

SITE CLASSIFICATION 27-29 STRONACH AVE, EAST

MAITLAND

Prepared for True Wealth Property 17/11/2022

Our reference: P/310 - T/23010

Your reference: 16822/Q/162

DAVID CLINCH **True Wealth Property Pty Ltd** Suite 5 Level 1, 240 Brisbane Rd Arundel QLD 4214 **M** 0408 227 802 david@truewealthproperty.com.au

RE: LIMITED SITE INVESTIGATION AT: Lot 27-29 Stronach Ave, East Maitland

1

Summary of Investigation Results from 09.11.2022

Property description and Site address	Yes
Plan and/or survey	Limited site plan, one dwelling
Contours of the site	Site is at Flat
Location of trees & other impediments	Nil Cleared
	(Existing Home, Demolished)
Building footprint location & platform levels	See site drawing
Location of proposed cut and fill	Initial subdivision Earthworks
	NOT complete
Subdivisional Fill (Extent if Any)	NIL
Presence of Fill	Preliminary assessment shows
	minimal to no Filling has been
	carried out on this block
Extent of FILL	Nil
Preliminary Assessment of Profile	CLAY / Sandy CLAY
AS3798 controlled Earthworks report Located	Nil / Not Provided
General Topography	The site is Flat and has minimal
	exposure to coastal winds and
	is protected as well by trees
	and adjacent structures

The following information was/was not provided by the contractor:

Site Classification (AS 2870)	P class site (With H1 Class Reactivity) ISS = 2.6
Allowable Bearing Capacity – Provided by	100 kPa @ -0.3m
LAKE MAC GEO Pty Ltd (See Appendix D for	Below Existing surface
Bearing Assessment Report)	Level
Exposure Classification (EC)	Not requested
	(NOTE: client and design
	engineer should investigate
	potential of Acid Sulphate
	soils in this area as per
	AS2870-2011 clause 5.5.3)
Exposure Classification (SO ₄)- AS2870-2011 Table 5.2 Soil Conditions A –(high permeability soils-	Not found at this site
SANDS and GRAVELS that are in Groundwater)	
Soil Conditions B –(Low permeability soils-SILTS and CLAYS –all soils above groundwater Groundwater)	Found to be on this site
Groundwater	Not found at this site
Tree Score	All trees and some organics
Tree Effect (Refer to pages 170-171-Table CH5- AS2870)	have been removed
Drainage assessment	Good. Further inspection
	recommended during
	construction
Wind Rating	N2 site with protection
	from trees and adjacent
	structures

NOTES:

- This report has been carried out to determine the foundation conditions at the above site and to classify the site in accordance with AS2870-2011 'Residential Slabs and Footings'.
- The design engineer should consider the suitability of the report especially if siteworks have been carried out after the date of the investigation and subsequent report.
- All findings should be assessed for suitability by the relevant parties as per Appendix "A" of AS2870-2011.
- Discussion and Recommendations are in accordance with AS2870 and AS3798 'Guidelines on Earthworks for commercial and Residential Development.
- Where applicable or engaged to do so an assessment of AS4055 'Wind loads for housing' has been made.
- All works should be conducted in accordance with AS 3798. When preparing the site a comprehensive stripping is essential. If filling is required relative compaction and oversize material of the selected fill must be controlled (refer AS3798 clause 4.3 a to d), typically this will be obtained by a minimum STD MDD Ratio of 95% (AS3798 Table 5.1) and moisture variation of +/-2% of optimum per 200mm layer or uniform thickness (AS3798 6.2.2 & Table 8.1).
- Where coarse material may be used for filling a Geotechnical Authority must be present to determine suitability, (refer to AS3798 clause 5.3&6.2.2) maximum
 particle size should not exceed two thirds the compacted layer thickness and consideration must be given to the applicable Density test procedures. All works to
- be undertaken should be done so to AS3798 (Guidelines on earthworks for commercial & residential developments).

Yours faithfully

Name: Blayke Desvaux Position: Laboratory Manager For Construction Sciences Newcastle

SUM Site Info.

17.08.2020 REV-3

List of Appendices

Appendix A – Borehole Locations Appendix B – Borehole Log Sheets Appendix C – Laboratory Testing Appendix D – Applicable Bearing Report

Appendix A Borehole Locations

27-29 Stronach Avenue, East Maitland

Construction Sciences Pty Ltd

ABN 74 128 806 735 Ph +641 422 040 976 1/12 Callistemon Cl, Warabrook

Borehole Locations: 16822/T/23010

 QLD
 Airlie
 Brisbane
 Bowen
 Cairns
 Emerald
 Gladstone
 Gold Coast
 Mackay
 Moranbah
 Rockhampton
 Sunshine Coast
 Toowoomba
 Toowoomba</th

Appendix B Borehole Log Sheets

			struction	Construction Scier ABN: 74 128 806 Unit 1, 12 Callistemo	735	Labora Phone Fax:	-	itory	BOREHOLE LOG SHEET
	S	ocie	ences	Warabrook NSW 23	04				Page 1 of 1
	Project: Geotechnical Services 27-29 Stronach Ave, East Maitland Project No: 16822/P/310		Dril Rig Dril	Drilling Commenced: 9/11/2022 Relative Level: - Drilling Completed: 9/11/2022 Groundwater: - Rig Type: Hand Auger Casing Diameter: - Driller: Koby Martyn Angle From Horiz: - Logged By: Blayke Desvaux Date Logged: 6/12/2022		er: - meter: -	Borehole Number: BH-01 Location: BH1 U50 0.1-0.4m See Site Plan		
Depth (m)	RL	1	V' Bit TC' Bit Mashbore Casirig Laser-	Sample or Field Test	Graphic Log	USCS Symbol	(SO	DE: IL NAME, plasticity	SCRIPTION //particle characteristics, colour,
De					Ū	⊃ഗ് ML-OL			re, consistency, structure, ORIGIN) to Medium Grain, Low Plasticity, Dark Brown,
		6				CL-CI	Dry CLAY,Traces of Sand, Fi Grey/Red, M=>PL	ne Grain, Mediu	im to High Plasticity, Brown w/motlled
		2							
		2							
-									
		3							
						CL-CI	Sandy CLAY, Fine to Me Grey/Orange, M=>PL	dium Grain, Me	dium to High Plasticity, Brown w/motlled
0.5 —		2							
		3							
		25					Borehole Terminated at	0.6m	
-									
		>25							
1.0 —			Con Clanderd Cheste fred	tailo of obbrevieties	9 hosis of t	operiotican			
			See Standard Sheets for de	ans of appreviations		escriptions			

		struction ences	Construction Sciences Pty L ABN: 74 128 806 735 Unit 1, 12 Callistemon Close Warabrook NSW 2304	td Laborat Phone: Fax:	Warabrook Laboratory 02 4062 0200 02 6654 0261	BOREHOLE LOG SHEET Page 1 of 1
Client: Project: Project No Lab Ref:	Geotech 27-29 S p: 16822/F	ealth Property Pty Ltd nnical Services tronach Ave, East Maitla 2/310 5/118964	Drilling Com Drilling Com Rig Type: Ha Driller: Koby			Borehole Number: BH-02 Location: BH2 See Site Plan
Depth (m)	RL DCP	V' Bit TC' Bit Washbore Casing Antone	Sample or 5 Field Test 5	USCS Symbol	(SOIL NAME, plastic	DESCRIPTION ity/particle characteristics, colour, ture, consistency, structure, ORIGIN)
	9			🗸 ML-OL		e to Medium Grain, Low Plasticity, Dark Brown,
	8				CLAY,Traces of Sand, Fine Grain, Mec Grey/Red, M=>PL	dium to High Plasticity, Brown w/motlled
	5					
	3					
0.5 —	3					
	4					
	4			CL-CI	Sandy CLAY, Fine to Medium Grain, M Grey/Orange, M=>PL	ledium to High Plasticity, Brown w/motlled
	8					
	25					
1.0 —	>25				Borehole Terminated at 1.0m	
1.5 —		See Standard Sheets f	or details of abbreviations & basis	of descriptions		

Appendix C Laboratory Testing

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Unit 1, 12 Callistemon Close

Warabrook NSW 2304

Laboratory:Warabrook LaboratoryPhone:02 4062 0200Fax:02 6654 0261Email:Newcastle@constructionsciences.net

DYNAMIC CONE PENETROMETER REPORT

Client:	-	True Wealth	Property Pty L	_td			Report Numbe	er:	16822/R/371	04-1	
Client Addres	ss: ,	,				Project Number: 16822/P/310					
Project:		27-29 Stronach Ave, East Maitland				Lot Number:					
Location:		Not Specifi	ed>				Internal Test F	Request:	16822/T/230 ²	10	
Component:		Site Classific					Client Referen				
Area Descrip			ach Ave East N	Apitland			Report Date /		21/11/2022		Page 1 of 2
				lallallu		1	Report Date /				Fage 1012
Test Procedu		S1289.6.3.2							Location		
Sample Num		6822/S/118	963			Bore No.			3H1		
Date Tested		0/11/2022				Sample Ty			J50		
Material Sou		n situ				Sample De	epth m	(0.1 - 0.4m		
Material Type		Existing									
Moisture Cor		Moist					ter Level (m)				
Material Dese Test Results	-	Silty CLAY				Penetration	n Resistance (N	p) -	•		
Depth	Blows	T	Depth	Blows		Depth	Blows		Depth	Blows	
0m - 0.1m	6 6	-	Deptil	DIUWS		Deptii	DIUWS		Deptin	DIUWS	_
0.1m - 0.2m	2										_
0.2m - 0.3m	2	-									_
0.3m - 0.4m	3	-									_
0.4m - 0.5m	2										
0.5m - 0.6m	3										
0.6m - 0.7m	25										
0.7m - 0.8m	>25	-								1	
					1						
					1						
					1						

Remarks			
	Accredited for complia	nce with ISO/IEC 17025 – Testing	
NATA	Accreditation Number: Corporate Site Number:	1986 16822	- Co
\checkmark		10022	Approved Signatory: Blayke Desvaux Form ID: W16Rep Rev 1

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Unit 1, 12 Callistemon Close

Warabrook NSW 2304

Laboratory:	Warabrook Laboratory
Phone:	02 4062 0200
Fax:	02 6654 0261
Email:	Newcastle@constructionsciences.net

DYNAMIC CONE PENETROMETER REPORT

Client:		True Wealth	Property Pty L	_td			Report Numbe	er:	16822/R/3710)4-1	
Client Addres	SS:	,				Project Numbe	er:	16822/P/310			
Project:		27-29 Stronach Ave, East Maitland					Lot Number:				
Location:		<not specifi<="" td=""><td>ed></td><td></td><td></td><td></td><td>Internal Test F</td><td>Request:</td><td>16822/T/2301</td><td>0</td><td></td></not>	ed>				Internal Test F	Request:	16822/T/2301	0	
Component:		Site Classific	ation				Client Referen	ce/s:			
Area Descrip	tion:	27-29 Strona	ach Ave East N	laitland			Report Date /	Page:	21/11/2022		Page 2 of 2
Test Procedu	ires	AS1289.6.3.2						Sample	Location		
Sample Num	ber	16822/S/118	964			Bore No.			3H2		
Date Tested		9/11/2022				Sample Ty	ре				
Material Sou	rce	In situ				Sample De					
Material Type	e	Existing									
Moisture Cor	ndition	Moist				Groundwat	er Level (m)				
Material Des	cription	Silty CLAY				Penetratior	n Resistance (N	p) -			
Test Results	5										
Depth	Blows		Depth	Blows		Depth	Blows		Depth	Blows	
0m - 0.1m	9										
0.1m - 0.2m	8										
0.2m - 0.3m	5										
0.3m - 0.4m	3										
0.4m - 0.5m	3										
0.5m - 0.6m	4										
0.6m - 0.7m	4										
0.7m - 0.8m	4										
0.8m - 0.9m	8										
0.9m - 1m	25										
1m - 1.1m	>25										

Remarks			
^	Accredited for complia	nce with ISO/IEC 17025 – Testing	
NATA	Accreditation Number: Corporate Site Number:	1986 16822	- Oce
\mathbf{V}			Approved Signatory: Blayke Desvaux Form ID: W16Rep Rev 1

Construction Sciences Pty Ltd ABN: 74 128 806 735

Address: Unit 1, 12 Callistemon Close

Warabrook NSW 2304

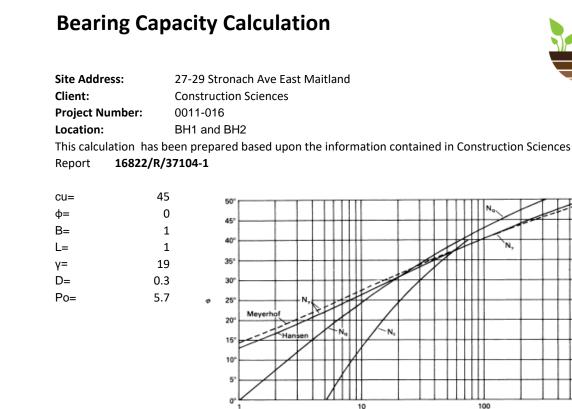
Laboratory:Warabrook LaboratoryPhone:02 4062 0200Fax:02 6654 0261Email:Newcastle@constructionsciences.net

SHRINK SWELL INDEX

Client:	True Wealth Pro	perty Pty Ltd		Report Number:	16822/R/37105-1		
Client Address:	,			Project Number:	16822/P/310		
Project:	27-29 Stronach	Ave, East Maitland		Lot Number:			
Location:	<not specified=""></not>			Internal Test Request:	16822/T/23010		
Component:	Site Classificatio	n		Client Reference/s:			
Area Description:	27-29 Stronach	Ave East Maitland		Report Date / Page:	21/11/2022	Page 1 of 1	
Test Procedures:	AS1289.7.1.1, AS12	289.2.1.1	Bore No.		BH1		
Sample Number	16822/S/118963		Sample Ty	ре	U50		
Sampling Method			Sample De	epth m	0.1-0.4m		
Date Sampled	10/11/2022						
Sampled By	Koby Martyn		Material So	Source In situ			
Date Tested	10/11/2022		Material Ty	Гуре Existing			
Soil Description:		Silty CLAY					
Cracking / Crumbling:		Min			(0()) 05.0		
Estimated Inert Inclus		0.00 25.7	Swell Pre-Soak Moisture Content (%) 25.6 Swell Post-Soak Moisture Content (%) 27.6				
Shrinkage Moisture C	ontent (%):	25.7	Swell Post	-Soak Moisture Content	(%) 27.6		
Shrinkage Strain (Shrinkage Strain (%) 4.7		Shrink / Swell Index 2.0		0 /		
Swell Strain (%) 0.0		0.0			2.0		

Remarks

NATA


Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation Number: Corporate Site Number: 1986 16822

- Cor	

Approved Signatory: Blayke Desvaux Form ID: W21Rep Rev 1

Appendix D Applicable Bearing Assessment

		N _y N _c	Ng		
Bearing Capacity Equ	ation	From Chart	ors		
qf=cu.Nc.Sc+γ.D.Nq.S	q+γ.B.Nγ.Sγ/2	Nc=	5.3 s _c =	1.3	
		Nq=	1 s _q =	1.2	
		Νγ=	0 s _γ =	0.8	
Factor of Safety=	3				
Qall= 100	kN/m²				
pared by:		D	Pate: 22/11/2022		
P Band	BEng MSc MIEAust CPE	ng NER REPQ			

1000

We have prepared this calculation in substantial accordance with the generally accepted engineering practices as they exist in the general site area at the time of our study. No warranty either express or implied is made.

Pre

It should be recognized that definition and evaluation of subsurface conditions are difficult. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. The conclusions of this assessment are based on the information made available to us by the client and engineering analyses.

This technical memorandum may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both on site and off site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this technical memorandum shall notify Lake Mac Geo of such intended use. Based on the intended use of the technical memorandum, Lake Mac Geo may require that additional work be performed and that an updated memorandum be issued. Non-compliance with any of these requirements by the client or anyone else will release Lake Mac Geo from any liability resulting from the use of this report by any unauthorised party.

Foundation Maintenance and Footing Performance: Homeowner's Guide

Information Sheet 10/91 replaces **BTF 18**

ensure that problems in the foundation soil can be prevented, thus protecting against building movement. Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to

methods of prevention of resultant cracking in buildings. This Building Technology File is designed to identify causes of soil-related building movement, and to suggest

Soil Types

saturation and swell/shrink problems. The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the

Causes of Movement

construction: There are two types of settlement that occur as a result of Settlement due to construction

- weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible. Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the
- of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after place because of the expulsion of moisture from the soil or because Consolidation settlement is a feature of clay soil and may take exceptional cases construction, but has been known to take many years in

into consideration as part of the preparation of the site for construc-tion. Building Technology File 19 (BTF 19) deals with these problems. These problems are the province of the builder and should be taken

Erosion

or more can suffer from erosion. All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10%

Saturation

normally be the province of the builder. bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its

phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics. Seasonal swelling and shrinkage of soil All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase decrease during the subsequent drying out caused by fair weath periods. Because of the low absorption and expulsion rate, this varies considerably between different clays, as does the degree of weather

building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium. The swelling of soil creates an upward force on the footings of the

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement from moisture changes
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes
ਸ	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject

to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred. The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

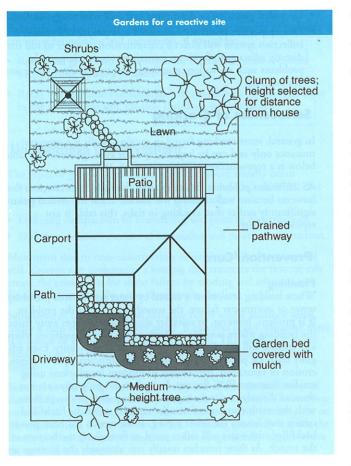
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category
Hairline cracks	<0.1 mm	0
Fine cracks which do not need repair	<1 mm	1
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited

Construction Sciences Pty Ltd ABN 74128806736 Address 1/36 Hawke drive Woolgoolga NSW,2456 Ph: (02) 66540205 Fax: (02) 66540261 www.constructionsciences.net

Limitations within a Geotechnical Assessment and Report.

Geotechnical Assessment is based extensively on the judgement and opinion of the Geotechnical Authority who relies to a large extent on previous experience in similar field conditions to make his assessment. It is far less exact than other engineering disciplines and geotechnical reports are tailored to the specific needs of each client. A report prepared for a consulting Civil Engineer may not be adequate for a Construction Contractor or even for some other consulting Engineer. This report was prepared expressly for the Client and for the purposes intended by the Client. It should not be used for other purposes without specific technical advice.

The Report is for the benefit of the Client and no other party. Construction Sciences assumes no responsibility and will not be liable to any other person for any matter dealt with or any conclusions expressed within the report or for any omissions or negligent act of Construction sciences or for any loss or damage suffered by any other party relying on matters dealt with or conclusions expressed in the report. Other parties should not rely upon the report or the accuracy and completeness of its conclusions and should make their own enquiries and obtain independent advice where necessary.

Scope of Service: This Geotechnical Site Assessment has been prepared in accordance with the scope of services set out in the proposal or as otherwise agreed between the Client and Construction Sciences.

Reliance on Data: In preparing this report, Construction Sciences has relied upon the data referred to in this report; except where otherwise stated, Construction Sciences has not verified the accuracy or completeness of the data, statements, opinions and facts supplied by others in reaching its findings and conclusions in the report. Construction Sciences will not be liable in relation to incorrect conclusions should any data or condition be incorrect or have been concealed, withheld or otherwise not fully disclosed to Construction Sciences.