOTEM CONVERCION
_ot(s)					
- (-)	DP7	718712	HISTORICAL	SURVEY	SUBDIVISION
	DP7	746278	HISTORICAL	SURVEY	SUBDIVISION
	DP7	776491	HISTORICAL	SURVEY	SUBDIVISION
	DP'	1034974	HISTORICAL	SURVEY	SUBDIVISION
		1132263	HISTORICAL	SURVEY	SUBDIVISION
	_	1135580	HISTORICAL	SURVEY	SUBDIVISION
		1244625	HISTORICAL	SURVEY	SUBDIVISION
	_	1294296	REGISTERED	SURVEY	SUBDIVISION
)P12	73038	120 1200	REGIOTERED	CORVET	CODDIVIOION
		3. 104. 105. 106. 10°	7. 108. 109. 110. 111. 112. 1	13. 114. 118. 119. 120. 121. 12	2, 123, 124, 125, 126, 127, 128, 129
(0)		1124571	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
	_	1218389	HISTORICAL	COMPILATION	SUBDIVISION
	_		HISTORICAL	SURVEY	SUBDIVISION
	_	. — . о . <u>— о</u> 104021 - LOT 1819 [
DP12	75266		=		
	: 1107				
. ,		1281458	REGISTERED	SURVEY	SUBDIVISION
Lot(s)	: 1100, 1	101			
	DP'	1248129	HISTORICAL	SURVEY	SUBDIVISION
	DP'	1273038	HISTORICAL	SURVEY	SUBDIVISION
	DP'	1273039	HISTORICAL	SURVEY	SUBDIVISION
	DP'	1275226	HISTORICAL	SURVEY	SUBDIVISION
Lot(s)	. <u> </u>	101, 1102, 1103, 110	04, 1105, 1106, 1107, 1108,	1109, 1110, 1111, 1112, 1113	
. ,		1124571	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
	DP'	1218389	HISTORICAL	COMPILATION	SUBDIVISION
	CA ²	104021 - LOT 1819 [DP1124571		
	76993 : 102				
_01(0)	Pt DPt	561399	HISTORICAL	COMPILATION	DEPARTMENTAL
		1097563	HISTORICAL	SURVEY	SUBDIVISION
		1195444	HISTORICAL	SURVEY	SUBDIVISION
DP12	81457	- -			
		513, 1514			
. ,		1124571	HISTORICAL	COMPILATION	LIMITED FOLIO CREATION
	DP'	1218389	HISTORICAL	COMPILATION	SUBDIVISION
	_	1248129	HISTORICAL	SURVEY	SUBDIVISION
	_	1273038	HISTORICAL	SURVEY	SUBDIVISION
	_	1273039	HISTORICAL	SURVEY	SUBDIVISION
	_	1275226	HISTORICAL	SURVEY	SUBDIVISION
		1275266	HISTORICAL	SURVEY	SUBDIVISION
	_	1275267	HISTORICAL	SURVEY	SUBDIVISION
	_	1277563	HISTORICAL	SURVEY	SUBDIVISION
		1277565	HISTORICAL	SURVEY	SUBDIVISION
	_			JUNVET	NOIDIVIGION
	S CA	104021 - LOT 1819 🛭	DF 11240/1		

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For **ALL**

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps.

Locality: LOCHINVAR

Parish: GOSFORTH

Ref: NOUSER

LGA: MAITLAND County: NORTHUMBERLAND

Status Surv/Comp **Purpose** DP1281458 Lot(s): 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1615, 1616, 1617, 1618, 1619, 1620, 1621, 1622, 1623, 1624, 1625, 1626, 1627, 1628, 1629, 1630 **COMPILATION** LIMITED FOLIO CREATION DP1124571 HISTORICAL DP1218389 **HISTORICAL** COMPILATION SUBDIVISION HISTORICAL SUBDIVISION DP1248129 SURVEY DP1273038 HISTORICAL SURVEY SUBDIVISION DP1273039 HISTORICAL SURVEY SUBDIVISION DP1275226 **HISTORICAL SURVEY** SUBDIVISION DP1275266 **HISTORICAL SURVEY** SUBDIVISION DP1275267 **HISTORICAL** SURVEY SUBDIVISION DP1277563 **HISTORICAL SURVEY** SUBDIVISION SUBDIVISION DP1277565 **HISTORICAL SURVEY** DP1281457 **HISTORICAL** SURVEY SUBDIVISION CA104021 - LOT 1819 DP1124571 DP1286534 Lot(s): 423 **HISTORICAL COMPILATION** LIMITED FOLIO CREATION DP1124571 HISTORICAL **COMPILATION** SUBDIVISION DP1218389 DP1248129 HISTORICAL **SURVEY** SUBDIVISION SURVEY SUBDIVISION DP1273038 HISTORICAL **HISTORICAL** SURVEY SUBDIVISION DP1273039 DP1275226 **HISTORICAL SURVEY** SUBDIVISION DP1275266 **HISTORICAL** SURVEY SUBDIVISION DP1275267 **HISTORICAL** SURVEY SUBDIVISION DP1277563 HISTORICAL SURVEY SUBDIVISION DP1277565 **HISTORICAL SURVEY** SUBDIVISION DP1281457 **HISTORICAL** SURVEY SUBDIVISION DP1281458 **HISTORICAL SURVEY** SUBDIVISION CA104021 - LOT 1819 DP1124571 DP1289577 Lot(s): 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123

⊒ DP161839	HISTORICAL	SURVEY	UNRESEARCHED
] DP561399	HISTORICAL	COMPILATION	DEPARTMENTAL
] DP1097563	HISTORICAL	SURVEY	SUBDIVISION
■ DP1195444	HISTORICAL	SURVEY	SUBDIVISION

DP1290967

Lot(s): 201, 202, 203, 204, 205, 206, 207, 208, 209, 225, 226, 227, 228

DP161839	HISTORICAL	SURVEY	UNRESEARCHED	
DP561399	HISTORICAL	COMPILATION	DEPARTMENTAL	
DP1097563	HISTORICAL	SURVEY	SUBDIVISION	
DP1195444	HISTORICAL	SURVEY	SUBDIVISION	
DP1289577	HISTORICAL	SURVEY	SUBDIVISION	

Caution:

This information is provided as a searching aid only. Whilst every endeavour is made the ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL

Locality: LOCHINVAR

Parish: GOSFORTH

Ref: NOUSER

LGA: MAITLAND **County**: NORTHUMBERLAND

	Status	Surv/Comp	Purpose		
DP1296101					
Lot(s): 622					
DP718712	HISTORICAL	SURVEY	SUBDIVISION		
DP746278	HISTORICAL	SURVEY	SUBDIVISION		
DP776491	HISTORICAL	SURVEY	SUBDIVISION		
DP1034974	HISTORICAL	SURVEY	SUBDIVISION		
DP1132263	HISTORICAL	SURVEY	SUBDIVISION		
DP1135580	HISTORICAL	SURVEY	SUBDIVISION		
DP1244625	HISTORICAL	SURVEY	SUBDIVISION		
DP1256730	HISTORICAL	SURVEY	SUBDIVISION		
DP1281200	HISTORICAL	SURVEY	SUBDIVISION		
DP1294296	HISTORICAL	SURVEY	SUBDIVISION		
DP1294297	HISTORICAL	SURVEY	SUBDIVISION		
DP1294298	HISTORICAL	SURVEY	SUBDIVISION		
DP1294299	HISTORICAL	SURVEY	SUBDIVISION		
DP1294300	HISTORICAL	SURVEY	SUBDIVISION		
DP1294474	HISTORICAL	SURVEY	SUBDIVISION		
DP1294737	HISTORICAL	SURVEY	SUBDIVISION		
DP1294773	HISTORICAL	SURVEY	SUBDIVISION		
Road					
Polygon Id(s): 105038319, 10512	1814, 105242327, 105406722	2			
P1257525	REGISTERED	SURVEY	SURVEY INFORMATION ONLY		

Locality: LOCHINVAR

Parish: GOSFORTH

Ref: NOUSER

LGA: MAITLAND County: NORTHUMBERLAND

Plan Surv/Comp **Purpose** DP65706 **SURVEY UNRESEARCHED COMPILATION** DP136186 **DEPARTMENTAL** DP162193 **SURVEY** UNRESEARCHED DP164806 SURVEY UNRESEARCHED DP195915 COMPILATION **DEPARTMENTAL** DP231443 **SURVEY** SUBDIVISION DP246447 **SURVEY** SUBDIVISION **SUBDIVISION** DP263829 **SURVEY** DP567712 SURVEY SUBDIVISION DP718650 **SURVEY** SUBDIVISION DP741330 **COMPILATION DEPARTMENTAL OLD SYSTEM CONVERSION** DP747391 **SURVEY** DP818314 **SURVEY** SUBDIVISION DP869490 **SURVEY** SUBDIVISION DP998982 COMPILATION **DEPARTMENTAL** DP1107022 COMPILATION LIMITED FOLIO CREATION SURVEY SUBDIVISION DP1159523 DP1178574 **SURVEY** SUBDIVISION DP1195506 SURVEY SUBDIVISION DP1218447 **SURVEY SUBDIVISION** DP1219648 **SURVEY SUBDIVISION** DP1256730 SURVEY SUBDIVISION DP1273038 **SURVEY** SUBDIVISION DP1273038 UNRESEARCHED **SUBDIVISION** DP1275266 **SURVEY SUBDIVISION** DP1275266 UNRESEARCHED **SUBDIVISION** DP1275266 **SURVEY** SUBDIVISION DP1276993 **SURVEY** SUBDIVISION DP1281457 **SURVEY SUBDIVISION** DP1281457 SURVEY SUBDIVISION DP1281457 UNRESEARCHED SUBDIVISION DP1281458 SURVEY SUBDIVISION DP1281458 UNRESEARCHED SUBDIVISION DP1281458 **SURVEY SUBDIVISION** DP1286534 **SURVEY SUBDIVISION** UNRESEARCHED DP1286534 SUBDIVISION DP1286534 **SURVEY** SUBDIVISION DP1289577 **SURVEY** SUBDIVISION **SURVEY SUBDIVISION** DP1290967 DP1296101 **SURVEY** SUBDIVISION DP1296101 **SURVEY SUBDIVISION**

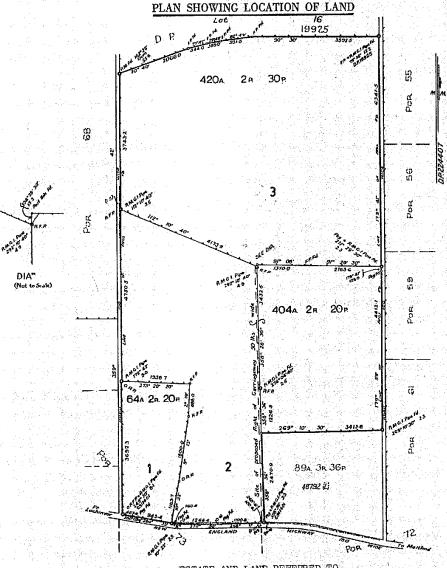
NEW SOUTH WALES

SIFICATE OF TITLE 1900, as amended.

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

1st Edition issued 2-3-1965

(For Grant and title reference prior to first edition see Deposited Plan.)



I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

Registrar General.

- *16* 1997,5

ESTATE AND LAND REFERRED TO.

in Deposited Plan 224407 at Lochinvar in the City of Maitland Parish Estate in Fee Simple in Lot of Gosforth and County of Northumberland.

FIRST SCHEDULE (Continued overleaf)

JEREMY

Registrar General.

SECOND SCHEDULE (Continued overleaf)

1. Reservations and conditions, if any, contained in the Crown Grants referred to in the said Deposited Plan.

Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

WARNING: THIS DOCUMENT MUST/NOT BE REMOVED FROM THE LAND TITLES OFFICE.

SF 1608 V. C. N. BLOMT. GOVERVERT PRINTER	INSTRUMENT Signature of NATURE I NUMBER I DATE REPIXTAR GOINED!	4. K660654 5 4 1967 25 5 1967 -	Pl H. Gen. 197 Reading 182 17-1 18-28 CC	M 375 M	44-	Signature of CANCELLATION CANCELLATION	1 1 1/1	79 Journal Discharged N589548 Journal Will		74 Constrain			The second state of the second
FIRST SCHEDULE (continued)	REGISTERED PROPRIETOR	of Builder Garger Lung	ve issued on $\frac{24\sqrt{3/7}\mu}{3\sqrt{3/8}}$ he residue of land in this folio comprises. No $\frac{3464\mu}{3}$ as follows: $\frac{1000 - 1000 + 1000}{1000 + 1000}$	ABNINBAL GENERAL	SECOND SCHEDULE (continued)	PARTICULARS	Sot 3 in DP 231303 Sec 27E(6) Main Roads 3-12-1910	to Beneficial Finance Superation Limited.	of the City of the Lasting road	DP.246441	Maria Ser		The second secon
		Christopen Hickary John Nooton of Jones Nominees Pty. Timited.	This deed is cancelled as to $\omega \omega \hbar \omega \ell$. New Certificates of Title have issued on for lots in $\omega \ell \ell L D \Omega / \ell \ell U$. Pan No $\omega \ell \ell \ell L U$. Lots $\omega \partial U \omega \partial U = U$. Vol $\delta M = 0$.	REGISTRARGENBRAL		INSTRUMENT DATE	MA1691	Mortgage N589550 19.10.1973 to					

Req:R472787 /Doc:CT 09938-035 CT /Rev:11-Jan-2011 /NSW LRS /Pgs:ALL /Prt:03-Nov-2023 22:06 /Seq:1 of 2
© Office of the Registrar-General /Src:GlobalX /Ref:advlegs

NEW SOUTH WALES

TIFICATE OF TITLE
PERTY ACT, 1900, as amended.

35

928

PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

(For Grant and title reference prior to first edition see Deposited Plan.)

Vol. 9938

Fol. 35

1st Edition issued 2-3-1965

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

Abohen

ESTATE AND LAND REFERRED TO.

Estate in Fee Simple in Lot 2 in Deposited Plan 224407 at Lochinvar in the City of Maitland Parish of Gosforth and County of Northumberland.

FIRST SCHEDULE (Continued overleaf)

CHRISTOPHER MICHAEL JOHN WOOTTON and JEREMY WOOTTON, both of Fishery Creek, Maitland, Graziers.

Registrar General.

SECOND SCHEDULE (Continued overleaf)

1. Reservations and conditions, if any, contained in the Crown Grants referred to in the said Deposited

Registrar General.

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE

		SECOND SCHEDULE (continued) PARTICULARS ENTERED Signature of Signature of Registrar General CANCELLATION	ght of canagemey Afriking ball of the land Then decoulded shows a sold of proposed the of Landageary I the under on the plan 2011965 for Sold		
--	--	---	---	--	--

10541198

198

(Page 1) Vol

AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

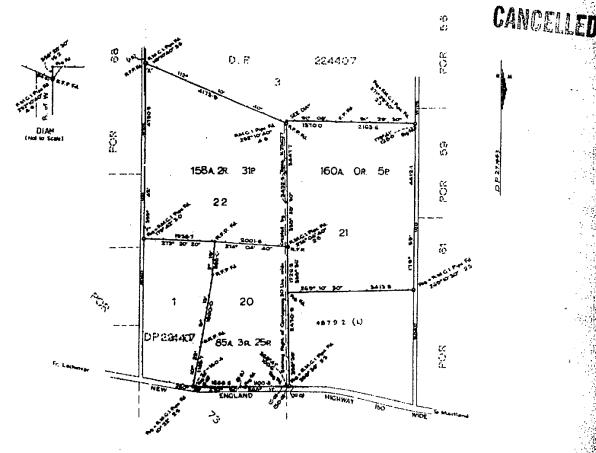
PERSONS ARE CALTIONED

Application No.34901 (part)
Prior Title Volume 9938 Folio 35

Vol. 10541 Fol. 198

Edition issued 1-5-1967.

ΙĐ


I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness J. Afflick.

Registrar-General.

PLAN SHOWING LOCATION OF LAND

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 20 in Deposited Plan 231443 at Lochinvar in the City of Maitland Parish of Gosforth and County of Northumberland being part of Portion 72 granted to Tom White Melville Winder on 19-10-1831, part of Portion 68 granted to Tom White Melville Winder on 23-8-1835 and part of Portion 63 granted by Crown Grant Volume 185 Folio 160.

FIRST SCHEDULE (continued overleaf)

CHRISTOPHER MICHAEL JOHN WOOTTON and JEREMY WOOTTON, The Fishery Creek, Maitland, Grasiere, as Joint Tenants.

SECOND SCHEDULE (continued overleaf)

- 1. Reservations and conditions, if any, contained in the Crown Grants above referred to.
- 2. Right of Carriageway created by Transfer No. K23627 affecting the part of the land above described 50 links wide shown in the plan hereon.

Registrar General

		FIRST SCHEDULE (continued)		TINDMI ICTOL			, , , , , , , , , , , , , , , , , , , ,
		REGISTERED PROPRIETOR	NATURE	NOTBER	1 DATE	ENTERED	Registrar-General
A STATE OF THE STA	day like to be to	H losses Co	1	K (1-151	1701 # S	15 5 1217	Justin
Jones Nominees Pi	Pty. Limited.	when we have	Transfer		6.11.1973.	9.19	January
This dued is cancelled New Cortificates of	as to 224	(ex 1000)					
्ट्रम्क ण घ	tro Plan No.	as follows: Acad in DP246447					And the second s
OTS 220 TOX2	22/1 VOC. 12381 FOL	as 183 TO 190/BR	the state of the s				
	Jamataan	PEGISTRAS GENERAL	and the state of t	Les to the country offend a section and relative to the country of			
		SECOND SCHEDULE (continued)		Signature of			
NATONE I	INSTRUMENT , DATE	PARTICULARS	ENTERED	C. C. C. C.			
ξ,	(3.4. 5. 19 Commerce)	The state of the s		Registrar-General		CANCELLATION	
Transp.	K5.8623 873.5	decides about as bring high of Carriageing 20 lks	5 5 1947	Registrar-General		CANCELLATION	
Restriction 1		hereited about as briding highs of Carriageing 2 Ches with and a farmique of freeing that farming and highe of Carriageing officing that farmingeing Colle with an of Carriageing that have of Carriageing	25 S 1947	Registrar-General		CANCELLATION	
Transfer	Tenta M	high of larring and briding highs of Carrings and 20 lks with and farming ways of Carrings and 20 lks with a farming way of the last of Carrings and to the winds of Carrings and to the last of Carrings and to the A - 23, 1303 Sec 27 E(6) Main Roads Out 1924-1967	3-12.1910			CANCELLATION	The same of the sa
	W_3-	his of landgung officing high of language to the with and farriageing to the farriageing to the his of languageing to the surface of the surf	3.5.1917		Discharged	CANCELLATION N589548	January 1
	- W_3	Resides about as being highs of arrigancy & lks with in the farriagency of the farriagency of the farriagency of the farriagency of the scale of the farriagency of the scale of the farriagency of the 1924-1967 of the John of the farriagency of the farriagency of the following the following the following of the following the following of the fand within described down as "solles within described down as "solles within the planteren, with consent of Hostpaper	35 5 1917 35 5 1917 3-12-1810 3-12-1810	-	ischarged	CANCELLATION N589548	January 1
ortgage	19.10.	Report of the Same of the land compared of the land of the land of the land of the land compared of the land compared of the land within described being that of the land compared on the land within described down as "solke in the land within described down as "solke wide" in the same corporation limited. The Interest of the existing road shown on DP.	35 .5 .1947 35 .5 .1947 3-12-19310 3-12-19310 6-2-1974	Andrew January Santan January Santan	ischarged	CANCELLATION N589548	to describe the second

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

NEW SOUTH WALES

 ∞

(Page 1) Vol.

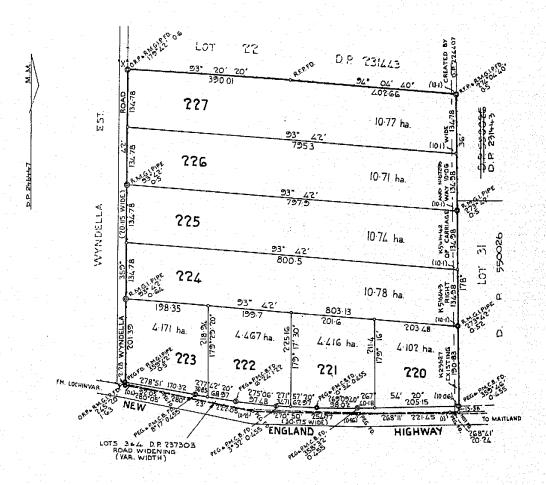
Appln.No.34901 (part)

Prior Titles Vol.9938 Fol.34 Vol.10541 Fol.198

12381 Fol. 188

Edition issued 22-3-1974

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.


SEE AUTO FOLIO

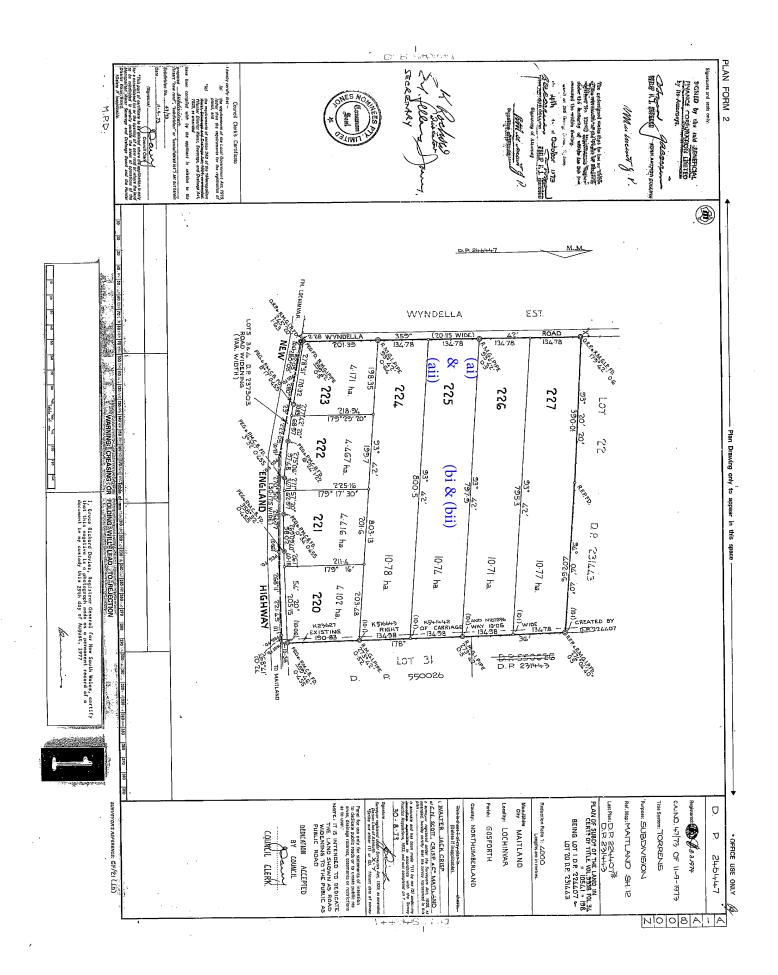
PLAN SHOWING LOCATION OF LAND

LENGTHS ARE IN METRES

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 225 in Deposited Plan 246447 at Lochinvar in the City of Maitland Parish of Gosforth and County of Northumberland, being part of Portion 68 granted to Tom White Melville Winder on 23-8-1835 and part of Portion 63 granted by Crown Grant Volume 185 Folio 160.

FIRST SCHEDULE



SECOND SCHEDULE

GRY 1. Reservations and conditions, if any, contained in the Crown Grants above referred to RC(SB2. Right of Carriageway created by Transfers Nos. K23627P K516643P K541442Pand N167296Paffecting the piece of land 10.06 metres wide shown in the plan hereon.

Cancelled R582104 Emeneficial Finance Corporation

			FIRST SCHEDULE (continued)	ned)						Psalou8+M
		LE.	REGISTERED PROPRIETOR		NATURE	INSTRUMENT	DATE	ENTERED	Signature of Registrat General	Q293 452
Cosmo of Al	bbotsford, Ce.	llarman an	Abbotsford, Cellarman and Edda Cosmo his wife as joint tenants		Transfer	R582104		21-12-1979	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R553104 T(P.
			SECOND SCHEDULE (continued)	inved)			-			
NATURE	INSTRUMENT NUMBER	DATE	PARTICULARS		ENTERED	Signature of Registrar General		CANCELLATION		
Mortgage	P596484		to Beneficial Finance Corporation Limited.		8-3-1976.	Junggan	Cancelled	R582104		
-Mortgage	0293452		to Beneficial Finance Corporation Limited.	,	9 1977.	6	Cancelled	R582104		
						-				
	And the state of t	A					-			
							-			
							The second secon			
						-				
	-									
	-					***************************************		A 1000		

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE -----3/11/2023 1:22AM

FOLIO: 225/246447

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 12381 FOL 188

Recorded	Number	Type of Instrument	C.T. Issue
5/6/1987		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
3/12/1987		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
23/12/1988	Y70860	TRANSFER	EDITION 1
25/8/2006	AC552516	MORTGAGE	EDITION 2
15/9/2018	AN713146	DEPARTMENTAL DEALING	EDITION 3 CORD ISSUED
14/3/2023	AS919613	CAVEAT	EDITION 4
25/8/2023	AT379029	DISCHARGE OF MORTGAGE	EDITION 5

*** END OF SEARCH ***

advlegs

PRINTED ON 3/11/2023

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 225/246447

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 3/11/2023
 1:22 AM
 5
 25/8/2023

LAND

LOT 225 IN DEPOSITED PLAN 246447
AT LOCHINVAR
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND
TITLE DIAGRAM DP246447

FIRST SCHEDULE
----DAVID TROY HEIEN
GAIL ALISON HEIEN
AS JOINT TENANTS

(T Y70860)

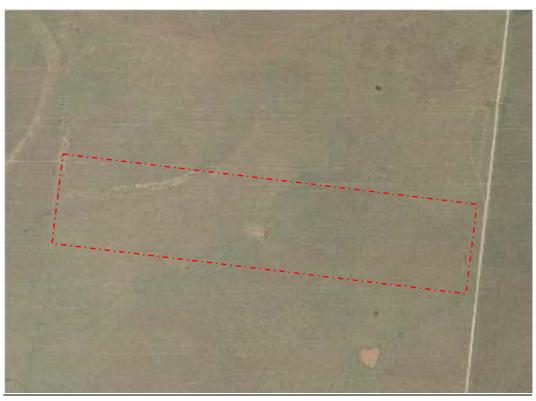
SECOND SCHEDULE (6 NOTIFICATIONS)

1	RESERVATI	ONS AND CONDITIONS IN THE CROWN GRANT(S)
2	K23627	RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN
		SO BURDENED IN THE TITLE DIAGRAM
3	K516643	RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN SO
		BURDENED IN THE TITLE DIAGRAM
4	K541442	RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN SO
		BURDENED IN THE TITLE DIAGRAM
5	N167296	RIGHT OF CARRIAGEWAY AFFECTING THE PART(S) SHOWN SO
		BURDENED IN THE TITLE DIAGRAM
* 6	AS919613	CAVEAT BY COMMERCIAL 7 PTY LIMITED

NOTATIONS

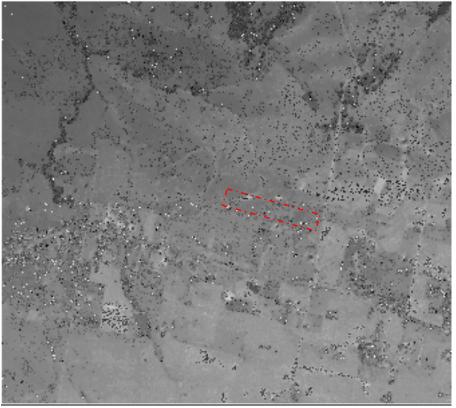
UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

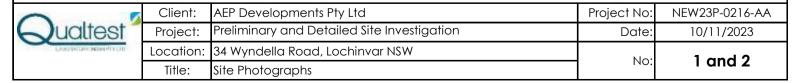

advlegs

PRINTED ON 3/11/2023

APPENDIX D: Aerial Photographs


Aerial Photographs

<u>1976</u>

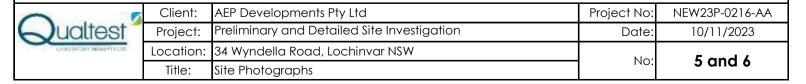

APPENDIX E: Site Photographs

Photograph 1 - residential Dwelling and vehicle parking.

Photograph 2 - stored fuel drums, boat motors, power tools etc stored on eastern side of dwelling.

Photograph 3 - Pool and shed 3 located on the north-eastern side of the dwelling.

Photograph 4 - Shed 1, north-east of the dwelling.

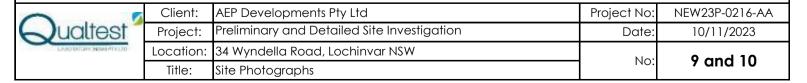

	Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Qualtest	Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
CARONICAT MINIPIYUD	Location:	34 Wyndella Road, Lochinvar NSW	No:	3 and 4
	Title:	Site Photographs	190.	3 and 4

Photograph 5 - Shed 3 located east of the dwelling.

Photograph 6 - Shed 2 bay containg lawn mower and gardening equipment.

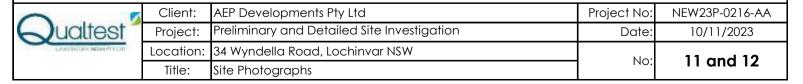
Photograph 7 - Bay of shed 2 containing hoses, cement mixer, ladders timber fencing.

Photograph 8 - Water tank located on northern side of shed 2.


	Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Qualtest	Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
LASOSOGH MIMPIYUD	Location:	34 Wyndella Road, Lochinvar NSW	No:	7 and 8
	Title:	Site Photographs	110.	7 una 6

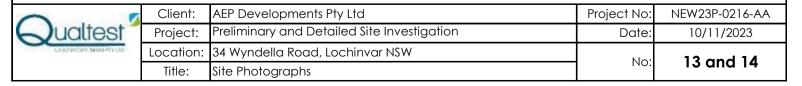
Photograph 9 - Storage area north-east of dwelling.

Photograph 10 - Fill material north-east of dwelling.



Photograph 11 - Storage area north-east of dwelling.

Photograph 12 - Storage area north-east of dwelling.



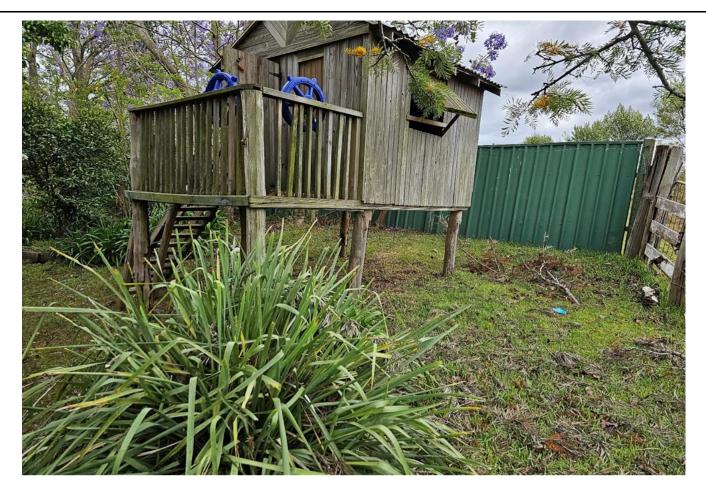
Photograph 13 - batteries in storage area north-east of dwelling.

Photograph 14 - Ash pile located within storage area north-east of the dwelling.



Photograph 15 - fill material west of dwelling on the northern boundary.

Photograph 16 - fill material west of dwelling on the northern boundary.

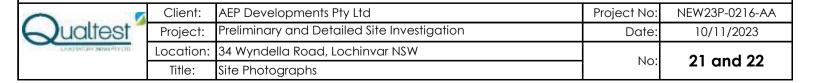

Photograph 17 - Water tanks located east of the dwelling.

Photograph 18 - Septic tank located east of the dwelling.

Title:	Site Photographs	110.	17 dila 16
Location:	34 Wyndella Road, Lochinvar NSW	No:	17 and 18
Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA

Photograph 19 - cubby house east of the dwelling.

Photograph 20 - stockpile SP01.

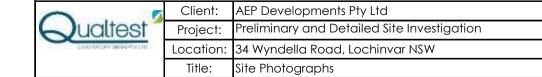

	Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Qualtest	Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
EVROPOZUL MOMBLATIO	Location:	34 Wyndella Road, Lochinvar NSW	No:	19 and 20
	Title:	Site Photographs	110.	17 dila 20

Photograph 21 - exposed brick and concrete from stockpile SP01.

Photograph 22 - Dam 1 containing tyres.

Photograph 23 - Dam 2 and Stockpile SP02

Photograph 24 - Stockpile SP03


Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
Location:	34 Wyndella Road, Lochinvar NSW	No:	23 and 24
Title:	Site Photographs	110.	23 ana 24

Photograph 25 - Stockpile SP04.

Photograph 26 - Stockpile SP04.

No:	25 and 26
Date:	10/11/2023
Project No:	NEW23P-0216-AA

Photograph 27 - Stockpile SP04.

Photograph 28 - Road crossing.

	Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Qualtest	Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
CARONICAT MINIPIYUD	Location:	34 Wyndella Road, Lochinvar NSW	No	27 and 28
	Title:	Site Photographs	No:	27 dila 26

Photograph 29 - Asphalt in drainage line north of road crossing.

Photograph 30 - Stockpile SP05.

	Client:	AEP Developments Pty Ltd	Project No:	NEW23P-0216-AA
Qualtest	Project:	Preliminary and Detailed Site Investigation	Date:	10/11/2023
LASCRICAT NEWPTY LIB	Location:	34 Wyndella Road, Lochinvar NSW	No:	29 and 30
	Title:	Site Photographs	110.	27 ana 30

APPENDIX F:NSW EPA Records

Search results

Your search for: Suburb: LOCHINVAR

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
- Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The POEO public register
- The appropriate planning authority: for example, on a planning certificate issued by the local council under <u>section 149 of the</u> <u>Environmental Planning and Assessment Act</u>.

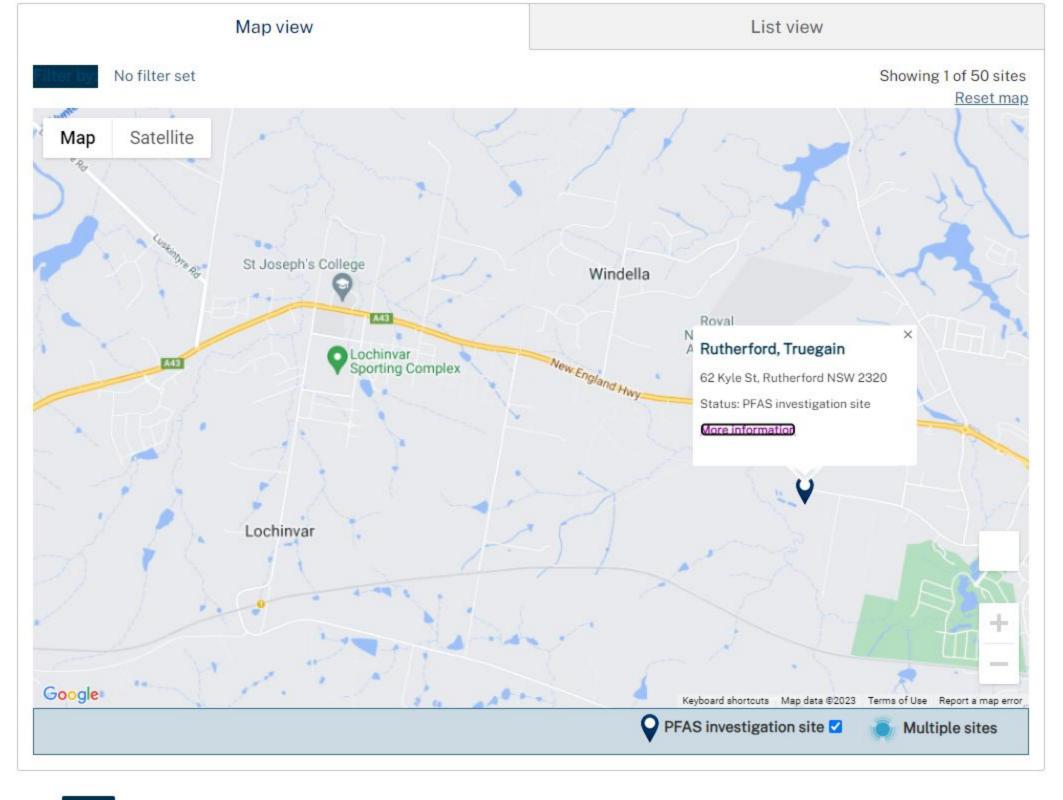
See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

Suburb	SiteName	Address	ContaminationActivityType	ManagementClass	Latitude	Longitude
итноом	Former Mobil Depat	353 Main STREET	Other Petroleum	Regulation under CLM Act not required	-33.48235166	150.1383012
LITHGOW	Former Gasworks	Mort STREET	Gasworks	Regulation under CLM Act not required	-33.47995167	150.1635401
LITHGOW	Jasbe BP-branded Service Station (Former Reliance Petroleum)	1106 Great Western HIGHWAY	Service Station	Regulation under CLM Act not required	-33.48426647	150.134992
LITHGOW	Caltex Lithgow (Quota Park)	Adjacent to 1131 Great Western HIGHWAY	Unclassified	Regulation under CLM Act not required	-33.47927554	150.1366238
LIVERPOOL	AC McGrath (Wholesale) Pty Ltd	20 Shepherd Street and 6A & 6B Atkinson STREET	Other Industry	Regulation under CLM Act not required	-33.9320192	150.9236862
			,			
LIVERPOOL	Former Car Park	4 - 6 Rose STREET	Unclassified	Regulation under CLM Act not required	-33.93258955	150.9157936
LIVERPOOL	Woolworths Service Station	59-67 Orange Grove ROAD	Service Station	Regulation under CLM Act not required	-33.90711248	150.9178855
LIVERPOOL	68 Speed Street (former gasworks)	2A MIII ROAD	Gasworks	Regulation under CLM Act not required	-33.92992649	150.9224472
LIVERPOOL	Woodward Park	84 Memorial AVENUE	Other Industry	Regulation under CLM Act not required	-33.92477836	150.9169229
LOFTUS	BP Freedom Fuel Service Station Loftus	127 Loftus AVENUE	Service Station	Regulation under CLM Act not required	-34.04570765	151.0508004
LONG JETTY	Metro Petroleum Service Station Long Jetty	326 The Entrance ROAD	Service Station	Under assessment	-33.35897356	151.4847709
LONG JETTY	Caltex Service Station	431 The Entrance ROAD	Service Station	Regulation under CLM Act not required	-33.36022468	151.4826553
LONG JETTY	Westside Petroleum Service Station	290-294 The Entrance ROAD	Service Station	Contamination currently regulated under CLM Act	-33.35686757	151.4861479
LONG JETTY	7-Eleven (former Mobil) Service Station	184-186 The Entrance ROAD	Service Station	Regulation under CLM Act not required	-33.35089363	151.4924904
LONGUEVILLE	Caltex Service Station	S Northwood ROAD	Service Station	Regulation under CLM Act not required	-33.82427366	151.1724497

List date current as at 9 November 2023


Search results

Your search for: POEO Licences with the following criteria

Suburb - lochinvar

returned 0 results

Search Again

Liverpool City Council	Mill Road, Liverpool	Contact council
Liverpoor City Council	Will Road, Liverpool	Contact councit
Liverpool Plains Shire Council	Single Street, Werris Creek	Contact council
Maitland City Council	Charles Street, Maitland	Search record of EPA notices ₽
Maitland City Council	Melbourne Street, East Maitland	Search record of EPA
Manly Council	Stuart Street, Manly	Search record of EPA notices ₽
Mudgee Shire Council	Mortimer Street, Mudgee	Contact council
Muswellbrook Shire Council	Carl Street, Muswellbrook	Contact council

APPENDIX G: Section 10.7 Certificate

Certificate No.: PC/2023/3336

Certificate Date: 02/11/2023

Fee Paid: \$168.00

Receipt No.:

Your Reference: NEW23P-0216

SECTION 10.7 PLANNING CERTIFICATE Environmental Planning and Assessment Act, 1979 as amended

APPLICANT: Emma Coleman

emmacoleman@qualtest.com.au

PROPERTY DESCRIPTION: 34 Wyndella Road LOCHINVAR NSW 2321

PARCEL NUMBER: 27791

LEGAL DESCRIPTION: Lot 225 DP 246447

IMPORTANT: Please read this Certificate carefully.

The information provided in this Certificate relates only to the land described above. If you need information about an adjoining property or nearby land, a separate certificate will be required.

All information provided is correct as at the date of issue of this Certificate. However, it is possible for changes to occur at any time after the issue of this Certificate.

For more information on the Planning Certificate please contact our Customer Experience team on 4934 9700.

SECTION 10.7(2)

The following matters relate to the land, as required by section 10.7(2) of the *Environmental Planning and Assessment Act* (1979) ("the Act") and clause 284 and Schedule 2 of the *Environment Planning and Assessment Regulation 2021*.

ITEM 1 - Names of relevant planning instruments and development control plans

The following environmental planning instruments and development control plans apply to the carrying out of development on the land:

State Environmental Planning Policies

The Minister for Planning has notified that the following State Environmental Planning Policies (SEPPs) shall be specified on Certificates under Section 10.7 of the Environmental Planning and Assessment Act, 1979.

The land is affected by the following State Environmental Planning Policies:

- SEPP65 Design Quality of Residential Apartment Development
- SEPP (Biodiversity and Conservation) 2021
- SEPP (Industry and Employment) 2021
- SEPP (Primary Production) 2021
- SEPP (Planning Systems) 2021
- SEPP (Housing) 2021
- SEPP Building Sustainability Index: BASIX 2004
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Resources and Energy) 2021
- SEPP (Transport and Infrastructure) 2021
- SEPP (Resilience and Hazards) 2021

Local Environmental Plan (LEP)

Maitland LEP 2011, published 16 December 2011, applies to the land.

Development Control Plan prepared by Council

Maitland Development Control Plan 2011 applies to the land.

The following proposed environmental planning instruments and draft development control plans are or have been the subject of community consultation or on public exhibition under the Environmental Planning and Assessment Act 1979, apply to the carrying out of development on the land and:

Planning Proposal for a Local Environmental Plan

No draft local Environmental Plans that have been on public exhibition under the Act are applicable to the land.

Detailed information on draft environmental planning instruments is available at

the NSW Department of Planning and Environment Current LEP Proposals website; or Maitland City Council's website.

Draft Development Control Plans

No draft Development Control Plan(s) that have been on public exhibition under the Act are applicable to the land.

Draft State Environmental Planning Policies

No draft State Environmental Planning Policy(s) applying to the land is, or has been publicised the subject of community consultation or on public exhibition under the Act.

ITEM 2 - Zoning and land use under relevant planning instruments

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a State Environmental Planning Policy or proposed State Environmental Planning Policies)

Zone and Land Use Table from Local Environmental Plan

RU2 Rural Landscape

1 Objectives of zone

- To encourage sustainable primary industry production by maintaining and enhancing the natural resource base
- To maintain the rural landscape character of the land
- To provide for a range of compatible land uses, including extensive agriculture
- To provide for a range of non-agricultural uses where infrastructure is adequate to support the uses and conflict between different land uses is minimised

2 Permitted without Consent

Extensive agriculture; Home occupations; Intensive plant agriculture

3 Permitted with Consent

Agriculture; Airstrips; Animal boarding or training establishments; Bed and breakfast accommodation; Boat launching ramps; Boat sheds; Camping grounds; Caravan parks; Cellar door premises; Cemeteries; Community facilities; Crematoria; Dual occupancies; Dwelling houses; Eco-tourist facilities; Educational establishments; Environmental facilities; Environmental protection works; Farm buildings; Farm stay accommodation; Flood mitigation works; Forestry; Helipads; Home-based child care; Home businesses; Home industries; Information and education facilities; Jetties; Landscaping material supplies; Markets; Open cut mining; Places of public worship; Plant nurseries; Recreation areas; Recreation facilities (outdoor); Roads; Roadside stalls; Rural industries; Rural supplies;

Signage; Turf farming; Veterinary hospitals; Water supply systems

4 Prohibited

Intensive livestock agriculture; Livestock processing industries; Any other development not specified in item 2 or 3.

Detailed information on the land zone mapping is available at the NSW Department of Planning and Environment ePlanning Spatial Viewer website; or Maitland City Council's website.

Note: Detailed information on the local environmental plan is available at NSW Legislation – In force legislation.

Whether development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the fixed minimum land dimensions.

For the land zoned RU2 Rural Landscape Clause 4.2A in the Maitland Local Environmental Plan 2011 applies to the land. This clause fixes a minimum lot size for the erection of a dwelling-house that is identified on the Maitland Local Environmental Plan 2011 Lot Size Map as 40 hectares.

Is the land in an area of outstanding biodiversity value under the Biodiversity Conservation Act 2016?

The land IS NOT identified in an area of outstanding biodiversity value under the Biodiversity Conservation Act.

Is the land within a conservation area, however described?

The land IS NOT in a Heritage Conservation Area.

Is there an item of environmental heritage in a local environmental plan?

The land does NOT contain an item of Environmental Heritage.

Note: An item of environmental heritage, namely Aboriginal heritage, listed on the Aboriginal Heritage Information Management System (AHIMS), may be situated on the land. The Department of Planning and Environment, Biodiversity and Conservation Division.

ITEM 3 – Contribution plans

The name of each contributions plan under the Act, Division 7.1 applying to the land, including draft contributions plans.

- Maitland S94A Levy Contributions Plan 2006
- Maitland City Wide Section 94 Contributions Plan 2016
- Maitland S94 Contributions Plan (City Wide) 2006

If the land is in a special contributions area under the Act, Division 7.1, the name of the area.

The land IS NOT in a special contributions area.

Note: In addition to the above developer contribution plans, Development Servicing Plans for water and sewer connection may be applicable, attracting additional contributions for the development, particularly where development will connect to water and/or sewer services.

ITEM 4 - Complying Development

If the land is land on which complying development may be carried out under each of the complying development codes under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008, because of that Policy, clause 1.17A(1)(c)-(e), (2), (3) or (4), 1.18(1)(c3) or 1.19.

Complying development under the **Housing Code** may not be carried out on the land as it is not within an applicable zone.

Complying development under the **Low Rise Medium Density Housing Code and Greenfield Housing Code** may not be carried out on the land as it is not within an applicable zone.

Complying development under the **Rural Housing Code** may be carried out on the land.

Complying development under the **Housing Alterations Code** may be carried out on the land.

Complying development under the **General Development Code** may be carried out on the land.

Complying development under the **Commercial and Industrial Alterations Code** may be carried out on the land.

Complying development under the **Commercial and Industrial (New Buildings and Additions) Code** may not be carried out on the land as it is not within an applicable zone.

Complying development under the **Subdivisions Code** may be carried out on the land.

Complying development under the **Demolition Code** may be carried out on the land.

Complying development under the **Fire Safety Code** may be carried out on the land.

Complying development under the **Container Recycling Facilities Code** may not be carried out on the land.

Note: Despite the above provisions, if only part of a lot is subject to an exclusion or exemption under Clause 1.17A or Clause 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) Amendment (Commercial and Industrial Development and Other

Matters) 2013, complying development may be carried out on that part of the lot that is not affected by the exclusion or exemption. The complying development may not be carried out on the land because of the following provisions of Clauses 1.17A(1)(c) to (e), (2), (3) and (4), 1.18(1)(c3) and 1.19 of the Policy.

The provisions of Clauses 1.17A(1)(c) to (e), (2), (3) and (4), 1.18(1)(c3) and 1.19 are not identified on the land. Complying development may be undertaken in accordance with the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 as amended.

Note: This information needs to be read in conjunction with the whole of the State Environment Planning Policy. If an identification, restriction or characteristic of land referred to above is not located on or does not comprise, the whole of the relevant land, complying development may be carried out on any part of the land not so identified, restricted or characterised.

Note: Information regarding whether the property is affected by flood related development controls or is bushfire prone land is identified in other sections of this certificate. If your property is identified as being impacted by bushfire or flooding, a specific technical assessment of these issues will be required as part of any Complying Development Certificate application under the State Environment Planning Policy, or a development application for any other type of development requiring consent from Council.

Note: Despite any references above advising that Complying Development may be undertaken on the land, certain Complying Development may be precluded from occurring on the land due to requirements contained in the remainder of State Environment Planning Policy (Exempt and Complying Development Codes) 2008. It is necessary to review the State Environment Planning Policy in detail to ensure that specific types of complying development may be undertaken on the land.

If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that

- (a) a restriction applies to the land, but it may not apply to all of the land,
- (b) and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.

If the complying development codes are varied, under that Policy, clause 1.12, in relation to the land.

There are no variations to the exempt development codes within the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 that apply in the Maitland local government area.

For further information on complying development, please refer to the Department of Planning and Environment.

ITEM 5 – Exempt Development

If the land is land on which exempt development may be carried out under each of the exempt development codes under State Environmental Planning Policy (Exempt and Complying Development Codes) 2008, because of that Policy, clause 1.16(1)(b1)-(d) or 1.16A.

If exempt development may not be carried out on the land because of 1 of those clauses, the reasons why it may not be carried out under the clause.

If the council does not have sufficient information to ascertain the extent to which exempt development may or may not be carried out on the land, a statement that

- a) a restriction applies to the land, but it may not apply to all of the land, and
- b) the council does not have sufficient information to ascertain the extent to which exempt development may or may not be carried out on the land.

If the exempt development codes are varied, under that Policy, clause 1.12, in relation to the land.

ITEM 6 - Affected building notices and building product rectification orders

Whether the council is aware that -

The Council IS NOT aware of any affected building notice which is in force in respect of the land.

The Council is NOT aware of any building product rectification order which is in force in respect of the land and that has not been fully complied with.

The Council IS NOT aware of any notice of intention to make a building product rectification order being given in respect of the land and that is outstanding.

ITEM 7 - Land Reserved for Acquisition

Whether an environmental planning instrument or proposed environmental planning instrument referred to in section 1 makes provision in relation to the acquisition of the land by an authority of the State, as referred to in the Act, section 3.15.

No environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument applying to the land provides for the acquisition of the land by a public authority, as referred to in section 3.15 of the Act.

ITEM 8 – Road widening and road realignment

Whether the land is affected by road widening or road realignment under -

- a) The land is NOT affected by road widening under Division 2 of Part 3 of the Roads Act 1993.
- b) The land is NOT affected by road widening under any environmental planning

instrument

- c) The land is NOT affected by any road-widening or realignment under any resolution of the Council
- d) The land is NOT affected by road-widening or realignment under a resolution of the Council

Note: This item relates to Council's road proposals only. Other authorities, including the NSW Roads and Traffic Authority may have road widening proposals.

ITEM 9 - Flood related development controls

The land or part of the land IS NOT within the flood planning area and subject to flood related development controls.

The land or part of the land IS NOT between the flood planning area and the probable maximum flood and subject to flood related development controls.

The Maitland LEP 2011 identifies the flood planning level (FPL) as the level of a 1:100 ARI flood event plus 0.5m freeboard. The probable maximum flood has the same meaning as the Floodplain Development Manual.

Note in this section – **flood planning area** has the same meaning as in the Floodplain Development Manual. **Floodplain Development Manual** means the Floodplain Development Manual (ISBN 0 7347 5476 00) published by the NSW Government in April 2005. **probable maximum flood** has the same meaning as in Floodplain Development Manual

Note: The information provided in item 9 is based on the data and information presently available to the Council and on development controls in force as at the date of this certificate. The identification of land as not being subject to flood related development controls does not mean that the land is not, or may not be, subject to flooding or that the land will not in the future be subject to flood related development controls, as additional data and information regarding the land become available.

ITEM 10 - Council and other public authority policies on hazard risk restrictions

Whether any of the land is affected by an adopted policy that restricts the development of the land because of the likelihood of land slip, bush fire, tidal inundation, subsidence, acid sulfate soils, contamination, aircraft noise, salinity, coastal hazards, sea level rise or another risk, other than flooding.

All land within the Maitland Local Government Area has the potential to contain acid sulfate soils. Clause 7.1 of the Maitland Local Environmental Plan 2011 generally applies. Development consent is required where works described in the Table to this clause are proposed on land shown on the Maitland LEP 2011 Acid Sulfate Soils Map as being of the class specified for those works.

The Council has adopted by resolution a policy on contaminated land which may restrict the development of the land to which this certificate relates. This policy is implemented when zoning or land use changes are proposed on lands which:

- are considered to be contaminated; or
- which have previously been used for certain purposes; or
- which have previously been used for certain purposes but Council's

records do not have sufficient information about previous use of the land to determine whether the land is contaminated; or

• have been remediated for a specific use.

Consideration of Council's adopted policy and the application of provisions under relevant State legislation is warranted.

Note in this section -

adopted policy means a policy adopted -

- a) by the council, or
- b) by another public authority, if the public authority has notified the council that the policy will be included in a planning certificate issued by council.

ITEM - 11 Bush fire prone land

If any of the land is bush fire prone land, designated by the Commissioner of the NSW Rural Fire Service under the Act, section 10.3, a statement that all or some of the land is bush fire prone land.

The land is mapped as bushfire prone land and as such restrictions may apply to new development on this land.

Note – In accordance with the *Environmental Planning and Assessment Act 1979*, bush fire prone land, in relation to area, means land recorded for the time being as bush fire prone on a bush fire prone land map for the area. This mapping is subject to periodic review.

Note – The identification of land as not being bushfire prone does not mean that the land is not, or may not be affected by bushfire or that the land will not in the future be subject to bushfire related development controls, as additional data and information regarding the land become available.

ITEM - 12 Loose-fill asbestos insulation

If the land includes residential premises, within the meaning of the Home Building Act 1989, Part 8, Division 1A, that are listed on the Register kept under that Division, a statement to that effect.

There are no premises on the subject land listed on the register.

ITEM - 13 Mine subsidence

Whether the land is declared to be a mine subsidence district, within the meaning of the Coal Mine Subsidence Compensation Act 2017.

The land has NOT been proclaimed to be within a Mine Subsidence District under the meaning of section 20 of the Coal Mine Subsidence Compensation Act 2017.

ITEM - 14 Paper subdivision information

There is no development plan that applies to the:

- 1) Land or that is proposed to be subject to a consent ballot
- 2) There is no subdivision order that applies to the land.

ITEM - 15 Property vegetation plans

If the land in relation to which a property vegetation plan is approved and in force under the Native Vegetation Act 2003, Part 4, a statement to that effect, but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act.

The Council has not received any notification from Hunter Local Land Services that this land is affected by a property vegetation plan under Part 4 of the Native Vegetation Act 2003 (and that continues in force).

ITEM – 16 Biodiversity stewardship sites

If the land is a biodiversity stewardship site under a biodiversity stewardship agreement under the Biodiversity Conservation Act 2016, Part 5, a statement to that effect, but only if the council has been notified of the existence of the agreement by the biodiversity Conservation Trust.

The Council is not aware if the land is a biodiversity stewardship site under a biodiversity stewardship agreement under part 5 of the *Biodiversity Conservation Act 2016.*

Note – Biodiversity stewardship agreements include biobanking agreements under the *Threatened Species Conservation Act 1995*, Part 7A that are taken to be biodiversity stewardship agreements under the *Biodiversity Conservation Act 2016*, Part 5.

ITEM 17 - Biodiversity certified land

If the land is biodiversity certified land under the Biodiversity Conservation Act 2016, Part 8, a statement to that effect.

The land is not biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

Note – Biodiversity certified land includes land certified under the *Threatened Species Conservation Act 1995*, Part 7AA that is taken to be certified under the *Biodiversity Conservation Act 2016*, Part 8.

ITEM 18 – Orders under Trees (Disputes Between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land, but only if the council has been notified or the order.

Council has NOT received notification from the Land and Environment Court of NSW that the land is affected by an Order under Trees – (Disputes Between Neighbours) Act 2006.

ITEM 19 – Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

If the *Coastal Management Act 2016* applies to the council, whether the owner, or a previous owner, of the land has given written consent to the land being subject to annual charges under the *Local Government Act 1993*, section 496B, for coastal protection services that relate to existing coastal protection works.

The owner (or any previous owner) of the land has NOT consented in writing to the land being subject to annual charges under section 496B of the Local Government

Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note - In this section existing coastal protection works has the same meaning as in the Local Government Act 1993, section 553B.

Note – Existing coastal protection works are works to reduce the impact of coastal hazards on land, such as seawalls, revetments, groynes and beach nourishment, that existed before 1 January 2011

ITEM 20 - Western Sydney Aerotropolis

The State Environmental Planning Policy (Precincts – Western Parkland City) 2021 does not apply to land within the Maitland City Council local government area.

ITEM 21 - Development consent conditions for seniors housing

If State Environmental Planning Policy (Housing) 2021, Chapter 3, Part 5 applies to the land, any conditions of a development consent granted after 11 October 2007 in relation to the land that are of the kind set out in that Policy, section 88(2).

Clause 88(2) of the *State Environmental Planning Policy (Housing) 2021* restricts occupation of development approved for seniors housing to:

- a) Seniors or people who have a disability
- b) People who live in the same household with seniors or people who have a disability.
- c) Staff employed to assist in the administration and provision of services to housing provided under this Part.

ITEM 22 – Site compatibility certificates and development consent conditions for affordable rental housing

Whether there is a current site compatibility certificate under State Environmental Planning Policy (Housing) 2021, or a former site compatibility certificate, of which the council is aware, in relation to proposed development on the land and, if there is a certificate –

- a) the period for which the certificate is current, and
- b) that a copy may be obtained from the Department.

If State Environmental Planning Policy (Housing) 2021, Chapter 2, Part 2, Division 1 or 5 applies to the land, any conditions of a development consent in relation to the land that are of a kind referred to in that Policy, section 21(1) or 40(1).

Any conditions of a development consent in relation to land that are kind referred to in State Environmental Planning Policy (Affordable Rental Housing) 2009, clause 17(1) or 38(1).

Note - No Seniors Housing development consent conditions apply to this land.

Note - In this section – Former site compatibility certificate means a site compatibility certificate issued under State Environmental Planning Policy (Affordable Rental Housing) 2009.

Council is unaware if a Site Compatibility Certificate (Affordable Rental Housing) has been issued in accordance with State Environmental Planning Policy

(Affordable Rental Housing) 2009.

Note. The following matters are prescribed by section 59(2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate.

Contaminated Land

- a) The land to which this certificate relates is NOT significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.
- b) The land to which this certificate relates is NOT subject to a management order within the meaning of the Contaminated Land Management Act 1997.
- c) The land to which this certificate relates is NOT the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.
- d) The land to which this certificate relates is NOT the subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.
- e) Council has NOT been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this Certificate relates.

PART 2: ADDITIONAL MATTERS PROVIDED PURSUANT TO SECTION 10.7 (5)

The following information is provided in accordance with section 10.7(5) of the Environmental Planning and Assessment Act 1979. Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5). If this information is to be relied upon, it should be independently checked.

1. Development Consent

Councils records indicate that the land has not had any development consent granted within the five (5) years preceding the date of this certificate.

2. Draft Development Control Plan

No draft Development Control Plans apply to the land.

3. Suspension of Covenants

Clause 1.9A in the Maitland LEP 2011 applies to all land within the Maitland Local Government Area. This clause suspends any agreement, covenant or other instrument that restricts the development of land that is permissible under the provisions of the Maitland Local Environmental Plan 2011 to the extent necessary to serve that purpose.

4. Filling of Land

Earthworks (excavation and filling of land) require development consent. Clause 7.2 in the Maitland LEP 2011 applies to all land within the Maitland Local Government Area. Earthworks (defined as both excavation and filling of land) require development consent of Council unless the works are exempt development, ancillary to other development for which development consent is required or granted, or considered by Council to be of a minor nature.

5. Development in the Vicinity of Heritage Items

Clause 5.10 in the Maitland LEP 2011 generally applies to all land in the Maitland Local Government Area, where the land is located in the vicinity of a heritage item or heritage conservation area. This Clause requires a consent authority to consider the effect of the proposed development on the heritage significance of the item or area concerned, before granting development consent.

6. Other Matters

There are no other specific matters.

Jeff Smith General Manager

APPENDIX H:

Logs

LIENT: COMMERCIAL 7 PTY LTD

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

TE JOB NO: NEW23P-0216

BH06

1 OF 1

BOREHOLE NO:

PAGE:

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:**

LOGGED BY: BE **DATE:** 6/11/23

	Drill	ling and Samp	ling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
					} }		TOPSOIL: CLAY - medium to high plastici	ty,					TOPSOIL
				_			GLAY - medium to high plasticity, grey-bro	 wn.	M × M	н	HP	>600	RESIDUAL SOIL
				0.5_ - -		CH	0.80m Sandy CLAY - low to medium plasticity, pa grey-white and pale orange, fine grained s	— — — — ile and	٠- ۵		HP HP	350 230	RESIDUAL SOIL / EXTREMELY WEATHERE
				1.0_ - - -		CL			M V W	VSt	HP	300	ROCK
	red			1. <u>5</u>			Sandy SILTSTONE band approximately 1 thick.	00mm 	/		HP	350	EXTREMELY WEATHERE
AD/T	Not Encountered			2.0 -			Extremely Weathered Sandy SILTSTONE properties: breaks down in to Silty Sandy to medium plasticity, pale grey-white and porange, fine grained sand.	CLAY - low					ROCK
				2.5 - - - 3.0 -			SANDSTONE band (approximately 100ml	n thick).	M < Wp	VSt / Fb			
				3.5 -			3.45m 3.50m Sandy SILTSTONE - estimated low to medure of the strength, fine grained, orange with pale grained. Hole Terminated at 3.50 m	 dium ey.					SLIGHTLY WEATHERED ROCK
				- - -			Refusal						
	END:	1		Notes, Sai			<u>s</u> ter tube sample	<u>Consist</u> VS	ency Very Sof			CS (kPa 25	Moisture Condition D Dry
_ 	Wat (Dat Wat Wat	ter Level te and time sho ter Inflow ter Outflow anges	wn)	U ₅₀ CBR E ASS	Bulk s Enviro (Glass Acid S (Plasti	ample f nmenta jar, sea ulfate S	ter tube sample or CBR testing I sample aled and chilled on site) ioil Sample air expelled, chilled)	S F St VSt H	Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit
<u>oıra</u>	G tra D	anges radational or ansitional strata efinitive or distic trata change	<u> </u>	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density		L O M	ery Lo oose Mediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

ASS

В

Field Tests

PID

DCP(x-y)

■ Water Outflow

Gradational or

strata change

transitional strata

Definitive or distict

Strata Changes

Ę

Acid Sulfate Soil Sample

Bulk Sample

(Plastic bag, air expelled, chilled)

Photoionisation detector reading (ppm)

Hand Penetrometer test (UCS kPa)

Dynamic penetrometer test (test depth interval shown)

ENGINEERING LOG - BOREHOLE

CLIENT: COMMERCIAL 7 PTY LTD

PAGE: 1 OF 1 PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO: NEW23P-0216

BOREHOLE NO:

BH07

LOGGED BY: BE

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

6/11/23

DATE: **DRILL TYPE:** 2.7 TONNE EXCAVATOR WITH AUGER ATTACHMENT SURFACE RL: **BOREHOLE DIAMETER:** 300 mm DATUM: Field Test Drilling and Sampling Material description and profile information CLASSIFICATION SYMBOL CONSISTENCY DENSITY MOISTURE CONDITION GRAPHIC LOG Structure and additional METHOD Test Type WATER Result DEPTH MATERIAL DESCRIPTION: Soil type, plasticity/particle SAMPLES (m) (m) characteristics, colour, minor components TOPSOIL TOPSOIL: CLAY - medium to high plasticity, dark СН grey, root affected. RESIDUAL SOIL CLAY - medium to high plasticity, dark grey. Н ΗP 450 380 HP 0.5 ΗP 320 ΗP 280 HP 220 ΗP 250 Not Encountered ΗP 300 Brown. AD/T ΗP 280 CH VSt ΗP 350 ΗP 280 10.01.00.01 Datgel Lab and In Situ Tool 2.0 ΗP 280 2.60n Hole Terminated at 2.60 m -CORED BOREHOLE - TEST PIT NEW23P-0216 LOGS.GPJ <<DrawingFile>> 20/11/2023 14:57 3.0 3.5 LEGEND: Moisture Condition Notes, Samples and Tests Consistency UCS (kPa) Very Soft 50mm Diameter tube sample VS <25 D Dry Water CBR Bulk sample for CBR testing S 25 - 50 Moist Soft М Water Level Ε Environmental sample F Firm 50 - 100 W Wet (Date and time shown) (Glass jar, sealed and chilled on site) St Stiff 100 - 200 W, Plastic Limit Water Inflow

VSt

Н

Fb

Density

Very Stiff

MD

VD

Hard

Friable

200 - 400

>400

Medium Dense

Very Loose

Very Dense

Loose

 W_L

Liquid Limit

Density Index <15%

Density Index 15 - 35%

Density Index 35 - 65%

Density Index 65 - 85%

Density Index 85 - 100%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO:

LOGGED BY: BE

BOREHOLE NO:

PAGE:

NEW23P-0216

BH08

1 OF 1

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

DATE: 6/11/23

В	OREH	OLE DIAM	IETER:	:	300 m	m	DATE	JM:					
	Dril	ling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			0.5_ -		CH	TOPSOIL: CLAY - medium to high plasticity brown, root affected. CLAY - medium to high plasticity, dark brown to high plasticity, pale trace orange.	/ wn.	M < W _P	H H/Fb	HP	480	RESIDUAL SOIL / RESIDUAL SOIL / RESIDUAL SOIL / EXTREMELY WEATHERED
	Not			- 1. <u>0</u> - -	× · · · · × · · · · × · · · · × · · · · · × · · · · · × ·		ANDESITE - grey to dark grey, estimated in high strength, fractured, trace extremely we pockets.	medium to eathered	D				ROCK HIGHLY TO MODERATELY WEATHERED ROCK 1.0M TO 1.3M SLOW TO VERY SLOW PROGRESS 1.3M TO 1.4M VERY SLOW
\vdash	+			1.5	* x		Less fractured. Hole Terminated at 1.40 m						1.3M TO 1.4M VERY SLOW PROGRESS AUGER NOT (MOVING @ 1.4M.
UT IB 17.15EB LOG NON-CORED BOXEHOLE - LEST PIT NEWZSP-UZ16 LOGS.GPU	GEND			2.0 - - - 2.5 - - 3.0 - - - -		and Top	Refusal	Consiste				28 July 20	Mainture Condition
MI SEE LOG NON-CORED BOREHOLE ST ST	ater Wa (Da — Wa ■ Wa ata Ch tr	ter Level te and time si ter Inflow ter Outflow anges iradational or ansitional stra	hown)	Notes, Sa U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample in nmenta i jar, se sulfate s c bag, ample onisati	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt V	/ery Soft Soft Firm Stiff /ery Stiff lard Friable V L	Vi Lo	25 50 10 20 >4 ery Lo	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
QT LIB 1.1	D	efinitive or distrata change		DCP(x-y) HP			etrometer test (test depth interval shown) ometer test (UCS kPa)		MD D VD	D	ediun ense ery De		Density Index 35 - 6 Density Index 65 - 6 Density Index 85 - 1

COMMERCIAL 7 PTY LTD

PAGE: 1 OF 1 NEW23P-0216

BH12

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO: LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY:

BOREHOLE NO:

ΒE DATE: 6/11/23

BO		OLE DIAN			300 m		DR WITH AUGER ATTACHMENT SURI DATU	FACE RL: JM:					
	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
					} }	СН	CLAY - medium to high plasticity, brown, ro	oot					TOPSOIL
				-			affectedCLAY - medium to high plasticity, brown.	/			HP	450	RESIDUAL SOIL
_	Not Encountered			0. <u>5</u> - -		СН	With some Clayey SAND pockets/bands.		∧ W _P		HP	>600	
AD/T	Not End			1. <u>0</u>			1.00m		v ≥	Н			
				-	× × × × × × × × × × × × × ×		Extremely Weathered ANDESITE breaks of Sandy Gravell CLAY/Clayey Sandy GRAV/ medium plasticity, dark grey with some bro of low plasticity, fine grained angular grave coarse grained sand.	EL - low to wn, fines			HP	>600	EXTREMELY WEATHERED ROCK
				1. <u>5</u> -	× · · · × · · × · · · · × · · · · × · · · · × · · · · · × · · · · · × · · · · · × · · · · · · × ·		1.70m 1.75m ANDESITE - dark grey and dark brown, es		D				HIGHLY TO MODERATELY
				2.0			\medium to high strength. Hole Terminated at 1.75 m Refusal						WEATHERED ROCK
				- - 2.5									
				-									
				3. <u>0</u>									
				- 3. <u>5</u>									
LEG Wat				-									
LEG	SEND:			Notes, Sa			<u>is</u> ter tube sample	Consister				CS (kPa	-
Wat ▼	Wat (Dat	er Level e and time sl er Inflow	hown)	U ₅₀ CBR E ASS	Bulk s Enviro (Glass	ample f onmenta s jar, se	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample	S Si F Fi St Si	ery Soft oft irm tiff ery Stiff		25 50 10	25 5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit
Stra	ta Cha	_		B Field Test	Bulk S	ic bag, a Sample	air expelled, chilled)	1	ard riable V	V	ery Lo	100 oose	Density Index <15%
_	tra De	radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D VD	L() N D	oose	n Dense	Density Index 15 - 35%

COMMERCIAL 7 PTY LTD

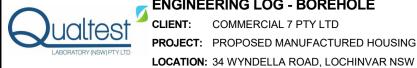
BOREHOLE NO:

LOGGED BY:

PAGE:

DATE:

1 OF 1 NEW23P-0216


PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO: LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

ΒE

6/11/23

BH13

	Drill	ing and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				- - - 0. <u>5</u>		CH	TOPSOIL: CLAY - medium to high plasticit root affected. CLAY - medium to high plasticity, brown.	/		Н	HP	500	TOPSOIL RESIDUAL SOIL EXTREMELY WEATHERE ROCK
				1. <u>0</u>	× × × × × × × × × × × × × × × × × × ×		Sandy CLAY - low to medium plasticity, pa and grey, fine grained sand.		M < Wp	H/Fb	•		Noon
AD/T	Not Encountered			1. <u>5</u> - -	× ×		Extremely Weathered ANDESITE: breaks Clayey Gravelly SAND - fine to coarse gra brown to red-brown and dark grey, fines of plasticity, fine angular gravel. 1.80m ANDESITE - dark grey with red-brown, est	ned, low	D - M	D - VD)		HIGHLY WEATHERED -
				2.0 2.5 3.0 3.5	× × × × × × × × × × × × × × × × × × ×		to medium strength, highly fractured, trace weathered pockets (excavated as Sandy of fine to medium grained angular, fine to coagrained sand).	GRAVEL -	D				ROCK
							Hole Terminated at 3.50 m Slow progress						
Wat	Wat (Dat Wat Wat	er Level e and time sh er Inflow er Outflow	own)	Notes, Sal U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se ulfate S c bag, a	s ter tube sample or CBR testing I sample aled and chilled on site) ioil Sample air expelled, chilled)	S S F F St S VSt V	ery Soft Soft Firm Stiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
<u>stra</u>	tra De	anges radational or ansitional strat efinitive or dis rata change	ta	Field Test PID DCP(x-y) HP	Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	riable V L MI D	Lo D M	ery Lo oose lediur	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

COMMERCIAL 7 PTY LTD

PAGE:

BOREHOLE NO:

1 OF 1 NEW23P-0216

BH14

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO:

LOGGED BY: ΒE

DATE: 6/11/23

	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
МЕТНОD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics,colour,minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CH	TOPSOIL: CLAY - medium to high plasticity root affected. CLAY - medium to high plasticity, brown.	y, brown, _ — — — /	,	н	HP	500	TOPSOIL RESIDUAL SOIL
	pe			0.5_ - - - 1.0_			Extremely Weathered Sandy SILTSTONE properties breaks down into: Sandy CLAY medium plasticity, dark brown, fine to coars (mostly fine grained) sand.	low to	- ∨ - ∨ ×	H/Fb	_	400	EXTREMELY WEATHERE ROCK
AD/T	Not Encountered			- - - 1. <u>5</u>	× × × × × × × × × × × × × × × × × × ×		ANDESITE - dark grey with red-brown, est to medium strength, highly fractured, extre weathered pockets, excavated as Sandy 0 fine to medium grained angular, fine to coagrained sand.	mely SRAVEL -					HIGHLY WEATHERED ROCK 1.1M TO 2.4M: EAS TO MODERATE TO DRILL
				2.0 -	? ? ?				D				
				2.5	*::::		2.50m ANDESITE - estimated medium to high str grey and brown with pale grey-white. Hole Terminated at 2.50 m	ength,	-				HIGHLY WEATHERED ROCK AT 2.4M: AUGER PROGRESSING 1MM/REVOLUTION. AT
				-			Refusal						2.5M: AUGER BOUNCING ON WEATHERED ROCK.
				3. <u>0</u> -									
				3. <u>5</u>									
				-									
LEG Wat	END: er	1		Notes, Sa	50mm	Diame	ter tube sample	1	ery Sof	<u> </u>	<2	CS (kPa	D Dry
_ _	(Dat Wat Wat	er Level te and time sl er Inflow er Outflow	nown)	CBR E ASS	Enviro (Glass Acid S	nmenta jar, se ulfate s c bag, a	or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	F F St S VSt \	Soft Firm Stiff /ery Stiff Hard Friable	:	50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	
<u>stra</u>	G tra De	anges radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	-riable V L MI D	Lo D M	ery Lo oose lediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:** NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

DATE: 2/11/23

TEST PIT NO:

LOGGED BY:

PAGE:

TP01

1 OF 1

ΒE

		PIT LENGT		2.0 m		IDTH:	1.0 m DATU	JM:					
	Dr	lling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	TOPSOIL: Sandy CLAY/Clayey SAND - lor plasticity, grey-brown, fine to coarse graine root affected in top 0.1m.						TOPSOIL
				0.5		СН	O.30m CLAY - medium to high plasticity, grey-broon orange.	 wn, with	w v	н	HP HP	480 500	RESIDUAL SOIL
				_ _ _	///// 		0.70m Silty SANDSTONE - fine grained, pale grey and orange, trace extremely weathered	 /-white	Σ		-		HIGHLY WEATHERED ROCK
				1. <u>0</u>			pockets/bands, estimated medium to high No extremely weathered pockets/bands, (e as cobbles of boulder sized fragments).	J					SLOW PROGRESS
ш	Not Encountered			-		-	Trace extremely weathered pockets/bands fractured.	·,					EASY TO MODERATE TO EXCAVATE
	Not			1. <u>5</u> - -									
In Situ Tool				2.0									
20/11/2023 14:57 10.01.00.01 Datgel Lab and In Situ Tool				-		-							
14:57 10.01.00.0				2. <u>5</u> -									VERY SLOW PROGRESS
				3.0			2.80m Hole Terminated at 2.81 m Refusal						WITH EXCAVATOR BUCKET SLIGHTLY WEATHERED ROCK - 6 SCRAPES/10MM
3PJ < <drawingfi< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingfi<>				-									
23P-0216 LOGS.C				3.5_									
- TEST PIT NEW				-									
표 <u>w</u>	– (Da – Wa	ater Level ate and time s ater Inflow	hown)	Notes, Sai U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S	n Diame ample f onmenta s jar, sea Sulfate S	er tube sample or CBR testing I sample aled and chilled on site) oil Sample	S S F F St S VSt V	ery Soft oft irm tiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
LIB 1.1.GLB Log NO	rata CI ([ater Outflow nanges Gradational or ransitional stra Definitive or distrata change	ata	B Field Test PID DCP(x-y) HP	Bulk S <u>s</u> Photo Dynar	Sample ionisationic pene	uir expelled, chilled) In detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	1	lard riable V L ME D VD	Lo N D	ery Lo	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO: NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: DATE: 2/11/23

TEST PIT NO:

PAGE:

TP02

1 OF 1

ΒE

1		MENT TYPI IT LENGTI		20 TO		:XCA	/ATOR 1.0 m	SURFACE RL: DATUM:					
	Drill	ling and San	npling				Material description and profile inforr	nation			Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, characteristics,colour,minor cor	plasticity/particle nponents	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		SM	TOPSOIL: Silty SAND - fine to coar						TOPSOIL RESIDUAL SOIL
		0.30m		-			CLAY - medium to high plasticity.				HP	550	NEOIDO/NE GOIL
	p	BB		0. <u>5</u>		СН			M < W _P	Н	HP	500	
	Not Encountered	0.60m		_			With Clayey SAND pockets, with pa pale orange, trace fine to medium o	ale grey-white and			HP	450	
Ш	Not En	0.80m		-	///// 		0.80m gravel. Sandy SILTSTONE - fine grained, pand orange, estimated low to mediu						HIGHLY TO MODERATELY WEATHERED ROCK - EASY
		BB		1.0			extremely weathered bands/pocket	S.					TO MODERATE EXCAVATING MATERIAL WITH EXCAVATOR
		1.20m		_					D				BUCKET
				1.5			1.50m Estimated medium to high strength	. no weathered					SLIGHTLY WEATHERED
				-			\bands/pockets. Hole Terminated at 1.50 m Refusal						ROCK - VERY SLOW PROGRESS, APPROX.10 SCRAPES/1MM.
				-									
				2.0_									
,				_									
,				2. <u>5</u>									
				-									
				-									
o o				3. <u>0</u>									
				-									
				3. <u>5</u>									
				-									
				-									
LEG Wat ———————————————————————————————————	END:			Notes, Sai	50mm	Diame	ter tube sample	I	ery Soft		<2		D Dry
=	(Dat	ter Level te and time sh	nown)	CBR E	Enviro	nment	or CBR testing al sample aled and chilled on site)	l l	oft irm tiff		50	5 - 50) - 100)0 - 200	M Moist W Wet W _p Plastic Limit
Stra	I Wat	ter Inflow ter Outflow anges		ASS B	(Plast		Soil Sample air expelled, chilled)	H Ha	ery Stiff ard riable			00 - 400 100	
	G tra	radational or ansitional stra	ıta	Field Test PID DCP(x-y)	<u>s</u> Photo	ionisati	on detector reading (ppm) etrometer test (test depth interval shown)	<u>Density</u>	V L MD	Lo	ery Lo oose ledium	ose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
		efinitive or dis rata change	suct	HP			meter test (UCS kPa)		D VD	D	ense ery De		Density Index 65 - 85% Density Index 85 - 100%

CLIENT: COMMERCIAL 7 PTY LTD

JOB NO: NEW23P-0216

TEST PIT NO:

PAGE:

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:**

LOGGED BY: BE

TP03

1 OF 1

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

DATE: 2/11/23

									DA	16:			2/11/23
		PMENT TYP PIT LENGTI		20 TO 2.0 m		XCA\ IDTH:	VATOR SURFAC 1.0 m DATUM:						
		Orilling and Sar	npling				Material description and profile information				Field	d Test	
METHOD		SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/pa characteristics,colour,minor components	article	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
					} }	SM	TOPSOIL: Silty SAND - fine to coarse grained,						TOPSOIL
				- 0.5		СН	grey-brown, fines of low plasticity, root affected CLAY - medium to high plasticity, grey-brown.	!· /	M < W	Н	HP HP	550 580	RESIDUAL SOIL
	7			- - -			With Clayey SAND pockets, with pale grey-whit pale orange, trace fine to medium grained angu gravel.	ular 	M ~ W _P	VSt - H	HP	380 - 410 380	
ш	1 +01			1. <u>0</u> - -			Sandy SILTSTONE - fine grained, pale orange orange and pale grey-white to grey, estimated I medium strength, with extremely weathered bands/pockets.					410	HIGHLY TO MODERATELY WEATHERED ROCK EASY TO EXCAVATE
000		1.90m		1. <u>5</u>			Estimated medium to high strength, no extreme weathered bands/pockets, less weathered.	ely	D				SLIGHTLY WEATHERED ROCK 1 SCRAPE/10MM
n Situ		B 2.10m		2.0_			2.10m						
<u>v</u>		ID: Vater Level Date and time s	hown)	2.5 	50mm Bulk s Enviro	Diame ample f onmenta	ter tube sample for CBR testing al sample	S S F F	ncy ery Soft Soft		<2 25 50	CS (kPa 25 5 - 50 0 - 100	D Dry M Moist W Wet
1.GLB LOG NON-CORE	— v ⊸ v	Vater Inflow Vater Outflow <u>Changes</u> Gradational or transitional stra	ata	B Field Test PID	Acid S (Plast Bulk S <u>s</u> Photo	Sulfate S ic bag, a Sample ionisatio	Soil Sample air expelled, chilled) I Don detector reading (ppm)	/St V H H	ery Stiff lard <u>riable</u> V L	Lo	ery Lo	00 - 400 400 oose	W _L Liquid Limit Density Index <15% Density Index 15 - 35%
		Definitive or dis strata change	stict	DCP(x-y) HP			etrometer test (test depth interval shown) ometer test (UCS kPa)		MC D VD	D	lediun ense ery Do	n Dense ense	Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:** NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: BE **DATE:** 2/11/23

TEST PIT NO:

PAGE:

TP04

1 OF 1

		IENT TYPI T LENGTI		2.0 m		DTH:		ACE RL: M:					
	Drill	ing and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		CL	TOPSOIL: Sandy CLAY/Silty SAND - low plants of grey-brown, fine to coarse grained sand, room						TOPSOIL
				- - 0.5		GM	affected. Silty Sandy GRAVEL - fine to coarse graine angular to sub-angular, grey-brown, fine to grained (mostly fine to medium grained) sar of low plasticity, trace angular cobbles.	d, coarse				•	COLLUVIUM/POSSIBLE FILL
ш	Not Encountered			1.0			Sandy SILTSTONE - fine to medium graine grey with orange to brown, estimated mediu strength, semi-fractured with clay pockets/b	ım to high	D - M	D - VD			HIGHLY TO MODERATELY WEATHERED ROCK SLOW PROGRESS WITH EXCAVATOR BUCKET
Lab and In Situ Tool	2			1.5_ - - - - 2.0_		CL	Silty CLAY - low to medium plasticity, pale g and pale orange, trace siltstone bands.	rey-white	M < W _P	Н			RESIDUAL SOIL / — — — EXTREMELY WEATHERED ROCK
OT LB 1.1.G.B. Log NON-CORED BOREHOLE. TEST PIT NEW23P-0216 LOGS.GPJ <-DrawingFle>> 2011/2023 14:57 10.01.00.01 Datget Leb and in Shu Tool				3.0			Sandy SILTSTONE - pale grey-white and pa orange, estimated high strength. Hole Terminated at 2.32 m Refusal	ale	•				SLIGHTLY WEATHERED ROCK APPROX. 1 SCRAPE/1MM
PECORED BOREHOLE - STEEL LOG NON-CORED BORE - STEEL LOG NON-CORED BOREHOLE - STEEL LOG NON-CO	Wat (Dat - Wat Wat - G - tra	er Level te and time sher Inflow er Outflow anges radational or ansitional stra efinitive or dis	nown)	Notes, Sai U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk sa Enviro (Glass Acid S (Plastic Bulk S S Photoic	Diame ample i nmenta jar, se ulfate s c bag, ample onisationic pen	ts ter tube sample for CBR testing al sample alsample soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	S So F Fi St St VSt Ve H Ha	ery Soft oft rm iff ery Stiff ard iable V L MC	Ve Lo	25 50 10 20 >4 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:** NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: BE **DATE:** 2/11/23

TEST PIT NO:

PAGE:

TP05

1 OF 1

TES		IT LENGTI		2.0 m	W	IDTH:		UM:			I		
	Dril	ling and San	npling	1		_	Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
					131131	CL	TOPSOIL: Sandy CLAY - low plasticity, gre	ey-brown,					TOPSOIL
Е	Not Encountered			- - 0. <u>5</u>		СН	o.60m fine grained sand, with some silt, root affer CLAY - medium to high plasticity, grey-bro	/	M × M	Н	HP	550 550	RESIDUAL SOIL 7 COLLUVIUM
	No			- 1.0			Sandy SILTSTONE - fine grained, pale grained pale orange, estimated high strength, (excavated as medium to coarse grained cobbles and boulder size fragments).	fractured,	D				HIGHLY WEATHERED ROCK SLOW PROGRES
				-			No fractures. Hole Terminated at 1.01 m	/					SLIGHTLY WEATHERED ROCK
				-			Refusal						
				1.5_									
				-									
				-									
				2.0									
				_									
				-									
				2.5									
				-									
				-									
				3.0									
				-									
				-									
				3.5									
				-									
				_									
LEC	END:			Notes, Sa	mples s	nd Tee	he .	Consiste	nev			CS (kPa	a) Moisture Condition
Wat	<u>er</u>			U ₅₀ CBR	50mm	Diame	ter tube sample for CBR testing	VS V	ricy /ery Soft Soft	į	</td <td>25 5 - 50</td> <td>D Dry Moist</td>	25 5 - 50	D Dry Moist
	(Da	ter Level te and time sl	hown)	E	Enviro	nmenta	al sample aled and chilled on site)	FF	Firm Stiff		50) - 100)0 - 200	W Wet
_	l Wat	ter Inflow ter Outflow		ASS	(Plasti	ic bag,	Soil Sample air expelled, chilled)	Н н	ery Stiff ard	•		00 - 400 400	
<u>3tra</u>	G	anges radational or		Field Test	<u>s</u>	Sample	on detector reading (nom)	Fb F Density	riable V		ery Lo	oose	Density Index <15%
	_ D	ansitional stra efinitive or dis		PID DCP(x-y) HP	Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D) N	oose lediur ense	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%
	st	rata change		1.11	ııalıu	. GIGU	militar (000 m a)		VD		ense ery D	ense	Density Index 85 - 85% Density Index 85 - 100%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:** NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: BE **DATE:** 2/11/23

TEST PIT NO:

PAGE:

TP09

1 OF 1

		MENT TYP IT LENGTI		2.0 m		IDTH:		ACE RL: IM:					
	Drill	ling and Sar	npling				Material description and profile information			•	Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Expressing from the contract of the contract o	Not Encountered	0.30m B 0.60m 1.50m B 1.80m		1.0		CL CH CH SC	TOPSOIL: Sandy CLAY - low to medium plast brown to grey-brown, fine grained sand, roc affected. FILL: Gravelly Sandy CLAY - medium plast brown to orange-brown, fine to coarse grain fine to medium grained angular to sub-angu gravel. CLAY - medium to high plasticity, dark grey grey-brown. CLAY - medium to high plasticity, rer fine grained sand, with some Clayey SAND Gravelly Clayey SAND - fine to coarse grain orange and pale grey trace red-brown, fines plasticity, fine angular gravel. ANDESITE - estimated very low to medium (mostly very low to low strength), orange to and grey. Hole Terminated at 3.30 m	ot	dw > M	H D - VD	<u> </u>	480 490 550	RESIDUAL SOIL RESIDUAL SOIL RESIDUAL SOIL RESIDUAL SOIL AND THE STATE OF THE ST
				3.5_ - - - -			Very slow progress						
Wat	Wat (Dat Wat Wat I Wat End Tra	ter Level te and time si ter Inflow ter Outflow anges radational or ansitional stra efinitive or dis	hown)	Motes, Sai U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S s Photoi Dynan	Diame ample nmenta jar, se sulfate c bag, ample onisati nic pen	ter tube sample for CBR testing al sample als ample alled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	S So F Fii St St VSt Ve H Ha	ery Soft oft m	V(Lc) M	25 50 10 20 >4 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE **JOB NO:** NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: BE **DATE:** 2/11/23

TEST PIT NO:

PAGE:

TP10

1 OF 1

		IT LENGT		2.0 m		IDTH:		JM:					
	Dril	ling and Sar	npling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Э,	Not Encountered			1.0 <u>.</u> 1.5 <u>.</u> 2.0 <u>.</u>		CL CH	FILL-TOPSOIL: Sandy CLAY - low to media plasticity, brown to grey-brown, fine grained root affected. Gravelly Sandy CLAY/ Sandy Clayey GRAY medium to high plasticity, brown to pale broto coarse grained sand, fine to coarse grain angular gravel, trace cobbles and boulders 0.70m Sandy CLAY - medium to high plasticity, brown to pale brown and sand. With some Clayey SAND pockets, pale brown and sand. With some Clayey Sandy GRAVEL pockets angular, fine to coarse grained sand.	d sand, VEL - VEL	$M \sim w_P$ $M < w_P$	H VSt-	HP HP HP	530 410 420 380 380 450	FILL - TOPSOIL FILL RESIDUAL SOIL HIGHLY WEATHERED ROCK - SLOW PROGRESS -1 SCRAPE/50MM
				3.0	× · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · × · · · × · · · × · · · · × · · · · × · · · · × · · · · × · · · · · × · · · · × · · · · · × ·		ANDESITE - estimated low to medium strered-brown and dark grey, semi fractured. 3.50m Hole Terminated at 3.50 m	ngth,	D				HIGHLY WEATHERED ROCK
Wat		der Level		Notes, Sa U ₅₀ CBR	50mm Bulk s	Diame	Slow progress ts ter tube sample for CBR testing	S So	ery Soft oft		<2 25	CS (kPa 25 5 - 50	D Dry M Moist
_ _ _	(Da - Wat Wat ata Ch 	te and time siter Inflow ter Outflow ter Outflow radational or radational or ansitional straefinitive or distrata change	ata	E ASS B Field Tes PID DCP(x-y) HP	(Glass Acid S (Plasti Bulk S ts Photo Dynar	s jar, se Sulfate ic bag, Sample ionisati nic pen	al sample saled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	St St VSt Ve H Ha	rm iff ery Stiff ard iable V L MC D VD	Ve Lo D	10 20 >2 ery Lo	n Dense	W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 85 - 85% Density Index 85 - 100%

COMMERCIAL 7 PTY LTD

PROJECT: PROPOSED MANUFACTURED HOUSING ESTATE JOB NO: NEW23P-0216

LOCATION: 34 WYNDELLA ROAD, LOCHINVAR NSW

LOGGED BY: DATE: 2/11/23

TEST PIT NO:

PAGE:

TP11

1 OF 1

ΒE

		IT LENGTH		2.0 m		IDTH:		M:					
	Dril	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
20/1/2023 14:57 10.01 00.01 Datgel Lab and in Situ Tool E	Not Encountered	0.30m BB 0.60m		1.5		CH CH	TOPSOIL: Sandy CLAY - medium plasticity red-brown, fine grained sand, root affected. Sandy CLAY - medium to high plasticity, bring red-brown, fine grained sand. With Clayey SAND pockets. With Clayey SAND pockets.	own to	M < Wp	н	HP HP HP	>600 >600 >600 >600 >600	MODERATELY TO SLIGHTLY WEATHERED ROCK 1 SCRAPE/10MM
NON-CORED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ < CORED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ < CORRED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ CORRED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ < CORRED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ CORRED BOREHOLE - TEST PTI NEW23P-0216 LOGS GPJ 	✓ Wa (Da — Wa ■ Wa ata Ch tr — D	ter Level te and time sh ter Inflow ter Outflow	oown)	3.0	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S s Photoi	Diame ample in nmenta i jar, se sulfate se bag, ample onisationic pen	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	S S F F St S VSt V H H	ncy oft oft irm tiff ery Stiff ard riable V L MC D VD	V Lc) M	25 50 10 20 20 20 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit Liquid Limit Density Index <15% Density Index 15 - 35%

APPENDIX I: Tables

					Field ID	SS01A	SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11
					Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A ¹	EIL/ESL A ²												
	Arsenic	mg/kg	2	100	100	760	2.6	3.5	3.9	2.8	3.8	8.1	3.8	4.1	3.5	3.5	4.7
	Cadmium	mg/kg	0.4	20		0.5	0.6	3.1	< 0.4	< 0.4	< 0.4	12	< 0.4	0.5	< 0.4	< 0.4	< 0.4
	Hexavalent Chromium, Cr6+	mg/kg	0.5	100		-	<1	-	-	-	-	-	-	-	-	-	-
	Trivalent Chromium, Cr3+	mg/kg	1		640*	-	120	-	-	-	-	-	-	-	-	-	-
Metals	Chromium (total)	mg/kg	5		640*	370	120	100	110	100	110	21	100	74	110	100	86
ivietais	Copper	mg/kg	5	6000	270*	570	39	34	44	49	57	11	57	56	68	51	36
	Lead	mg/kg	5	300	1100	18	7.7	11	22	9.8	16	12	12	12	13	11	8.5
	Mercury	mg/kg	5	40		< 0.1	0.1	0.5	< 0.1	< 0.1	< 0.1	1.9	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Nickel	mg/kg	5	400	630*	62	72	66	60	55	57	7.6	58	51	66	49	52
	Zinc	mg/kg	5	7400	2000*	700	110	80	200	180	360	92	110	400	96	360	180
CEC	Cation Exchange Capacity	us/cm	10			-	260	-	-	-	-	-	-	-	-	-	-
рН	pH (1:5 Aqueous extract)	pH units	0.1			-	8	-	-	-	-	-	-	-	-	-	-
	4.4'-DDD	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	4.4'-DDE	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	4.4'-DDT	mg/kg	0.05		180	-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	a-HCH	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Aldrin	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Aldrin and Dieldrin (Total)*	mg/kg	0.05	6		-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	b-HCH	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Chlordanes - Total	mg/kg	0.1	50		-	1	-	-	-	-	-	< 0.1	-	-	-	< 0.1
	DDT + DDE + DDD (Total)*	mg/kg	0.05	240		-	ı	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	d-HCH	mg/kg	0.05			-	1	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Dieldrin	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
OCPs	Endosulfan I	mg/kg	0.05	270		-	ı	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Endosulfan II	mg/kg	0.05	270		-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Endosulfan sulphate	mg/kg	0.05			-	ı	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Endrin	mg/kg	0.05	10		-	ı	1	-	-	-	-	< 0.05	-	-	-	< 0.05
	Endrin aldehyde	mg/kg	0.05			-	ı	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Endrin ketone	mg/kg	0.05			-	ı	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	g-HCH (Lindane)	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Heptachlor	mg/kg	0.05	6		-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Heptachlor epoxide	mg/kg	0.05			-	1	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Hexachlorobenzene (HCB)	mg/kg	0.05	10		-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Methoxychlor	mg/kg	0.05	300		-	-	-	-	-	-	-	< 0.05	-	-	-	< 0.05
	Toxaphene	mg/kg	0.5	20		-	-	-	-	-	-	-	< 0.5	-	-	-	< 0.5

Notes

EIL based on pH of 8 and CEC of 71mg/kg, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 50% percentile.

Result Result Concentration exceeds adopted HIL/HSL A

Concentration exceeds the adopted EIL/ESL A

ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

					Field ID	SS12	SS13	SS14	SS15	SS16	SS17	SS18	SS19	SS20	SS21	SS22	SS23
					Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A ¹	EIL/ESL A ²	2, ,	7, 7	., , .		- 7	3, ,	3, , , , ,	-, ,	, ,	-, ,	-, , -	-, , -
ĺ	Arsenic	mg/kg	2	100	100	4.5	4.3	5	9.3	4.5	3.6	4.6	4.6	3.5	5.7	4.5	3.1
ĺ	Cadmium	mg/kg	0.4	20		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
ĺ	Hexavalent Chromium, Cr6+	mg/kg	0.5	100		-	-	-	-	-	-	<1	-	-	-	-	-
ĺ	Trivalent Chromium, Cr3+	mg/kg	1		640*	-	-	-	-	-	-	120	-	-	-	-	-
Metals	Chromium (total)	mg/kg	5		640*	29	35	110	74	53	97	120	68	28	18	18	100
IVICTAIS	Copper	mg/kg	5	6000	270*	16	17	43	50	24	59	60	33	16	13	12	33
ĺ	Lead	mg/kg	5	300	1100	< 5	6.1	7.7	10	24	6.4	6.1	9.2	< 5	6.7	< 5	7.2
ĺ	Mercury	mg/kg	5	40		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
ĺ	Nickel	mg/kg	5	400	630*	17	28	65	53	36	76	67	52	26	24	18	59
	Zinc	mg/kg	5	7400	2000*	47	80	73	190	140	110	65	120	58	68	35	67
CEC	Cation Exchange Capacity	us/cm	10			-	1	-	-	-	-	-	-	ı	71	ı	-
рН	pH (1:5 Aqueous extract)	pH units	0.1			-	1	-	-	-	-	-	-	1	8.7	ı	-
	4.4'-DDD	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	4.4'-DDE	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	1	-	-	-
Í	4.4'-DDT	mg/kg	0.05		180	-	ı	-	-	-	-	-	< 0.05	ı	-	ı	-
Í	a-HCH	mg/kg	0.05			-	1	-	-	-	-	-	< 0.05	-	-	1	-
ĺ	Aldrin	mg/kg	0.05			-	1	-	-	-	-	-	< 0.05	1	-	-	-
ĺ	Aldrin and Dieldrin (Total)*	mg/kg	0.05	6		-	-	-	-	-	-	-	< 0.05	1	-	-	-
ĺ	b-HCH	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	Chlordanes - Total	mg/kg	0.1	50		-	-	-	-	-	-	-	< 0.1	-	-	-	-
ĺ	DDT + DDE + DDD (Total)*	mg/kg	0.05	240		-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	d-HCH	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	Dieldrin	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
OCPs	Endosulfan I	mg/kg	0.05	270		-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	Endosulfan II	mg/kg	0.05	270		-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	Endosulfan sulphate	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
Í	Endrin	mg/kg	0.05	10		-	-	-	-	-	-	-	< 0.05	-	-	-	-
ĺ	Endrin aldehyde	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
Í	Endrin ketone	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
	g-HCH (Lindane)	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
	Heptachlor	mg/kg	0.05	6		-	-	-	-	-	-	-	< 0.05	-	-	-	-
	Heptachlor epoxide	mg/kg	0.05			-	-	-	-	-	-	-	< 0.05	-	-	-	-
	Hexachlorobenzene (HCB)	mg/kg	0.05	10		-	-	-	-	-	-	-	< 0.05	-	-	-	-
	Methoxychlor	mg/kg	0.05	300		-	-	-	-	-	-	-	< 0.05	-	-	-	-
	Toxaphene	mg/kg	0.5	20		-	-	-	-	-	-	-	< 0.5	-	-	-	-

Notes

EIL based on pH of 8 and CEC of 71mg/kg, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 50% percentile.

Result Result

Concentration exceeds adopted HIL/HSL A

Concentration exceeds the adopted EIL/ESL A ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

					Field ID	SS24	SS25	SS26	SS27	SS28	SS29	SS30	SS31	SS32	SS33	SS34
					Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A ¹	EIL/ESL A ²	7, 23, 2322	, -, -,,	-, -, -,	,,	,,	,,,	,,	,,	0, 20, 2020	-,,	3, 23, 23, 23
	Arsenic	mg/kg	2	100	100	2.6	4.9	4.5	4.6	4.1	2.8	3.4	3.4	6.7	3.2	4.7
	Cadmium	mg/kg	0.4	20		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Hexavalent Chromium, Cr6+	mg/kg	0.5	100		ı	-	-	-	-	-	<1	-	-	-	-
	Trivalent Chromium, Cr3+	mg/kg	1		640*	ı	-	-	-	-	-	300	-	-	-	-
Metals	Chromium (total)	mg/kg	5		640*	54	110	66	80	79	100	300	26	30	58	27
ivietais	Copper	mg/kg	5	6000	270*	23	49	40	49	44	59	8.9	5.6	< 5	26	< 5
	Lead	mg/kg	5	300	1100	7.6	6	18	14	14	9.3	15	10	16	12	15
	Mercury	mg/kg	5	40		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Nickel	mg/kg	5	400	630*	40	86	50	66	62	51	8.5	9.6	< 5	34	5.1
	Zinc	mg/kg	5	7400	2000*	77	89	81	76	130	54	45	27	10	54	19
CEC	Cation Exchange Capacity	us/cm	10			-	-	-	-	-	-	-	-	-	-	-
рН	pH (1:5 Aqueous extract)	pH units	0.1			-	-	-	-	-	-	-	-	-	-	-
	4.4'-DDD	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	4.4'-DDE	mg/kg	0.05			1	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	4.4'-DDT	mg/kg	0.05		180	-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	a-HCH	mg/kg	0.05			ı	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Aldrin	mg/kg	0.05			ı	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Aldrin and Dieldrin (Total)*	mg/kg	0.05	6		ı	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	b-HCH	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Chlordanes - Total	mg/kg	0.1	50		-	-	-	-	-	< 0.1	-	-	-	-	< 0.1
	DDT + DDE + DDD (Total)*	mg/kg	0.05	240		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	d-HCH	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Dieldrin	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
OCPs	Endosulfan I	mg/kg	0.05	270		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Endosulfan II	mg/kg	0.05	270		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Endosulfan sulphate	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Endrin	mg/kg	0.05	10		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Endrin aldehyde	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Endrin ketone	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	g-HCH (Lindane)	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Heptachlor	mg/kg	0.05	6		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Heptachlor epoxide	mg/kg	0.05			-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Hexachlorobenzene (HCB)	mg/kg	0.05	10		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Methoxychlor	mg/kg	0.05	300		-	-	-	-	-	< 0.05	-	-	-	-	< 0.05
	Toxaphene	mg/kg	0.5	20		-	-	-	-	-	< 0.5	-	-	-	-	< 0.5

Notes

EIL based on pH of 8 and CEC of 71mg/kg, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 50% percentile.

Result Result Concentration exceeds adopted HIL/HSL A

Concentration exceeds the adopted EIL/ESL A

ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

					Field ID	SP1-1	SP1-2	SP1-3	SP1-4	SP1-5	SP1-6	SP1-7	SP1-8	SP1-9	SP1-10
					Date	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023
Analytes		Units	LOR	HIL/HSL A 1	EIL/ESL A 2										
	Arsenic	mg/kg	2	100	100	5.8	6.5	9.2	4.6	6.4	5.4	5.2	5.2	4.3	5.8
	Cadmium	mg/kg	0.4	20		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Hexavalent Chromium, Cr6+	mg/kg	0.5	100		-	-	-	-	-	-	-	-	-	-
	Trivalent Chromium, Cr3+	mg/kg	1		640*	-	-	-	1	-	-	-	-	-	-
Metals	Chromium (total)	mg/kg	5		640*	24	25	48	32	53	45	26	73	110	33
ivietais	Copper	mg/kg	5	6000	270*	16	23	16	13	17	19	23	32	20	28
	Lead	mg/kg	5	300	1100	49	65	62	27	46	61	96	13	25	94
	Mercury	mg/kg	5	40		0.2	0.2	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.2
	Nickel	mg/kg	5	400	630*	24	29	24	22	26	29	32	44	29	36
	Zinc	mg/kg	5	7400	2000*	120	160	46	44	64	80	220	31	56	260
CEC	Cation Exchange Capacity	us/cm	10			-	-	-	-	-	-	-	-	-	-
рН	pH (1:5 Aqueous extract)	pH units	0.1			-	-	-	-	-	-	-	-	-	-
-	4.4'-DDD	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	4.4'-DDE	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	4.4'-DDT	mg/kg	0.05		180	-	-	-	-	-	-	-	-	-	-
	a-HCH	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Aldrin	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Aldrin and Dieldrin (Total)*	mg/kg	0.05	6		-	-	-	-	-	-	-	-	-	-
	b-HCH	mg/kg	0.05			-	-	-	1	-	-	-	-	-	-
	Chlordanes - Total	mg/kg	0.1	50		1	-	-	1	-	-	-	-	-	-
	DDT + DDE + DDD (Total)*	mg/kg	0.05	240		1	-	-	1	-	-	-	-	-	-
	d-HCH	mg/kg	0.05			1	-	-	1	-	-	-	-	-	-
	Dieldrin	mg/kg	0.05			1	-	-	1	-	-	-	-	-	-
OCPs	Endosulfan I	mg/kg	0.05	270		1	-	-	1	-	-	-	-	-	-
	Endosulfan II	mg/kg	0.05	270		ı	-	-	1	-	-	-	-	-	-
	Endosulfan sulphate	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Endrin	mg/kg	0.05	10		ı	-	-	1	-	-	-	-	-	-
	Endrin aldehyde	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Endrin ketone	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	g-HCH (Lindane)	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Heptachlor	mg/kg	0.05	6		-	-	-	-	-	-	-	-	-	-
	Heptachlor epoxide	mg/kg	0.05			-	-	-	-	-	-	-	-	-	-
	Hexachlorobenzene (HCB)	mg/kg	0.05	10		-	-	-	-	-	-	-	-	-	-
	Methoxychlor	mg/kg	0.05	300		-	-	-	-	-	-	-	-	-	-
	Toxaphene	mg/kg	0.5	20		-	-	-	-	-	-	-	-	-	-

Notes

EIL based on pH of 8 and CEC of 71mg/kg, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 50% percentile.

Result Result Concentration exceeds adopted HIL/HSL A

Concentration exceeds the adopted EIL/ESL A

ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

					Field ID	SP2-1	SP3-1	SP4-1	SP4-2	SP4-3	SP4-4	SP4-5
					Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A ¹	EIL/ESL A ²							
	Arsenic	mg/kg	2	100	100	4.1	3.2	4.2	11	4.2	2.5	16
	Cadmium	mg/kg	0.4	20		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
	Hexavalent Chromium, Cr6+	mg/kg	0.5	100		1	-	-	-	-	-	-
	Trivalent Chromium, Cr3+	mg/kg	1		640*	1	-	-	-	-	-	-
Metals	Chromium (total)	mg/kg	5		640*	66	53	13	25	33	8.7	27
ivietais	Copper	mg/kg	5	6000	270*	25	18	< 5	5.2	22	9.2	< 5
	Lead	mg/kg	5	300	1100	13	9.7	9.1	16	8.6	< 5	25
	Mercury	mg/kg	5	40		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Nickel	mg/kg	5	400	630*	31	19	< 5	7.2	33	9.2	< 5
	Zinc	mg/kg	5	7400	2000*	34	27	26	30	130	28	17
CEC	Cation Exchange Capacity	us/cm	10			-	-	-	-	-	-	-
рН	pH (1:5 Aqueous extract)	pH units	0.1			-	-	-	-	-	-	-
	4.4'-DDD	mg/kg	0.05			-	-	-	-	-	-	-
	4.4'-DDE	mg/kg	0.05			-	-	-	-	-	-	-
	4.4'-DDT	mg/kg	0.05		180	-	-	-	-	-	-	-
	a-HCH	mg/kg	0.05			-	-	-	-	-	-	-
	Aldrin	mg/kg	0.05			-	-	-	-	-	-	-
	Aldrin and Dieldrin (Total)*	mg/kg	0.05	6		-	-	-	-	-	-	-
	b-HCH	mg/kg	0.05			-	-	-	-	-	-	-
	Chlordanes - Total	mg/kg	0.1	50		-	-	-	-	-	-	-
	DDT + DDE + DDD (Total)*	mg/kg	0.05	240		-	-	-	-	-	-	-
	d-HCH	mg/kg	0.05			-	-	-	-	-	-	-
	Dieldrin	mg/kg	0.05			-	-	-	-	-	-	-
OCPs	Endosulfan I	mg/kg	0.05	270		-	-	-	-	-	-	-
	Endosulfan II	mg/kg	0.05	270		1	-	-	-	-	-	-
	Endosulfan sulphate	mg/kg	0.05			-	-	-	-	-	-	-
	Endrin	mg/kg	0.05	10		-	-	-	-	-	-	-
	Endrin aldehyde	mg/kg	0.05			-	-	-	-	-	-	-
	Endrin ketone	mg/kg	0.05			1	-	-	-	-	-	-
	g-HCH (Lindane)	mg/kg	0.05			-	-	-	-	-	-	-
	Heptachlor	mg/kg	0.05	6		-	-	-	-	-	-	-
	Heptachlor epoxide	mg/kg	0.05			-	-	-	-	-	-	-
	Hexachlorobenzene (HCB)	mg/kg	0.05	10		-	-	-	-	-	-	-
	Methoxychlor	mg/kg	0.05	300		-	-	-	-	-	-	-
	Toxaphene	mg/kg	0.5	20		-	-	-	-	-	-	-

Notes

EIL based on pH of 8 and CEC of 71mg/kg, and Clay content 40%, and using Ambient Background Concentration obtained from Olszowy et al (1995) using urban soils, old suburbs with high traffic, 50% percentile.

Result Result Concentration exceeds the adopted EIL/ESL A

Concentration exceeds adopted HIL/HSL A

ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

Table 2 - Soil Analytical Results - TRH, BTEX, PAH 34 Wyndella Road, Lochinvar NSW

					Field ID	SP1-1	SP1-5	SP1-10	SS01A	SS01	SS06	SS07	SS09	SS11	SS13
					Date	2/11/2023	2/11/2023	2/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A ¹	EIL/ESL A ²										
	Acenaphthene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Anthracene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5			0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5		0.7	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(a)pyrene TEQ (medium bound)	mg/kg	0.6	3		0.9	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	Benzo(b&j)fluoranthene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAHs	Benzo(k)fluoranthene	mg/kg	0.5			0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
PAIIS	Chrysene	mg/kg	0.5			0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5			1.2	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Fluorene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Naphthalene	mg/kg	0.5		170	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5			0.7	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Pyrene	mg/kg	0.5			1.2	1	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Total PAH	mg/kg	0.5	300		5.4	2	2.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Benzene	mg/kg	0.1	0.7	50	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BTEX	Toluene	mg/kg	0.1	480	85	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
BIEX	Ethylbenzene	mg/kg	0.1	NL	70	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3	110	105	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
	Naphthalene	mg/kg	0.5	5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	TRH C6-C10	mg/kg	20		180	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TDU	TRH C6-C10 less BTEX (F1)	mg/kg	20	50		< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
TRH	TRH >C10-C16	mg/kg	50		120	< 50	100	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	280		< 50	100	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50
	TRH >C16-C34	mg/kg	100		1300	< 100	580	< 100	740	1100	< 100	120	< 100	< 100	< 100
	TRH >C34-C40	mg/kg	100		5600	< 100	< 100	< 100	320	380	< 100	< 100	< 100	< 100	< 100

Notes

Result

NL Not limiting Result

Concentration exceeds adopted HIL/HSL A Concentration exceeds the adopted EIL/ESL A

ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

NEPC (2013) Soil Ecological Investigation & Screening Levels, Residential, Fine Texture

					Field ID	SS15	SS17
					Date	6/11/2023	6/11/2023
Analytes		Units	LOR	HIL/HSL A 1	EIL/ESL A ²		
	Acenaphthene	mg/kg	0.5			< 0.5	< 0.5
	Acenaphthylene	mg/kg	0.5			< 0.5	< 0.5
	Anthracene	mg/kg	0.5			< 0.5	< 0.5
	Benz(a)anthracene	mg/kg	0.5			< 0.5	< 0.5
	Benzo(a)pyrene	mg/kg	0.5		0.7	< 0.5	< 0.5
	Benzo(a)pyrene TEQ (medium bound)	mg/kg	0.6	3		0.6	0.6
	Benzo(b&j)fluoranthene	mg/kg	0.5			< 0.5	< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5			< 0.5	< 0.5
PAHs	Benzo(k)fluoranthene	mg/kg	0.5			< 0.5	< 0.5
PAHS	Chrysene	mg/kg	0.5			< 0.5	< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5			< 0.5	< 0.5
	Fluoranthene	mg/kg	0.5			< 0.5	< 0.5
	Fluorene	mg/kg	0.5			< 0.5	< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5			< 0.5	< 0.5
	Naphthalene	mg/kg	0.5		170	< 0.5	< 0.5
	Phenanthrene	mg/kg	0.5			< 0.5	< 0.5
	Pyrene	mg/kg	0.5			< 0.5	< 0.5
	Total PAH	mg/kg	0.5	300		< 0.5	< 0.5
	Benzene	mg/kg	0.1	0.7	50	< 0.1	< 0.1
DTEV	Toluene	mg/kg	0.1	480	85	< 0.1	< 0.1
BTEX	Ethylbenzene	mg/kg	0.1	NL	70	< 0.1	< 0.1
	Xylenes - Total	mg/kg	0.3	110	105	< 0.3	< 0.3
	Naphthalene	mg/kg	0.5	5		< 0.5	< 0.5
	TRH C6-C10	mg/kg	20		180	< 20	< 20
TOLL	TRH C6-C10 less BTEX (F1)	mg/kg	20	50		< 20	< 20
TRH	TRH >C10-C16	mg/kg	50		120	< 50	< 50
	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	280		< 50	< 50
	TRH >C16-C34	mg/kg	100		1300	< 100	< 100
	TRH >C34-C40	mg/kg	100		5600	< 100	< 100

Notes

Not limiting NL Concentration exceeds adopted HIL/HSL A Result Result Concentration exceeds the adopted EIL/ESL A

¹ ASC NEPM (2013) Health Investigation & Screening Levels, Residential, Clay 0m to <1m

NEPC (2013) Soil Ecological Investigation & Screening Levels, Residential, Fine Texture

	Sample ID	SS01A	SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS13	SS14
	Matrix	Soil														
	Sample Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
	HIL/HSL A															
ACM weight (g)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACM weight (kg)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soil density (kg/L)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Soil Volume (L)		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Asbestos Content (%)		15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
%w/w ACM in Soil	0.01	0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.00	0.00
%w/w FA/AF in Soil	0.001	<0.001%	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

%w/w asbestos in soil calculated using: % asbestos content x bonded ACM (kg) / soil volume (L) x soil density (kg/L)

Result Exceeds adopted criteria

Criteria from ASC NEPM (2013) Table 7 - Health Screening Level (HSL) for Asbestos, Residential

	Sample ID	SS15	SS16	SS17	SS18	SS19	SS20	SS21	SS22	SS23	SS24	SS25	SS26	SS27	SS28
	Matrix	Soil													
	Sample Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
	HIL/HSL A														
ACM weight (g)		0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACM weight (kg)		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Soil density (kg/L)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Soil Volume (L)		10	10	10	10	10	10	10	10	10	10	10	10	10	10
Asbestos Content (%)		15	15	15	15	15	15	15	15	15	15	15	15	15	15
%w/w ACM in Soil	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
%w/w FA/AF in Soil	0.001	-	-	-	-	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	-	-	-

Notes:

%w/w asbestos in soil calculated using: %

Result

Exceeds adopted

Criteria from ASC NEPM (2013) Table 7 - I

	Sample ID	SS29	SS30	SS31	SS32	SS33	SS34	SP1-1	SP1-2	SP1-3	SP1-4	SP1-5	SP1-6	SP1-7	SP1-8
	Matrix	Soil													
	Sample Date	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023	2/11/2023
	HIL/HSL A														
ACM weight (g)		0	0	0	0	0	0	0	226	0	0	0	66	0	18
ACM weight (kg)		0	0	0	0	0	0	0	0.226	0	0	0	0.066	0	0.018
Soil density (kg/L)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Soil Volume (L)		10	10	10	10	10	10	10	10	10	10	10	10	10	10
Asbestos Content (%)		15	15	15	15	15	15	15	15	15	15	15	15	15	15
%w/w ACM in Soil	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.19	0.00	0.00	0.00	0.06	0.00	0.02
%w/w FA/AF in Soil	0.001	-	-	<0.001%	-	-	-	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	0.13	<0.001%

Notes:

%w/w asbestos in soil calculated using: %

Result Exceeds adopted

Criteria from ASC NEPM (2013) Table 7 - I

	_									
	Sample ID	SP1-9	SP1-10	SP2-1	SP3-1	SP4-1	SP4-2	SP4-3	SP4-4	SP4-5
	Matrix	Soil								
	Sample Date	2/11/2023	2/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023	6/11/2023
	HIL/HSL A									
ACM weight (g)		0	0	0	0	0	0	0	0	0
ACM weight (kg)		0	0	0	0	0	0	0	0	0
Soil density (kg/L)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Soil Volume (L)		10	10	10	10	10	10	10	10	10
Asbestos Content (%)		15	15	15	15	15	15	15	15	15
%w/w ACM in Soil	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
%w/w FA/AF in Soil	0.001	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%	<0.001%

Notes:

%w/w asbestos in soil calculated using: %

Result Exceeds adopted

Criteria from ASC NEPM (2013) Table 7 - I

					Field ID	Field ID	SW01
					Date	Date	6/11/2023
Analytes		Units	EQL	Aquatic Ecosystem ¹	Irrigation2 ^{##}	Stockwatering ³	
	Arsenic	mg/L	5	0.013	20	0.5	0.001
	Cadmium	mg/L	0.1	0.0002	0.05	0.01	< 0.0002
	Chromium	mg/L	0.05	0.001	1	1	0.001
Metals	Copper	mg/L	0.5	0.0014	5	0.4	0.001
ivictals	Lead	mg/L	0.001	0.0034	5	0.1	< 0.001
	Mercury	mg/L	0.001	0.00006	0.002	0.002	< 0.0001
	Nickel	mg/L	0.001	0.011	2	1	< 0.001
	Zinc	mg/L	0.005	0.008	5	20	< 0.005
	4.4'-DDD	mg/L	0.0001				< 0.0002
	4.4'-DDE	mg/L	0.0001				< 0.0002
	4.4'-DDT	mg/L	0.0001	0.006			< 0.0002
	a-HCH	mg/L	0.0001				< 0.0002
	Aldrin	mg/L	0.0001				< 0.0002
	Dieldrin	mg/L	0.0001				< 0.0002
	b-HCH	mg/L	0.0001				< 0.0002
	Chlordanes - Total	mg/L	0.001	0.03			< 0.002
	d-HCH	mg/L	0.0001				< 0.0002
	Endosulfan I	mg/L	0.0001	0.03			< 0.0002
ОСР	Endosulfan II	mg/L	0.0001	0.03			< 0.0002
	Endosulfan sulphate	mg/L	0.0001				< 0.0002
	Endrin	mg/L	0.0001	0.01			< 0.0002
	Endrin aldehyde	mg/L	0.0001				< 0.0002
	Endrin ketone	mg/L	0.0001				< 0.0002
	g-HCH (Lindane)	mg/L	0.0001	0.2			< 0.0002
	Heptachlor	mg/L	0.0001	0.01			< 0.0002
	Heptachlor epoxide	mg/L	0.0001				< 0.0002
	Hexachlorobenzene	mg/L	0.0001				< 0.0002
	Methoxychlor	mg/L	0.0001				< 0.0002
	Toxaphene	mg/L	0.01	0.1			< 0.005

Notes:

Concentration exceeds the Protection of 95-99% of species in Freshwater trigger values

Concentration exceeds the Irrigation trigger values

Concentration exceeds the Stockwatering trigger values

LOB exceeds adopted criteria

Italics LOR exceeds adopted criteria

- ** Low reliability value ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- a. Conservatively assumes xylene is p-xylene.
- ## Based on short-term trigger values (STV) Short term use, up to 20 years
- 1 ANZECC (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality
- 2 ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Tables 4.2.10 and 4.2.11
- 3 ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Table 4.3.2

		Sam	ple ID	SS01	D.6.11.23	
		54	Date	6/11/2023	6/11/2023	RPD %
			Туре	Primary	Duplicate	111 2 70
Analytes		Soil Units	LOR	Timiary	Daplicate	
rinaryces	Arsenic	mg/kg	2	2.6	3.1	18
	Cadmium	mg/kg	0.4	0.6	0.7	15
	Chromium	mg/kg	5	120	130	8
	Copper	mg/kg	5	39	42	7
Metals	Lead	mg/kg	5	7.7	8.3	8
	Mercury	mg/kg	0.1	0.1	< 0.1	0
	Nickel	mg/kg	5	72	78	8
	Zinc	mg/kg	5	110	110	0
	Acenaphthene	mg/kg	0.5	< 0.5	< 0.5	0
	Acenaphthylene	mg/kg	0.5	< 0.5	< 0.5	0
	Anthracene	mg/kg	0.5	< 0.5	< 0.5	0
	Benz(a)anthracene	mg/kg	0.5	< 0.5	< 0.5	0
	Benzo(a)pyrene	mg/kg	0.5	< 0.5	< 0.5	0
	Benzo(a)pyrene TEQ (medium bound)	mg/kg	0.6	0.6	0.6	0
	Benzo(b&j)fluoranthene	mg/kg	0.5	< 0.5	< 0.5	0
	Benzo(g.h.i)perylene	mg/kg	0.5	< 0.5	< 0.5	0
	Benzo(k)fluoranthene	mg/kg	0.5	< 0.5	< 0.5	0
PAHs	Chrysene	mg/kg	0.5	< 0.5	< 0.5	0
	Dibenz(a.h)anthracene	mg/kg	0.5	< 0.5	< 0.5	0
	Fluoranthene	mg/kg	0.5	< 0.5	< 0.5	0
	Fluorene	mg/kg	0.5	< 0.5	< 0.5	0
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5	< 0.5	< 0.5	0
	Naphthalene	mg/kg	0.5	< 0.5	< 0.5	0
	Phenanthrene	mg/kg	0.5	< 0.5	< 0.5	0
	Pyrene	mg/kg	0.5	< 0.5	< 0.5	0
	Total PAH	mg/kg	0.5	< 0.5	< 0.5	0
	Benzene	mg/kg	0.1	< 0.1	< 0.1	0
	Toluene	mg/kg	0.1	< 0.1	< 0.1	0
BTEX	Ethylbenzene	mg/kg	0.1	< 0.1	< 0.1	0
	Xylenes - Total	mg/kg	0.3	< 0.3	< 0.3	0
	Naphthalene	mg/kg	0.5	< 0.5	< 0.5	0
	TRH C6-C10	mg/kg	20	< 20	< 20	0
TDU	TRH C6-C10 less BTEX (F1)	mg/kg	20	< 20	< 20	0
TRH	TRH >C10-C16	mg/kg	50	< 50	< 50	0
	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	< 50	< 50	0
	TRH >C16-C34	mg/kg	100	1100	1400	24
	TRH >C34-C40	mg/kg	100	380	480	23

^{*}RPDs have only been considered where a concentration is greater than 10 times the LOR.

^{**}High RPDs are in bold (Acceptable RPD range is 30% (>10 x LOR))

APPENDIX J: Data Validation Report

QA/QC DATA VALIDATION REPORT

JOB NO.: NEW23P-0216-AA - PRELIMINARY & DETAILED SITE INVESTIGATION

Eurofins report: 1042040-S, 1042040-AID, 1042040-W, 1046255-S

1. SAMPLE HANDLING

Item	Yes/No	Comments
Were the sample holding times met?	Yes	-
Were the samples in proper custody between collection in the field and reaching the laboratory?	Yes	-
Were the samples properly and adequately preserved?	Yes	-
Were the samples received by the laboratory in good condition?	Yes	-

Sampling Handling was:

Satisfactory: ✓	Partially Satisfactory:	Unsatisfactory:
-----------------	-------------------------	-----------------

2. PRECISION AND ACCURACY ASSESSMENT

Item	Yes/No	Comment
Was a NATA registered laboratory used?	Yes	-
Did the laboratory perform the requested tests?	Yes	-
Were the laboratory methods adopted NATA endorsed?	Yes	-
Were the appropriate test procedures followed?	Yes	-
Were the reporting limits satisfactory?	Yes	-
Was the NATA seal on the reports?	Yes	-
Were the reports signed by an authorised person?		-

Laboratory Precision and Accuracy was:

Satisfactory:	′ P	Partially Satisfactory:	Unsatisfactory:

3. FIELD QA/QC

Soil Samples

No. Samples Analysed	52
Duplicates	1
Triplicates	0
Trip Blanks	0
Wash Blanks	0
Trip Spikes	0

No. Days Sampling

Item	Soil
Number of Days Sampling	2
Number of Sampling Events	2

Field Duplicates

Item	Yes/No	Comments
Were an adequate number of field duplicates collected?	No	One duplicate sample was collected, at a rate of 2%. Sampling was carried out by one person, using the same methods. Based on this, it is considered the absence of duplicates does not affect the outcome of the assessment.
Were RPDs within control limits? No Limit for 5-10 x EQL and 30% for >10 x EQL	Yes	-

Trip Blanks/Trip Spikes

Item	Yes/No	Comments
Were an adequate number of trip blanks and trip spikes collected?	Yes	No trip blanks or spikes were collected, as volatiles were not a primary contaminant of concern
Were the trip blanks free of contaminants?	NA	
Were the trip spikes within recovery limits (between 80% and 120%)	NA	

Rinsate Samples

Item	Yes/No	Comments
Were an adequate number of rinsate samples used? (1 per day of using reusable sampling equipment – trowel, hand auger etc)	No	No wash blanks were collected. Re-useable sampling equipment was decontaminated between sampling locations. The results showed concentrations below the criteria, with the exception of metals in one sample, and asbestos in a stockpile. Based on this, cross-contamination has not occurred, and the absence of a wash blank does not affect the data usability.

Field QC was:

Satisfactory: ✓	Partially Satisfactory:	Unsatisfactory:
-----------------	-------------------------	-----------------

4. LABORATORY INTERNAL QUALITY CONTROL PROCEDURES

A) Type of QA/QC Sample	Yes/No	Comments
Laboratory Blanks/Reagent Blanks (at least 1 per batch)	Yes	
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples)	Yes	
Matrix Spikes, Matrix Spike Duplicates (1 for each soil type)	Yes	
Laboratory Control Spike	Yes	
Surrogate (where appropriate)	Yes	

Item	Yes/ No	Comments
B) Were the laboratory blanks and/or reagent blanks free of contamination?	Yes	
C) Were the spike recoveries within control limits? 150%)	Yes	
D) Were the RPDs of the laboratory duplicates within control limits?	Yes	A range of metals, PAHs, and TRH for duplicate sample were outside control limits. The lab quoted Q15 which states "The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report". Based on this the duplicate RPDs are not considered to affect data usability.
E) Were the surrogate recoveries within control limits?	Yes	

Laboratory Internal QA/QC was:

5. DATA USABILITY

Was the data directly usable?	Yes	
Was the data usable with the following corrections/modifications? (see comments)	NA	
Was the data not usable?	NA	

APPENDIX K:Laboratory Documentation

	CHAIN OF CUSTO			Sydney La Unit F3 Bld.I 02 9900 840	F 16 Mars	Road Lane				Unit 1 21		Place Murarrie	: QLD 4172	n	U		ratory ach Highway I 0 EnviroSar							6 Mont	terey R	Laboratory load Dandenong South D EnviroSampleVic@		,
Company			Projec	t Na	NEV	V23P-021	6				Project	t Manager	Libby I	Betz					Sa	mpler(s)	ι	Lewis	Calin	ап			
Address	2 Murray Dwyer Circuit N	SW 2304	Project	Name	PSI	- Lochiny	/ar					Format EQuIS etc	Excel						Hand	ed ove	r by .							
Address	2 muliay bwye: Circuit No	387 2304	illered".																Email	for Inv	roice	ě	acco	unts	@q	ualtest.com.a	<u>au</u>	
Contact Nam	ne Libby Betz		specify "Total" or "Filt																Email	for Re		b	illysno	tz@qu w@qu	ialtest ualtesi	t.com.au lewiscallin	nan@qualtest.com.au an@qualtest.com.au	
Phone №			IDS se specify ' o aitract SI			, Metals)													Ch	ചാട്ടര ധവ	Conta Lainer typ			IIEIY		Required Turn Dafault will be	naround Time (TAT) 5 days if not licked	12
Special Directi	ions.		Analyses Migra metals are requested, please st SUITE code must be used to all	Metals M8	Asbestos (w/w%)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC																		uidelines)	Overnight (re		
Purchase Or	der		netals are r	Me	Asbes	37 (TRH,	五												detic	lastic	oer Glass	A viat	S Bottle	or HDPE	64, WA G	2 days ♦ 5 days (Stand	☐ 3 days ♦	
Quote ID N	180622QUAN-3		Where			Suite E													250ml Disetic	125mL Plastic	200mL Amber Glass	40mL VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	stos AS49	Other(iaru))
Ne	Client Sample ID	Sampled Date/Time dd/mwyy kh.mm	Matrix Solid (3) Water (W)																		20		20	g,	Other (Asbestos AS4964, WA Guidelines)		ı Comments ods Hazard Warning	g
1	SP1-1	2/11/23	SOIL	X	×	X	X									Ten Maria da ama								1	1			
2	SP1-2	2/11/23	SOIL	X	X																			1	1			
3	SP1-3	2/11/23	SOIL	X	X																			1	1			
4	SP1-4	2/11/23	SOIL	X	X																			1	1			
5	SP1-5	2/11/23	SOIL	X	X	×												ŀ						1	1			
6	SP1-6	2/11/23	SOIL	×	X																			1	1			
7	SP1-7	2/11/23	SOIL	X	X																			1	1			
8	SP1-8	2/11/23	SOIL	×	X																			1	1			
9	SP1-9	2/11/23	SOIL	X	X																			1	1			
10	SP1-10	2/11/23	SOIL	×	X	×		hie																1	1			
1		Total	Counts	10	10	3	1		10.6	H														10	10	page 1/2		SHIP
Method of Ship) 🗆	Hand Delivered	-	☐ Po	_		ame	Leu		all	nan	Signatu	re &		_				Date		7-/	1	2-	3	Time		
Laboratory L	Received By Jse Only Received By	lando	u			. PER			Signa Signa		0	X			Date		7-11			Time		2	30	2		Temperature	12.5	1
Eurotina Coul	Received By			910 81	MAC MACT	· FCR	Cubmissis	a of come	- Olyfie	min, 1	1		(F		Date		10.14			rime				Œ		Report №	10470	1

CHA

AIN OF CUSTODY RECORD

Sydney Laboratory
Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com

Brisbane Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com Perth Laboratory

Unit 2 91 Leach Highway Kewdale WA 6105 08 9251 9600 EnviroSampieWA@eurofins.com

Melbourne Laboratory
6 Monterey Road Dandenong South VIC 3175
03 8564 5000 EnviroSampleVic@eurofins.com

Company	Qualtest		Projec	it Ne	NEV	V23P-0216			Project	Manager	Libby Betz				100	Sampl	er(s)	ı.	Lewis	Calin	an		
	0.14 D	10001 0004	Project	Name	PSI	- Lochinvar			EDO ESdat,	Format EQuiS etc	Excel				На	anded o	ver by						
Address	2 Murray Dwyer Circuit N	ISW 2304	, paid												En	nail for	Invoice		acco	unts	p(0)	ualtest.com.au	
Contact Name	Libby Betz		peory Total or Films												En	nail for l	Results		libbyb: billysn	etz@qu ow@qı	ıaltest. ualtest	.com.au emmacoleman@q t.com.au lewiscallinan@qu	ualtest.com.au
Phone Na			1008 1 SEC 105 108			Metals)									3	Change	Cor	rtainer type & s	rs Lee V ned	eswy.		Required Turnaroun Detault will be 5 days	d Time (TAT) i not (kino.).
Special Directions			Analysed metals are requested pleased pleased by the sound by the soun	Asbestos (w/w%)	Asbestos ID	Suite B7 (TRH, BTEX, PAH, Metals)											ď	3	9	Ē)	Other (Asbestos AS4964, WA Guidelines)	☐ Overnight (reporting ☐ Same day ◆ ☐	1 day♦
Purchase Order			metals are SUITE pod	Asbe	As	B7 (TRH									500ml. Plastic	250mL Plastic	125mL Plastic 200ml Amber Glass	40mL VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	4964, WA	2 days ♦ □ 2 days (Standard)] 3 days ♦
Quote ID №	180622QUAN-3		Whore			Suite									500mL	250mL	125mL	40mL	00mL PI	ar (Glas	estos AS	Other()
Na	Client Sample ID	Sampled Date/Time dd/mm/yy ht.mm	Matrix Sold (S) Walter (W)																IC)		Other (Ast	Sample Comr I Dangerous Goods Ha	
1	TP10 0.2-1.0	2/11/23	SOIL																	1	1		
2	SP1-PACM	2/11/23	SOIL																		1		
3	-4																						
4																							
5					ŀ												T	T	Г				
6																							
7																							
8																							
9																							
10																							
		Total Co	ounts																	1	2	page 1/2	
Method of Shipment	Courier (#		and Delivered		☐ Po	ostal	Name	Lein	is Calle	nan	Signature	4				Dat	e	7	7.[/-	2	3	Time	
	Received By	Ilanda	u	SYD (BNE ME	EL PER AD	DL NTL DRW	Signatur	re (A		Da	ite :	7-11		Tim	θ		3			Temperature	2.5
Laboratory Use On	Received By			SYD	BNE ME	EL PER AD	DL NTL DRW	Signatur	re C			Da	ite			Tim	9					Report №	

	CH
0	

HAIN OF CUSTODY RECORD

Eurofins | Environment Testing AST 50 001 060 521

Sydney Laboratory Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066 Brisbane Laboratory 07 3902 4600 EnviroSampleQLD@eurofins.com

Perth Laboratory 06 905 F9800 : Enwiceample.Whitpelindins.com. Melbourne Laboratory

Company	Qualtest		Proje	ct No	NEV	N23P-021	6				Project Manager	Libby Betz				Sam	pier(s)		Lewis	s Calin	ian			
Address	2 Murray Dwyer Circuit N	RW 2304	Project	t Name	PDS	Si - Lochii	nvar				EDD Format ESdat, EQuIS etc	Excel				Handed	d over b	у						
	a mana, bayor oncome	517 2007	lered".													mail fo	or Invoic	e e	acc	ount	s@q	ualtest.com.au		
Contact Name	Libby Betz		ooty Total or Filk													mail to	Resul	ts				.com.au emmacoleman t.com.au lewiscallinan@		
Phone №			specify To				Ŧ	letals)							100	Chang	C ge contain	ontaine et type &		constany		Required Turnaro Default will be 5 d	ound Time (TAT) lays Foot licked	
Special Directions Purchase Order			Analyse musts are requested, please SUTE code must be used to a	Metals M8	Asbestos (w/w%)	OCPs	Suite B4 (TRH, BTEX, PAH)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC						Dactic	Plastic	125mL Plastic	200mL Amber Glass 40ml VOA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	WA	☐ Overnight (repor	☐ 1 day ♦ ☐ 3 days ♦	
Quote ID No	180622QUAN-3		E S				ಪ	Suite							500ml Plastic	250mL Plastic	125mL	OmL Amber Glas	Oml PF	r (Glass	stos AS4	Other()
Na	Client Sample ID	Sampled Date/Time obmovy thimm	Matrix Salis (S) Water (W)															50	25	вb	Other (Asbe	Sample Co / Dangerous Goods	omments s Hazard Warning	
1	SS01	6/11/23	SOIL					X												1	1			Ī
2	SS02	6/11/23	SOIL	×													П			1	1			
3	SS03	6/11/23	SOIL	×																1	1			
4	\$\$04	6/11/23	SOIL	×													П			1	1			
5	SS05	6/11/23	SOIL	×										*						1	1			
6	SS06	6/11/23	SOIL					X												1	1			
7	\$\$07	6/11/23	SOIL			X		X									П			1	1			
8	SS08	6/11/23	SOIL	×																1	1			
9	SS09	6/11/23	SOIL					X												1	1			
0	SS10	6/11/23	SOIL	×																1	1			Ī
		Total Co	unts	6		1		4										T		10	10	page 1/2		ı
ethod of Shipment	Courier (#		and Delivered		☐ Po:	stal	Nar	ne	Lewi	5/01	livan	Signature	2	>		D	ate	7	7//	2	3	Time		
Laboratory Use On	Received By	Slanda	u	SYD B	NE MEL	PER /	ADL NTL	DRW	Signat	ure	A		Date	7-1	1	T	ime		2	30	ر	Temperature	12.5	
	Received By			SYD B	NE MEL	PER /	ADL NTL	DRW	Signat	ure			Date			Ti	ime	3 10	New York			Report №	10450	1

CHAIN OF CUSTODY RECORD

Sydney Laboratory

Unit F3 Bld.F 16 Mars Road i.ane Cove West NSW 2066 02 9900 8400 EnviroSampleNSW@eurofins.com

Brisbane Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172 07 3902 4600 EnviroSampleQLD@eurofins.com Perth Laboratory

Unit 2 91 Leach Highway Kewdale WA 6105 08 9251 9600 EnviroSampleWA@eurofins.com Melbourne Laboratory

6 Monterey Road Dandenong South VIC 3175 03 8564 5000 EnviroSampleVic@eurofins.com

4/7

Company	Qualtest			Projec	t №	NEW	23P-0216					Project Manager	Libby Betz			S	ampler	s)	Le	wis Ca	linan				
				Project I	Name	PDSI	- Lochin	var				EDD Format ESdat, EQuiS etc	Excel			Han	ded ov	er by							
Address	2 Murray Dwyer Circu	uit NSW 2304		red.												Ema	il for In	voice	ac	cour	nts@	qualtes	t.com.au		
Contact Name	Libby Betz			il" or "Fille pricing.												Ema	iil for Re	sults	libb bill	ybetz@ ysnow(⊉qualto @qualt	est.com.au e est.com.au	mmacolemar ewiscallinan	@qualtest.com.a @qualtest.com.au	AU I
Phone No				S specify "Total" or "Filk uvact SU/ITE pricing.				Ĥ	/letals)								hange on		ainers pe 4 sta l	Incom	~ T	Requ	ired Turner elault will be 5	ound Time (TA) Juys # not licked)
Special Directions				Analyse requested, please de mun be used to	Metals M8	Asbestos (w/w%)	OCPs	Suite B4 (TRH, BTEX, PAH)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC								lass	-	iffle	IPE)	=	ernight (repo me day 🕈	Surcharge will appl rting by 9am)+ 1 day • 3 days •	1
Purchase Order	180622QUAN-3			whom metals are required.		Asb		Suite B4	Suite B7 (TRI	ā						500mL Plastic	250mL Plastic	200mL Amber Glass	40mt VOA vial	500mL PFAS Bottle	Jar (Glass or HUPE)	☐ 2 c	ays (Standa)
No.	Client Sample ID		Sampled Data/Time	Matrix Solid (S) W≐r (W)					0,5							20	24 25	200m	40	5001	Jar (Glass of HDPE) Other (Ashestos AS4964 WA Guide	/ Dang	Sample C erous Good	omments s Hazard Warn	ing
1	SS11		6/11/23	SOIL			×		X		PR.									ŀ	1 1				
2	SS12		6/11/23	SOIL	×															1	1 1				
3	SS13		6/11/23	SOIL					X											1	1 1				
4	SS14		6/11/23	SOIL	×															1	1 1				
5	SS15		6/11/23	SOIL					X												1 1	ı			
6	SS16		6/11/23	SOIL	×															1	1 1				
7	SS17		6/11/23	SOIL					X											•	1 1				
8	SS18		6/11/23	SOIL	×															·	1 1	ı			
9	SS19		6/11/23	SOIL	×	X	×														1 1	l			
10	SS20		6/11/23	SOIL	×	X														·	1 1	1			
	3 132 1		Total C	ounts	6	2	2		4											1	10 1	O plag	e 1/2	May !	
Method of Shipment	Courier (#) 🗀 H	land Delivered		☐ Po	stal	Na	ame	Lews	5 Ca	llinan	Signat		: E-		Date		7-1	1.2	-3		Time	7 0.	la de
Laboratory Use Or	Received By)la	ndau	1	SYD	BNE ME	L PER	ADL NT	L DRW	Signa	ature	0		Date	7-11		Time	-	2	-30	2		perature	12.5	
2230141017 380 01	Received By				SYD	BNE (ME	L PER	ADL NT	L DRW	Signa	ature			Date			Time		133		35	Re	port №	1090	

r'

CHAIN OF CUSTODY RECORD

Eurofins | Environment Testing ABN 50 005 085 521

Unit F3 Bid F 16 Mars Road Lane Cove West NSW 2066 02 9900 8400 Engine Sampe 15 With participations Brisbane Laboratory

Unit 121 Shielecolf Pluce Muliene QLD CLZ 07 3902 4600 EnviroSampleQLD@eurofins.com Perth Laboratory

Highway Kewdale WA 6105

EnviroSampleWA@eurofins.com

Melbourne Laboratory

C Mortening Raind Standarding Equals Vict. 2475.

CH 6564 5010. Equal Standard Victimum British Vict.

Company	Qualtest		Projec	t Ne	NEV	W23P-021	6				Project Mar	ager	Libby Betz					Samp	oler(s)		Lewi	s Calin	nan		
Address	2 Murray Dwyer Circuit NS	N 2304	Project	Name	PDS	31 - Lochii	nvar				EDD Fort	nat Sala	Excel				H	landed	over l	ру					
	2 maney Dayer Or our 1401	. 2004	iered".														E	mail fo	r Invoi	ce	acc	ounts	s@g	ualtest.com.au	7
Contact Name	Libby Betz		y Total or File SUITE prions.														E	mail ro	Resu	lts				.com.au emmacolema t.com.au lewiscallinan	
Phone №			is specify Tr				Ŧ	/letals)										Charig		Contair nertype	nors & size if no	rossally		Required Turna. Default will be 5	round Time (TAT) days if not sided
Special Directions			Analyse e requessed, planse de musi be ursed to	Metals M8	Asbestos (w/w%)	OCPs	Suite B4 (TRH, BTEX, PAH)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC											SS.	0	Œ	ije	Overnight (repo	
Purchase Order			E mestale in Stuffe co	2	Asbe		uite B4 (B7 (TRI-	ᇫ								500mL Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mL VOA vial 500mL PFAS Bottle	Jar (Glass or HDPE)	1964, WA	☐ 2 days ♦ ☐ 5 days (Standa	☐ 3 days♦
Quote ID No	180622QUAN-3		When				o o	Suite									500mL	250mL	125mL	Oml. Am	40mL V	ır (Glass	estos AS4	Other()
le	Client Sample ID	Sampled Date/Time dd/mm/yy ht/mm	Matrix Sold (S) Water (W)																	50	25	Ja	Other (Asb	Sample 0 / Dangerous Goo	Comments ds Hazard Warning
1	SS21	6/11/23	SOIL	×	X				X													1	1		
2	\$822	6/11/23	SOIL	X	×																T	1	1		
3	SS23	6/11/23	SOIL	X	×															T		1	1		
4	SS24	6/11/23	SOIL	×	×																	1	1		
5	SS25	6/11/23	SOIL	×	X																	1	1		
6	SS26	6/11/23	SOIL	×																		1	1		
7	SS27	6/11/23	SOIL	X																		1	1		
8	SS28	6/11/23	SOIL	×																		1	1		
9	SS29	6/11/23	SOIL	X		×																1	1		
10	SS30	6/11/23	SOIL	X											Æ .							1	1		
		Total Cou	unts	10	5	1			1	7.7			HUN		1							10	10	page 1/2	
lethod of Shipment	Courier (#) 🔽 Hai	nd Delivered		☐ Pos	stal	Name	e	Leu	15 0	Callin	21	Signature	4				De	te	- 1	7:11-	20	2	Time	
Laboratory Use Only	Received By	Landau	1	SYD B	NE MEL	PER A	ADL NTL	DRW	Signa		B	>>			ate	7-11		Tir	ne		2.3	6		Temperature	12.5
	Received By			SYD B	NE MEL	PER A	ADL NTL	DRW	Signa	ture				r	ate			Tir	ne			313		Report №	104204

Today	Eurofins (Environment Testing AB	N 52 005 085 521	0	2 9900 8400	EnviroS	SampleNSV	V@eurofins.c	com		07 3902 4600 Enviro	SampleQLD(Deurofins.com	08 9251 9	600 EnviroSampleVi		777	AGE.								
Company	Qualtest		Project	.N≘	NEW2	23P-0216	i			Project	Manager	Libby Betz				Samp	ler(s)		Le	wis Ca	alinan	1			
SELTE.			Project N	lame	PDSI	- Lochin	var			EDD F ESdat S	ormat OutSetc	Excel			На	anded	over	by							
Address	2 Murray Dwyer Circuit NS	W 2304	, per												En	nail fo	r Invo	ice					altest.com.au		
Contact Name	Libby Betz		ai" or *Filte : pricing												Er	nail to	r Resu	ilts	lid lid	bybetz(lysnow	@qual r@qua	itest.co	om.au emmacoleman :om.au lewiscallinan@	@qualtest.com.au	
Рһоле №			act SUITE					stals)								Chang	e conti	Contai mertype	nors A size	f necess	sary		Required Turnaro Default will be 5 d	bund Time (TAT) toys if not ticked.	
1 Hone (12			alyses pleade up		%		X, PAH	AH, Me	0													(88	Overnight (repor	Surcharge will apply	
Special Directions			An Aquentad.	Metals M8	Asbestos (w/w%)	ocPs	Suite B4 (TRH, BTEX, PAH)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC									S		9		Guidelin	☐ Same day ♦	☐ 1 day ♦	
Purchase Order			falls one re	Mel	Asbest	J	e B4 (Ti	7 (TRH,	ä						Plastic	Plastic	Plastic	200mL Amber Glass	DA vial	500mL PFAS Bottle	Jar (Glass or HDPE)	964, WA	☐ 2 days ♦ ☑ 5 days (Standan		
Quote ID Na	180622QUAN-3						Suit	Suite B							500mt. Plastic	250mL Plastic	125mL Plastic	mL Am	40mL VOA vial	Omt. PF.	(Glass	stos AS4	Other(,)
Gove ID IT	100022457117	Sampled	Matrix															200		Š.	PR .	Other (Asbestos AS4964, WA Guidelin	Sample C	comments	
Ne	Client Sample ID	Date/Time ddhiniyy hhimi	Solid (8) Water (W)																			ਰ	/ Dangerous Good	e Hazard Warnir	9
1	SS31	6/11/23	SOIL	×	X																1	1			
	SS32	6/11/23	SOIL	×	20.2																1	1			
2																					1	1			
3	SS33	6/11/23	SOIL	X											ŀ						1	1			
4	SS34	6/11/23	SOIL	X		X																			
5	SP2-1	6/11/23	SOIL	X	X																1	1			
6	SP3-1	6/11/23	SOIL	X	×																1	1			
7	SP4-1	6/11/23	SOIL	X	X																1	1			
	SP4-2	6/11/23	SOIL	×	×																1	1			
																					1	1			
9	SP4-3	6/11/23	SOIL	×	X																	1			
10	SP4-4	6/11/23	SOIL	×	X																		HOMOGO NA	HENSE	D
The same		Total	l Counts	10	7	1							1								10	_	page 1/2 Time		34
Method of Shipment	Courier (#		Hand Delivered		☐ P			ame		wisla/lil	han	Signature	Dota	711	200	-	Date Fime		4	//-	2	2	Temperature	175	F
Laboratory Use O) landa	u			1111	ADL NT			nature	29	_	Date Date	7-11			Time		L		D		Report №	10420	1
	Received By			SYD I	BNE ME	EL PER	ADL NT	IL DKW	Sig	nature	HARRI	40 4 IC.	T to Olerstood	Terms and Conditions	nlopg 2			. Δ σουν	ic avai	láble on	reques	st.			

Brisbane Laboratory

Unit 1 21 Smallwood Place Murarrie QLD 4172

07 3902 4600 EnviroSampleQLD@eurofins.com

Sydney Laboratory

Unit F3 Bld.F 16 Mars Road Lane Cove West NSW 2066

CHAIN OF CUSTODY RECORD

Perth Laboratory

Unit 2 91 Leach Highway Kewdale WA 6105

08 9251 9600 EnviroSampleWA@eurofins.com

☐ Memorifie Fanorator 1

6 Monterey Road Dandenong South VIC 3175

03 8564 5000 EnviroSampleVic@eurofins.com

		q	2	
- "	5		31	

CHAIN OF CUSTODY RECORD

Eurofins | Environment Testing ABN 50 005 085 521

Sydney Laboratory

Unit of End Fift Mark Floor Line Cove West IFW 2

02 9900 8400 Environment of Wigorian Covers

Brisbane Laboratory
Doi: 1211 Individed Floor MilmHis GLD 4122
Brisbane Laboratory
Brisbane Laboratory

Perth Laboratory

Melbourne Laboratory

Comper	Qualtest		Project N		NEW23P-	0216			Project Manage	Libby Betz				Samp	er(s)	8	Lewi	is Cali	nan		
Addres	2 Murray Dwyer Circuit N	SW 2304	Project Nar	ne	PDSI - Lo	chinvar			EDD Format ESdat EQuiS elo	Excel			На	anded	over l	y					
			llered.										Em	nail for	Invoi	ce	acc	ount	ts@o	ualtest.com.au	ı
Contact Na	Libby Betz		Olal or ?						H = 1				Em	nall for	Resu	ts				t.com.au emmacolema st.com.au lewiscallinan	
Phone N			sis effract SU			宝	Metals)							Change	Contain	ontain III lyve	iors & uzo fina	er et tale	4	Required Turnal Default will be 5	round Time (TAT) days if not ticked.
Special Direc	ions		Analyze	wetals wio	OCPs	Suite B4 (TRH, BTEX, PAH)	Suite B7 (TRH, BTEX, PAH, Metals)	pH and CEC								SS	a	(<u>(</u>	Other (Asbestos AS4964, WA Guidelines)	☐ Overnight (repo	☐ 1 day◆
Purchase O	der		e metalls et	Ash		uite B4 (B7 (TRI	<u>a</u> .					500mL Plastic	250mL Plastic	125mL Plastic	200ml. Amber Glass	40mL VOA vial 500mL PFAS Bottle	Jar (Glass or HDPE)	964, WA	☐ 2 days ♦ ☐ 5 days (Standa	☐ 3 days ♦
Quote ID I	180622QUAN-3		APUM			S	Suite						500mL	250mL	125mL	Oml. Am	40mL v	r (Glass	setos AS4	Other()
de la companya de la	Client Sample ID	Sampled Date/Time od/mm/yy hh mm	Matrix Solis (5) Waler (W)													8	25	g,	Other (Asb		Comments ds Hazard Waming
	SP4-5	6/11/23	SOIL)	(>														1	1		
	D.6.11.23	6/11/23	SOIL				×											1			
3	SW01	6/11/23	SOIL >	(X										1	1 :	2				
	SS01A	6/11/23	SOIL	>	:		×											1	1		
																			Ţ		
															1						
		Total Co.	unts 2	2	1		2								4	1 3	2	3	2	page 1/2	
thod or Shipr	ent Courier (#) [] Ha	nd Delivered		Postal	Na		1-8-101	is Callinan	Signature	1/2			Dat		-	7-11			Time	
ah and !!	Received By	landal	SYL	BNE	WEL PER	ADL NTL	. Į DRW	Signatur			Date	7-11		Tim	e		2.	2	-)	Temperature	12.5
aboratory U	Received By			BNE	MEL PER	ADL NTL	. DRW	Signatur		سانو کار	Date			Tim	e			20)	Report №	12.5

www.eurofins.com.au

EnviroSales@eurofins.com

NZBN: 9429046024954

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 NATA# 1261

Geelong 19/8 Lewalan Street Grovedale VIC 3216 NATA# 1261 Site# 25403

179 Magowar Road Girraween NSW 2145 NATA# 1261 Site# 18217

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794

Newcastle Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Eurofins ARL Pty Ltd

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290

Eurofins Environment Testing NZ Ltd

Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 IANZ# 1402

Sample Receipt Advice

Company name: Contact name:

Qualtest Libby Betz PSI - LOCHINVAR

Project name: Project ID:

NEW23P-0216

Turnaround time: Date/Time received

5 Day Nov 7, 2023 2:30 PM

Eurofins reference

1042040

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

X Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Libby Betz - libbybetz@qualtest.com.au.

Note: A copy of these results will also be delivered to the general Qualtest email address.

Certificate of Analysis

Environment Testing

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited
Accreditation Number 1261
Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Libby Betz
Report 1042040-AID
Project Name PSI - LOCHINVAR
Project ID NEW23P-0216
Received Date Nov 07, 2023
Date Reported Nov 16, 2023

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name PSI - LOCHINVAR
Project ID NEW23P-0216

Date Sampled Nov 02, 2023 to Nov 06, 2023

Report 1042040-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SP1-1	23-No0016816	Nov 02, 2023	Approximate Sample 920g Sample consisted of: Brown coarse-grained sandy soil, cement, brick, coal and rocks	ACM: Chrysotile and amosite asbestos detected in fibre cement material. Approximate raw weight of ACM = 16g Total estimated asbestos content in ACM = 1.6g* Total estimated asbestos concentration in ACM = 0.18% w/w* Organic fibre detected. No trace asbestos detected.
SP1-2	23-No0016817	Nov 02, 2023	Approximate Sample 790g Sample consisted of: Brown coarse-grained sandy soil, cement, brick, coal, debris, corroded metal and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-3	23-No0016818	Nov 02, 2023	Approximate Sample 706g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-4	23-No0016819	Nov 02, 2023	Approximate Sample 663g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-5	23-No0016820	Nov 02, 2023	Approximate Sample 667g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-6	23-No0016821	Nov 02, 2023	Approximate Sample 661g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SP1-7	23-No0016822	Nov 02, 2023	Approximate Sample 746g Sample consisted of: Brown coarse grained sandy clayey soil, bitumen, cement and rocks	ACM: Chrysotile asbestos detected in fibre cement material. Approximate raw weight of ACM = 19g Total estimated asbestos content in ACM = 0.95g* Total estimated asbestos concentration in ACM = 0.13% w/w* Organic fibre detected.
SP1-8	23-No0016823	Nov 02, 2023	Approximate Sample 642g Sample consisted of: Brown fine-grained clayey soil and rocks	No trace asbestos detected. No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-9	23-No0016824	Nov 02, 2023	Approximate Sample 684g Sample consisted of: Brown fine-grained clayey soil, bitumen, cement and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP1-10	23-No0016825	Nov 02, 2023	Approximate Sample 808g Sample consisted of: Brown coarse grained sandy clayey soil, plaster, cement and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS19	23-No0016844	Nov 06, 2023	Approximate Sample 593g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS20	23-No0016845	Nov 06, 2023	Approximate Sample 655g Sample consisted of: Brown coarse grained sandy clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS21	23-No0016846	Nov 06, 2023	Approximate Sample 667g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS22	23-No0016847	Nov 06, 2023	Approximate Sample 623g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS23	23-No0016848	Nov 06, 2023	Approximate Sample 519g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS24	23-No0016849	Nov 06, 2023	Approximate Sample 393g Sample consisted of: Grey fine-grained clayey soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS25	23-No0016850	Nov 06, 2023	Approximate Sample 530g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS31	23-No0016856	Nov 06, 2023	Approximate Sample 494g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SP2-1	23-No0016860	Nov 06, 2023	Approximate Sample 511g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP3-1	23-No0016861	Nov 06, 2023	Approximate Sample 474g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP4-1	23-No0016862	Nov 06, 2023	Approximate Sample 571g Sample consisted of: Brown coarse grained sandy clayey soil, bitumen and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP4-2	23-No0016863	Nov 06, 2023	Approximate Sample 460g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP4-3	23-No0016864	Nov 06, 2023	Approximate Sample 612g Sample consisted of: Brown coarse grained sandy clayey soil, brick, cement and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP4-4	23-No0016865	Nov 06, 2023	Approximate Sample 625g Sample consisted of: Brown coarse-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SP4-5	23-No0016866	Nov 06, 2023	Approximate Sample 629g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
SS01A	23-No0016869	Nov 06, 2023	Approximate Sample 281g Sample consisted of: Brown fine-grained clayey soil, corroded metal, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

First Reported: Nov 15, 2023 Date Reported: Nov 16, 2023

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyNov 08, 2023Indefinite

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mayfield West NSW 2304 Murarrie QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

Address: 2 Murray Dwyer Circuit

> Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

1042040 02 4968 4468

02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Dav

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	1			i								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SP1-1	Nov 02, 2023		Soil	N23-No0016816	Х		Х			Х	Х	Х
2	SP1-2	Nov 02, 2023		Soil	N23-No0016817	Х				Х	Х		
3	SP1-3	Nov 02, 2023		Soil	N23-No0016818	Х				Х	Х		
4	SP1-4	Nov 02, 2023		Soil	N23-No0016819	Х				Х	Х		
5	SP1-5	Nov 02, 2023		Soil	N23-No0016820	Х					Х		Х
6	SP1-6	Nov 02, 2023		Soil	N23-No0016821	Х				Х	Х		
7	SP1-7	Nov 02, 2023		Soil	N23-No0016822	Х				Х	Х		
8	SP1-8	Nov 02, 2023		Soil	N23-No0016823	Х				Х	Х		
9	SP1-9	Nov 02, 2023		Soil	N23-No0016824	Х				Х	Х		
10	SP1-10	Nov 02, 2023		Soil	N23-No0016825	Х					Х		Х
11	SS01	Nov 06, 2023		Soil	N23-No0016826						Х		Х
12	SS02	Nov 06, 2023		Soil	N23-No0016827					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145 NATA# 1261 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

Address: 2 Murray Dwyer Circuit

> Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040 02 4968 4468

Phone: 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Dav

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
13	SS03	Nov 06, 2023		Soil	N23-No0016828					Х	Х		
14	SS04	Nov 06, 2023		Soil	N23-No0016829					Х	Х		
15	SS05	Nov 06, 2023		Soil	N23-No0016830					Х	Х		
16	SS06	Nov 06, 2023		Soil	N23-No0016831						Х		Х
17	SS07	Nov 06, 2023		Soil	N23-No0016832				Х		Х		Х
18	SS08	Nov 06, 2023		Soil	N23-No0016833					Х	Х		
19	SS09	Nov 06, 2023		Soil	N23-No0016834						Х		Х
20	SS10	Nov 06, 2023		Soil	N23-No0016835					Х	Х		
21	SS11	Nov 06, 2023		Soil	N23-No0016836				Х		Х		Х
22	SS12	Nov 06, 2023		Soil	N23-No0016837					Х	Х		
23	SS13	Nov 06, 2023		Soil	N23-No0016838						Х		Х
24	SS14	Nov 06, 2023		Soil	N23-No0016839					Х	Х		
25	SS15	Nov 06, 2023		Soil	N23-No0016840						Х		Х
26	SS16	Nov 06, 2023		Soil	N23-No0016841					Х	Х		
27	SS17	Nov 06, 2023		Soil	N23-No0016842						Х		Х

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175

NATA# 1261

Site# 1254

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

Address:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

1042040 02 4968 4468

02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Dav

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Sydı	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
28	SS18	Nov 06, 2023		Soil	N23-No0016843					Х	Х		
29	SS19	Nov 06, 2023		Soil	N23-No0016844	Х			Х	Х	Х		
30	SS20	Nov 06, 2023		Soil	N23-No0016845	Х				Х	Х		
31	SS21	Nov 06, 2023		Soil	N23-No0016846	Х		Х		Х	Х	Х	
32	SS22	Nov 06, 2023		Soil	N23-No0016847	Х				Х	Х		
33	SS23	Nov 06, 2023		Soil	N23-No0016848	Х				Х	Х		
34	SS24	Nov 06, 2023		Soil	N23-No0016849	Х				Х	Х		
35	SS25	Nov 06, 2023		Soil	N23-No0016850	Х				Х	Х		
36	SS26	Nov 06, 2023		Soil	N23-No0016851					Х	Х		
37	SS27	Nov 06, 2023		Soil	N23-No0016852					Х	Х		
38	SS28	Nov 06, 2023		Soil	N23-No0016853					Х	Х		
39	SS29	Nov 06, 2023		Soil	N23-No0016854				Х	Х	Х		
40	SS30	Nov 06, 2023		Soil	N23-No0016855					Х	Х		
41	SS31	Nov 06, 2023		Soil	N23-No0016856	Х				Х	Х		
42	SS32	Nov 06, 2023		Soil	N23-No0016857					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

Address:

2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

1042040 02 4968 4468

02 4960 9775 Fax:

Site# 20794

Eurofins Analytical Services Manager: Andrew Black

5 Dav

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Mell	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х	Х	Х	Х	Х	Х	Х
43	SS33	Nov 06, 2023		Soil	N23-No0016858					Х	Х		
44	SS34	Nov 06, 2023		Soil	N23-No0016859				Х	Х	Х		
45	SP2-1	Nov 06, 2023		Soil	N23-No0016860	Х				Х	Х		
46	SP3-1	Nov 06, 2023		Soil	N23-No0016861	Х				Х	Х		
47	SP4-1	Nov 06, 2023		Soil	N23-No0016862	Х				Х	Х		
48	SP4-2	Nov 06, 2023		Soil	N23-No0016863	Х				Х	Х		
49	SP4-3	Nov 06, 2023		Soil	N23-No0016864	Х				Х	Х		
50	SP4-4	Nov 06, 2023		Soil	N23-No0016865	Х				Х	Х		
51	SP4-5	Nov 06, 2023		Soil	N23-No0016866	Х				Х	Х		
52	D.6.11.23	Nov 06, 2023		Soil	N23-No0016867						Х		Х
53	SW01	Nov 06, 2023		Water	N23-No0016868				Х	Х			
54	SS01A	Nov 06, 2023		Soil	N23-No0016869	Х					Х		Х
55	TP10 0.2-1.0	Nov 02, 2023		Soil	N23-No0016870		Х						
56	SP1-PACM	Nov 02, 2023		Building Materials	N23-No0016871		Х						

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

179 Magowar Road Girraween NSW 2145 NATA# 1261 NATA# 1261

Sydney

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

Qualtest

Address: 2 Murray Dwyer Circuit

Mavfield West

NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040 02 4968 4468

Phone: 02 4960 9775 Fax:

Received: Nov 7, 2023 2:30 PM Due: Nov 14, 2023

Priority: 5 Dav **Contact Name:** Libby Betz

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	sbestos - WA guidelines	10LD	H (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	fletals M8	noisture Set	ation Exchange Capacity	urofins Suite B7
Melbourne Laboratory - NATA # 1261 Site # 1254					Х		Х	Х
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Test Counts	26	2	2	6	41	53	2	13

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated
- Samples were analysed on an 'as received' basis.
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- 5. This report replaces any interim results previously issued

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n) % w/w

F/fld

Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C) Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) g, kg

Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (**V** = **r** x **t**) g/kg L, mL

L/min Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r)

Time (t), e.g. of air sample collection period min

Calculations

Airborne Fibre Concentration: $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{p}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{p}\right) \times \left(\frac{1}{V}\right)$

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times P_A)}{M}$

Weighted Average (of asbestos): $\%_{WA} = \sum_{x} \frac{(m \times P_A)_x}{x}$ **Terms**

HSG248

WA DOH

Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 *Appendix* 2, else assumed to be 15% in accordance with WA DOH *Appendix* 2 (**P**_A). %asbestos

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.

Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable ΑF

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g. by the MFM.

Amosite Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.

AS

Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004

COC Chain of Custody

Crocidolite Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.

Dry Sample is dried by heating prior to analysis

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA FA

generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003 Fibre ID

Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos. Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).

HSG264 UK HSE HSG264, Asbestos: The Survey Guide (2012)

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission. Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].

NEPM (also ASC NEPM) National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).

Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004. Organic

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004. PLM Sampling Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process

SMF Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.

SRA

Trace Analysis Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication,

UMF Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos

> Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Weighted Average Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

23-No0016849, 23-No0016856, 23-No0016861, 23-No0016863, 23-No0016869: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos

Authorised by:

Sayeed Abu Senior Analyst-Asbestos

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1042040-AID

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Libby Betz

Report 1042040-S

Project ID Project ID NEW23P-0216
Received Date Nov 07, 2023

Client Sample ID			SP1-1	SP1-2	SP1-3	SP1-4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016816	N23- No0016817	N23- No0016818	N23- No0016819
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit		,	,	,
Total Recoverable Hydrocarbons - 1999 NEPM F		, J				
TRH C6-C9	20	mg/kg	< 20	_	_	_
TRH C10-C14	20	mg/kg	< 20	_	_	_
TRH C15-C28	50	mg/kg	56	-	-	-
TRH C29-C36	50	mg/kg	91	-	-	-
TRH C10-C36 (Total)	50	mg/kg	147	-	-	-
BTEX						
Benzene	0.1	mg/kg	0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	66	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.9	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene	0.5	mg/kg	0.5	-	-	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	0.6	-	-	-
Chrysene	0.5	mg/kg	0.6	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	1.2	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID			SP1-1	SP1-2	SP1-3	SP1-4
Sample Matrix			Soil	Soil	Soil	Soil
			N23-	N23-	N23-	N23-
Eurofins Sample No.			No0016816	No0016817	No0016818	No0016819
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	=	=	-
Phenanthrene	0.5	mg/kg	0.7	=	=	-
Pyrene	0.5	mg/kg	1.2	=	=	-
Total PAH*	0.5	mg/kg	5.4	=	=	-
2-Fluorobiphenyl (surr.)	1	%	76	-	-	-
p-Terphenyl-d14 (surr.)	1	%	73	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	260	-	-	-
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	8.0	-	=	-
Heavy Metals						
Arsenic	2	mg/kg	5.8	6.5	9.2	4.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	25	48	32
Copper	5	mg/kg	16	23	16	13
Lead	5	mg/kg	49	65	62	27
Mercury	0.1	mg/kg	0.2	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	24	29	24	22
Zinc	5	mg/kg	120	160	46	44
Cation Exchange Capacity						
Cation Exchange Capacity	0.5	meq/100g	26	-	-	-
Sample Properties						
% Moisture	1	%	4.5	4.1	10	12

Client Sample ID			SP1-5	SP1-6	SP1-7	SP1-8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016820	N23- No0016821	N23- No0016822	N23- No0016823
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	61	-	-	-
TRH C15-C28	50	mg/kg	530	-	-	-
TRH C29-C36	50	mg/kg	130	-	-	-
TRH C10-C36 (Total)	50	mg/kg	721	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	98	-	-	-

Client Commis ID			004.5	004.0	004 -	004.0
Client Sample ID			SP1-5	SP1-6	SP1-7	SP1-8
Sample Matrix Eurofins Sample No.			Soil N23- No0016820	Soil N23- No0016821	Soil N23- No0016822	Soil N23- No0016823
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
•	LOD	l lait	1407 02, 2023	NOV 02, 2023	NOV 02, 2023	1407 02, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fr		T "	0.5			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	100	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	1.0	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	1.0	-	-	-
Total PAH*	0.5	mg/kg	2.0	-	-	-
2-Fluorobiphenyl (surr.)	1	%	84	-	-	-
p-Terphenyl-d14 (surr.)	11	%	80	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions	1				
TRH >C10-C16	50	mg/kg	100	-	-	-
TRH >C16-C34	100	mg/kg	580	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	680	-	-	-
Heavy Metals		T				
Arsenic	2	mg/kg	6.4	5.4	5.2	5.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	53	45	26	73
Copper	5	mg/kg	17	19	23	32
Lead	5	mg/kg	46	61	96	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
Nickel	5	mg/kg	26	29	32	44
Zinc	5	mg/kg	64	80	220	31
Sample Properties						
% Moisture	1	%	9.2	11	8.0	16

Client Sample ID			SP1-9	SP1-10	SS01	SS02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016824	N23- No0016825	N23- No0016826	N23- No0016827
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit	,	,		
Total Recoverable Hydrocarbons - 1999 NEPM	_	Onic				
TRH C6-C9	20	mg/kg	_	< 20	< 20	_
TRH C10-C14	20	mg/kg	-	< 20	< 20	_
TRH C15-C28	50	mg/kg	-	< 50	490	-
TRH C29-C36	50	mg/kg	-	72	860	-
TRH C10-C36 (Total)	50	mg/kg	-	72	1350	-
BTEX	30	ilig/kg	-	12	1330	_
	0.1	ma/ka	_	-01	-01	_
Benzene Toluene	0.1	mg/kg	-	< 0.1	< 0.1	-
	0.1	mg/kg	-	< 0.1	< 0.1	-
Ethylbenzene		mg/kg		< 0.1		
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	<u> </u>	%	-	88	91	-
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	< 50	-
TRH C6-C10	20	mg/kg	-	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	1.2	-
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	-	1.0	< 0.5	-
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	-	0.6	< 0.5	-
Pyrene	0.5	mg/kg	-	1.0	< 0.5	-
Total PAH*	0.5	mg/kg	-	2.6	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	76	109	-
p-Terphenyl-d14 (surr.)	1	%	-	67	94	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	-	< 50	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	1100	-
TRH >C34-C40	100	mg/kg	-	< 100	380	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	1480	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SP1-9 Soil N23- N00016824 Nov 02, 2023	SP1-10 Soil N23- N00016825 Nov 02, 2023	SS01 Soil N23- N00016826 Nov 06, 2023	SS02 Soil N23- N00016827 Nov 06, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.3	5.8	2.6	3.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	0.6	3.1
Chromium	5	mg/kg	110	33	120	100
Copper	5	mg/kg	20	28	39	34
Lead	5	mg/kg	25	94	7.7	11
Mercury	0.1	mg/kg	< 0.1	0.2	0.1	0.5
Nickel	5	mg/kg	29	36	72	66
Zinc	5	mg/kg	56	260	110	80
Sample Properties						
% Moisture	1	%	8.9	5.1	22	30

Client Sample ID			SS03	SS04	SS05	SS06
Sample Matrix			Soil	Soil	Soil	Soil
			N23-	N23-	N23-	N23-
Eurofins Sample No.			No0016828	No0016829	No0016830	No0016831
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPN	Fractions					
TRH C6-C9	20	mg/kg	=	-	-	< 20
TRH C10-C14	20	mg/kg	=	-	-	< 20
TRH C15-C28	50	mg/kg	=	-	-	< 50
TRH C29-C36	50	mg/kg	=	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	=	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	97
Total Recoverable Hydrocarbons - 2013 NEPN	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			SS03	SS04	SS05	SS06
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016828	N23- No0016829	N23- No0016830	N23- No0016831
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	92
p-Terphenyl-d14 (surr.)	1	%	-	-	-	89
Total Recoverable Hydrocarbons - 2013 N	IEPM Fractions					
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	< 100
Heavy Metals						
Arsenic	2	mg/kg	3.9	2.8	3.8	8.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	12
Chromium	5	mg/kg	110	100	110	21
Copper	5	mg/kg	44	49	57	11
Lead	5	mg/kg	22	9.8	16	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	1.9
Nickel	5	mg/kg	60	55	57	7.6
Zinc	5	mg/kg	200	180	360	92
Sample Properties						
% Moisture	1	%	31	21	26	40

Client Sample ID Sample Matrix			SS07 Soil	SS08 Soil	SS09 Soil	SS10 Soil
Eurofins Sample No.			N23- No0016832	N23- No0016833	N23- No0016834	N23- No0016835
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	65	-	< 50	-
TRH C29-C36	50	mg/kg	110	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	175	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	87	-	134	-

Client Semule ID			2007	0000	0000	0040
Client Sample ID			SS07	SS08	SS09	SS10
Sample Matrix			Soil N23-	Soil N23-	Soil N23-	Soil N23-
Eurofins Sample No.			No0016832	No0016833	No0016834	No0016835
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	101	-	95	-
p-Terphenyl-d14 (surr.)	1	%	89	-	84	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	120	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	120	-	< 100	-
Heavy Metals						
Arsenic	2	mg/kg	3.8	4.1	3.5	3.5
Cadmium	0.4	mg/kg	< 0.4	0.5	< 0.4	< 0.4
Chromium	5	mg/kg	100	74	110	100
Copper	5	mg/kg	57	56	68	51
Lead	5	mg/kg	12	12	13	11
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	58	51	66	49
Zinc	5	mg/kg	110	400	96	360
Sample Properties	·					
% Moisture	1	%	21	25	24	29
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID			SS07	SS08	SS09	SS10
Sample Matrix Eurofins Sample No.			Soil	Soil	Soil	Soil
			N23- No0016832	N23- No0016833	N23- No0016834	N23- No0016835
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
а-НСН	0.05	mg/kg	< 0.05	-	-	=
Aldrin	0.05	mg/kg	< 0.05	-	-	=
b-HCH	0.05	mg/kg	< 0.05	-	=	=
d-HCH	0.05	mg/kg	< 0.05	-	-	=
Dieldrin	0.05	mg/kg	< 0.05	-	-	=
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	=	=
Endrin	0.05	mg/kg	< 0.05	-	=	=
Endrin aldehyde	0.05	mg/kg	< 0.05	-	=	=
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	=	=
Heptachlor	0.05	mg/kg	< 0.05	-	=	=
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	=	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	=	-
Methoxychlor	0.05	mg/kg	< 0.05	-	=	=
Toxaphene	0.5	mg/kg	< 0.5	-	=	=
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	=
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	=
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	=
Dibutylchlorendate (surr.)	1	%	125	-	-	=
Tetrachloro-m-xylene (surr.)	1	%	99	-	-	-

Client Sample ID			SS11	SS12	SS13	SS14
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016836	N23- No0016837	N23- No0016838	N23- No0016839
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	55	-	73	-
TRH C10-C36 (Total)	50	mg/kg	55	-	73	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	83	-	97	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-

				1		
Client Sample ID			SS11	SS12	SS13	SS14
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016836	N23- No0016837	N23- No0016838	N23- No0016839
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	-					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	101	-	99	-
p-Terphenyl-d14 (surr.)	1	%	89	-	86	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Heavy Metals						
Arsenic	2	mg/kg	4.7	4.5	4.3	5.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	86	29	35	110
Copper	5	mg/kg	36	16	17	43
Lead	5	mg/kg	8.5	< 5	6.1	7.7
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	52	17	28	65
Zinc	5	mg/kg	180	47	80	73
Sample Properties						
% Moisture	1	%	25	18	9.6	21
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
а-НСН	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-HCH	0.05	mg/kg	< 0.05	-	-	-
d-HCH	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-

Client Sample ID Sample Matrix Eurofins Sample No.			SS11 Soil N23- N00016836	SS12 Soil N23- N00016837	SS13 Soil N23- N00016838	SS14 Soil N23- N00016839
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	0.5	mg/kg	< 0.5	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	99	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	100	-	-	-

Client Sample ID			SS15	SS16	SS17	SS18
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016840	N23- No0016841	N23- No0016842	N23- No0016843
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	< 50	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	83	-	144	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-

Client Sample ID			SS15	SS16	SS17	SS18
Sample Matrix			Soil	Soil	Soil	Soil
·			N23-	N23-	N23-	N23-
Eurofins Sample No.			No0016840	No0016841	No0016842	No0016843
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	101	-	96	-
p-Terphenyl-d14 (surr.)	1	%	93	-	86	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	-				
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Heavy Metals		_				
Arsenic	2	mg/kg	9.3	4.5	3.6	4.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	74	53	97	120
Copper	5	mg/kg	50	24	59	60
Lead	5	mg/kg	10.0	24	6.4	6.1
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	53	36	76	67
Zinc	5	mg/kg	190	140	110	65
Sample Properties						
% Moisture	1	%	20	19	14	23

Olient Comple ID			0040	0000	10004	10000
Client Sample ID			SS19	SS20	SS21	SS22
Sample Matrix			Soil N23-	Soil N23-	Soil N23-	Soil N23-
Eurofins Sample No.			No0016844	No0016845	No0016846	No0016847
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25 °C as rec.)	10	uS/cm	-	-	71	-
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units	-	-	8.7	-
Heavy Metals						
Arsenic	2	mg/kg	4.6	3.5	5.7	4.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	68	28	18	18
Copper	5	mg/kg	33	16	13	12
Lead	5	mg/kg	9.2	< 5	6.7	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	52	26	24	18
Zinc	5	mg/kg	120	58	68	35
Cation Exchange Capacity						
Cation Exchange Capacity	0.5	meq/100g	-	-	24	-
Sample Properties						
% Moisture	1	%	15	16	40	13
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-HCH	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-HCH	0.05	mg/kg	< 0.05	-	-	-
d-HCH	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	0.5	mg/kg	< 0.5	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	_	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	112	_	-	-
Tetrachloro-m-xylene (surr.)	1	%	96	_	_	_

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS23 Soil N23- N00016848 Nov 06, 2023	SS24 Soil N23- N00016849 Nov 06, 2023	SS25 Soil N23- N00016850 Nov 06, 2023	SS26 Soil N23- No0016851 Nov 06, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	3.1	2.6	4.9	4.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	100	54	110	66
Copper	5	mg/kg	33	23	49	40
Lead	5	mg/kg	7.2	7.6	6.0	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	59	40	86	50
Zinc	5	mg/kg	67	77	89	81
Sample Properties						
% Moisture	1	%	29	32	22	31

Client Sample ID			SS27	SS28	SS29	SS30
Sample Matrix			Soil	Soil	Soil	Soil
			N23-	N23-	N23-	N23-
Eurofins Sample No.			No0016852	No0016853	No0016854	No0016855
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.6	4.1	2.8	3.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	80	79	100	300
Copper	5	mg/kg	49	44	59	8.9
Lead	5	mg/kg	14	14	9.3	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	66	62	51	8.5
Zinc	5	mg/kg	76	130	54	45
Sample Properties						
% Moisture	1	%	28	25	27	11
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-HCH	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-HCH	0.05	mg/kg	-	-	< 0.05	-
d-HCH	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	=	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	=	-	< 0.05	-
Endrin	0.05	mg/kg	=	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	=	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-

Client Sample ID			SS27	SS28	SS29	SS30
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016852	N23- No0016853	N23- No0016854	N23- No0016855
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	0.5	mg/kg	-	-	< 0.5	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	127	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	104	-

Client Sample ID			SS31	SS32	SS33	SS34
Sample Matrix			Soil	Soil	Soil	Soil
			N23-	N23-	N23-	N23-
Eurofins Sample No.			No0016856	No0016857	No0016858	No0016859
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	3.4	6.7	3.2	4.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	26	30	58	27
Copper	5	mg/kg	5.6	< 5	26	< 5
Lead	5	mg/kg	10	16	12	15
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	9.6	< 5	34	5.1
Zinc	5	mg/kg	27	10	54	19
Sample Properties						
% Moisture	1	%	21	18	30	26
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
а-НСН	0.05	mg/kg	=	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-HCH	0.05	mg/kg	-	-	-	< 0.05
d-HCH	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	-	< 0.05
Toxaphene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			SS31	SS32	SS33	SS34
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016856	N23- No0016857	N23- No0016858	N23- No0016859
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	=	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	=	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	123
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	100

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SP2-1 Soil N23- N00016860 Nov 06, 2023	SP3-1 Soil N23- N00016861 Nov 06, 2023	SP4-1 Soil N23- N00016862 Nov 06, 2023	SP4-2 Soil N23- N00016863 Nov 06, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	4.1	3.2	4.2	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	66	53	13	25
Copper	5	mg/kg	25	18	< 5	5.2
Lead	5	mg/kg	13	9.7	9.1	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	31	19	< 5	7.2
Zinc	5	mg/kg	34	27	26	30
Sample Properties						
% Moisture	1	%	22	34	17	21

Client Sample ID			SP4-3	SP4-4	SP4-5	D.6.11.23
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N23- No0016864	N23- No0016865	N23- No0016866	N23- No0016867
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	-	-		< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	640
TRH C29-C36	50	mg/kg	-	-	-	1100
TRH C10-C36 (Total)	50	mg/kg	-	-	-	1740
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	96

Client Commis ID			0010	0044	054.5	504400
Client Sample ID			SP4-3	SP4-4	SP4-5	D.6.11.23
Sample Matrix Eurofins Sample No.			Soil N23- No0016864	Soil N23- No0016865	Soil N23- No0016866	Soil N23- No0016867
·						
Date Sampled			Nov 06, 2023	Nov 06, 2023	Nov 06, 2023	Nov 06, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F						
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	11	%	-	-	-	99
p-Terphenyl-d14 (surr.)	11	%	-	-	-	87
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions	1				
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	1400
TRH >C34-C40	100	mg/kg	-	-	-	480
TRH >C10-C40 (total)*	100	mg/kg	-	-	-	1880
Heavy Metals						
Arsenic	2	mg/kg	4.2	2.5	16	3.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	0.7
Chromium	5	mg/kg	33	8.7	27	130
Copper	5	mg/kg	22	9.2	< 5	42
Lead	5	mg/kg	8.6	< 5	25	8.3
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	33	9.2	< 5	78
Zinc	5	mg/kg	130	28	17	110
Sample Properties						
% Moisture	1	%	27	27	18	24

Client Sample ID			SS01A
Sample Matrix			Soil
•			N23-
Eurofins Sample No.			No0016869
Date Sampled			Nov 06, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	1	
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	340
TRH C29-C36	50	mg/kg	560
TRH C10-C36 (Total)	50	mg/kg	900
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	95
p-Terphenyl-d14 (surr.)	1	%	72
Total Recoverable Hydrocarbons - 2013 NEPM			
TRH >C10-C16	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	740
TRH >C34-C40	100	mg/kg	320
TRH >C10-C40 (total)*	100	mg/kg	1060

Report Number: 1042040-S

Client Sample ID			SS01A
Sample Matrix			Soil
Eurofins Sample No.			N23- No0016869
Date Sampled			Nov 06, 2023
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	2	mg/kg	760
Cadmium	0.4	mg/kg	0.5
Chromium	5	mg/kg	370
Copper	5	mg/kg	570
Lead	5	mg/kg	18
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	62
Zinc	5	mg/kg	700
Sample Properties	·		
% Moisture	1	%	45

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Nov 11, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25 °C as rec.)	Sydney	Nov 15, 2023	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Nov 16, 2023	28 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25 °C as rec.)	Sydney	Nov 11, 2023	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Organochlorine Pesticides	Sydney	Nov 11, 2023	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Nov 08, 2023	14 Days
M. W. J. J. T.M. O.F.N. TORO, M. J. J.			

Report Number: 1042040-S

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Penrose,

IANZ# 1327

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568

IANZ# 1402

IANZ# 1290

Nov 14, 2023

Libby Betz

Nov 7, 2023 2:30 PM

Company Name:

Qualtest

Address: 2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040 02 4968 4468

Phone: 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Sydr	Example D Sample Date Sampling Matrix LAB D					Х	Х	Х	Х	Х	Х	Х	Х
Exte	ternal Laboratory Sample ID Sample Date Sampling Matrix LAB ID												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SP1-1	Nov 02, 2023		Soil	N23-No0016816	Х		Х			Х	Х	Х
2	SP1-2	Nov 02, 2023		Soil	N23-No0016817	Х				Х	Х		
3	SP1-3	Nov 02, 2023		Soil	N23-No0016818	Х				Х	Х		
4	SP1-4	Nov 02, 2023		Soil	N23-No0016819	Х				Х	Х		
5	SP1-5	Nov 02, 2023		Soil	N23-No0016820	Х					Х		Х
6	SP1-6	Nov 02, 2023		Soil	N23-No0016821	Х				Х	Х		
7	SP1-7	Nov 02, 2023		Soil	N23-No0016822	Х				Х	Х		
8	SP1-8	Nov 02, 2023		Soil	N23-No0016823	Х				Х	Х		
9	SP1-9	Nov 02, 2023		Soil	N23-No0016824	Х				Х	Х		
10	SP1-10	Nov 02, 2023		Soil	N23-No0016825	Х					Х		Х
11	SS01	Nov 06, 2023		Soil	N23-No0016826						Х		Х
12	SS02	Nov 06, 2023		Soil	N23-No0016827					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Priority:

Contact Name:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

Address:

2 Murray Dwyer Circuit Mavfield West

NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040

Phone: 02 4968 4468 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sar	nple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA # 126	61 Site # 12	54						Х		Х	Х
Sydı	ney Laboratory	- NATA # 1261 S	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
13	SS03	Nov 06, 2023		Soil	N23-No0016828					Х	Х		
14	SS04	Nov 06, 2023		Soil	N23-No0016829					Х	Х		
15	SS05	Nov 06, 2023		Soil	N23-No0016830					Х	Х		
16	SS06	Nov 06, 2023		Soil	N23-No0016831						Х		Х
17	SS07	Nov 06, 2023		Soil	N23-No0016832				Х		Х		Х
18	SS08	Nov 06, 2023		Soil	N23-No0016833					Х	Х		
19	SS09	Nov 06, 2023		Soil	N23-No0016834						Х		Х
20	SS10	Nov 06, 2023		Soil	N23-No0016835					Х	Х		
21	SS11	Nov 06, 2023		Soil	N23-No0016836				Х		Х		Х
22	SS12	Nov 06, 2023		Soil	N23-No0016837					Х	Х		
23	SS13	Nov 06, 2023		Soil	N23-No0016838						Х		Х
24	SS14	Nov 06, 2023		Soil	N23-No0016839					Х	Х		
25	SS15	Nov 06, 2023		Soil	N23-No0016840						Х		Х
26	SS16	Nov 06, 2023		Soil	N23-No0016841					Х	Х		
27	SS17	Nov 06, 2023		Soil	N23-No0016842						Х		Х

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Brisbane Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261

Site# 20794

Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Project Name:

Project ID:

Address:

Qualtest

2 Murray Dwyer Circuit

Mavfield West NSW 2304

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

Fax:

Site# 25466

1042040 02 4968 4468

02 4960 9775

Eurofins Analytical Services Manager: Andrew Black

						Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
	SS19 Nov 06, 2023 Soil N23-No0016844 SS20 Nov 06, 2023 Soil N23-No0016844 SS21 Nov 06, 2023 Soil N23-No0016844 SS22 Nov 06, 2023 Soil N23-No0016844 SS23 Nov 06, 2023 Soil N23-No0016844 SS24 Nov 06, 2023 Soil N23-No0016844 SS25 Nov 06, 2023 Soil N23-No0016845 SS25 Nov 06, 2023 Soil N23-No0016866									Х		X	Х
	, ·		Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
28		· · · · · · · · · · · · · · · · · · ·			N23-No0016843					Х	Х		
29	SS19			Soil	N23-No0016844	Х			Х	Х	Х		
30	SS20	Nov 06, 2023		Soil	N23-No0016845	Х				Х	Х		
31	SS21	Nov 06, 2023		Soil	N23-No0016846	Х		Х		Х	Х	Х	
32	SS22	Nov 06, 2023		Soil	N23-No0016847	Х				Х	Х		
33	SS23	Nov 06, 2023		Soil	N23-No0016848	Х				Х	Х		
34	SS24	Nov 06, 2023		Soil	N23-No0016849	Х				Х	Х		
35	SS25	Nov 06, 2023		Soil	N23-No0016850	Х				Х	Х		
36	SS26	Nov 06, 2023		Soil	N23-No0016851					Х	Х		
37	SS27	Nov 06, 2023		Soil	N23-No0016852					Х	Х		
38	SS28	Nov 06, 2023		Soil	N23-No0016853					Х	Х		
39	SS29	Nov 06, 2023		Soil	N23-No0016854				Х	Х	Х		
40	SS30	Nov 06, 2023		Soil	N23-No0016855					Х	Х		
41	SS31	Nov 06, 2023		Soil	N23-No0016856	Х				Х	Х		
42	SS32	Nov 06, 2023		Soil	N23-No0016857					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145 NATA# 1261 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa, Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Company Name:

Qualtest

2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

Address:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

1042040 02 4968 4468

02 4960 9775 Fax:

Priority: 5 Dav

Contact Name: Libby Betz

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
43	SS33	Nov 06, 2023		Soil	N23-No0016858					Х	Х		
44	SS34	Nov 06, 2023		Soil	N23-No0016859				Х	Х	Х		
45	SP2-1	Nov 06, 2023		Soil	N23-No0016860	Х				Х	Х		
46	SP3-1	Nov 06, 2023		Soil	N23-No0016861	Х				Х	Х		
47	SP4-1	Nov 06, 2023		Soil	N23-No0016862	Χ				Х	Х		
48	SP4-2	Nov 06, 2023		Soil	N23-No0016863	Χ				Х	Х		
49	SP4-3	Nov 06, 2023		Soil	N23-No0016864	Χ				Х	Х		
50	SP4-4	Nov 06, 2023		Soil	N23-No0016865	Χ				Х	Х		
51	SP4-5	Nov 06, 2023		Soil	N23-No0016866	Χ				Х	Χ		
52	D.6.11.23	Nov 06, 2023		Soil	N23-No0016867						Χ		Х
53	SW01	Nov 06, 2023		Water	N23-No0016868				Х	Х			
54	SS01A	Nov 06, 2023		Soil	N23-No0016869	Х					Х		Х
55	TP10 0.2-1.0	Nov 02, 2023		Soil	N23-No0016870		Х						
56	SP1-PACM	Nov 02, 2023		Building Materials	N23-No0016871		Х						

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

IANZ# 1327

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568

Nov 7, 2023 2:30 PM

IANZ# 1402

IANZ# 1290

Nov 14, 2023

Libby Betz

Company Name:

Project ID:

Qualtest

Address: 2 Murray Dwyer Circuit

Mavfield West

NSW 2304

Project Name: PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Canberra

ACT 2911

NATA# 1261

Site# 25466

Mitchell

1042040

Phone: 02 4968 4468 02 4960 9775 Fax:

Site# 20794

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melbourne Laboratory - NATA # 1261 Site # 1254					Х		Х	Х
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х
Test Counts	26	2	2	6	41	53	2	13

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- 5. Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within. NCP

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Page 25 of 36

Report Number: 1042040-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	s				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	1 3 3				
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	s				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank		120			
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
· · · · ·	-			Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5		
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank		Г		I	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction				<u> </u>	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				I	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					_

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	97	70-130	Pass	
TRH C10-C14	%	91	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	89	70-130	Pass	
Toluene	%	93	70-130	Pass	
Ethylbenzene	%	90	70-130	Pass	
m&p-Xylenes	%	93	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total*	%	93	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	100	70-130	Pass	
TRH C6-C10	%	83	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	86	70-130	Pass	
Acenaphthylene	%	86	70-130	Pass	
Anthracene	%	84	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	79	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	83	70-130	Pass	
Benzo(k)fluoranthene	%	91	70-130	Pass	
Chrysene	%	85	70-130	Pass	
Dibenz(a.h)anthracene	%	82	70-130	Pass	
Fluoranthene	%	80	70-130	Pass	
Fluorene	%	83	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	82	70-130	Pass	
Naphthalene	%	84	70-130	Pass	

Т	est		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene			%	82	70-130	Pass	
Pyrene			%	84	70-130	Pass	
LCS - % Recovery					 		
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions					
TRH >C10-C16			%	85	70-130	Pass	
LCS - % Recovery					 		
Heavy Metals							
Arsenic			%	103	80-120	Pass	
Cadmium			%	105	80-120	Pass	
Chromium			%	102	80-120	Pass	
Copper			%	101	80-120	Pass	
Lead			%	103	80-120	Pass	
Mercury			%	102	80-120	Pass	
Nickel			%	101	80-120	Pass	
Zinc			%	101	80-120	Pass	
LCS - % Recovery							
Organochlorine Pesticides							
Chlordanes - Total			%	86	70-130	Pass	
4.4'-DDD			%	85	70-130	Pass	
4.4'-DDE			%	87	70-130	Pass	
4.4'-DDT			%	93	70-130	Pass	
a-HCH			%	82	70-130	Pass	
Aldrin			%	85	70-130	Pass	
b-HCH			%	85	70-130	Pass	
d-HCH			%	87	70-130	Pass	
Dieldrin			%	88	70-130	Pass	
Endosulfan I			%	81	70-130	Pass	
Endosulfan II			%	84	70-130	Pass	
Endosulfan sulphate			%	90	70-130	Pass	
Endrin			%	88	70-130	Pass	
Endrin aldehyde			%	79	70-130	Pass	
Endrin ketone			%	93	70-130	Pass	
g-HCH (Lindane)			%	86	70-130	Pass	
Heptachlor			%	91	70-130	Pass	
Heptachlor epoxide			//	85	70-130	Pass	
Hexachlorobenzene			%	91	70-130	Pass	
Methoxychlor			%	87	70-130	Pass	
•		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery							
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S23-No0029399	NCP	%	88	70-130	Pass	
TRH C10-C14	N23-No0007871	NCP	%	74	70-130	Pass	
Spike - % Recovery							
ВТЕХ				Result 1			
Benzene	S23-No0029399	NCP	%	90	70-130	Pass	
Toluene	S23-No0029399	NCP	%	77	70-130	Pass	
Ethylbenzene	S23-No0029399	NCP	%	78	70-130	Pass	
m&p-Xylenes	S23-No0029399	NCP	%	79	70-130	Pass	
o-Xylene	S23-No0029399	NCP	%	85	70-130	Pass	
Xylenes - Total*	S23-No0029399	NCP	%	81	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions		Result 1			
					1		
Naphthalene	R23-No0014676	NCP	%	78	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	N23-No0007871	NCP	%	74	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	N23-No0016827	CP	%	97	75-125	Pass	
Cadmium	N23-No0016827	CP	%	111	75-125	Pass	
Chromium	N23-No0016827	CP	%	83	75-125	Pass	
Copper	N23-No0016827	СР	%	86	75-125	Pass	
Lead	N23-No0016827	СР	%	95	75-125	Pass	
Mercury	N23-No0016827	СР	%	113	75-125	Pass	
Nickel	N23-No0016827	СР	%	87	75-125	Pass	
Zinc	N23-No0016827	СР	%	91	75-125	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	N23-No0016837	СР	%	95	75-125	Pass	
Cadmium	N23-No0016837	CP	%	101	75-125	Pass	
Chromium	N23-No0016837	CP	%	88	75-125	Pass	
Copper	N23-No0016837	CP	%	91	75-125	Pass	
Lead	N23-No0016837	CP	%	96	75-125	Pass	
Mercury	N23-No0016837	CP	%	101	75-125	Pass	
Nickel	N23-No0016837	CP	%	90	75-125	Pass	
Zinc	N23-No0016837	CP	%	99	75-125	Pass	
Spike - % Recovery	1123-1100010037	Ci	/0	99	13-123	1 033	
Polycyclic Aromatic Hydrocar	hone			Result 1			
Acenaphthene	N23-No0016844	СР	%	92	70-130	Pass	
Acenaphthylene	N23-N00016844	CP	%	89	70-130	Pass	
Anthracene	N23-N00016844	CP	%	82	70-130	Pass	
	N23-N00016844	CP	%	92	70-130	Pass	
Benz(a)anthracene	N23-N00016844	CP	%	78	70-130	Pass	
Benzo(a)pyrene		CP			70-130		
Benzo(b&j)fluoranthene	N23-No0016844		%	73		Pass	
Benzo(g.h.i)perylene	N23-No0016844	CP	%	78	70-130	Pass	
Benzo(k)fluoranthene	N23-No0016844	CP	%	89	70-130	Pass	
Chrysene	N23-No0016844	CP	%	84	70-130	Pass	
Dibenz(a.h)anthracene	N23-No0016844	CP	%	78	70-130	Pass	
Fluoranthene	N23-No0016844	CP	%	85	70-130	Pass	
Fluorene	N23-No0016844	CP	%	99	70-130	Pass	
Indeno(1.2.3-cd)pyrene	N23-No0016844	CP	%	77	70-130	Pass	
Naphthalene	N23-No0016844	CP	%	94	70-130	Pass	
Phenanthrene	N23-No0016844		%	88	70-130	Pass	
Pyrene	N23-No0016844	СР	%	91	70-130	Pass	
Spike - % Recovery Organochlorine Pesticides				Result 1			
Chlordanes - Total	N23-No0016844	СР	%	92	70-130	Pass	
4.4'-DDD	N23-N00016844	CP	%	99	70-130		
		CP		1 1		Pass	
4.4'-DDE	N23-No0016844		%	92	70-130	Pass	
4.4'-DDT	N23-No0016844	CP	%	74	70-130	Pass	
a-HCH	N23-No0016844	CP	%	83	70-130	Pass	
Aldrin	N23-No0016844	CP	%	93	70-130	Pass	
b-HCH	N23-No0016844	CP	%	83	70-130	Pass	
d-HCH	N23-No0016844	CP	%	87	70-130	Pass	
Dieldrin	N23-No0016844	CP	%	99	70-130	Pass	
Endosulfan I	N23-No0016844		%	93	70-130	Pass	
Endosulfan II	N23-No0016844	CP	%	89	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	N23-No0016844	СР	%	97			70-130	Pass	
Endrin	N23-No0016844	СР	%	102			70-130	Pass	
Endrin ketone	N23-No0016844	СР	%	116			70-130	Pass	
g-HCH (Lindane)	N23-No0016844	СР	%	86			70-130	Pass	
Heptachlor	N23-No0016844	СР	%	92			70-130	Pass	
Heptachlor epoxide	N23-No0016844	СР	%	88			70-130	Pass	
Hexachlorobenzene	N23-No0016844	СР	%	94			70-130	Pass	
Methoxychlor	N23-No0016844	СР	%	77			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	N23-No0016857	СР	%	105			75-125	Pass	
Cadmium	N23-No0016857	СР	%	108			75-125	Pass	
Chromium	N23-No0016857	СР	%	92			75-125	Pass	
Copper	N23-No0016857	СР	%	104			75-125	Pass	
Lead	N23-No0016857	СР	%	114			75-125	Pass	
Mercury	N23-No0016857	СР	%	109			75-125	Pass	
Nickel	N23-No0016857	СР	%	104			75-125	Pass	
Zinc	N23-No0016857	СР	%	102			75-125	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	N23-No0016867	СР	%	73			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	N23-No0016867	СР	%	77			70-130	Pass	
Toluene	N23-No0016867	СР	%	71			70-130	Pass	
Ethylbenzene	N23-No0016867	СР	%	86			70-130	Pass	
m&p-Xylenes	N23-No0016867	СР	%	82			70-130	Pass	
o-Xylene	N23-No0016867	СР	%	78			70-130	Pass	
Xylenes - Total*	N23-No0016867	СР	%	81			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1					
TRH C6-C10	N23-No0016867	СР	%	71			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				ī	T I				
Polycyclic Aromatic Hydrocarbo				Result 1	Result 2	RPD			
Acenaphthene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N23-No0016816	CP	mg/kg	0.6	< 0.5	51	30%	Fail	Q15
Benzo(a)pyrene	N23-No0016816	CP	mg/kg	0.5	< 0.5	52	30%	Fail	Q15
Benzo(b&j)fluoranthene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N23-No0016816	CP	mg/kg	0.6	< 0.5	50	30%	Fail	Q15
Chrysene	N23-No0016816	CP	mg/kg	0.6	< 0.5	31	30%	Fail	Q15
Dibenz(a.h)anthracene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N23-No0016816	CP	mg/kg	1.2	0.7	45	30%	Fail	Q15
Fluorene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
117							1	_	
Naphthalene	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	N23-No0016816 N23-No0016816	CP CP	mg/kg mg/kg	< 0.5 0.7	< 0.5 < 0.5	<1 68	30% 30%	Pass Fail	Q15

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0016816	СР	mg/kg	5.8	5.1	13	30%	Pass	
Cadmium	N23-No0016816	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016816	CP	mg/kg	24	21	13	30%	Pass	
Copper	N23-No0016816	CP	mg/kg	16	17	3.8	30%	Pass	
Lead	N23-No0016816	CP	mg/kg	49	52	7.1	30%	Pass	
Mercury	N23-No0016816	CP	mg/kg	0.2	0.3	45	30%	Fail	Q15
Nickel	N23-No0016816	CP	mg/kg	24	23	3.9	30%	Pass	
Zinc	N23-No0016816	CP	mg/kg	120	120	3.5	30%	Pass	
Duplicate	1120110011011	<u> </u>	199			<u> </u>		1 2.22	
Sample Properties				Result 1	Result 2	RPD		\top	
% Moisture	N23-No0016816	CP	%	4.5	4.7	4.7	30%	Pass	
Duplicate	1120110011011	<u> </u>		110				1 2.22	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	N23-No0016816	CP	mg/kg	< 1	< 1	<1	30%	Pass	
4.4'-DDD	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDE	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4.4'-DDT	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
a-HCH	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aldrin	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
b-HCH	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
d-HCH	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dieldrin	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan I	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan II	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endosulfan sulphate	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin aldehyde	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Endrin ketone	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
g-HCH (Lindane)	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Heptachlor epoxide	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Hexachlorobenzene	N23-No0016816	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methoxychlor	N23-No0016816	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0016817	CP	mg/kg	6.5	6.1	7.3	30%	Pass	
Cadmium	N23-No0016817	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016817	CP	mg/kg	25	23	8.0	30%	Pass	
Copper	N23-No0016817	CP	mg/kg	23	21	11	30%	Pass	
Lead	N23-No0016817	CP	mg/kg	65	62	4.0	30%	Pass	
Mercury	N23-No0016817	CP	mg/kg	0.2	0.2	11	30%	Pass	
Nickel	N23-No0016817	CP	mg/kg	29	25	16	30%	Pass	
Zinc	N23-No0016817	CP	mg/kg	160	170	7.0	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	N23-No0016826	CP	%	22	22	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fracti	ons		Result 1	Result 2	RPD			
TRH C6-C9	N23-No0016831	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Report Number: 1042040-S

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	N23-No0016831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N23-No0016831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N23-No0016831	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N23-No0016831	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N23-No0016831	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	N23-No0016831	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	N23-No0016831	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	N23-No0016831	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	11201100010001	<u> </u>	19,9	120	120	7.	1 0070		
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	N23-No0016832	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	N23-No0016832	CP	mg/kg	65	< 50	42	30%	Fail	Q15
TRH C29-C36	N23-No0016832	CP	mg/kg	110	95	14	30%	Pass	Q I J
Duplicate	1123-1100010032	CF	i iig/kg	110	95	14	30 /6	Fass	
•	•			Result 1	Result 2	RPD	I		
Polycyclic Aromatic Hydrocarbon		CD					200/	D	
Acceptable	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	N23-No0016832	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N23-No0016832	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N23-No0016832	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				•					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	N23-No0016832	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	N23-No0016832	CP	mg/kg	120	< 100	32	30%	Fail	Q15
TRH >C34-C40	N23-No0016832	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	1120 11000 10002	O.	ı mg/ng	1 100	1 100		0070	1 400	
Heavy Metals				Result 1	Result 2	RPD		I	
Arsenic	N23-No0016832	CP	mg/kg	3.8	3.5	6.9	30%	Pass	
Cadmium	N23-N00016832	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-N00016832	CP			94	9.4	30%	Pass	
			mg/kg	100				1 1	
Copper	N23-No0016832	CP	mg/kg	57	54	5.0	30%	Pass	
Lead	N23-No0016832	CP	mg/kg	12	12	1.1	30%	Pass	
Mercury	N23-No0016832	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016832	CP	mg/kg	58	53	9.4	30%	Pass	
Zinc	N23-No0016832	CP	mg/kg	110	130	13	30%	Pass	
Duplicate				T T			ı		
Organochlorine Pesticides	<u> </u>		1	Result 1	Result 2	RPD		1	
Chlordanes - Total	N23-No0016832	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate				l	I . I		I		
Organochlorine Pesticides	1 1			Result 1	Result 2	RPD		+	
a-HCH	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	N23-No0016832	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				T _	_		I		
Heavy Metals	1		1	Result 1	Result 2	RPD		<u> </u>	
Arsenic	N23-No0016834	CP	mg/kg	3.5	3.7	4.7	30%	Pass	
Cadmium	N23-No0016834	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016834	CP	mg/kg	110	120	5.4	30%	Pass	
Copper	N23-No0016834	CP	mg/kg	68	74	8.0	30%	Pass	
Lead	N23-No0016834	CP	mg/kg	13	12	7.1	30%	Pass	
Mercury	N23-No0016834	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016834	CP	mg/kg	66	73	11	30%	Pass	
Zinc	N23-No0016834	CP	mg/kg	96	91	6.1	30%	Pass	
Duplicate				Ι	T T		T		
Heavy Metals			T	Result 1	Result 2	RPD			
Arsenic	N23-No0016836	CP	mg/kg	4.7	4.4	7.9	30%	Pass	
Cadmium	N23-No0016836	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016836	CP	mg/kg	86	78	9.0	30%	Pass	
Copper	N23-No0016836	CP	mg/kg	36	33	7.8	30%	Pass	
Lead	N23-No0016836	CP	mg/kg	8.5	7.9	7.2	30%	Pass	
Mercury	N23-No0016836	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016836	CP	mg/kg	52	47	11	30%	Pass	
Zinc	N23-No0016836	CP	mg/kg	180	170	7.3	30%	Pass	
Duplicate				T	1 1		ı		
Sample Properties			1	Result 1	Result 2	RPD			
% Moisture	N23-No0016836	CP	%	25	24	3.0	30%	Pass	
Duplicate				T _	1		1		
Total Recoverable Hydrocarbon			1	Result 1	Result 2	RPD		 _ 	
TRH C6-C9	N23-No0016842	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	N23-No0016842	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	N23-No0016842	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	N23-No0016842	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				I			l l		
ВТЕХ			1	Result 1	Result 2	RPD			
Benzene	N23-No0016842	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	N23-No0016842	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	N23-No0016842	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	N23-No0016842	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	N23-No0016842	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	N23-No0016842	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ons		Result 1	Result 2	RPD			
Naphthalene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	N23-No0016842	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	<u> </u>			Result 1	Result 2	RPD			
Acenaphthene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	N23-No0016842	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ons		Result 1	Result 2	RPD			
TRH >C10-C16	N23-No0016842	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	N23-No0016842	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	N23-No0016842	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	N23-No0016842	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	N23-No0016842	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	N23-No0016842	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	N23-No0016842	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25 °C as rec.)	S23-No0012515	NCP	pH Units	8.0	8.1	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0016847	СР	mg/kg	4.5	6.4	36	30%	Fail	Q15
Cadmium	N23-No0016847	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016847	СР	mg/kg	18	25	37	30%	Fail	Q15
Copper	N23-No0016847	CP	mg/kg	12	13	12	30%	Pass	
Lead	N23-No0016847	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	N23-No0016847	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016847	CP	mg/kg	18	22	16	30%	Pass	
Zinc	N23-No0016847	CP	mg/kg	35	45	24	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0016856	CP	mg/kg	3.4	5.1	40	30%	Fail	Q15
Cadmium	N23-No0016856	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016856	CP	mg/kg	26	41	46	30%	Fail	Q15
Copper	N23-No0016856	CP	mg/kg	5.6	6.2	10	30%	Pass	
Lead	N23-No0016856	CP	mg/kg	10	14	29	30%	Pass	
Mercury	N23-No0016856	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016856	CP	mg/kg	9.6	11	9.6	30%	Pass	
Zinc	N23-No0016856	CP	mg/kg	27	31	15	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	N23-No0016856	CP	%	21	22	5.5	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0016866	CP	mg/kg	16	23	36	30%	Fail	Q15
Cadmium	N23-No0016866	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	N23-No0016866	CP	mg/kg	27	41	42	30%	Fail	Q15
Copper	N23-No0016866	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	N23-No0016866	CP	mg/kg	25	29	18	30%	Pass	
Mercury	N23-No0016866	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	N23-No0016866	CP	mg/kg	< 5	5.2	37	30%	Fail	Q15
Zinc	N23-No0016866	CP	mg/kg	17	19	16	30%	Pass	
Duplicate									
Sample Properties			_	Result 1	Result 2	RPD			
% Moisture	N23-No0016866	CP	%	18	18	<1	30%	Pass	

Report Number: 1042040-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Q15

Andrew Black Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Dilani Samarakoon Senior Analyst-Inorganic Fang Yee Tan Senior Analyst-Metal Mary Makarios Senior Analyst-Metal Mickael Ros Senior Analyst-Metal Raymond Siu Senior Analyst-Volatile Roopesh Rangarajan Senior Analyst-Organic Ryan Phillips Senior Analyst-Inorganic Saveed Abu Senior Analyst-Asbestos

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1042040-S

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Libby Betz

 Report
 1042040-W

 Project name
 PSI - LOCHINVAR

 Project ID
 NEW23P-0216

 Received Date
 Nov 07, 2023

Client Sample ID			SW01
Sample Matrix			Water
•			N23-
Eurofins Sample No.			No0016868
Date Sampled			Nov 06, 2023
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
Chlordanes - Total	0.002	mg/L	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002
Endrin	0.0002	mg/L	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002
Toxaphene	0.005	mg/L	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002
Dibutylchlorendate (surr.)	1	%	137
Tetrachloro-m-xylene (surr.)	1	%	125
Heavy Metals			
Arsenic	0.001	mg/L	0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.001
Copper	0.001	mg/L	0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Report Number: 1042040-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Sydney	Nov 12, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Sydney	Nov 13, 2023	28 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 1042040-W

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

Received:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

46-48 Banksia Road

Tel: +61 8 6253 4444

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Company Name:

Project Name:

Project ID:

Qualtest

Address:

2 Murray Dwyer Circuit

Mavfield West NSW 2304

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040

Phone: 02 4968 4468 02 4960 9775 Fax:

Due: Nov 14, 2023 **Priority:** 5 Dav

Contact Name: Libby Betz

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7				
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	<u> </u>											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SP1-1	Nov 02, 2023		Soil	N23-No0016816	Х		Х			Х	Х	Х
2	SP1-2	Nov 02, 2023		Soil	N23-No0016817	Х				Х	Х		
3	SP1-3	Nov 02, 2023		Soil	N23-No0016818	Х				Х	Х		
4	SP1-4	Nov 02, 2023		Soil	N23-No0016819	Х				Х	Х		
5	SP1-5	Nov 02, 2023		Soil	N23-No0016820	Х					Х		Х
6	SP1-6	Nov 02, 2023		Soil	N23-No0016821	Х				Х	Х		
7	SP1-7	Nov 02, 2023		Soil	N23-No0016822	Х				Х	Х		
8	SP1-8	Nov 02, 2023		Soil	N23-No0016823	Х				Х	Х		\square
9	SP1-9	Nov 02, 2023		Soil	N23-No0016824	Х				Х	Х		\square
10	SP1-10	Nov 02, 2023		Soil	N23-No0016825	Х					Х		Х
11	SS01	Nov 06, 2023		Soil	N23-No0016826						Х		Х
12	SS02	Nov 06, 2023		Soil	N23-No0016827					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Priority:

Contact Name:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

IANZ# 1290 IANZ# 1402

Company Name:

Address:

Qualtest

2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

Fax:

1042040 02 4968 4468

02 4960 9775

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		X	Х
Sydi	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	X	Х
13	SS03	Nov 06, 2023		Soil	N23-No0016828					Х	Х		
14	SS04	Nov 06, 2023		Soil	N23-No0016829					Х	Х		
15	SS05	Nov 06, 2023		Soil	N23-No0016830					Х	Х		
16	SS06	Nov 06, 2023		Soil	N23-No0016831						Х		Х
17	SS07	Nov 06, 2023		Soil	N23-No0016832				Х		Х		Х
18	SS08	Nov 06, 2023		Soil	N23-No0016833					Х	Х		
19	SS09	Nov 06, 2023		Soil	N23-No0016834						Х		Х
20	SS10	Nov 06, 2023		Soil	N23-No0016835					Х	Х		
21	SS11	Nov 06, 2023		Soil	N23-No0016836				X		Х		Х
22	SS12	Nov 06, 2023		Soil	N23-No0016837					Х	Х		
23	SS13	Nov 06, 2023		Soil	N23-No0016838						Х		Х
24	SS14	Nov 06, 2023		Soil	N23-No0016839					Х	Х		
25	SS15	Nov 06, 2023		Soil	N23-No0016840						Х		Х
26	SS16	Nov 06, 2023		Soil	N23-No0016841					Х	Х		
27	SS17	Nov 06, 2023		Soil	N23-No0016842						Х		Х

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

ABN: 91 05 0159 898

Penrose,

35 O'Rorke Road

Auckland 1061

IANZ# 1327

NZBN: 9429046024954 Auckland

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston. Gate Pa. Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Company Name:

Qualtest

Address:

2 Murray Dwyer Circuit

Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

1042040 02 4968 4468

02 4960 9775 Fax:

Due: Nov 14, 2023 **Priority:** 5 Dav **Contact Name:** Libby Betz

Received:

Eurofins Analytical Services Manager: Andrew Black

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Syd	ney Laboratory	1	Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х
28	SS18	Nov 06, 2023		Soil	N23-No0016843					Х	Х		
29	SS19	Nov 06, 2023		Soil	N23-No0016844	Х			Х	Х	Х		
30	SS20	Nov 06, 2023		Soil	N23-No0016845	Х				Х	Х		
31	SS21	Nov 06, 2023		Soil	N23-No0016846	Х		Х		Х	Х	Х	
32	SS22	Nov 06, 2023		Soil	N23-No0016847	Х				Х	Х		
33	SS23	Nov 06, 2023		Soil	N23-No0016848	Х				Х	Х		
34	SS24	Nov 06, 2023		Soil	N23-No0016849	Х				Х	Х		
35	SS25	Nov 06, 2023		Soil	N23-No0016850	Х				Х	Х		
36	SS26	Nov 06, 2023		Soil	N23-No0016851					Х	Х		
37	SS27	Nov 06, 2023		Soil	N23-No0016852					Х	Х		
38	SS28	Nov 06, 2023		Soil	N23-No0016853					Х	Х		
39	SS29	Nov 06, 2023		Soil	N23-No0016854				Х	Х	Х		
40	SS30	Nov 06, 2023		Soil	N23-No0016855					Х	Х		
41	SS31	Nov 06, 2023		Soil	N23-No0016856	Х				Х	Х		
42	SS32	Nov 06, 2023		Soil	N23-No0016857					Х	Х		

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

NZBN: 9429046024954

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Received:

Priority:

Contact Name:

Due:

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa, Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Qualtest

Address: 2 Murray Dwyer Circuit

> Mavfield West NSW 2304

Project Name: Project ID:

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

Phone:

Fax:

1042040 02 4968 4468

02 4960 9775

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C as rec.)	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7				
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54						Х		Х	Х
Syd	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Х	Х	Х	Х	Х
43	SS33	Nov 06, 2023		Soil	N23-No0016858					Х	Х		
44	SS34	Nov 06, 2023		Soil	N23-No0016859				Х	Х	Х		
45	SP2-1	Nov 06, 2023		Soil	N23-No0016860	Χ				Х	Х		
46	SP3-1	Nov 06, 2023		Soil	N23-No0016861	Х				Х	Х		
47	SP4-1	Nov 06, 2023		Soil	N23-No0016862	Χ				Х	Х		
48	SP4-2	Nov 06, 2023		Soil	N23-No0016863	Χ				Х	Х		
49	SP4-3	Nov 06, 2023		Soil	N23-No0016864	Χ				Х	Х		
50	SP4-4	Nov 06, 2023		Soil	N23-No0016865	Χ				Х	Х		
51	SP4-5	Nov 06, 2023		Soil	N23-No0016866	Χ				Х	Х		
52	D.6.11.23	Nov 06, 2023		Soil	N23-No0016867						Х		Х
53	SW01	Nov 06, 2023		Water	N23-No0016868				Х	Х			
54	SS01A	Nov 06, 2023		Soil	N23-No0016869	Х					Х		Х
55	TP10 0.2-1.0	Nov 02, 2023		Soil	N23-No0016870		Х						
56	SP1-PACM	Nov 02, 2023		Building Materials	N23-No0016871		Х						

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 19/8 Lewalan Street 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa, Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Nov 7, 2023 2:30 PM

Nov 14, 2023

Libby Betz

Company Name:

Project Name:

Project ID:

Qualtest

Address: 2 Murray Dwyer Circuit

Mavfield West

NSW 2304

PSI - LOCHINVAR NEW23P-0216

Order No.: Report #:

1042040

Phone: 02 4968 4468 02 4960 9775 Fax:

Eurofins Analytical Services Manager: Andrew Black

Sample Detail	Asbestos - WA guidelines	HOLD	pH (1:5 Aqueous extract at 25 °C	Organochlorine Pesticides	Metals M8	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7	•
			C as rec.)						
Melbourne Laboratory - NATA # 1261 Site # 1254					Х		Х	Х	
Sydney Laboratory - NATA # 1261 Site # 18217	Х	Х	Х	Х	Х	Х	Х	Х	
Test Counts	26	2	2	6	41	53	2	13	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery. Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within. NCP

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.001			0.001	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	102			80-120	Pass	
Cadmium			%	99			80-120	Pass	
Chromium			%	103			80-120	Pass	
Copper			%	100			80-120	Pass	
Lead			%	99			80-120	Pass	
Mercury			%	103			80-120	Pass	
Nickel			%	100			80-120	Pass	
Zinc			%	100			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		Course					Lillito	Lillits	Jour
Heavy Metals				Result 1					
Arsenic	S23-No0015652	NCP	%	108			75-125	Pass	
Cadmium	S23-No0015652	NCP	%	106			75-125	Pass	
Chromium	S23-No0015652	NCP	%	105			75-125	Pass	
Copper	S23-No0015652	NCP	%	102			75-125	Pass	
Lead	S23-No0015652	NCP	%	104			75-125	Pass	
Mercury	S23-No0015652	NCP	%	108			75-125	Pass	
Nickel	S23-No0015652	NCP	%	100			75-125	Pass	
Zinc	S23-No0015652	NCP	%	93			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		304.30							
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	N23-No0011757	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	N23-No0011757	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	N23-No0011757	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	N23-No0011757	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	N23-No0011757	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	N23-N00011757	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	N23-N00011757	NCP		< 0.0001	< 0.0001	<1	30%	Pass	
		NCP	mg/L	i					
Zinc	N23-No0011757	INCP	mg/L	0.011	0.012	<1	30%	Pass	

Report Number: 1042040-W

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Andrew Black Analytical Services Manager
Fang Yee Tan Senior Analyst-Metal
Roopesh Rangarajan Senior Analyst-Organic

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1042040-W

Qualtest
2 Murray Dwyer Circuit
Mayfield West
NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Libby Betz

Report 1046255-S

Project name ADDITIONAL: PSI - LOCHINVAR
Project ID ADDITIONAL: NEW23P-0216

Received Date Nov 17, 2023

Client Sample ID			SS01	SS18	SS30
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S23- No0051045	S23- No0051046	S23- No0051047
Date Sampled			Nov 02, 2023	Nov 02, 2023	Nov 02, 2023
Test/Reference	LOR	Unit			
Chromium (hexavalent)	1	mg/kg	< 1	< 1	< 1
Chromium (trivalent)	5	mg/kg	120	120	300
Heavy Metals					
Chromium	5	mg/kg	120	120	300
Sample Properties					
% Moisture	1	%	23	21	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (speciated)			
Chromium (hexavalent)	Sydney	Nov 21, 2023	28 Days
- Method: In-house method E057.2			
Chromium (trivalent)	Sydney	Nov 21, 2023	28 Days
- Method: E043 /E057 Total Speciated Chromium			
Heavy Metals	Sydney	Nov 21, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Nov 21, 2023	14 Days

⁻ Method: LTM-GEN-7080 Moisture

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

ADDITIONAL: PSI - LOCHINVAR

Sample Detail

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Moisture

Set

Chromium (speciated)

S23-No0051047 X

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive

Tauranga 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Company Name:

Project Name:

SS30

Test Counts

Qualtest

Address:

2 Murray Dwyer Circuit

NSW 2304

Mavfield West

Order No.: Report #: Phone:

Fax:

1046255 02 4968 4468

02 4960 9775

Received: Nov 17, 2023 2:43 PM Due: Nov 24, 2023

Priority: 5 Dav **Contact Name:** Libby Betz

Eurofins Analytical Services Manager: Andrew Black

Project ID:	ADDITIONAL: NEW23P-0216

Nov 02, 2023

Sydney Laboratory - NATA # 1261 Site # 18217												
Brisbane Laboratory - NATA # 1261 Site # 20794												
Exte	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS01	Nov 02, 2023		Soil	S23-No0051045	Х	Х					
2 SS18 Nov 02, 2023 Soil S23-No0051046												
				1								

Soil

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. All soil/sediment/solid results are reported on a dry weight basis unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion unless otherwise stated.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling; therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is 7 days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre μg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within. NCP

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA WA DWER

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30%; however the following acceptance guidelines are equally

applicable: Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries above the QC limit designated in QSM 5.4, where no positive PFAS results have been reported, have been reviewed, and no data was

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chromium (hexavalent)			mg/kg	< 1			1	Pass	
Method Blank									
Heavy Metals									
Chromium			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Chromium (hexavalent)			%	105			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Chromium			%	92			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Chromium	S23-No0022430	NCP	%	106			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	S23-No0051045	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium	S23-No0022371	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	S23-No0050830	NCP	%	6.8	6.4	6.3	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Andrew Black Analytical Services Manager
Mickael Ros Senior Analyst-Metal
Ryan Phillips Senior Analyst-Inorganic

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.