Geotechnical Investigation Report - Scobies Lane, Oakhampton Heights

MCC 2023/24 Capital Works Program

304100979-005

Prepared for Maitland City Council

6 December 2023

Contact Information

Stantec Australia Pty Ltd ABN: 17 007 820 322

Suite 2, Level 2 22 Honeysuckle Drive Newcastle NSW 2300 Australia

www.stantec.com

Document Information

Prepared for	Maitland City Council					
Project Name	MCC 2023/24 Capital Works Program					
File Reference	Report on Geotechnical Investigation - Scobies Lane_304100979-005.2.docx					
Job Reference	304100979-005					
Date	6 December 2023					
Version Number	2					

Author(s):

Duil Brit

Ted Bartlett Geotechnical Engineer

David Bastian Principal Geotechnical Engineer

	Effective Date	6/12/2023
ineer		

Date Approved

Approved By:

Kin

David Bastian Principal Geotechnical Engineer

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
1	6/03/2023	Preliminary draft for client comment	TB / DGB	DGB
1	6/12/2023	Final issue	DGB	DGB

This document entitled 'Geotechnical Investigation Report - Scobies Lane, Oakhampton Heights' (ref. 304100979-005) was prepared by Stantec Australia Pty Ltd ("Stantec") for the account of Maitland City Council (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

6/12/2023

Table of Contents

1	Introdu	5							
2	Deskte	Desktop Review							
	2.1	2.1 Existing Flood Control Levee							
	2.2	Published Data	7						
3	Site D	escription	9						
4	Invest	igation Methodology	12						
	4.1	Site Investigation	12						
	4.2	Laboratory Testing	13						
5	Invest	igation Findings	14						
	5.1	Existing Pavements	14						
	5.2	Proposed Flood Access Route	15						
	5.3	Laboratory Test Results	16						
6	Geote	chnical Comments & Recommendations	20						
	6.1	Settlement Assessment	20						
	6.2	Earthworks	22						
	6.3	Preliminary Acid Sulfate Soils Assessment	24						
7	Paven	nent Design	25						
	7.1	Existing Pavement Performance & Rehabilitation Options	25						
	7.2	Pavement Thickness Design	26						
	7.3	Pavement Rehabilitation	29						
	7.4	Pavement Construction	30						
8	Prelim	inary Environmental Assessment	33						
	8.1	Extent of Assessment	33						
	8.2	Assessment Criteria	33						
	8.3	Laboratory Results	33						
	8.4	Quality Assurance & Quality Control	34						
	8.5	Comments & Recommendations	34						
9	Limita	tions	35						
10	Refere	References							

Appendices

- Appendix A Figures
- Appendix B Engineering Logs
- Appendix C Laboratory Test Results
- Appendix D Design Outputs

Tables

Table 5-1	Existing Pavements - Surface Condition Summary	14
Table 5-2	Summary of Encountered Profile Depths - Existing Pavements	15
Table 5-3	Summary of Encountered Subsurface Conditions	15
Table 5-4	Summary of Encountered / Interpreted Profile Depths - Proposed Flood Access Route	16
Table 5-5	Summary of CBR Test Results	18
Table 5-6	Material Quality Test Results	19
Table 6-1	Geotechnical Design Parameters - Settlement	20
Table 7-1	Design Traffic Loading	26
Table 7-2	New Construction / Pavement Reconstruction: Flexible Unbound Materials	27
Table 7-3	New Construction / Pavement Reconstruction: Heavily Bound Base	28
Table 7-4	Material Specification and Compaction Requirements	31

Figures

Figure 2-1	Typical spillway section (extract from proposed rehabilitation plan)	6
Figure 2-2	NSW Seamless Geology extract (site denoted by red outline)	8
Figure 3-1	Site locality	9
Figure 3-2	S Willards Lane general view, looking south	11
Figure 3-3	Oakhampton Rd general view, looking south	11
Figure 3-4	Scobies Lane general view, looking east	11
Figure 3-5	Flood control levee, looking east	11
Figure 3-6	Flood control levee, looking south-west	11
Figure 3-7	Blocked existing culvert below flood levee	11
Figure 5-1	Acid Sulfate Soils Results Analysis Table	17
Figure 6-1	Flood access road design plan extract	23

1 Introduction

This report presents the findings of a geotechnical investigation undertaken by Stantec Australia Pty Ltd (Stantec) (*formerly Cardno*) for a proposed flood access road and adjoining road sections located in proximity to Scobies Lane, Oakhampton Heights. The investigation was undertaken in general accordance with Stantec's proposal (ref. 3041-FY23-041-001-v1.3, dated. 14 November 2022), commissioned by Babita Subedi of Maitland City Council (MCC).

MCC have provided concept design plans including design long sections (ref. 4105-PPI, rev. A, date. 02.11.22) for a proposed flood access road and minor upgrades to short sections of existing Scobies Lane, S Willards Lane and Oakhampton Road pavement sections (tie-in sections). Based on the supplied plans, MCC are considering the construction of a new flood access road and reconstruction/rehabilitation to the existing tie-in sections, which forms part of the MCC 2023/24 Capital Works Program. The proposed works are understood to comprise the following:

- Construction of new approximately 730m long flood access road, including embankment and pavement construction, linking Oakhampton Rd to the Scobies Lane / S Willards Lane intersection.
- > Pavement rehabilitation / reconstruction of the existing tie-in sections of Scobies Lane, S Willards Lane, and Oakhampton Rd.
- > Construction of related civil infrastructure.

The investigation was undertaken to obtain geotechnical and environmental information on surface and subsurface conditions to the proposed flood access road and adjoining sections of pavement as a basis for the following comments and recommendations:

- > Existing pavement performance based on surface and subsurface condition.
- > Evaluation of the existing subsurface / subgrade conditions within the proposed flood access road alignment and existing pavement sections footprints.
- > Recommendations for earthwork procedures and guidelines.
- > Preliminary acid sulfate soil assessment.
- > Preliminary ENM / Waste Classification assessments.
- > Pavement thickness design for the proposed flood access road and adjoining pavement sections.

2 Desktop Review

2.1 Existing Flood Control Levee

The following information was supplied by the client for review in relation to the existing Maitland Power House Control Structure (flood control levee) which is situated immediately south of the proposed flood access road at Ch 0-450m:

- > Surveyed cross section plans from 1985 showing the levee profile;
- Preliminary rehabilitation design plans (not dated) showing the levee layout and proposed cross section (it is not known if the levee was rehabilitated as per this design); and
- > Email from floodplain engineer from Department of Planning and Environment dated 9/12/2022, providing some high level history of the levee design and maintenance.

Additionally, a geotechnical investigation report by NSW Public Works (1990) [1] was sourced online from MinView [2], which provided limited details from three hand excavated pits through the levee, seemingly following breach of a section of the wall (not confirmed in the report).

The limited information available for review and discussions with the client indicates the following.

- > The levee is designed to slow the velocity of north to south overland flows during major flood events, and protect developed areas located further south.
- > The levee was originally designed in 1964, and rehabilitated in 1998.
- > There does not appear to be discrete spillway locations along the alignment, rather the whole levee acts as a spillway during operation.
- The levee is constructed from the following, based predominantly from the 1990 geotechnical investigation (plan extract from separate works provided in Figure 2-1):
 - A central core comprising low plasticity sandy silt to clayey silty sand materials, with in-situ compaction at ≥85% modified compaction;
 - Filter zone consisting of poorly graded, fine to coarse gravel, 250 to 300mm in thickness;
 - Coarse filter zones consisting of predominantly boulder sized material, with maximum particle sizes generally in the order of 400 to 800mm; and
 - Reno mattresses, 500 mm thick, provided to the crest and down gradient (southern) batter surfaces (presumably placed in 1998 rehabilitation), tied down through a system of cables and concrete anchor blocks.

2.2 Published Data

2.2.1 Soil Landscape Maps

Review of the Office of Environment and Heritage, Electronic Soil Profiling Maps V2.2 [3] indicates the proposed flood access road alignment and adjoining road sections work areas spans the *Hunter* (9232hu and 9232hub) landscape along Oakhampton Rd and Ch. 0 to 510 of the proposed flood access road, with S Willards Lane, Scobies Lane, and Ch. 510 to 820m of the flood access road located in the *Bolwarra Heights* (9232bh) landscape.

The *Hunter* soil landscape is known to comprise extensive floodplains on Quaternary alluvial soils derived from the Hunter and Paterson rivers, composed of clay, silt and sand to depths in excess of 40m. Topography is known to be predominantly level with slope gradients typically <1%, and elevations commonly 2 to 4m.

The *Bolwarra Heights* soil landscape is known to comprise rolling low hills on sandstone, siltstone and conglomerate of the *Branxton Formation*. Topography is known to comprise rolling low hills and narrow, incised drainage lines, with predominant slope gradients of 5 to 10%, occurring at elevations of 40 to 100m.

2.2.2 Acid Sulfate Soils

Review of acid sulfate soils (ASS) risk maps for the Oakhampton Heights area indicates that Oakhampton Road and approx. Ch. 0 to 450m of the proposed flood access road is situated within an area mapped as having a low probability of ASS occurrence, generally at depths greater than 3m below ground surface. The remainder of the site (approximate Ch. 450 to 820m) is not situated within a mapped ASS risk area.

2.2.3 Regional Geology

Review of the New South Wales Seamless Geology dataset [2] indicates the proposed site area spans multiple geological formations and deposits.

Approximate Ch. 0 to 450m of the proposed flood access road alignment is underlain by various Quaternaryaged alluvial deposits, typically comprising fluvially deposited sand, silt, clay and gravel materials.

A minor portion of the alignment to the south-west (approx. Ch. 450m) is underlain by anthropogenic materials, mapped as comprising a range of generally coarse fragments including large concrete blocks, quarried cobbles and boulders.

Approximate Ch. 450 to 820m of the proposed flood access road is underlain by the *Mulbring Siltstone* (Pmtm) formation of the Maitland Group, known to comprise predominantly siltstone and claystone rocks and soils formed from decomposition of these rocks.

The approximate site bounds are shown overlaid onto the regional geology extract in Figure 2-2 below.

Figure 2-2 NSW Seamless Geology extract (site denoted by red outline)

3 Site Description

The proposed flood access road is located in Oakhampton Heights, with the 820m long alignment commencing on Oakhampton Road in the east and extending west and north for approximately 750m (Ch.0 to 750m), before transitioning into the existing Scobies Lane and South Willards Lane pavement sections (Ch. 750-820m).

Land use of the proposed alignment and surrounds generally comprises; improved and unimproved pasture used for horse grazing along the majority of the alignment, large lot residential development to the north-west, and the former Walka Waterworks facility to the west, now utilised as a public recreational area.

Topographically, the proposed alignment spans a predominantly level alluvial floodplain to the south and east of the alignment, associated with the nearby Hunter River to the east, with the western to northern portion of the alignment is situated on footslopes of gently undulating terrain. Site slopes from elevated site areas in the west and north-west typically fall to the east towards the alluvial floodplain area and intersecting gully line. Drainage to the site is generally expected to follow the existing site slopes towards the gully line and alluvial flood plain, and ultimately to Hunter River located closely to the east.

Figure 3-1 Site locality

The following features were observed during the investigation.

- > Vegetation to the site comprised long grass and maintained grass within smaller confined paddocks, with isolated semi-mature trees noted in proximity to the S Williams Lane / Scobies Lane intersection.
- > North-east trending gully line intersecting the proposed alignment at approx. Ch. 400, noted to be dry in condition at time of investigation.
- > General pavement condition along the existing road sections proposed to adjoin the flood access road is shown in below figures and described in Section 5.1.1.

- > Flood control levee constructed from rock fill extending east-west, parallel to the proposed alignment, extending from Oakhampton to the former Walka Waterworks pumping station. Rockfill levee noted to comprise:
 - Reno mattress lining, with cable and concrete post tie-down support.
 - Rockfill consisted of rounded, cobble to boulder sized material.
 - Embankment height predominantly from 0.5 to 1.5m, with heights in excess of 2m where levee spans the existing gullies.
 - Batter angles to the flood levee were generally in the order of 2H:1V on the northern side, and approx.
 5H:1V on the southern side.
- > Existing small diameter culvert identified below the rockfill levee at approximately Ch. 180 of the proposed alignment, with culvert noted to be partially blocked by rockfill.

Figure 3-2 S Willards Lane general view, looking south

Figure 3-3 Oakha

Oakhampton Rd general view, looking south

Figure 3-5 Flood control levee, looking east

Figure 3-6 Flood control levee, looking south-west

Figure 3-7

Blocked existing culvert below flood levee

4 Investigation Methodology

4.1 Site Investigation

Site investigation was undertaken on 5 and 8 December 2022 and comprised the following:

- Site walkover and visual appraisal to identify site geotechnical features and map existing pavement surface defects.
- > Underground service location in proximity to proposed intrusive test locations by an accredited service locator. All bores were positioned with sufficient clearance from any underground assets.
- > Boreholes / test bores were located using a handheld tablet with GPS function. It is expected that test location accuracy would be in the order of ± 5m.
- Drilling of seven (7) boreholes (BH01-BH07) with a ute-mounted drilling rig fitted with solid flight augers. Boreholes were advanced to target depths from 2.0 to 6.0m below ground level (bgl) along the proposed flood access road alignment. Refusal on weathered rock was encountered within borehole BH07 at a depth of 1.3m bgl.
- Drilling of five (5) pavement test bores (TB501-TB505) with a mini-excavator fitted with a large diameter solid flight auger. Test bores were drilled to a target depth of 2.0m bgl within the existing road pavement tie-in sections. Refusal on weathered rock was encountered within TB502 at a depth of 1.1m bgl.
- > Dynamic Cone Penetrometer (DCP) testing was conducted at the majority of test locations to assess the in-situ soil strength conditions.
- Standard Penetration Testing (SPT) was undertaken at regular intervals within boreholes (BH01-BH07) to assess in situ soil strength conditions and recover subsurface samples.
- > Disturbed samples of representative materials were recovered for subsequent geotechnical and environmental laboratory testing.
- > All pavement test bores were backfilled with excavation spoil and imported road base material, followed by compaction and reinstatement with cold mix asphalt.

Based on the outcomes of the initial site investigation described above, additional investigation was undertaken on 8 February 2023, comprising Cone Penetrometer Testing (CPT) at five (5) test locations. The CPT locations (CPT01-CPT05) were distributed along the proposed flood access road alignment, conducted to depths ranging from approximately 7.0 to 27.0m bgl, in order to capture a continuous indication of subsurface composition and strength conditions. The CPT's were conducted using a track mounted Geoprobe with a self-anchoring system. A sixth CPT test was attempted, however shallow weathered rock was encountered from 0.8m bgl during anchor drilling and as such no CPT testing was conducted (BH101).

All fieldwork including logging of subsurface profiles and collection of samples was carried out by a geotechnical consultant from Stantec. Subsurface conditions are summarised in Section 5 and detailed in engineering logs of test bores attached in Appendix B.

All test locations are shown overlaid on aerial imagery and client supplied layout plans extracts on Figure F1, attached within Appendix A.

4.1.1 Sampling and Contamination Procedures

The investigation included collection of environmental soil samples for the purpose of preliminary environmental assessment. Environmental sampling was undertaken in accordance with Stantec's standard operating procedures, with sampling data recorded on Chain of Custody sheets. General sampling procedure comprised the following:

- > Suitable decontamination of flight augers prior to drilling of test bores.
- Sampling of pavement and subgrade materials from the test bore side wall or from auger returns/cuttings using suitably decontaminated hand tools.
- > Cross-contamination prevention by using and changing disposable gloves between each sampling event.
- > Decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and tap water between each sampling event.
- > Appropriate laboratory supplied containers used for all soil sample storage.

> Recovered environmental samples stored in chilled and insulated containers prior to dispatch to testing laboratory.

4.2 Laboratory Testing

Laboratory testing was undertaken on samples recovered during fieldwork for the purpose of geotechnical and preliminary environmental assessment. All geotechnical testing was conducted at NATA accredited construction materials and chemical testing laboratories.

Results of the laboratory testing is summarised in Section 5.3 below, and detailed in the laboratory report sheets attached in Appendix C.

Laboratory testing comprised the following:

- > Three (3) Particle Size Distribution (PSD) tests and four (4) Atterberg Limits tests to assist in subsurface material classification.
- > Four (4) four-day soaked California Bearing Ratio (CBR) tests on existing and proposed subgrade materials, including field moisture content and standard compaction testing.
- > Four (4) foreign materials and soil chemical tests on samples of existing natural and fill materials at subgrade level, with the following analytes tested:
 - Eight heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn).
 - Total Recoverable Hydrocarbons (TRH).
 - BTEXN (Benzene, Toluene, Ethyl-benzene, Xylenes & Naphthalene).
 - Polycyclic Aromatic Hydrocarbons (PAH).
- > Two (2) Toxicity Characteristic Leaching Procedure (TCLP) Tests.
- > Ten (10) acid sulfate soil (ASS) tests using the field screening method.
- > Three (3) detailed ASS tests using the Chromium Reducible Sulphur (SCr) method.

5 Investigation Findings

5.1 Existing Pavements

5.1.1 Pavement Surface Conditions

Observed pavement surface conditions within the tie-in sections of Scobies Lane, S Willards Lane and Oakhampton Rd is summarised below in Table 5-1.

Table 5-1 Existing Pavements - Surface Condition Summary

Road Section	Existing Surface Condition	Pavement Condition / Defect Description
S Willards Lane	Reasonable	Existing S Willards Lane pavement section comprised a spray seal wearing course, and concrete gutter along the NB shoulder only. No significant surface defects were identified along the section of road, outside of edge defects along the SB shoulder associated with the lack of drainage infrastructure / edge support.
		Existing Scobies Lane pavement section (Ch. 0 to 82m) comprised a spray seal wearing course with no kerb and gutter along both sides. Observed defects comprised the following:
Scobies Lane	Poor	 Significant seal edge breaking along the EB lane shoulder, with former patchwork evident.
		 Patched potholes within both travel lanes.
		 Minor rutting and seal flushing along the existing wheel paths.
		Existing Oakhampton Rd pavement section (Ch. 0 to 600m) comprised a spray seal wearing course with no kerb and gutter along both sides. Observed defects comprised the following:
Oakhampton Road	Reasonable	 Minor isolated potholes observed along the alignment, with patchwork undertaken.
		 Patched potholes within both travel lanes.
		 Minor rutting along the existing wheel paths.
		 No significant edge breaking was observed.

5.1.2 Subsurface Conditions

Subsurface conditions encountered in test bores (TB501-TB505) drilled in the existing pavement profiles within the tie-in sections are summarised below, with detailed engineering logs attached in Appendix B.

- > Sprayed seal wearing course (thicknesses / depths provided in Table 5-2 below). Overlying;
- Pavement materials comprising fine to coarse Sandy / Silty Sandy GRAVEL and fine to coarse grained Gravelly SAND, noted to be dry to moist in condition. Evidence of previous overlay pavement construction was observed within test bores along Oakhampton Rd (TB503-TB505). Overlying;
- Granular fill materials comprising fine to coarse grained Gravelly Silty SAND, noted to be moist in condition. Overlying;
- > Natural subgrade materials consisting of:
 - Predominantly alluvial Sandy SILT of low plasticity, encountered along Oakhampton Rd (TB503-TB505). Alluvial subgrade soils were assessed as ranging from below to above plastic limit in moisture condition, and soft to firm in consistency (at subgrade level) based on limited DCP testing.
 - Predominantly residual Sandy / Silty Sandy CLAY of medium to high plasticity, overlain by minor alluvial Sandy SILT (TB501), encountered along S Willards Lane and Scobies Lane (TB501-TB502). Residual subgrade soils ranged from below to above the plastic limit in moisture condition, with stiff to very stiff consistency in TB501 and soft to firm consistency within TB502 at 0.5-1.0m bgl (based on DCP results). Residual soils appeared to grade towards weathered rock, with drilling refusal encountered at 1.1m bgl within TB502 on Scobies Lane.

Bore ID	Road Name	Chainage (m)	Wearing Course Thickness (mm)	Base of Pavement Profile (m bgl)	Base of Granular Fill (m bgl)	Base of Natural Subgrade (m bgl)
TB501	S Willards Lane	776 ⁽¹⁾	40	0.58	NE	>2.00
TB502	Scobies Lane	61	20	0.17	0.45	1.10 ⁽³⁾
TB503	Oakhampton Road	394	20	0.60	0.85	2.00
TB504	Oakhampton Road	290	20	1.00 ⁽²⁾	NE	>2.00
TB505	Oakhampton Road	200	20	0.63 ⁽²⁾	1.10	>2.00

Table 5-2 Summary of Encountered Profile Depths - Existing Pavements

Notes to table:

(1) Based on proposed flood access road chainage.

(2) Evidence of former overlay pavement construction.

(3) Drilling refusal encountered on weathered rock.

No groundwater or seepage was encountered within any of the pavement test bores at the time of investigation. It should be noted that groundwater levels are likely to fluctuate in response to variations in climatic and site conditions.

Foreign materials (ceramic fragments) were encountered in TB502 at a depth of 0.17-0.50m in granular filling.

5.2 Proposed Flood Access Route

5.2.1 Subsurface Conditions

Subsurface conditions along the proposed flood access road have been summarised below based on encountered materials within boreholes (BH01-BH07) and interpreted material composition from CPT's (CPT01-CPT05) using the CPT-based soil behaviour type classification system (*Robertson, 2010*). Detailed engineering logs and CPT results are attached within Appendix B.

Table 5-3	Summary of	Encountered	Subsurface	Conditions
-----------	------------	-------------	------------	------------

Unit ID	Origin	Material Description
Unit T1	Topsoil / Topsoil Fill	Sandy SILT surficial material and Silty SAND / Clayey SILT fill material with organics (topsoil fill).
Unit F1	Fill	Uncontrolled fill materials of variable composition, comprising fine to coarse, angular to sub-angular Sandy GRAVEL and medium to high plasticity Silty CLAY, typically dry to moist in condition.
Unit A1	Alluvium	Alluvial soils of variable composition, generally comprising medium to high plasticity Silty / Sandy CLAY, low plasticity Sandy / Clayey / Sandy Clayey SILT, and fine to medium grained Silty / Clayey SAND. Fine grained alluvial soils (silts, clays) typically ranged from below to above the plastic limit in moisture condition, and variable concistency with depth in the range of firm to very stiff consistency. Granular alluvial soils were generally very loose to medium dense and typically moist in condition, with isolated wetter zones.
Unit R1	Residual	Low to medium plasticity Silty / Silty Sandy CLAY, typically below to equal the plastic limit and very stiff to hard in consistency.
Unit XW1	Extremely Weathered Material (EWM)	Extremely weathered SANDSTONE/SILTSONE material generally consistent with fine to coarse grained Clayey SAND and low plasticity Silty / Sandy CLAY. EWM clayey sands ranged from dense to very dense, and dry to moist in condition. EWM clays were generally hard in consistency and below the plastic limit in moisture condition. Drilling refusal on weathered rock was encountered within TB501 and BH07 at the base of the EWM profile.

Bore / CPT ID	Chainage (m)	Topsoil Thickness (mm)	Base of F1 - Fill (m bgl)	Base of A1 - Alluvium (m bgl)	Base of R1 - Residual (m bgl)	Base of XW1 - EWM (m bgl)	Depth to Weathered Rock (m bgl)
TB504 ⁽¹⁾	0	-	1.00	>2.0	NE	NE	NE
BH04	25	200	0.5	>3.0	>3.0 NE		NE
CPT01	75	-	-	27.1 ⁽²⁾	-	-	27.1 ⁽³⁾
BH05	140	150	NE	>6.0	NE	NE	NE
CPT02	216	-	-	25.0 ⁽²⁾	-	-	25.0 ⁽³⁾
BH03	310	150	NE	>3.0	NE	NE	NE
CPT03	405	-	-	7.7 ⁽²⁾	-	-	7.7 ⁽³⁾
BH01/CPT04	435	100	NE	9.8(2)	-	-	9.8 ⁽³⁾
BH02/CPT05	490	300	0.80	7.0 ⁽²⁾	-	-	7.0 ⁽³⁾
BH07	540	100	0.30	NE	1.0	1.3	1.3 ⁽³⁾
Site Observation	600	-	0.50	NE	0.8	NE	0.8
BH06	662	-	1.00	NE	1.4	>2.0	NE
TB501 ⁽¹⁾	773	-	0.58	0.85	1.3	>2.0	NE

Table 5-4 Summary of Encountered / Interpreted Profile Depths - Proposed Flood Access Route

Notes to table:

(1) Pavement test bores drilled within proposed flood access road alignment included, with existing pavement profile included in overall fill profile. Refer to Section 5.1.2 for summary of existing pavement profile breakdown.

(2) Assumed alluvial profile overlying weathered rock profile in CPT tests.

(3) CPT / Drilling refusal on weathered rock profile.

Standing groundwater was encountered within the alluvial profile in BH02 and BH05 at depths of 1.6m and 3.5m bgl, respectively, with possible seepage occurring from 0.9m bgl in BH02. No groundwater or seepage was encountered within the remaining borehole locations.

5.3 Laboratory Test Results

5.3.1 Acid Sulfate Soils

Results of acid sulfate soil (ASS) laboratory testing comprising preliminary field screenings and detailed ASS testing (Chromium Reducible Sulphur Method) undertaken on selected samples are summarised and compared against relevant guidelines in Figure 5-1 below. The results in relation to the adopted criteria are discussed further in Section 6.3 below.

	Date		Oninin	Material	рН _F	рН _{FOX}	рН _F - рН _{FOX}	Reaction	pH kcl	Acid Trail (TAA)	Sulfur Trail (SCr)		Net Acidity		Liming rate	
Location	Depth (m)	Sampled	Origin	Description	pH units	pH units	pH units	Rate	pH units	mole H+/t	%w/w	mole H+/t	%w/w	mole H+/t	kg CaCO₃/t	(-ANCE) kg CaCO3/t
TB501	0.70 - 0.75	8/12/22	Alluvium	Sandy Silt	7.1	3.2	3.9	Low	5.5	<5	0.02	10	0.02	13	1	0.96
TB505	1.60 - 1.70	8/12/22	Alluvium	Sandy Silt	6.7	5.1	1.6	Medium	-	-	-	-	-		-	-
BH02	0.45	5/12/22	Fill	Silty Clay	7.1	4.5	2.6	Low	-	-	-	-	-		-	-
BH02	0.95	5/12/22	Alluvium	Clayey Silt	7.2	5.8	1.4	High	-	-	-	-	-		-	-
BH03	0.45	5/12/22	Alluvium	Silty Clay	7.2	6.2	1.0	Extreme	-	-	-	-	-		-	-
BH04	0.45	5/12/22	Fill	Sandy Clay	7.2	5.1	2.1	Extreme	6.1	<5	0.009	6	0.009	5.5	<0.75	-
BH05	0.95	5/12/22	Alluvium	Clayey Silt	7.2	6.1	1.1	High	-	-	-	-	-	-	-	-
BH05	1.45	5/12/22	Alluvium	Silty Sand	7.2	5.6	1.6	High	-	-	-	-	-	-	-	-
BH06	0.60 - 0.70	8/12/22	Fill	Silty Clay	6.7	4.1	2.6	Low	4	74	0.01	7	0.13	81	6	6.1
BH07	0.40 - 0.50	8/12/22	Residual	Silty Clay	7.0	6.0	1.0	Low	-	-	-	-		-	-	-
Guideline Value Envirolab PQL					-	-	-	-	-	5	0.005	3	0.005	3	0.75	0.75
ASSMAC	(1998) Poten	tial Acid Sul	fate Soil Indic	cator Value	4 - 5.5 ¹	< 3 ³	1 ⁴	-	-	-	-	-	-	-	-	-
ASSMAC	(1998) Actua	I Acid Sulfat	e Soil Indicate	or Value	≤ 4 ²	-	_	-	-	-	-	-	-	-	-	-
ASSMAC	(1998) Actior	n Criteria - C	oarse Soils (1 - 1000 tonnes) ⁵	-	-	_	-	-	-	-	-	0.03	18	-	-
ASSMAC	(1998) Actior	n Criteria - M	edium Soils	(1 - 1000 tonnes) ⁶	-	-	_	-	-	-	-	-	0.06	36	-	-
ASSMAC	(1998) Actior	ו Criteria - F	ine Soils (1 -	1000 tonnes) ⁷	-	-	_	-	-	-	-	-	0.10	62	-	-
ASSMAC	(1998) Actior	n Criteria - C	oarse Soils (>1000 tonnes) ⁵	-	-	_	-	-	-	-	-	0.03	18	-	-
ASSMAC	(1998) Actior	ו Criteria - M	edium Soils	(>1000 tonnes) ⁶	-	-	-	-	-	-	-	-	0.03	18	-	-
ASSMAC	(1998) Actior	ו Criteria - F	ine Soils (>1(000 tonnes) ⁷	-	-	-	-	-	-	-	-	0.03	18	-	-
Notes to T	able:															
1 - pH valı	ies >4 and <5.5	5 are acid and	d may be the re	sult of some previous	or limited ox	idation of su	ulfides, but is	s not confirmat	ory of actua	l acid sulfate s	soils					
2 - pH rea	dings of pH≤4,	indicates that	actual acid su	Ifate soils are present v	with the sulf	fides having	j been oxidiz	zed in the past,	resulting in	acid soils (and	d soil pore	w ater)				
3 - The low er the final pH _{FOX} value is, the better the indication of a positive result. » If the pH _{FOX} < 3 and there w as a strong reaction to the peroxide, there is a high level of certainty of a potential acid sulfate soils. The more the pH _{FOX} drops below 3, the more positive the presence of sulfides. » A pH _{FOX} 3-4 is less positive and laboratory analyses are needed to confirm if sulfides are present. » For pH _{FOX} 4-5 the test is neither positive nor negative. Sulfides may be present either in small quantities and be poorly reactive under quick test field conditions. » For pH _{FOX} >5 and little or no drop in pH from the field value. Little pet acid generating ability is indicated																
4 - If the p	H _{FOX} value is a [,]	t least one un	it below field p	H _F , it may indicate pote	ntial acid su	lfate soils. 7	The greater t	the difference l	betw een the	e two measure	ements, the	more indic	ative the v	alue is of a	a potential ac	id sulfate soils.
5 - Coarse	soils comprise	e sands to loa	my sands - Ap	proximate clay content	t (% < 0.002	:mm) ≤ 5%										
6 - Medium	n soils comprise	e sandy loam	s to light clays	- Approximate clay cor	ntent (% < 0	.002mm) bet	tw een 5 anc	d 40%								

7 - Fine soils comprise medium to heavy clays and silty clays - Approximate clay content (% < 0.002mm) ≥ 40%

Contaminant Exceedance Indicators:

Bold	Indicates the laboratory result is within the specified range of the ASSMAC (1998) Actual Acid Sulfate Soil Indicator Values
Italics	Indicates the laboratory result either exceeds or is within the specified range of the ASSMAC (1998) Potential Acid Sulfate Soil Indicator Values
	Indicates exceedance of the ASSMAC (1998) Action Criteria

Figure 5-1 Acid Sulfate Soils Results Analysis Table

5.3.2 **ENM Exemption**

Results of the soil chemical testing for analytes forming the ENM exemption guidelines are presented in the summary tables attached in Appendix C, for ease of comparison against relevant guidelines and discussed in Section 8 below.

5.3.3 California Bearing Ratio (CBR)

Results of the 4-day soaked CBR testing, including standard compaction, undertaken on representative samples of existing and future subgrade materials summarised in Table 5-5 below.

Table 5-5	Summary of CBR Test Results						
Bore ID	Depth (m bgl)	Material Description	W (%)	SOMC (%)	SMDD (t/m³)	Swell (%)	CBR (%)
TB502	0.50 - 1.00	Silty Sandy CLAY (existing pavement subgrade)	15.1	15.5	1.78	0.0	8.0
TB504	0.70 - 1.00	Sandy SILT (existing pavement subgrade)	7.8	6.0	1.90	0.5	8.0
BH03	0.15 - 0.50	CLAY (proposed embankment subgrade)	29.0	31.5	1.40	0.5	2.0
BH04	0.30 - 0.65	Sandy CLAY (proposed embankment subgrade)	16.7	20.0	1.62	0.5	6.0

Notes to table:

Field Moisture Content W:

SOMC: Standard Optimum Moisture Content

SMDD: Standard Maximum Dry Density

5.3.4 Atterberg Limits & Particle Size Distribution (PSD)

Results of the Atterberg Limits and PSD testing undertaken on representative soil samples along the proposed flood access road alignment is summarised in Table 5-6 below.

Table 5-6 Material Quality Test Results

Bore ID	Depth (m bgl)	Material Description	Fines (%)	Sand (%)	Gravel (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticit y Index (%)
BH03	0.15 - 0.50	Silty CLAY (proposed embankment subgrade)	-	-	-	46	25	21
BH04	0.30 - 0.65	Sandy CLAY (proposed embankment subgrade)	66	34	0	33	21	12
BH04	1.70 - 2.00	Silty Sandy CLAY (proposed embankment subgrade)	-	-	-	31	19	12
BH05	0.70 - 1.00	SAND with clay (proposed embankment subgrade)	10	90	0	30	19	11
BH05	1.20 - 1.50	Silty SAND (proposed embankment subgrade)	15	85	0	-	-	-

6 Geotechnical Comments & Recommendations

6.1 Settlement Assessment

Settlement calculations have been conducted to approximate expected settlements as a result of surcharge loading of the existing shallow filling and deep alluvial profile within the flood access road embankment.

The magnitude of settlement will to vary with the height of the embankment along the alignment and depth / condition of existing low strength layers of firm/loose consistency. Based on the findings of the investigation, observed (boreholes) and interpreted (CPT) subsurface conditions generally indicated shallow filling in some locations over variably layered alluvial soils along majority of the alignment, typically composed of firm to very stiff clay/fine-grained soils and very loose to medium dense sand/granular soils, encountered depths up to 27m bgl. Isolated, thin (<0.5m thick) layers of soft clays and very loose sands were encountered in some locations. With reference to supplied concept plans, embankment height generally ranged from approximately 0.5m up to a maximum height of 2.8m (including pavement).

For the purpose of this assessment, settlement analysis was undertaken at discrete CPT locations along the proposed alignment where full depth and condition of the soil profile was ascertained, varying the fill embankment height to provide a range of settlement magnitude. Settlement analysis was generally focused within the alluvial flood plain area (approx.Ch. 0 to 500m) where deeper and variable soil conditions were present.

6.1.1 Design Parameters

A summary of the assumed geotechnical design parameters adopted for the settlement analysis are presented in Table 6-1 below.

Material	Density / Consistency	γ (kN/m³)	٧'	Vu	E' (MPa)	E∪ (MPa)	m _v (m²/kN)
	Very Loose	16	0.3	-	6	-	1.2 x 10 ⁻⁴
Sands ⁽¹⁾	Loose	17	0.3	-	10	-	7.4 x 10 ⁻⁵
	Medium Dense	18	0.3	-	35	-	2.1 x 10⁻⁵
	Soft	17	0.3	0.5	2.5	3	3.0 x 10 ⁻⁴
Classo(1)	Firm	18	0.3	0.5	5	6	1.5 x 10 ⁻⁴
Clays	Stiff	19	0.3	0.5	15	17	5.0 x 10 ⁻⁵
	Very Stiff	20	0.3	0.5	30	35	2.5 x 10⁻⁵

 Table 6-1
 Geotechnical Design Parameters - Settlement

Notes to table:

(1) Material characteristics inferred from CPT-based soil behaviour type classification system (Robertson, 2010)

6.1.2 Design Assumptions

Primary consolidation settlement calculations have been undertaken based on the geotechnical parameters above and the following assumptions:

- > 1-D and 2-D loading conditions have been adopted in settlement analysis based on variable soil depth to embankment load width ratios.
- > Ideal elastic soil conditions, with secondary consolidation / creep settlement assumed to be negligible based on existing material strength / composition.
- > Applied surcharge pressure of 20kPa per metre height of the embankment.
- Nominal applied surcharge pressure of 10kPa to account for typical vehicle traffic comprising predominantly light vehicles, allowing for reduction provided by the pavement structure.

Where the parameters assumed above vary, for example embankment fill with unit weight exceeding 20 kN/m^3 and/ or high traffic loadings from heavy vehicles, the settlement analysis required review.

6.1.3 Analysis & Recommendations

The analysis conducted revealed predicted values of primary consolidation settlement in the order of up to 40-50mm at a maximum, where the lowest strength materials are modelled under the highest design embankment height. As noted settlement will be variable along the alignment, and the analysis indicates settlements generally in the order of less than 30mm along majority of the alignment, which would usually be considered acceptable for flexible pavements.

There are several flexible pavement options that could be considered for the proposed Flood Access Road. Construction of a flexible unbound pavement with sprayed seal wearing course may be preferable, which would have more capacity for tolerating differential settlements without adverse performance, in comparison to other pavement structures. Bound pavements could also be considered due to performance benefits and significantly reduced moisture sensitivity, however if impacted by settlements would not be as readily maintained as an unbound pavement.

Ideally the embankment would be constructed to the underside of pavement and survey monitored to ensure settlements have reduced to acceptable levels prior to pavement construction, however may not be feasible due to timing implications. Protection of the pavement from impacts of flooding will be essential in any case, through providing effective waterproof sealing, geometry (e.g. cross fall) and drainage.

Reactive soil movements have also been considered due to reactive clay soils encountered, and are expected to result in movements in the order of 40-50 mm between extremes in moisture content, particularly at low embankment heights. The importation of low reactivity fill (refer Section 6.2.2.4) will assist in mitigating reactive soil movements.

6.2 Earthworks

6.2.1 Excavations

With reference to the supplied long sections, it is understood that no significant excavations are proposed to achieve design levels for the proposed flood access road and tie-in section upgrades. It is generally expected that some shallow excavations would be required in areas for pavement boxing, utility trenching and over-excavation of uncontrolled filling and unsuitable subgrade materials. Excavations into the shallow site soils are expected to be readily undertaken by use of conventional earth moving equipment.

It should be noted, drilling refusal was encountered on the weathered rock profile in BH07 and TB501 at depths of 1.3m and 1.1m bgl, respectively. Where deeper excavations are required in areas of observed shallow rock, the civil contractor should form their own assessment on plant requirements, in conjunction with this report and the attached borehole logs.

6.2.2 Flood Access Road Filling & Batter Slopes

Based on the supplied long sections, it is understood that the majority of the proposed flood access road alignment is to be constructed on a fill embankment, from approximate Ch. 0 to 600m, before transitioning to predominantly on-grade pavement construction, from approx. Ch. 600 to 820m. The proposed fill embankment height typically varies from approximately 0.5m up to 2.8m, dependent on the underlying topography.

6.2.2.1 Methodology

All general embankment filling should be placed and compacted in accordance with AS 3798-2007 *Guidelines on Earthworks for Commercial and Residential Developments* [4], and the following procedure:

- Removal of any existing topsoil, deleterious or low strength materials from the areas where fill is to be placed. Any unsuitable material including foreign matter must be removed from the fill areas.
- > Draining of any ponded water and removal of any sediment within the existing creek lines which intercept the proposed flood access route alignment, the need for which will be dependent on prevailing climatic conditions.
- Static proof-roll the exposed subgrade using a heavy (minimum 10 tonne) roller under the direction of an experience geotechnical consultant, with any loose or yielding areas excavated and replaced with compacted select fill or suitable subgrade replacement comprising of material of similar consistency to the subgrade. The investigation results do not indicate significant bridging treatments would be required to support the embankment, with localised removal and subgrade replacement expected to be suitable, subject to inspection by a geotechnical consultant during construction.
- > Benching of the slopes where fill is to be placed with slopes steeper than 8H:1V will be required.
- Placement of fill in uniform horizontal layers with compaction of each layer to a minimum dry density ratio of 98% Standard Compaction (AS 1289-5.1.1) at moisture contents in the order of 85-115% of SOMC or ±2% but generally as close to SOMC as practical. Over compaction should be avoided.
- > Fill within the road subgrade level (minimum 0.5m below design subgrade level) should be in accordance with Section 7.4.1 below. This includes increased compaction criteria and variations to the moisture specification.

6.2.2.2 Flood Control Levee Interface

Current design plans show the proposed fill embankment is planned to be constructed over the northern / up gradient side of the existing flood control levee, with the road height approx. 0.5m below the top of spillway (refer Figure 6-1 below). It is understood other configurations were considered such as offsetting the proposed embankment from existing levee so that it would not be relied upon for structural support, however this created issues with drainage in the zone between the embankment and levee.

The proposed design is considered feasible, providing suitable subgrade preparation is undertaken prior to embankment construction and the embankment does not impede the flood control levee's function. The following comments are provided:

The pavement shall not be located closer than 1V:1H zone from the toe of existing flood control levee (denoted by dashed red line in Figure 6-1 below), which may result in widening of the proposed embankment shown in the current design.

- Removal of any uncontrolled filling and surface vegetation within the existing levee footprint is required prior to embankment construction, including adjustment of / reinstating roughly placed boulder size rock fill within the existing Zone 3A to ensure it is a suitable embankment foundation.
- > Geofabric is recommended to be placed over the existing flood control levy surface (predominantly rock fill and reno mattresses) prior to fill placement.
- > Existing culvert pipes beneath the levee require extension underneath the proposed fill embankment.

Ch 200.00 Flood Access Road

Figure 6-1 Flood access road design plan extract

6.2.2.3 Batter Slopes

All fill should be battered at a slope of 4H:1V or preferably flatter and temporary erosion control should be provided. To prevent erosion in the long term, provision of protection by vegetation and with the provision of adequate drainage is also required. Proposals to batter slopes steeper would be subject to geotechnical review and MCC approvals.

6.2.2.4 Fill Materials

Based on the supplied long sections, imported fill materials are expected to be utilised within construction of the proposed fill embankment. It is recommended that proposals to import fill materials be subject to geotechnical review prior to import, as to advise on any adverse impacts to the current geotechnical recommendations.

Generally, imported fill materials should conform to Maitland City Council (MCC) requirements and be sourced considering the following:

- > Material should generally be of uniform composition and consistency.
- Material is to be free of deleterious material, vegetation or other organic matter. Imported fill composed of silt materials or materials high in silt content would require blending with other materials to render suitable as general fill.
- > Maximum particle sizes should not exceed 150mm or 2/3 of the compacted layer thickness for general fill
- Maximum particle sizes should not exceed 100mm or 1/3 the compacted layer thickness for subgrade filling or subgrade replacement.
- > Fill material imported shall be of low reactivity to reduce impacts from reactive soil movements, with a shrink swell index (Iss) of ≤1%.
- Material with properties/characteristics equal to (or better) than those assumed in design for fill materials e.g. soaked CBR value.

6.3 Preliminary Acid Sulfate Soils Assessment

Preliminary acid sulfate soils (ASS) assessment has been undertaken to assess the potential for ASS to be present within the anticipated disturbance zone for construction and rehabilitation works.

The assessment comprised the following:

- > A review of available published geological data and acid sulfate soils risk maps.
- > Subsurface investigation, soil sampling and laboratory testing of representative soil samples.
- > Acid sulfate soil laboratory testing comprising ten (10) screening tests and three (3) detailed tests.

The laboratory testing was conducted by external Envirolab laboratories who hold current NATA accreditation, in accordance with NSW Acid Sulfate Soil Management Advisory Committee (ASSMAC) Acid Sulfate Soil Manual (ASSM) [5] and the Queensland Acid Sulfate Soil Technical Manual (QASST) Soil Management Guidelines [6].

6.3.1 Proposed Works

As discussed the proposed works comprise new embankment and pavement construction within the proposed flood access road, and pavement rehabilitation / reconstruction works within the adjoining tie-in sections.

Based on the desktop review (refer Section 2.2.2 above) the primary risk for acid sulfate soils to be exposed would be within Ch 0-450m during embankment foundation preparation, however samples from a range of site areas have been tested to assess the likelihood of encountering ASS during the works. The depth of assessment was limited to a nominal 2m given the limited depth of excavations expected as part of the works based on current design plans.

6.3.2 Acid Sulfate Soil Action Criteria

The action criteria indicating the requirements for an ASSMP is detailed in the Acid Sulfate Soil Manual (ASSM) [5] which suggests values of the percentage of oxidisable sulfur and actual acidity for soil types broadly categorised as fine texture, medium texture and coarse texture.

The alluvial and fill soils tested range from fine to coarse textured soils.

The action criteria is also based on the extent of the proposed ASS soil disturbance, with various trigger values for where 1-1000 tonnes or where greater than 1000 tonnes is disturbed. Based on the proposed works, soil volumes less than 1000 tonnes in total are expected to be disturbed.

The relevant action criteria where <1000 tonnes is disturbed from Table 4.4 of ASSM [5] ranges from:

- > Sulfur trail of 0.03% or 18 mole H+/tonne and acid trail of 18 mole H+/tonne for fine soils; to
- > Sulfur trail of 0.10% or 62 mole H+/tonne and acid trail of 62 mole H+/tonne for fine soils.

The criteria is shown in the analysis table in Figure 5-1 above.

6.3.3 Acid Sulfate Soil Laboratory Test Results

Acid sulfate soil test results are compared against the adopted ASSM criteria in Figure 5-1 above, with complete test reports attached in Appendix C.

One exceedance to the adopted criteria was detected in a sample of clay fill from BH06 at 0.6-0.7m depth, with a net acidity of 0.13% / 81 mole H+/tonne marginally exceeding the criteria limit of 0.10% / 62 mole H+/tonne.

6.3.4 Acid Sulfate Soil Assessment

The investigation indicates that ASS are not present at the site within a depth of 1.7m below existing surface levels (depth range of samples tested), which is consistent with the risk mapping review which indicated the potential for ASS at a depth of >3m.

The exceedance to the adopted criteria detected in one sample is more indicative of a naturally acidic fill material imported from an off-site source. Given the condition of the filling encountered (stiff consistency and not over wet) significant disturbance of this material encountered at 0.5-1.0m is not envisaged, and as such treatment as an actual ASS is not considered to be required to protect the surrounding environment.

Given the limited testing conducted across the range of site areas, additional ASS testing prior to any offsite reuse of materials is recommended (i.e. implications to ENM assessment), or if significant disturbance of the identified acidic materials is proposed.

The above assessment requires review where any of the assumptions around disturbance quantities or depths made are not correct.

7 Pavement Design

7.1 Existing Pavement Performance & Rehabilitation Options

Inspection of the existing pavements along S Willards Lane, Scobies Lane and Oakhampton Rd indicates generally reasonable performance considering the nature of the road sections, with localised areas along Scobies Lane performing poorly.

The intrusive ground investigation within pavement test bores (TB501-TB505) generally revealed variable pavement thicknesses within the tie-in sections, with pavement overlay construction evident in test bores along Oakhampton Rd.

Natural subgrade conditions to the existing Oakhampton Rd and Scobies Lane pavement sections were generally poor, comprising soft to firm alluvial sandy silt material to an observed depth of 1.3m along Oakhampton Rd and soft to firm residual silty sandy clay to a depth of approx. 1.0m along Scobies Lane. Oakhampton Rd is noted to be located in close proximity and parallel to the Hunter River alignment (approx. 50m west), with periodic inundation of the pavement expected to contribute to the poor subgrade conditions observed.

Reasonable subgrade conditions were encountered within the S Willards Lane section, comprising stiff to very stiff alluvial sandy silt and natural clays.

Based on conditions encountered at the time of fieldwork, rehabilitation could be considered for the S Willards Lane section, however full depth pavement reconstruction for Oakhampton Rd and Scobies Lane sections would be required where longer term performance and reduced maintenance risk is required due to the poor surface and subgrade conditions present.

Pavement rehabilitation options for S Willards Lane could range from resealing, through to granular overlaying with basecourse material in areas of increased vertical alignment.

There are a range of pavement reconstruction options available, including the use of asphalt, unbound and bound materials. It is assumed that the use of unbound and bound materials would be preferred due to economics, and bound materials would be recommended in areas expected to be inundated during inclement weather / flooding of the Hunter River.

7.2 Pavement Thickness Design

Pavement thickness design has been undertaken based on the findings of the geotechnical investigation and Maitland City Council (MCC) requirements. The following guidelines have been adopted for the design of the Dalveen Road section investigated:

- > Pavement thicknesses for flexible pavements in accordance with Austroads Part 2 [7]; and
- > Maitland City Council (MCC) Manual of Engineering Standards, Chapter 5: Pavement Design [8].

7.2.1 Design Parameters

7.2.1.1 Design Subgrade

Review of the supplied long sections to the proposed flood access road and existing road alignments in conjunction with subsurface conditions encountered during the investigation, subgrade conditions along the proposed and existing alignments are generally expected to comprise generally granular filling, residual clays, and variable alluvial soils.

Results of the laboratory testing, undertaken on subgrade samples recovered along the proposed flood access road alignment and existing pavement sections indicated soaked CBR values of 2% to 8% for the encountered alluvial soils and 6% for the residual silty sandy clay profile. The CBR value of 2% was obtained on a sample of alluvial clay from BH03 located at approx. Ch 310m where approx. 2.5m height of embankment fill is proposed above the material tested.

Field testing along the proposed flood access road alignment and existing road sections indicated areas of low strength natural subgrade conditions, which would have an in-situ CBR in the order of 2%. Subgrade treatment will be required in areas where weak subsurface soils are present close to pavement formation level. Poor subgrade conditions were generally encountered below the existing pavement and fill materials along Oakhampton Rd and Scobies Lane, and between approx. Ch. 350 to 500m of the proposed flood access road alignment (approx. Ch. 350 to 500m) occurs where proposed embankment fill height is typically in exceedance of 1m, as such it is anticipated to have sufficient cover to not adversely impact to the overall pavement performance.

On the basis that effective subgrade treatment is conducted to address low strength materials (refer Section 7.2.2 below), and considering the embankment height above low strength alluvial clays, a minimum design subgrade CBR of 3% has been considered for pavement design. Fill materials for the proposed embankment is yet to be confirmed, as such, pavement design on fill subgrades may require re-evaluation during construction, following confirmatory testing and review of proposed subgrade fill materials.

7.2.1.2 Design Traffic

Design traffic loading for the proposed flood access road has been determined in accordance with Austroads Part 2 [7] and based on the following supplied traffic data:

- > ADT (average daily traffic) of 1417 for Oakhampton Road from August 2017, with 5.5% heavy vehicles;
- > ADT of 679 for existing Scobies Lane from September 2016; and
- > An ADT of 1430 is expected for the proposed flood access road, accounting for planned future upgrades to Walka Water Works which will be accessed off the road.

Design traffic calculations have been conducted with the results shown in Table 7-1 below, with output sheets showing assumptions attached in Appendix D.

	Design frame Loading		
	Pood Section	Design Period & Des	sign Traffic (ESA)
Ruau Section		20 years	30 years
	Oakhampton Road	1.4 x 10 ⁶	2.3 x 10 ⁶
	Proposed Flood Access Road (2)	_ (3)	1.1 x 10 ⁶
	Scobies Lane & S Willards Lane (2)	3.6 x 10⁵	6.1 x 10 ⁵

Table 7-1 Design Traffic Loading

Notes to table:

(1) Design traffic loading determined based on client supplied traffic data.

(2) Reduced heavy vehicle proportion of 3% adopted in the absence of supplied data.

(3) Rehabilitation design period not considered for new construction.

7.2.2 Subgrade Treatment

Low strength materials have been encountered at existing subgrade level within Oakhampton Road and Scobies Lane. Soft to firm alluvial silts were encountered over the full subgrade depth at Oakhampton Road and soft to firm residual clays down to 1.0m bgl within Scobies Lane.

There are a range of subgrade treatment options available to facilitate pavement reconstruction (where conducted), and given the significant depth of low strength material it is assumed that construction of a bridging layer from either a lightly bound material or coarse rock fill would be feasible.

A nominal 300 mm bridging layer with geogrid at the base of layer could be provisioned for, which would require confirmation by a geotechnical consultant at the time of construction, and would vary based on the material type utilised and the prevailing weather conditions.

Alternatively pavement rehabilitation would reduce the depth of over excavation and replacement, albeit at a reduced design life expectation. Overlaying and/or in situ stabilisation could be considered to rehabilitate the existing pavements, discussed further in Section 7.3 below.

7.2.3 New Construction / Pavement Reconstruction: Flexible Unbound Pavement

Design pavement thickness calculated for the proposed flood access road is summarised in Table 7-2 below. It must be noted that the design thickness presented below are minimum thicknesses regardless of construction tolerances.

Road Sections	Scobies Lane & S Willards Lane	Proposed Flood Access Road		Oakhampton Road	Recommended Material Type ⁽¹⁾
Wearing Course		Spraye	ed Seal		-
Base Course	130mm	135mm	135mm	145mm	DGB or NGB
Subbase	380mm ⁽²⁾	400mm ⁽²⁾	165mm	425mm ⁽³⁾	DGS20/DGS40
Subgrade Treatment ⁽⁴⁾	(300mm)	(300mm)	-	(300mm)	CBR ≥ 15%
Total Pavement Thickness (excluding treatment layer)	510mm	535mm	300mm	570mm	-
Minimum Design CBR	3%	3%	8% (5)	3%	-
Design Traffic	6.1 × 10⁵ DESA	1.1 × 10 ⁶ DESA	1.1 × 10 ⁶ DESA	2.3 × 10 ⁶ DESA	-
Design Life		30 y	-		

Table 7-2 New Construction / Pavement Reconstruction: Flexible Unbound Materials

Notes to table:

(1) Refer to Section 7.3.2 for material specifications.

(2) Could be reduced to minimum MCC design requirement of 125mm where 300mm subgrade treatment (rock fill or lightly bound material) is adopted.

(3) Could be reduced to 135mm where 300mm subgrade treatment (rock fill or lightly bound material) is adopted.

(4) Bridging layer required in some areas due to depth of low strength subgrade encountered - refer Section 7.2.2 above.

(5) Design CBR 8% composition only suitable where minimum 0.5m fill embankment material with CBR 10% provided below underside pavement.

Where a thin asphalt is preferable for example 45mm of AC14, the thickness could be reduced from the subbase thicknesses shown, providing the MCC minimum 125mm subbase is maintained.

7.2.4 New Construction / Pavement Reconstruction: Heavily Bound Base

Pavement construction with a heavily bound base, comprising of slag with 10% ash based products is considered a suitable alternative to flexible unbound construction, and would provide performance benefits and significantly reduced moisture sensitivity in comparison to the flexible option.

It should be noted that the layer thicknesses detailed include a construction tolerance of 10 mm. Reference should also be made to the material requirement and compaction specification in this report.

Table 7-3 New Construction / Pavement Reconstruction: Heavily Bound Base

Road Sections	Scobies Lane & S Willards Lane	Proposed Floo	d Access Road	Oakhampton Road	Recommended Material Type
Wearing Course (2)		-			
Bound Basecourse (3)	335mm	345mm	300mm	360mm	HBB R73 [9]
Subgrade Treatment (4)	(300mm)	(300mm)	-	(300mm)	CBR ≥ 15%
Total Pavement Thickness (excluding treatment layer)	335mm	345mm	mm	mm	-
Minimum Design CBR	3%	3%	8% ⁽⁵⁾	3%	-
Design Traffic	6.1 × 10 ⁵ DESA	1.1 × 10 ⁶ DESA	1.1 × 10 ⁶ DESA	2.3 × 10 ⁶ DESA	-
Design Life	30 years				-

Notes to table:

(1) Refer to Section 7.3.2 for material specifications.

(2) Wearing course and binder design shall be confirmed in consultation with the sealing contractor and following determination of the HBB material and depending on weather conditions during construction. Primer seal not necessarily required in conjunction with heavily bound basecourse.

(3) No significant thickness reduction where select layer adopted, and basecourse thickness to be maintained.

(4) Bridging layer required in some areas due to depth of low strength subgrade encountered – refer Section 7.2.2 above.

(5) Design CBR 8% composition only suitable where minimum 0.5m fill embankment material with CBR 10% provided below underside pavement.

Where a thin asphalt is preferable for example 45mm of AC14, the thickness could be reduced from the basecourse thicknesses shown, which would need to be confirmed by design checks.

Where a thin bituminous wearing course is employed in conjunction with a heavily bound pavement, reflective cracking in the pavement should be expected. Use of a polymer modifed or rubber seal can assist in delaying the appearance of reflective cracking in the seal. Where a self-cementing material is used: the cracks, if sealed promptly, are not of structural significance and are of aesthetic consideration only. The use of slag or ash based products with a 48-hour working time should reduce the risk of cracking compared to cement stabilised material; however where cracking is not acceptable, Stantec should be consulted.

7.3 Pavement Rehabilitation

There are a range of pavement rehabilitation options available for the existing tie-in sections of pavement. As discussed, poor performance indicated by visual inspection and poor subgrade conditions are present within the existing Scobies Lane and Oakhampton Road subject sections which would limit the effectiveness of pavement rehabilitation.

S Willards Lane could be considered for rehabilitation, given the reasonable performance observed and existing pavement / granular fill thickness of 580mm. Considering the short length of the section the following options are considered feasible:

- > Ripping and recompacting the existing pavement followed by resealing; or
- > Granular overlaying with 100mm basecourse material and resealing, where the proposed vertical alignment can accommodate this height change.

Rehabilitation of S Willards Lane would be expected to improve serviceability in the medium term. Rehabilitation utilising similar options could be considered for Scobies Lane and Oakhmapton Road, with insitu stabilisation also potentially feasible for Oakhmapton Road due to the length of the section and existing pavement thickness, however would only be considered short term options. Where in-situ stabilisation is considered further laboratory UCS test trials would need to be conducted.

Stantec is happy to consider other options that MCC prefer, and further advice can be provided.

7.4 Pavement Construction

7.4.1 Subgrade Preparation

7.4.1.1 Existing Pavement Reconstruction

Subgrade preparation for reconstruction of existing sections of road should be in general accordance with MCC specifications and the following procedures.

Subgrade preparation for the proposed Flood Access Road is detailed in Section 6.2.2.1 above.

- > Any organic material, existing uncontrolled fill, or other deleterious material should be removed from areas of any proposed widening.
- > Removal of the existing seal for offsite disposal or recycling.
- Excavation to design subgrade level, including the removal and stockpiling of existing pavement and granular fill materials for reuse as select fill, subject to potential reconditioning and removal of oversized material. Care should be exercised during excavation to avoid contamination of suitable granular material with subgrade materials. Following excavation, inspection of exposed subgrade by a geotechnical consultant would be required.
- > Construction of bridging treatment within Scobies Lane and Oakhampton Road sections as detailed in Section 7.2.2 above.
- Where low strength materials have not been identified; static proof-roll the exposed subgrade using a heavy (minimum 10 tonne) roller under the direction of an experience geotechnical consultant, with any loose or yielding areas excavated and replaced with compacted select fill or suitable subgrade replacement comprising of material of similar consistency to the subgrade.
- Where filling or subgrade replacement is required, the materials employed should be free of organics or other deleterious material and could comprise of the existing salvaged pavement gravels. The material should also have a maximum particle size of 100 mm or one third of the layer thickness, with a minimum CBR 3%.
- Compaction of the subgrade, filling or select should be to a minimum 100% of SMDD in layers of not greater than 250 mm loose thickness. Moisture contents should be within -2 to 0% of SOMC.

7.4.1.2 Pavement Rehabilitation - Overlaying

- Removal and replacement of highly deformed areas and any patching, under supervision of geotechnical consultant.
- > Tyning of the pavement and seal to a depth not exceeding 150 mm and recompacted.
- > Widening of the shoulders where required to a full depth pavement, and with subgrade preparation as per guidelines in Section 7.4.1.
- > Reshaping where required to address shape deficiency and to ensure a minimum 3-4% cross-fall is achieved.
- > Compaction of pavement material to a minimum of 102% SMDD at moisture contents of 60-90% of SOMC.
- > Overlay with basecourse quality material, as per the specifications and compaction criteria as per Section 7.4.2 below.

7.4.2 Specification and Compaction Requirements

Pavement materials and compaction requirements for the new pavement construction should conform to Maitland City Council specifications and the following requirements.

Table 7-4	Material Specification and	Compaction Requirements

Pavement Course	Material Specification	Compaction Requirements
Basecourse High quality crushed rock base or natural gravel pavement material	Material complying with MCC Pavement Material Properties Appendix D	Min 98% Modified (AS1289 5.2.1) or Min 102% Standard (AS1289 5.1.1) (60-90% of OMC)
Subbase Quality crushed rock subbase or natural gravel pavement material	Material complying with MCC Pavement Material Properties Appendix D	Min 95% Modified (AS1289 5.2.1) or Min 100% Standard (AS1289 5.1.1) (60-90% of OMC)
Select Crushed rock or gravel	CBR ≥ 15%	Min 100% Standard (AS1289 5.1.1) (60-90% of SOMC)
Subgrade or replacement	Minimum CBR 3%	Min 100% Standard (AS1289 5.1.1)

7.4.3 Alternative Construction Materials

Alternative materials used in the construction should comply with the specifications indicated in this report. It is suggested that Stantec be consulted prior to the use of alternate materials. Contractors should specify materials to be used in construction at the time of tendering, with all materials to be approved by Council prior to incorporation in the works.

Relatively low permeability and durable pavement materials would be recommended for new flexible reconstruction given the subgrade conditions.

7.4.4 Wearing Courses

Wearing Courses should be designed in accordance with MCC specifications with consideration to TfNSW QA Specifications R117 [10] and APRG Report No. 18 [11] methodology. The design and construction of wearing courses should be done in consultation with the preferred supplier taking into account traffic volume and type.

Application of the final surfacing should be delayed as long as practical and a minimum of 14 days, to allow reflective cracking prior to application of the wearing course. This would add to the sealing costs due to the need for a second establishment; however, would be required for the primer seal to cure and volatiles to escape.

7.4.5 Pavement Compaction

Difficulty obtaining specified compaction requirements can be expected in areas of low strength subgrade which are evident in areas where the road is to be constructed in fill, firm clays and loose to medium dense sands near surface are expected and subgrade replacement is not undertaken. Vibratory compaction can lead to potential problems with the development of excess pore pressures and permanent deformation of the subgrade. Large capacity oscillating rollers are better suited to deep lift compaction. Static or low amplitude rolling may be appropriate in conjunction with thinner layers in poor subgrade areas.

It is essential to ensure that compaction is achieved though the full thickness of any pavement layers. A rough interface and bond is required between all pavement layers, generally achieved through scarification of the first layer prior to placement and compaction of the second and subsequent pavement layers.

7.4.6 Drainage

The pavement thickness designs have been provided assuming drained pavement conditions. The selection, construction and maintenance of appropriate drainage mechanisms is required for adequate performance. Particular care is required to provide a waterproof seal for the pavement materials, together with adequate surface and sub-surface drainage of the pavement and adjacent areas. Sealing of the shoulders be undertaken beyond the edge line.

Provision of adequate cross fall to direct runoff from the pavement to drainage lines should be achieved regardless of the option adopted and as a minimum, roadside open drains should be reformed and adequately maintained. The drains should be provided where the road is on grade or in cut and be constructed so that the base of the drain is below subgrade level along both the sides of the road. The subgrade should also be constructed with sufficient cross fall (approximately 3%) to assist in any moisture entering the pavement not becoming trapped.

Provision of a subsoil drain at the toe of the Flood Access Road embankment against the existing flood control levee should be considered, particularly in low embankment height areas. This would be aimed at ensuring moisture does not become trapped following inundation of the embankment and impact pavement performance, and would be subject to the extent of drainage upgrades and final geometry proposed.

7.4.7 Pavement Interface and Tie-in

Where new pavement construction abuts an existing pavement, care should be exercised to bench into the base course layer for a minimum of 0.3 m for the entire pavement width.

Vertical joints associated with road intersections, require positioning outside proposed wheel path locations (where possible).

Adequate compaction of the subgrade and pavements in this area is essential to maximise performance of the pavement. It is noted that where variable pavements are abutted, the potential for localised failure is generally greater. Consideration should be given to sealing any cracks that may develop between existing and new pavements. The use of a strain alleviating membrane at the interface may also be appropriate. It may also be prudent to install intra-pavement drainage at subgrade level at interfaces of variable existing and new pavements.

7.4.8 Construction Inspection

The subgrade will require inspection by an experienced geotechnical consultant after boxing out or filling to design subgrade level. The purpose of inspections is to confirm design parameters, assess the suitability of the subgrade to support the pavement and delineate areas which may require subgrade replacement / select and areas requiring remedial treatment prior to rehabilitation.

7.4.9 References

All works and materials used in construction should be designed and constructed in accordance with MCC Specifications or as specified in this report. Where discrepancies may occur, clarification should be sought from Council.

Earthworks and testing should generally be undertaken in accordance with AS 3798-2007 Guidelines on Earthworks for Commercial and Residential Developments [4] where not otherwise specified.

8 **Preliminary Environmental Assessment**

8.1 Extent of Assessment

Preliminary assessment of likely surplus materials from the proposed pavement rehabilitation / reconstruction works for offsite reuse or disposal has been undertaken.

The material types sampled, tested and analysed as part of the assessment three samples of granular fill materials between depths of 0.08-0.7m (BH06, TB502, TB503) and one sample of sandy silt material from the top of subgrade level (TB501).

The actual material descriptions and location details are shown in the analysis tables attached in Appendix C. The areal and depth extent of the materials encountered during the investigation are detailed through the site plan figures and test bore logs attached in Appendix A and B, respectively.

The assessment provided is considered preliminary as the nature of the works and discrete testing quantities would not satisfy classification criteria. A more detailed and targeted investigation would be required to provide a full environmental assessment.

8.2 Assessment Criteria

The following contaminant threshold concentrations were considered for preliminary assessment of the insitu materials encountered during the investigation.

- > NSW EPA Waste Classification Guidelines Part 1: Classifying Waste (2014) [12].
- > NSW EPA Excavated Natural Material Order 2014 [13] (ENM).
- > NSW EPA 'The excavated public road material order 2014' [14].

The laboratory test results are presented in the summary tables attached in Appendix C, followed by complete test reports.

8.3 Laboratory Results

Laboratory testing, along with sampling and decontamination procedures outlined in Section 4, was conducted, with the results presented in a summary table attached in Appendix C. A brief summary of these results are discussed below with reference to the adopted criteria.

> Granular Fill Materials

- ENM [13]:
- Exceedance of the absolute maximum concentration for Lead within TB503 (0.6-0.7m).
- Detection of Benzo(a)pyrene equal to the absolute maximum concentration within TB502 (0.4-0.5m).
- Exceedance of the average maximum concentration for TRH (C10-C36) within TB502 (0.4-0.5m).
- Exceedance of absolute maximum concentration for foreign materials within TB502 (0.4-0.5m) and TB503 (0.6-0.7m) – which is consistent with site observations during test bore drilling.
- The results from BH06 (0.08-0.1m) within the proposed flood access road alignment did not exceed ENM guidelines [13].
- Waste Classification Guidelines [12]:
 - Exceedance of the CT1 limit (for general solid waste) for lead within TB503 (0.6-0.7m).
 - Exceedance of the CT1 limit for Benzo(a)pyrene within TB502 (0.4-0.5m).
 - Subsequent TCLP test results for both above samples were below TCLP1 limits.
 - The results from BH06 (0.08-0.1m) within the proposed flood access road alignment did not exceed CT1 limits.

> Sandy Silt Subgrade Material

No exceedances to either ENM criteria or Waste Classification Guidelines detected.

8.4 Quality Assurance & Quality Control

Envirolab has undertaken internal quality assurance testing which involves duplicate analysis on selected samples, method blanks and matrix spikes, and a review of the QA results and interpretation. Results are contained within the laboratory report sheets and are attached to this report.

The review of internal QA indicates that sufficient internal QA was undertaken for all analytes and that, Recovery of Surrogates, Recovery of Spikes, Relative Percentage Differences for Duplicates, Triplicate results and holding times where within acceptance criteria as defined by Envirolab Pty Ltd.

The data obtained from this testing is considered accurate and the results can be relied on to the for the purpose of the preliminary assessment.

8.5 Comments & Recommendations

The following preliminary comments are provided.

- It is unlikely that existing granular fill materials which were encountered in the 0.17-1.1m depth range, within existing pavement areas (proposed tie-in sections upgrades) would be classified as ENM [13], due to various analytes and foreign materials content exceeding the criteria. If the materials were disposed of offsite at a licenced waste facility, they could be considered for general solid waste classification.
- Shallow granular fill within the proposed flood access road alignment (BH06 location) could be considered for ENM classification [13] or general solid waste classification if offsite disposal is required, providing that further acid sulfate soil testing confirms there is no presence of potential or actual acid sulfate soils.
- Sandy silt subgrade material within existing pavement areas (proposed tie-in sections upgrades TB501 location) could be considered for ENM classification [13] or general solid waste classification if offsite disposal is required.

No testing was conducted on the pavement materials encountered, however could be exempt under the NSW EPA 'The excavated public road material order 2014' [14]. Inspection of existing pavement materials during construction by suitable environmental consultant would be required to confirm classification under the order [14].

As mentioned, the assessment is preliminary due to the unknown nature of works proposed at the site, limited testing and resultant material quantities. The material quantities and appropriate classifications would be dependent on the construction methodology adopted, for example excavations that can separate different material types, opposed to continuous milling over a set depth with no separation between e.g. wearing course and underlying pavement and existing fill materials.

Following confirmation of the type of works and material quantities, further assessment should be conducted prior to / during construction to provide finalised classifications for reuse or disposal. Further detailed assessment would be required to satisfy Waste Classification Guidelines [12] and NSW ENM [13] requirements.

9 Limitations

Stantec has performed investigation and consulting services for this project in general accordance with current professional and industry standards. The extent of testing was limited to discrete test locations and variations in ground conditions can occur between test locations that cannot be inferred or predicted.

A geotechnical consultant or qualified engineer shall provide inspections during construction to confirm assumed conditions in this assessment. If subsurface conditions encountered during construction differ from those given in this report, further advice shall be sought without delay.

Stantec, or any other reputable consultant, cannot provide unqualified warranties nor does it assume any liability for the site conditions not observed or accessible during the investigations. Site conditions may also change subsequent to the investigations and assessment due to ongoing use.

This report and associated documentation was undertaken for the specific purpose described in the report and shall not be relied on for other purposes. This report was prepared solely for the use by Maitland City Council and any reliance assumed by other parties on this report shall be at such parties own risk.

10 References

- [1] Geotechnical Centre NSW Public Works, "Maitland Power House Control Structure: Geotechnical Investigation (Ref. 90239)," NSW Government, November 1990.
- [2] NSW Department of Planning, Industry & Environment, "MinView," [Online]. Available: minview.geoscience.nsw.gov.au. [Accessed 2023].
- [3] NSW Office of Environment and Heritage, "eSPADE V2.2," NSW Office of Environment and Heritage, April 2022. [Online]. Available: http://www.environment.nsw.gov.au/eSpade2WebApp#. [Accessed 23 June 2022].
- [4] Australian Standard AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Structures," Standards Australia, 2007.
- [5] ASSMAC, "Acid Sulfate Soil Manual, New South Wales," Acid Sulfate Soil Management Advisory Committee, August 1998.
- [6] Queensland Acid Sulfate Soil Technical Manual, "Soil Management Guidelines," Department of Science, Information Technology, Innovation and the Arts, Queensland Government, June 2014.
- [7] Austroads AGPT02-17, "Guide to Pavement Technology Part 2: Pavement Structural Design," Austroads Ltd, 2017.
- [8] Maitland City Council, "Manual of Engineering Standards: Chapter 5 Pavement Design," Maitland City Council, 2014.
- [9] TfNSW QA Specification R73 (Ed 3 Rev 2), "Construction of Plant Mixed Heavily Bound Pavement Course," Transport for NSW, June 2020.
- [10] RMS QA Specification R117 (Ed 1 Rev 1), "Light Duty Dense Graded Asphalt," Roads and Maritime Services, July 2013.
- [11] Austroads APRG Report No. 18, "Selection & design of asphalt mixes: Australian provisional guide," Austroads, May 1997.
- [12] NSW EPA, "Waste Classification Guidelines Part 1: Classifying Waste," NSW Environment Protection Authority, Sydney, November 2014.
- [13] NSW EPA, "The Excavated Natural Material Order 2014," NSW Environment Protection Authority, 2014.
- [14] NSW EPA, "The Recovered Aggregate Order 2014," NSW Environment Protection Authority, 2014.

FIGURES

NOTES:

Image underlay adapted from nearmap aerial imagery and client supplied proposed flood access road layout plan (ref. 4105-PPI, rev. A, date. 02.11.2022).

LEGEND:

BHXXX Approximate borehole locations.

- TBXXX Approximate pavement test bore locations.
- CPTXX Approximate cone penetrometer test locations.
 - Approximate gully alignment.

<u>SITE</u>

0

50

100m

1

09

for states

© Stantec Limited All Rights Reserved. This document is produced by Stantec Limited solely for the benefit of and use by the client in accordance with the terms of the retainer. Stantec Limited does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by third party on the content of this document.

819.47

800.00

50.00

700.00

650.00

600.00

50.00

500.00

450.00

9.0

СРТ05 ВН02

СРТ04 ВН01

400.00

CPT03

350.00

H06

BH101

TB502

BH03

250.00

200.00

150.00

300.00

And And I am	and the second second	- 100	
Drawn MH	Date 19.12.2022	Client	MAITLAND CITY COUNCIL
Checked TB	Date 08.02.2023	Project	MCC CAPITAL WORKS PROGRAM
Designed	Date		GEOTECHNICAL INVESTIGATION
Verified	Date	Title	SCOBIES LANE, OAKHAMTPON H
Approved			TEST LOCATION SITE PLAN

100.00

APPENDIX

ENGINEERING LOGS

0	St	ant	ec								Т	EST	BORE LO	DG SHEET
Clie Pro	ent: ject:	N F	/laitla Pave	and City Counc ment Investiga	il tion - Propos	sed	Flood	l Ac	cess Road			Н	ole No:	TB501
Loc	ation	i: S	Scob	ies Lane, Oakh	ampton Heig	ght	s		Job No: 304100979-005					Sheet: 1 of 1
Pos	ition	: Refe	er to	Site Plan - Ch	776m				Angle from Horizontal: 90°		5	Surface	e Elevation:	
Mac	chine avati	Type on D): 3.5	tonne Excava	tor				Excavation Method: 300mm	n AS		Contra	ctor: Stantor	
Dat	e Exc	avat	ed: 5	/12/22					Logged By: BC			Checke	ed Bv: TB	•
	Drilling	1		Sampling &	Testing				Material Desc	cription			, _ ,	
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	nepun (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characterist colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	tic, S	Moisture Condition	Consistency Relative Density	STR & Other	UCTURE Observations
				B 0.00 - 0.30 m	3 6 9 12				0.04m SPRAY SEAL				PAVEMENT	
						.5			PAVEMENT: Sandy GRAVEL; fine to coarse sub-rounded to sub-angular, pale grey-brow to coarse grained sand, with clay 0.25m: trace cobbles <90mm	e vn, fine	м		0.25 m: possible :	- select fill layer -
									0.58m Sandy SII Tyleyy plasticity, dark brown, fing t	ta				
				F0.0.70 0.75 m					medium grained sand	10				-
				ES 0.70 - 0.75 m					0.75m: becoming light grey		M (<pl)< td=""><td>VSt</td><td></td><td></td></pl)<>	VSt		
			77		9				0.85m Sandy CLAY; medium to high plasticity, dark	k grey			RESIDUAL SOIL	
m AS —		ble	Encountered	B 0.90 - 1.50 m		0			mottled yellow-brown, fine to medium graine sand, trace fine to medium sub-rounded to sub-angular gravel	ed				
300m		Sta	Not E			.0				1	M (>PL)	St - VSt		-
					12				1.30m	, dorf			EXTREMELY WE	ATHERED
þ					12				Sity Sandy CLAY, medium to high plasticity, brown-grey, fine to coarse grained sand, trad sub-rounded gravel	ace fine		VSt		-
					20	.5				1	M (<pl)< th=""><th>Н</th><th></th><th>-</th></pl)<>	Н		-
							X		2.00m					
The second secon					2. 	.0—			TERMINATED AT 2.00 m Target depth					-
ME EX R HA PT SC AF SC AC AC AC RF	ETHOD Ex Rip Pu N So A Ha Pu Sh V/V So V/T S	cavator oper ind aug ish tube nic drill nic drill in hamm rccussic ort spir lid fligh lid fligh lid fligh lid fligh lid fligh ck rolle	r bucke er ing er in sam al auge t auge t auge ght auge of drillin er	pler PEN F F H VH Pler WAT F CV-Bit r: TC-Bit gg − or details of secretifuer.	Very Easy (No Res Easy Firm Hard Very Hard (Refusa TER Water Level shown water inflow water outflow	sistan ۱۱) on [v	ce) Date		IELD TESTS SAM IPT - Standard Penetration Test B IP - Hand/Pocket Penetrometer D ICP - Dynamic Cone Penetrometer U SP - Perth Sand Penetrometer U IC - Moisture Content MOI 'BT - Plate Bearing Test D ID - Photoionisation Detector W 'S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) LL	MPLES - Bulk (- Distu - Envir - Thin ISTURE - Dry - Moist - Vet - Plasti - Liquic - Moist	disturber rbed sar onmenta wall tube wall tube t t ic limit ture con	, mple al sample e 'undistu tent	rbed" Soll Srbed" St VS St VSt H REL VL L WD VD	CONSISTENCY - Very Soft - Soft - Firm - Stiff - Very Stiff - Hard ATIVE DENSITY - Very Loose - Loose - Medium Dense - Dense - Very Dense

STANTEC 2.020 LIB GLB Log CARDNO NON-CORED 30410979-005 SCOBIES LANE PI (TB AMENDMENTS); GPJ <<DrawingFille>> 01/03/2023 03/22 10.03/00.09 Daigel AGS RTA, Phob, Monitoring Tools

(3) St	ant	tec							Т	EST	BORE LOG SHEET
C P L	lie roj	nt: ect: ation	۱ ۴ : : :	Aaitla Pave Scob	and City Counc ment Investigat ies Lane. Oakh	il tion - Pro ampton I	pose Ieiah	d Flood ts	l Ac	cess Road		Н	ole No: TB502
Р	osi	ition:	Ref	er to	Site Plan - Ch	61m	•			Angle from Horizontal: 90°	:	Surfac	e Elevation:
	lac	hine	Туре): 3.5	tonne Excavat	or				Excavation Method: 300mm AS			
툳	XCa ate	avati	on D avat	imen ed: 5	ISIONS: 3/12/22					Logged By: BC		Contra Check	ctor: Stantec
F		Drilling		54. 5	Sampling & 1	esting				Material Description		Oneck	
					1 3 4	DCP TEST	Ê		E	· · · · · · · · · · · · · · · · · · ·			
14 - 14 - 14	Method	Resistance	Stability	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (I	Graphic Log	Classificatio	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					B 0.00 - 0.15 m		-			D.02m SPRAY SEAL PAVEMENT: Silty Sandy GRAVEL; fine to coarse sub-rounded to angular, light brown-grey, fine to coarse grained sand	м		PAVEMENT
							-			FILL: Silty Gravelly SAND; fine to coarse grained, dark grey, fine to medium sub-angular gravel, trace cobbles			FILL
				п	ES 0.40 - 0.50 m	- 1 1 1 1	-			fragments	м		
			Stable	ot Encountered	B 0.50 - 1.00 m		- 0.5			0.50m Silty Sandy CLAY; medium to high plasticity, dark grey, fine to coarse grained sand, trace fine sub-rounded gravel			RESIDUAL SOIL
cione Ri	300		0,	ž			-						
							-				M (>PL)	S-F	
							- 1.0			1.00m			
	v					10/25				Clayey SAND; fine to coarse grained, yellow-brown, trace fine sub-rounded gravel 1.10m TERMINATED AT 1.10 m	D	VD	EXTREMELY WEATHERED
							-			Refusal on Weathered Rock			
40000							-						
2							- 1.5						-
							-						
							-						
							-						
							-2.0						-
	METHOD PENETRATION EX Excavator bucket VE Very Easy (No Ret R Ripper E Easy HA Hand auger F Firm PT Push tube H Hard SON Sonic drilling VH Very Hard (Refusa AH Air hammer WATER WATER				o Resista efusal) evel on	nce) Date	F F F	Image: Second Standard Penetration Test SAMPLES SPT - Standard Penetration Test B IP - Hand/Pocket Penetrometer D DCP - Dynamic Cone Penetrometer U VSP - Perth Sand Penetrometer U //C - Moisture Content MOISTUR PBT - Plate Bearing Test D //B - Plate Bearing Test D	Ik disturbed sturbed sa vironment in wall tub	I ed sample Imple tal sample e 'undistu	SOIL CONSISTENCY v VS - Very Soft S - Soft F - Firm vrbed' St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY		
	AS Short spiral auger AD/V Solid flight auger: V-Bit AD/T Solid flight auger: C-Bit HFA Hollow flight auger WB Washbore drilling RR Rock roller Refer to explanatory notes for details of						flow utflow			VIT - Photoionisation Detector VS - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) CO ALICTDALLA DTV/ L TD	pisi et astic limit quid limit bisture cor	ntent	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
1	abbr	eviation	s and ba	asis of d	escriptions			JIAľ	IИ				

Q	St	ant	tec							Т	EST	BORE L	OG SHEET
Clie	ent: piect:	I F	Maitl Pave	and City Coun ment Investiga	cil ation - Pro	pose	d Flood	d Ace	ess Road		Н	ole No	: TB503
Loc	ation	n: S	Scob	ies Lane, Oak	hampton I	Heigh	ts		Job No: 304100979-005				Sheet: 1 of 1
Pos	sition	: Ref	er to	Site Plan - Ch	394m				Angle from Horizontal: 90° Excavation Mothod: 300mm AS		Surfac	e Elevation:	
Exc	cavati	on D	imer	sions:					Excavation Method. Soonin AS		Contra	ctor: Stante	c
Dat	e Exc	cavat	ed: {	5/12/22					Logged By: BC		Checke	ed By: TB	
	Drilling	9		Sampling &	Testing				Material Description	1			
Method	Resistance	Stability	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STI & Othe	RUCTURE r Observations
A				B 0.00 - 0.30 m				X.HK	SPRAY SEAL			PAVEMENT	
						-		HA HA H	grained, pale brown, fine to coarse sub-rounded gravel				
						ŀ			0.30m: becoming reddish brown	м			
								R 19 19					
					11	2-0.5		A BA BA					-
							XIXIXIX XIXIXIX	42 HR 14	60m				
				ES 0.60 - 0.70 m	2	e		××	FILL: Gravelly Silty SAND; fine to coarse grained, brown, fine to medium sub-rounded gravel			FILL	
						-				м			
						1		Â					
								×	85m Sandy SILT: low plasticity, dark brown, fine to			ALLUVIUM	
			Intered	B 0.90 - 1.30 m		F			coarse grained sand, with fine to medium sub-rounded gravel				
nm AS		able	Encou			- 1.0							-
- 300r		tt Tt	Not							M (<pl)< td=""><td>S-F</td><td></td><td></td></pl)<>	S-F		
						F							
						Ļ							
									20				
						F			Silty SAND; fine to medium grained, brown			-	
						-				D - M	L - MD		
									50m				
						- 1.5			Sandy SILT; low plasticity, brown, fine grained sand			-	-
					3	-							
					2	F				M (>PL)	F - St		
						ŀ							
						[
	-					-2.0-	11 M F		00m TERMINATED AT 2.00 m				
									Target depth				
м	 ETHOD		<u> </u>	PE	NETRATION	1		FI	LD TESTS SAMPLES	;	1	SOI	L CONSISTENCY
E) R	C Ex	cavato	r buck	et VE E	Very Easy (N Easy	lo Resista	ince)	SI H	Image: Formula of the standard Penetration Test B - B - Hand/Pocket Penetrometer D - D	ulk disturbe sturbed sa	ed sample imple	e VS	- Very Soft - Soft - Firm
PT SC	т на Г Ри DN So	ish tub nic dril	jei e ling	F H VH	Firm Hard Very Hard (R	tefusal)		D P	P - Dynamic Cone Penetrometer U - Ti P - Perth Sand Penetrometer	nin wall tub	ai sample e 'undistu	rbed' St VSt	- Stiff - Very Stiff
Al-	H Aii S Pe	hamm	ier on san	npler WA	TER		_	M Pl	- Moisture Content MOISTUR	E			- Hard ATIVE DENSITY
AS AE AF	5 Sh D/V So D/T So	ort spir olid fligh olid fliah	ai aug it auge it auge	er: V-Bit -	Water L shown	evel on	Date	IN Pi	P - Borehole Impression Test M - M - Photoionisation Detector W - W	oist et			- Very Loose - Loose
H	A Ho B W	ollow flig ashbor	ght au e drillir	ger P	water in	tlow utflow		V	- Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	astic limit quid limit oisture cor	ntent	MD D	- Medium Dense - Dense
RI	< Ro	ock rolle	er	for details of								VD	- Very Dense
Re ab	rer to exp breviatior	bianatory ns and ba	notes fasis of c	ror details of descriptions			STAN	NTE	C AUSTRALIA PTY LTD				

Q	Stantec TEST BORE LOG SHEET lient: Maitland City Council Parament Investigation Bronssed Elect Access Read													
Cli Pro	ent: oject: catior	۲ F h: 5	Maitla Pave Scob	and City Cound ment Investiga ies Lane, Oakh	il tion - Propo ampton Hei	sed Floo ghts	od A	ccess	Road Job No: 304100979-009	5		Н	ole No:	TB504 Sheet: 1 of 1
Ро	sition	: Ref	er to	Site Plan - Ch	290m	_			Angle from Horizontal:	90°	9	Surfac	e Elevation:	
Ma	chine	Туре	e: 3.5	5 tonne Excava	tor				Excavation Method: 30	00mm AS				
Ex	cavat	ion D	imen	isions:					Longood Duy, DC		(Contra	ctor: Stantec	
Da			ea: s	Sampling &	Fosting				Logged By: BC	Description		Спеске	еа ву: Тв	
-		y 	-	Sampling &			Τ_		Materia	Description				
Method	Resistance	Stability	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) : Blows/ 150 mm 3 6 9 12	Graphic Log	Classification	S	SOIL TYPE, plasticity or particle chara colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weathe defects and structure	acteristic, onents colour, ering,	Moisture Condition	Consistency Relative Density	STRU & Other O	CTURE bservations
				B 0.00 - 0.25 m			へたたたたた	0.02m	SPRAY SEAL PAVEMENT: Silty Gravelly SAND; fir grained, light brown, fine to coarse so sub-angular	ne to coarse ub-rounded to			PAVEMENT	
							たたたたたたた	0.40m	0.26m: becoming brown, with cobble	s	D-M			-
						*) *) *)	A		SPRAY SEAL					
				ES 0.60 - 0.70 m	25 25/76 州B ₁ 		ふたたた	0.50m	PAVEMENT: Gravelly SAND; fine to grained, brown-grey, fine to medium sub-angular gravel, with clay	coarse rounded to			-	-
spo- Billouiloui							たたたたたたた				м			-
			Intered				いたいたい		0.90-1.00m: hard fill layer / band					-
0mm A		Stable	lot Encol	B 1.00 - 1.30 m	- - 1	.0		1.00m	Sandy SILT; low plasticity, brown, fin	e to medium			ALLUVIUM	
30			2						grained sand, with fine sub-rounded	gravel				-
2000 00 00 00														
									1.35m: becoming dark brown, fine gr no gravel inclusions	ained sand,				
					-1	.5					M (>PL)			-
														-
														-
					2	0.0		2.00m						
					 -				TERMINATED AT 2.00 m Target depth					
		<u> </u>								CANDI FO				ONGIGTENOV
	A Ha A Ha A Ha T Pu ON So H Ai S Pe S St	ccavato pper and aug ush tube pnic drill r hamm ercussio nort spir	r bucke ger e ling ler on sam ral aug	et VE F H VH VH er VA	Very Easy (No Re Easy Firm Hard Very Hard (Refusa TER Water Level	sistance) al) on Date		FIELD II SPT - HP - DCP - PSP - MC - PBT - IMP	Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test	B - Bulk D - Dist ES - Env U - Thir MOISTURE D - Dry	k disturbe turbed sa ironment n wall tube	ed sample mple al sample e 'undistu	SOLC VS F irbed' St VSt H RELAT	Very Soft Soft Soft Firm Stiff Very Stiff Hard FIVE DENSITY
	D/V So D/T So FA Ho /B W R Ro	olid fligh olid fligh ollow flig ashbor ock rolle	it auge at auge ght aug e drillin er	r: V-Bit	shown water inflow water outflow	 N		PID - VS -	Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	W - Wel PL - Plas LL - Liqu w - Mois	t stic limit uid limit sture con	tent	VL L MD D VD	 Very Loose Loose Medium Dense Dense Very Dense
Real	efer to ex breviatio	planatory ns and ba	notes f	or details of lescriptions		STA	NT	EC /	AUSTRALIA PTY	LTD				

Client: Maitland City Council Hole Project: Pavement Investigation - Proposed Flood Access Road Job No: 304100979-005 Position: Refer to Site Plan - Ch 200m Angle from Horizontal: 90° Surface Elev Machine Type: 3.5 tonne Excavator Excavation Method: 300mm AS Excavation Dimensions: Contractor: Date Excavated: 5/12/22 Logged By: BC Checked By: Drilling Sampling & Testing Material Description 0 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 90 90 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RE LOG SHEET	
Position: Refer to Site Plan - Ch 200m Angle from Horizontal: 90° Surface Elev Machine Type: 3.5 tonne Excavator Excavation Method: 300mm AS Excavation Dimensions: Contractor: Date Excavated: 5/12/22 Logged By: BC Checked By: Drilling Sample or Field Test 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	No: TB505 Sheet: 1 of	
Machine Type: 3.5 tonne Excavator Excavation Method: 300mm AS Excavation Dimensions: Contractor: Date Excavated: 5/12/22 Logged By: BC Checked By: Drilling Sampling & Testing Material Description point of the second	vation:	
Excavation Dimensions: Contractor: Date Excavated: 5/12/22 Contractor: Drilling Sample or Field Test (i) OP Test (i) <th colspa<="" th=""><th></th></th>	<th></th>	
Date Excavated: Subject 12/22 Logged By: BC CiteCred By: Drilling Sampling & Testing Image: Sample or Field Test	Stantec	
Drining Total plange of the stand plange	ТВ	
Dought is in the image of		
B 0.00 - 0.30 m I I I I I PAVEMENT: Silty Gravelly SAND; fine to coarse grained, light brown, fine to coarse sub-rounded to sub-angular gravel D - M I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	STRUCTURE & Other Observations	
Image: state of the state o	MENT	
B 0.70 - 1.00 m 30/100 VR I I I I I I I I I I I I I I I I I I I		
30 30 B 0.70 - 1.00 m 30/100 VR 1 1 1 1		
B 0.70 - 1.00 m 30/100 VR Image: How in the image with the image withe image with the image with the image with the image with t		
. .		
	70.164	
grained sand		
M (<pl)< td=""><td></td></pl)<>		
ES 1.60 - 1.70 m		
V I		
METHOD PENETRATION FIELD TESTS SAMPLES EX Excavator bucket VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Bulk disturbed sample R Ripper HA Hand auger F Firm PD - Dynamic Cone Penetrometer DCP Dynamic Cone Penetrometer D - Disturbed sample SON Sonic drilling Very Hard (Refusal) VH Very Hard (Refusal) WATER MATER MOISTURE PS Perclussion sampler Water Level on Date shown PBT Plate Bearing Test D - Dry AD/T Solid flight auger: V-Bit Water inflow VS Vast por quiffor VS Vast por quiffor WB Washbore duffing water outflow VS Vast por quiffor PE-Peak, PL Plastic limit	SOIL CONSISTENCY VS - Very Soft S Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D Dense	
RR Rock roller W - Moisture content Refer to explanatory notes for details of abbreviations and basis of descriptions STANTEC AUSTRALIA PTY LTD	VD - Very Dense	

	Stantec BOREHOLE LOG SHEET ent: Maitland City Council Gentersheigal Investigation - Broppsed Elogd Access Poad Hole No: BH01													
Clie Pro	ent: ject:	 (Maitl Geot	and City Co echnical Inv	uncil restigation -	Prop	osed F	lood	Access Road			ŀ	lole	No: BH01
Loc	ation	1: 5	Scob	ies Lane, O	akhampton I	leigh	ts		Job No: 304100979-00)5 				Sheet: 1 of 1
Pos	Type	: Ref	er to Ison	Site Plan -	Ch 435m				Angle from Horizontal	: 90°	: 	Surfac Driller	e Elevat	tion:
Cas	sing [Diam	eter:	Uncased					inculting: The etc			Contra	ctor: S	tantec
Dat	e Sta	rted:	24/1	1/22	Date Com	plete	d: 24/1	1/22	Logged By: GE		(Check	ed By: ⁻	ГВ
	Drilling	9		Sampling	& Testing				Materia	l Description	ion			
Method	Resistance	Casing	Water	Sample o Field Tes	r t Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	racteristic, ponents , colour, ering,	Moisture Condition	Consistency Relative Density	8	STRUCTURE Other Observations
A					30912		ىلىر غاير غاير غاير غاير غ		TOPSOIL: Sandy SILT; dark brown, fi	ine to coarse	M (<pl)< td=""><td></td><td>TOPSOIL</td><td></td></pl)<>		TOPSOIL	
					12	-			Sitty CLAY; medium to high plasticity, with fine to medium grained sand	dark brown,	M (<pl)< td=""><td>VSt</td><td>ALLUVIU</td><td>М</td></pl)<>	VSt	ALLUVIU	М
AD/V						- 			0.40m Sandy SILT; low plasticity, dark brown coarse grained sand, lenses of clay	n, fine to		St		-
						- - 1.0			0.90m: with clay		D - M	F		
	_	cased	ot Observed	SPT 1.40 - 1.8 3, 1, 1 N*=2	5 m	- - - 1.5			1.20m Silty SAND; fine to coarse grained, br clay	rown, trace		MD	1.40 m: S 1.40 m: S	PT from 1.40 to target depth PT Recovery: 0.45 m
		UN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Z	SPT 1.85 - 2.3		-			1.90m		М	L - VL	1.85 m: S	PT Recovery: 0.45 m
				1, 2, 2 N*=4 SPT 2.30 - 2.7 2, 3, 4 N*=7	5 m	- - 2.0 - - - - - - 2.5			Silty CLAY; medium to high plasticity, mottled orange	grey-black	M (>PL)	F	2.30 m: S	PT Recovery: 0.45 m
				SPT 2.75 - 3.2 3, 4, 6 N*=10	0 m 16	-			2.00m			St	2.75 m: S	PT Recovery: 0.45 m
					20	-3.0-			TERMINATED AT 3.00 m Target depth					
						Ī			. 1					
						-								
ME EX R R HAPT SCAPS ALL PT SCAPS ALL R HAPT SCAPS ALL R HAPT SCAPS ALL R HAPT SCAPS ALL R	THOD ETHOD EXA Big A Ha Pu DN So A Ho S Sh D/V So D/V So D/V So D/V So A Ho B Wa R Ro	cavator oper ind aug ish tub nic dril hamm rccussic ort spin lid fligh lid fligh lid fligh low flig ashbor ock rolle	r buck ger e lling her on sam ral aug nt aug ght au e drillin er	et ipler er: V-Bit er: TC-Bit ger 1g	VE Very Easy (No E Easy F Firm H H Hard VH Very Hard (Re WATER Water L shown water in Water ou	Resistar ^{fusal)} evel on flow utflow	Date	FI SH D P M P I N P V	ELD TESTS PT Standard Penetration Test P Hand/Pocket Penetrometer CP Dynamic Cone Penetrometer SP Perth Sand Penetrometer C Moisture Content BT Plate Bearing Test IP Borehole Impression Test D Photoionisation Detector S Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	SAMPLES B - Bull D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - Wel PL - Plas LL - Liq W - Moi	k disturbed irronment n wall tub st t stic limit sture con	ed sampl mple al sampl e 'undist	' le turbed'	SOIL CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Q	Stantec BOREHOLE LOG SHEET ent: Maitland City Council Hole No: RH02												
Clic Pro	ent: ject: catior	ן ו:	Maitl Geoto Scob	and City Co echnical Inv ies Lane, Oa	uncil estigation - P akhampton H	Propo	osed Flo	000	I Access Road Job No: 304100979-005			ŀ	Iole No: BH02 Sheet: 1 of 1
Pos	sition	: Ref	er to	Site Plan -	Ch 485m	_			Angle from Horizontal: 9	90°	5	Surface	e Elevation:
Rig	Туре	e: Ec	lson	Versadrill N	IRA 260				Mounting: 4wd Ute			Driller:	: MH
Cas	sing [Diam	eter:	Uncased	Data Camp	latar	. E/40/	22	Lowed Du. JE			Contra	ctor: Stantec
Dat	e sta	rtea	5/12	Comming	Pate Comp	letec	1: 5/12/	22	Logged By: JE	accrimtion		леске	ed By: TB
	Dunné	J 	-	Sampling	& resung	(_		escription			
Method	Resistance	Casing	Water	Sample o Field Tes	r (AS 1289.6. 3.2-1997) t Blows/ 150 mm 3 6 9 12	Depth (n	Graphic Log	Classificatior	SOIL TYPE, plasticity or particle charac colour, secondary and minor compor ROCK TYPE, grain size and type, co fabric & texture, strength, weatherin defects and structure	cteristic, nents blour, ng,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
									TOPSOIL FILL: Clayey SILT; dark brown grained sand 0.30m	n, trace fine	M (■PL) to M (<pl)< td=""><td></td><td>FILL</td></pl)<>		FILL
				ES 0.45 m		-0.5			FILL: Silty CLAY; low to medium plasticity brown-black, trace fine grained sand, trac medium angular to sub-rounded gravel	/, dark ce fine to	M (≈ PL) to M (<pl)< td=""><td>F - St</td><td>-</td></pl)<>	F - St	-
	E		•	ES 0.95 m		- 1.0			0.80m Clayey SILT; low to medium plasticity, bro fine grained sand	own, trace	M (>PL) to M (<ll)< td=""><td></td><td>ALLUVIUM 0.90 m: Possible Groundwater inflow</td></ll)<>		ALLUVIUM 0.90 m: Possible Groundwater inflow
AD/V		Uncased		ES 1.40 m		- 1.5					M (<ll) to M (■ LL)</ll) 	F	1.60 m: Groundwater at 1.6m BGL after 1 hour
		-		ES 1.95 m		-2.0			1.85m Silty CLAY; medium to high plasticity, grey mottled red, trace fine grained sand	y-brown			1.80 m: Groundwater at 1.8m BGL after 10 minutes
	E-F			ES 2.40 m		-2.5					M (>PL)	F	-
	F			ES 2.90 m		-3.0—			3.00m			St - VSt	
									Target depth				
	METHOD PENETRATION EX Excavator bucket VE Very Easy (No Resistance) R Ripper Easy HA Hand auger F PT Push tube F SON Sonic drilling H Hard AH Air hammer VH Very Hard (Refusal) PS Percussion sampler WATER AD/V Solid flight auger: V-Bit Shown AD/T Solid flight auger: TC-Bit Water Level on Date MFA Holow flight auger: WB water inflow WB Washbore drilling water outflow Refer to explanatory notes for details of adherivationes ST/						Date	F S H D P M P V	ELD TESTS PT - Standard Penetration Test P - Hand/Pocket Penetrometer CP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer C - Moisture Content BT - Plate Bearing Test IP - Borehole Impression Test ID - Photoionisation Detector S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	SAMPLES B - Bulk D - Dist ES - Envir U - Thin MOISTURE D - Dry M - Mois W - Wet U - Plas LL - Liqu w - Mois	disturbed sa ironment wall tub stic limit id limit sture con	ed sampl mple al sampl e 'undist	e VS - Very Soft Soft CONSISTENCY VS - Very Soft S - Soft VS - Stiff VSt - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

U	Stantec BOREHOLE LOG SHEET ent: Maitland City Council Hole No: BH03													
Clie Pro Loc	ent: ject: ation	1 (1: 5	Maitl Geot Scob	and City Cor echnical Inv ies Lane, Oa	uncil estigation - I akhampton H	Propo	osed Flo ts	od Access Road Job No: 304100979-005			ŀ	lole No:	BH03	
Pos	ition	: Ref	er to	Site Plan - (Ch 310m	•			Angle from Horizontal	l: 90°	5	Surfac	e Elevation:	
Rig	Туре	: Ed	son	Versadrill M	RA 260				Mounting: 4wd Ute		[Driller	: MH	
Cas	sing D	Diam	eter:	Uncased							C	Contra	ctor: Stantec	
Dat	e Sta	rted:	5/12	2/22	Date Comp	oleteo	d: 5/12/2	22	Logged By: JE			Check	ed By: TB	
	Drilling	9		Sampling	& Testing				Materia	al Description			1	
Method	Resistance	Casing	Water	Sample or Field Test	DCP TEST (AS 1289.6. 3.2-1997) Blows/ 150 mm	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle cha colour, secondary and minor con ROCK TYPE, grain size and type fabric & texture, strength, weat defects and structure	aracteristic, nponents e, colour, hering,	Moisture Condition	Consistency Relative Density	STRUC & Other Ob	CTURE oservations
		A				-		0.15	TOPSOIL FILL: Clayey SILT; dark br grained sand	rown, trace fine	M (<pl)< td=""><td></td><td>FILL</td><td></td></pl)<>		FILL	
				B 0.15 - 0.50 m		-			CLAY; medium to high plasticity, grey red, trace fine grained sand	y-brown mottled	M (■PL)		ALLUVIUM	
				ES 0.45 m		- 0.5 -						St		-
				ES 0.95 m		- - - 1.0 -					M (>PL)		_	-
AD/V			Not Observed	ES 1.45 m	13	- - 1.5 -					(() () () () () () () () () (-
				ES 1.95 m	20 24 14 14/50 VR 	- - 2.0 -						St - VSt		-
				ES 2.45 m		- - 			2.20m: becoming brown mottled grey with fine to medium grained sand, tra medium sub-angular gravel	v and orange, ice fine to	M (=PL)			_
				SPT 2.50 - 2.95 2, 5, 8 N*=13	5 m	-		2.00	2.50m: becoming grey-brown mottled	d orange	M (>PL)		2.50 m: SPT Recove	ry: 0.45 m
<u> </u>		<u> </u>				_ 3.0— - - -		3.0	TERMINATED AT 3.00 m	arange-brown				
R EX PT SC AH PS AD AD HF WE RF	L THOD C Rip Ha Pu DN Soc I Air S Pe S Sh V/V Soc V/V Soc V/V Soc V/V Soc A Ho A Ho A Ro Fer to exp	cavator oper nd aug sh tub nic dril hamm rcussic ort spin lid fligh lid fligh lid fligh lid fligh shbor ck rolle	buck ger e ling er on sam ral aug nt aug nt aug ght aug ght aug ght aug ght aug ght aug ght aug	I F et V P P Per er: V-Bit er: TC-Bit ger ng f for details of	PENETRATION /E Very Easy (No Easy Firm H Hard /H Very Hard (Ref VATER Water Le shown water inf water ou	Resistan usal) evel on low tflow	Date	FIELD SPT HP DCP PSP MC PBT IMP PID VS	- Standard Penetration Test - Hand/Pocket Penetrometer - Dynamic Cone Penetrometer - Perth Sand Penetrometer - Moisture Content - Plate Bearing Test - Borehole Impression Test - Photoionisation Detector - Vane Shear; P=Peak, R=Resdual (uncorrected kPa) - ALISTRALIA DTV	SAMPLES B - Bu D - Dis ES - In U - Thi MOISTURE D Dn D - Dn M - Mo M - Mo V - PIL LL - Lig W - Mo	Ik disturbed sturbed sa vironment in wall tub sist vist astic limit sastic limit sisture con	ed sampl mple al sampl e 'undist	L SOIL CI S S S C S S S S S S S S S S S S S S S	ONSISTENCY Very Soft Soft Firm Stiff Very Stiff Hard VE DENSITY Very Loose Loose Medium Dense Dense Very Dense

(3	Stantec BOREHOLE LOG SHEET ient: Maitland City Council Hole No: BH04													
C F L	Clie Proj Loca	nt: ect: ation	: S	/laitla Geote Scobi	and City Cou echnical Inve ies Lane, Oa	incil estigation - I khampton H	Propo leight	osed Flo ts	od	Access Road Job No: 304100979-00	5		ŀ	lole No	C: BH04 Sheet: 1 of 1
F	Posi	ition:	Refe	er to	Site Plan - C	ch 25m				Angle from Horizontal	: 90°	5	Surfac	e Elevation:	
F	Rig	Туре	: Ed	son	Versadrill M	RA 260				Mounting: 4wd Ute]	Driller:	: MH	
H	Jasi	Ing D	viame	eter:	Uncased	Date Comr		1. 5/12/2	22	Logged By: IE			Contra	ctor: Stante	C
F		Drilling	ieu.	0/12	Sampling	& Testing	10100			Materia	I Description		JIECK	50 Dy. 1D	
F						DCP TEST	<u>ب</u>		_						
	Method	Resistance	Casing	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (r	Graphic Log	Classificatio	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	racteristic, ponents colour, ering,	Moisture Condition	Consistency Relative Density	STF & Other	RUCTURE Observations
	•					7				TOPSOIL FILL: Clayey SILT; dark bro grained sand	own, trace fine	M (<pl)< td=""><td></td><td>FILL</td><td></td></pl)<>		FILL	
					B 0.30 - 0.65 m ES 0.45 m					FILL: Sandy CLAY; low plasticity, brow medium grained sand, with occasiona	wn, fine to I sand lenses	M (<pl)< td=""><td>VSt</td><td></td><td>-</td></pl)<>	VSt		-
							-0.5			Silty CLAY; low to medium plasticity, g with fine to medium grained sand	rey-brown,			ALLUVIUM	-
2000					ES 0.95 m		1.0					M (<pl)< td=""><td>qt</td><td></td><td>-</td></pl)<>	qt		-
B				red											-
			— Uncased —	Not Encounte	ES 1.45 m		- - 1.5		1	1.65m		M (= PL)			- -
					D 1.70 - 2.00 m					Sandy Silty CLAY; low plasticity, dark fine to medium grained sand	grey-brown,				
0101 III 000					ES 1.95 m		-2.0					M (≈ PL)	St - VSt		-
					ES 2.45 m		- 			2.60m					- -
										Silty CLAY; medium plasticity, grey-br to medium grained sand	own, with fine	M (=PL)	St - VSt		-
	¥		V		ES 2.95 m		-3.0-			3.00m					
										Target depth					- - -
$\left \right $	ME	THOD			 P	ENETRATION			FIE	ELD TESTS	SAMPLES		I	SOI	LCONSISTENCY
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EX R HA PT SOI AH PS AD/ AD/ HF/ WB	Exc Rip Har Pus N Sor Air Per Sho V Sol T Sol T Sol A Hol Wa	cavator per nd aug sh tube nic dril hamm rcussic ort spir id fligh id fligh llow flig shbor	bucke e ling er on sam al aug at auge at auge oft aug ght aug	et V E F H V V Pler V er: V-Bit er: V-Bit ger n	E Very Easy (No Easy Firm Hard H Very Hard (Ref VATER Water Le shown water infl	Resistan usal) evel on low tflow	^{ce)} Date	SF HF DC PS MC PB IMI PII	 T - Standard Penetration Test Hand/Pocket Penetrometer P - Dynamic Cone Penetrometer P Perth Sand Penetrometer Moisture Content T - Plate Bearing Test P - Borehole Impression Test P - Photoionisation Detector Vane Shear; P=Peak, Reserved kBearing 	B - Bull D - Dist ES - Env U - Thir MOISTURE D - Dry M - Moi W - Wel PL - Plas LL - Liqu	k disturbe surbed sa ironment n wall tub st st t stic limit uid limit	ed sampl Imple al sampl be 'undist	e VS turbed' St VSt H REL L D D	Very Soft Soft Soft Firm Stiff Very Stiff Very Stiff Hard ATIVE DENSITY Very Loose Loose Medium Dense Dense
	RR Refe	Roo er to expl reviations	lanatory	notes f	or details of escriptions	4		STAN	TE	EC AUSTRALIA PTY	W - Mois LTD	sture con	itent	VD	- Very Dense

Dilent: Mailtand City Council Project: Coolenchical Investigation - Proposed Flood Access Road Location: Job No: 30410979-005 Position: Refer to Site Plan - Ch 140m Angle from Horizontal: 90° Surface Elevation: Rg Type: Edoor Versadrill MRA 260 Mounting: word the Driller: MH Driller: MH Casing Diameter: Incased Contractor: Stante Contractor: Stante Data Started: Sampling & Testing Sample or Field Test Sample or Field Test Field Test Sample or Field Test Sample or Field Test Sample or Field Test Field Test Sample o	c BH05
Location: Socobies Lane, Oakhampton Heights Job No: 30410939-005 Position: Refer to Site Plan - Ch 140m Angle from Horizontal: 90° Surface Elevation: Rg Type: Edeo Versadill MRA 260 Mounting: 4wd Ute Driller: ItH Casing Diameter: Uncased Contractor: Stante Date Started: 5/12/22 Date Completed: 5/12/22 Logged By: JE Checked By: TB Drilling: Sample or metal Test	Sheet: 1 of 2 c
Position: Refer to Site Plan - Ch 140m Acge from Horizontal: 90° Surface Elevation: H Roy Type: Edon Versadrill MRA 260 Mounting: 4wd Ute Driller: H Casing Diamoter: Uncased Date Started: 5/12/2 Date Completed: 5/12/2 Logged By: JE Coheck d By: TB Dating Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: 5/12/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date Complete: S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date S1/2/2 Logged By: JE Coheck d By: TB Date Started: S1/2/2 Date S1/2/2 Logged By: JE Coheck d By: S1/2/2 Logged By: JE Coheck d	c
Pig type: todor versaarin linka zoo Mounting: 4W0 Use Dittier: Min Casing Diameter: Uncased Checked By: TB DetBarted: \$1/222 Date Completed: \$1/222 Logged By: JE Drilling Sampling & Testing Generative Site Site Site Site Site Site Site Sit	с
Date Startied: 5/12/22 Date Completed: 5/12/22 Logged By: JE Checked By: TB Date Startied: 5/12/22 Sampling & Testing Sampling & Testing Material Description Material Description Sampling & Testing Sampling & Testing & Testing Sampling & Testing	
Uniting Sampling & Testing Sample or Plot Test Plot Test Plot Test </td <td></td>	
og of signed bit is any le or signed bit is any le or signed b	
Image: Constraint of the state of	UCTURE Observations
Open Start Description ALLUVIUM ES 0.45 m 0.05m M(ePL) St. V8t D 0.70 - 1.00 m 0.05m 0.05m M(ePL) St. V8t D 0.70 - 1.00 m 0.05m 0.05m M(ePL) St. V8t D 0.70 - 1.00 m 0.05m 0.05m M(ePL) L - MD D 1.20 - 1.50 m 1.15m M(ePL) L - MD D 1.60 - 1.90 m 1.15m D L - MD L - MD D 1.60 - 1.90 m 1.15m D L - MD L - MD D 1.60 - 1.90 m 1.15m D L - MD M (ePL) L - MD D 1.60 - 1.90 m 1.15m D L - MD M (ePL) L - MD D 1.60 - 1.90 m 1.15m 1.5m D L - MD M L - MD ES 2.45 m 1.5m 1.5m M L - MD M L - MD ES 2.45 m 1.5m 2.20m 2.40m with clay M L - MD	
O 0.70 - 1.00 m <	
OP Image: second se	-
OP ES 1.45 m I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	
OP D 1.60 - 1.90 m I I I I I D 1.60 - 1.90 m I I I I D 2.00 - 2.20 m I I I I ES 2.00 m I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	-
Image: Clayey SAND; fine to medium grained, brown, low plasticity clay M L Image: Clayey SAND; fine to medium grained, brown, low plasticity clay M L Image: Clayey SAND; fine to medium grained, brown, low plasticity clay M L Image: Clayey SAND; fine to medium grained, brown, low plasticity clay M L Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, brown Image: Clayey SAND; fine to medium grained, b	
ES 2.45 m I I I I I I I I I I I I I I I I I I I	-
ES 2.45 m	
3.10m: no clay	
METHOD PENETRATION FIELD TESTS SAMPLES Solid R Ripper Hard auger VE Very Easy (No Resistance) SPT - Standard Penetration Test B - Bulk disturbed sample VS HA Hand auger F Firm DCP Dynamic Cone Penetrometer D - Disturbed sample S Standard Penetrometer DCP Dynamic Cone Penetrometer DCP Perth Sand Penetrometer D - Thin wall tube 'undisturbed' St SOId flight auger VH Very Hard (Refusal) WATER PBT Plate Bearing Test D - Dry MOISTURE D - Dry AD/V Solid flight auger: V-Bit Water Level on Date shown WP Vane Shear; P=Peak, W W WL L WB Washbore drilling water inflow water outflow VS - Vane Shear; P=Peak, R PL Plastic limit L L WB Washbore drilling water outflow Water could link R Refer to explanatory notes for details of CTANITEC ALLETER ALLETER VI Moisture content VD <	CONSISTENCY Very Soft Soft Firm Very Stiff Very Stiff Hard ATIVE DENSITY Very Loose Loose Medium Dense Dense Very Dense

Q	Stantec BOREHOLE LOG SHEET ilient: Maitland City Council Gentechnical Investigation - Proposed Flood Access Road Hole No: BH05											
Cli Pro	ent: oject: catio	n: :	Maitl Geot Scob	and City Coun echnical Inves ies Lane, Oakl	cil tigation - Pi hampton He	ropo	sed Fl	000	I Access Road		ŀ	Hole No: BH05
Po	sitior	: Ref	er to	Site Plan - Ch	140m				Angle from Horizontal: 90°	;	Surfac	e Elevation:
Riç	ј Тур	e: Ec	son	Versadrill MR	A 260				Mounting: 4wd Ute	l	Driller	: MH
Ca	sing	Diam	eter:	Uncased	Data Camul	- 4	. 5/40	00	Lowed Day JE	(Contra	ctor: Stantec
Da	Drillin	artea	5/12	Sompling 8		etea	: 5/12/	22	Logged By: JE		Спеск	ea By: TB
_		9		Samping &		2		_				
Method	Resistance	Casing	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (n	Graphic Log	Classification	SOIL TYPE, plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
									Silty SAND; fine to medium grained, brown (continued) 3.65m	м	VL - L	ALLUVIUM 3.50 m: Groundwater inflow 3.60 m: Groundwater level after 10
				D 3.70 - 4.00 m ES 3.95 m		1.0			Silty CLAY; medium plasticity, grey mottled brown-orange, with fine grained sand			minutes
				SPT 4.00 - 4.45 m 1, 3, 4 N*=7		4.0			4.00m: medium to high plasticity	M (■PL)	F - St	4.00 m: SPT Recovery: 0.45 m
2001 Billouin		pe				4.5						-
		- Uncase										-
11100						5.0			5.00m			
				3, 5, 6 N*=11					Sitty SAND; fine to medium grained, dark grey-brown, with clay (clay pockets/lenses throughout)	w	L - MD	5.00 m: SP1 Recovery: 0.45 m
						5.5			Sitty CLAY; high plasticity, grey mottled brown and orange, with fine grained sand, trace fine sub-rounded gravel			-
										M (>PL)	St	-
		V				6.0-			6.00m			-
									TERMINATED AT 6.00 m Target depth			-
						6.5						-
												-
												-
M	 IETHOD)		PEN	NETRATION			F	ELD TESTS SAMPLES	 \$		SOIL CONSISTENCY
	X E R A H T P ON S H A S P	kcavato pper and aug ush tub onic dri r hamm ercussio	r buck ger e ling ler on sam	et VE E F H VH	Very Easy (No Re Easy Firm Hard Very Hard (Refus TER	esistanc al)	e)	S H D P M P	PT - Standard Penetration Test P - Hand/Pocket Penetrometer CP - Dynamic Cone Penetrometer SP - Perth Sand Penetrometer IC - Moisture Content BT - Plate Bearing Test	ulk disturb isturbed sa nvironmen hin wall tub E	ed sampl ample tal sampl be 'undis	le VS - Very Soft S - Soft le F - Firm VSt - Stiff VSt - Very Stiff H - Hard
	S SI D/V Si D/T Si FA Hi /B W R Ri	nort spi olid flig olid flig ollow fli ollow fli ashbor ock roll	ral aug nt auge nt auge ght au e drillin er	yer er: V-Bit er: TC-Bit ger ng —	Water Levo shown water inflo water outfl	el on I w ow	Date	IN P V	MP Borehole Impression Test M L ID Photoionisation Detector W V S Vane Shear; P=Peak, R=Resdual (uncorrected kPa) L L	loist /et lastic limit iquid limit loisture cor	ntent	KELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD Very Dense
Real	efer to ex obreviatio	planator ns and b	notes fasis of c	for details of lescriptions		S	STAN	1TI	EC AUSTRALIA PTY LTD			

	Stantec BOREHOLE LOG SHEET															
	Clie Proj Loc	nt: ect: ation	: S	/laitla Seote Scobi	and City Coun echnical Inves ies Lane, Oakl	cil tigation - Pr nampton Hei	opo ight	osed Flo ts	od Ac	cess Road Job No: 304100979-00	5		ŀ	Iole No: BH06 Sheet: 1 of 1		
	Pos	ition:	Ref	er to	Site Plan - Ch	662m				Angle from Horizontal	: 90°	Surface Elevation:				
	Rig	Туре	: Ed	son	Versadrill MR	A 260				Mounting: 4wd Ute		0	Driller:	: MH		
H	Cas Date	Ing D Star	lame	eter:	Uncased	ate Comple	atad	1. 8/12/2	2	Logged By: MH		(Check	ctor: Stantec		
F	<u>5ull</u>	Drillina	icu.	0/12	Sampling &	Testina		. 0/12/2	-	Materia	I Description		JICON			
F					1 3 **	DCP TEST	Ê	4	=							
	Method	Resistance	Casing	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (Graphic Log	Classificatio	SOIL TYPE, plasticity or particle cha colour, secondary and minor com ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	racteristic, ponents colour, ering,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations		
					D 0.08 - 0.45 m ES 0.08 - 0.18 m					FILL: Silty SAND; fine to coarse grain brown, with organics 0.15m: with fine to coarse gravel	ed, dark	D - M	MD	Possibly FILL 0.00 m: 50mm fine to coarse, anglular gravel surfacing		
	S			Intered	B 0.60 - 0.80 m 16kg D 0.60 - 0.80 m 15kg ES 0.60 - 0.70 m		0.5		0.52r	n FILL: Silty CLAY; medium to high plas brown, grey and orange, with fine to c to sub-angular gravel, with organics	ticity, mottled oarse angular	M (=PL) - M (>PL)	St	-		
ŝ	m A		ased	Encou	ES 0.95 m		1.0		1.00r	n						
	300n		Uno	Not	50.400	18			1.20r	Silty CLAY; medium to high plasticity, and grey, with fine to coarse angular t gravel, with organics n Silty Sandy CLAY; medium plasticity, y fine to coarse grained sand	brown-orange o sub-angular yellow-brown,	M (P L) - M (>PL) M (>PL) -	St	RESIDUAL SUIL		
2					ES 1.30 m				1.40r	n		M (=PL)				
					ES 1.50 m	19 19 10/50mm 10/50mm 1	1.5		1.70r	" Sandy CLAY; low plasticity, yellow-bro grey-white, fine to coarse grained sar	wn and Id	M (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED		
	×				ES 1.95 m				2.00r	Clayey SAND; fine to coarse grained, and orange, lenses of sandy clay	, yellow-brown	М	D - VD	-		
5										TERMINATED AT 2.00 m Target depth						
														-		
	ME EX R HA PT SOAH PS AD AD HF WR R R	THOD Exc Rip Har Puts N Sor Air Per Sho (V Sol (/T Sol A Hol S Wa Roo	cavator per nd aug sh tube nic dril hamm cussic ort spir id fligh low flig shbore ck rolle	bucke er al aug at auge at auge drillin er	pler er er ger g or details of	ETRATION Very Easy (No Rei Easy Firm Hard Very Hard (Refusa TER ✓ Water Leve shown water inflov	sistanc al) el on l ow	Date	FIELD SPT HP DCP PSP MC PBT IMP PID VS	TESTS Standard Penetration Test Hand/Pocket Penetrometer Dynamic Cone Penetrometer Perth Sand Penetrometer Moisture Content Plate Bearing Test Borehole Impression Test Photoionisation Detector Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	SAMPLES B - Buil D - Disis ES - Thin MOISTURE D - D - Dry MOISTURE D - D - Dry M - Moi W - We PL - Play W - Moi	k disturbed turbed sa <i>v</i> ironment n wall tub sist t stic limit stic limit isture con	ed sampl Imple al sampl e 'undist	e VS - Very Soft S - Soft e F - Firm turbed' St - Stiff VSt - Very Sliff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense		

Q	Stantec BOREHOLE LOG SHEET												
Clie Pro Loc	ent: ject: atior	n: :	Maitl Geot Scob	and City Coun echnical Inves ies Lane, Oakl	cil tigation - I hampton H	Prop	osed Fl ts	00	d Access Road Job No: 304100979-005			F	Iole No: BH07
Pos	Position: Refer to Site Plan - Ch 548m Angle from Horizontal: 90° Surface Elevation:								e Elevation:				
Rig Type: Edson Versadrill MRA 260 Mounting: 4wd Ute Driller: MH								MH					
Cas	sing I	Diam	eter:	Uncased	Joto Comr	lata	4. 0/17	100				contra	ctor: Stantec
Dat			0/12	Sampling &		nete	u. 6/12		Logged by. Min Material Descr	intion		Hecke	ей Бу. ТБ
		9	1		DCP TEST	<u>ب</u>		c					
Method	Resistance	Casing	Water	Sample or Field Test	(AS 1289.6. 3.2-1997) Blows/ 150 mm 3 6 9 12	Depth (r	Graphic Log	Classificatio	SOIL TYPE, plasticity or particle characterist colour, secondary and minor components ROCK TYPE, grain size and type, colour, fabric & texture, strength, weathering, defects and structure	tic,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
					33				TOPSOIL FILL: Silty SAND; fine to coarse gra brown, with fine to coarse gravel 0.10m	ained,	D		FILL
				D 0.15 - 0.25 m 10kg	32				FILL: Sandy GRAVEL; fine to coarse angular t sub-angular, brown, fine to coarse grained sar with chunks of asphalt/coal chitter	to nd,	D - M	VD	
			pe	B 0.40 - 0.70 m 20kg ES 0.40 - 0.50 m		-0.5			Sitty CLAY; medium to high plasticity, dark brow mottled orange-brown and red	wn			RESIDUAL SOIL
- 300mm AS			Not Encountere	ES 0.60 m						N	И (>PL)	St	
				ES 0.85 m	_ ¹⁰				0.80m Sitty CLAY; low to medium plasticity, brown mo grey, orange and yellow-orange	ottled	И (<pl)< td=""><td>VSt</td><td></td></pl)<>	VSt	
					14	-10			1.00m				
				ES 1.10 m	30				Sitty CLAY; low plasticity, grey mottled yellow-orange	N	И (<pl)< td=""><td>н</td><td>EXTREMELY WEATHERED</td></pl)<>	н	EXTREMELY WEATHERED
					30				1.20m: becoming grey				
					Ri HB 30/125mm		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1.30m TERMINATED AT 1.30 m Refusal on Weathered Rock				
						-1.5							-
						-2.0							-
R HA PT SC AS AS	THOD C Ex Rij A Ha PL DN So A Air S St S St D/V So	kcavato pper and aug ush tub onic dri r hamm ercussio nort spi blid fligi	r buck ger lling ner on sam ral aug ht aug	et VE F H VH VH VH VH VH VH VH VH VH	Very Easy (No I Easy Firm Hard Very Hard (Refi TER Water Le shown	Resistar usal) evel on	^{ice)} Date	F S F M F	IELD TESTS SAM SPT - Standard Penetration Test B IP - Hand/Pocket Penetrometer D OCP - Dynamic Cone Penetrometer U VSP - Perth Sand Penetrometer U VG - Moisture Content MOIS PBT - Plate Bearing Test D MP - Borehole Impression Test M	IPLES - Bulk o - Distur - Enviro - Thin v STURE - Dry - Moist - Wort	disturbe rbed sa onmenta wall tub	d sampl mple al sample e 'undist	e VS - Very Soft Soft CONSISTENCY VS - Very Soft S - Soft F - Firm VSt - Stiff VSt - Very Stiff H - Hard RELATIVE DENSITY VL - Very Loose
AD HF WI RF	D/T So FA Ho B Wa R Ro fer to exp	blid flig blow fli ashbor bck roll	ht auge ight au re drillin er y notes t	er: TC-Bit ger ng	water infl	ow tflow	STAN		S - Vane Shear; P=Peak, R=Resdual (uncorrected kPa)	- Plasti - Liquic - Moisti	ic limit I limit ure con	tent	L - Loose MD - Medium Dense D - Dense VD - Very Dense

9	Stantec BOREHOLE LOG SHEET																
Clie Pro Loc	ient: Maitland City Council roject: Geotechnical Investigation - Proposed Flood Access Road Scobies Lane, Oakhampton Heights Job No: 304100979-005 Hole No: BH101 Sheet: 1 of 1																
Pos	sition	: Ref	er to S	Site Plan	- Ch 600m	-				Angle from Horiz	zontal:	90°	5	Surface	e Elevatio	n:	
Rig	Туре	e: Ge	oprob	oe 6625 (CPT Rig					Mounting: Track	([Driller:	MG		
Cas	sing [Diame	eter:										(Contra	ctor: Stra	atacor	e Drilling
Dat	e Sta	rted:	8/2/2	3	Date Com	pleted	I: 8/2/2	23		Logged By: TB			(Checke	ed By:		
	Drilling	g		Sampl	ling & Testing				1		Material	Description					
Method	Resistance	Casing	Water	S F	ample or ïeld Test	Depth (m)	Graphic Log	Classification	S	DIL TYPE, plasticity or par colour, secondary and mi ROCK TYPE, grain size a fabric & texture, strengt defects and stru	ticle chara nor compo and type, c h, weathe ucture	acteristic, onents colour, ering,	Moisture Condition	Consistency Relative Density	& C	STRUC Other Ob	CTURE oservations
			Encountered			-			6.50m	ILL: Silty Gravelly SAND, t	ine to coa	arse grained, ganics	D		FILL 0.00 m: App during anchho CPT underta weathered n	rox. obs oring of aken due ock.	erved material CPT rig. No to shallow -
AC			Not I			-			0.80m_	silty CLAY, medium plastici	ty, grey		M (« PL)		RESIDUAL :	SOIL	
						Ē			S	SILTSTONE/SANDSTONE	, grey-brow	wn, highly			WEATHERE	D ROC	к — — — — — — — — —
						-	 		1.00m								
						-1.0-			1.0011	ERMINATED AT 1.00 m							
						- 1.5											
METHOD PENETRATION EX Excavator bucket R Ripper HA Hand auger PT Push tube SON Sonic drilling AH Air hammer PS Percussion sampler AS Short spiral auger AD/V Solid flight auger: V-Bit HFA Hollow flight auger WB Washbore drilling RR Rock roller			L Date		 FIELD TES SPT - S HP - H DCP - D SP - F MC - M PBT - F MP - E PID - F F C A	STS Standard Penetration Test tand/Pocket Penetrometer Jynamic Cone Penetrometer Aoisture Content Plate Bearing Test Jorehole Impression Test Photoionisation Detector Ane Shear; P=Peak, R=Resdual (uncorrected k	r ter Pa)	SAMPLES B - Bul D - Dis ES - Enn U - Thir MOISTURE D - Dry M - Moi W - We PL - Pla LL - Liq w - Moi	k disturbe turbed sa vironment n wall tubo sist t stic limit stic limit uid limit isture con	l mple al sample e 'undistu tent	rbed'	SOIL C VS - S - F - VSt - H - RELAT - VL - L - D - VD -	ONSISTENCY Very Soft Soft Firm Stiff Very Stiff Hard VE DENSITY Very Loose Loose Medium Dense Dense Very Dense				

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method								
Test Pitting: ex	Fest Pitting: excavation/trench							
BH Backhoe bucket								
EX	Excavator bucket							
R	Ripper							
Н	Hydraulic Hammer							
Х	Existing excavation							
Ν	Natural exposure							
Manual drilling	: hand operated tools							
HA	Hand Auger							
Continuous sa	mple drilling							
PT	Push tube							
PS	Percussion sampling							
SON	Sonic drilling							
Hammer drillin	g							
AH	Air hammer							
AT	Air track							
Spiral flight au	ger drilling							
AS	Auger screwing							
AD/V	Continuous flight auger: V-bit							
AD/T	Continuous spiral flight auger: TC-Bit							
HFA	Continuous hollow flight auger							
Rotary non-co	re drilling							
WB	Washbore drilling							
RR	Rock roller							
Rotary core dr	illing							
PQ	85mm core (wire line core barrel)							
HQ	63.5mm core (wire line core barrel)							
NMLC	51.94mm core (conventional core barrel)							
NQ	47.6mm core (wire line core barrel)							
DT	Diatube (concrete coring)							

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method							
Soil sampling							
В	Bulk disturbed sample						
D	Disturbed sample						
С	Core sample						
ES	Environmental soil sample						
SPT	Standard Penetration Test sample						
U	Thin wall tube 'undisturbed' sample						
Water sampling							
WS	Environmental water sample						

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field testing	
---------------	--

SPT	Standard Penetration Test						
HP/PP	Hand/Pocket Penetrometer						
Dynamic Penetrometers (blows per noted increment)							
	DCP	Dynamic Cone Penetrometer					
	PSP	Perth Sand Penetrometer					
MC	Moisture	Content					
VS	Vane She	ear					
PBT	Plate Bearing Test						
IMP	Borehole Impression Test						
PID	Photo Ionization Detector						

If encountered, refusal (R), virtual refusal (VR) or hammer bouncing (HB) of penetrometers may be noted.

The quality of the rock can be assessed by the degree of natural defects/fractures and the following.

Rock quality description								
TCR	Total Core Recovery (%)							
	(length of core recovered divided by the length of core run)							
RQD	Rock Quality Designation (%)							
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)							

Notes on groundwater conditions encountered may include.

Groundwater	
Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions								
Stable	No obvious/gross short term instability noted							
Spalling	Material falling into excavation (minor/major)							
Unstable	Collapse of the majority, or one or more face of the excavation							

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classific	ation	Particle Size (mm)			
CLAY		< 0.002			
SILT		0.002 0.075			
SAND	fine	0.075 to 0.21			
	medium	0.21 to 0.6			
	coarse	0.6 to 2.36			
GRAVEL	fine	2.36 to 6.7			
	medium	6.7 to 19			
	coarse	19 to 63			
COBBLES		63 to 200			
BOULDERS		> 200			

Soil types may be qualified by the presence of minor components on the basis of field examination methods and/or the soil grading.

Terminology	In coarse	In fine soils			
reminology	% fines	% coarse	% coarse		
Trace	≤5	≤15	≤15		
With	>5, ≤12	>15, ≤30	>15, ≤30		

The strength of cohesive soils is classified by engineering assessment or field/lab testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	≤12kPa
Soft	S	12kPa to ≤25kPa
Firm	F	25kPa to ≤50kPa
Stiff	St	50kPa to ≤100kPa
Very Stiff	VSt	100kPa to ≤200kPa
Hard	Н	>200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index	
Very Loose	VL	<15%	
Loose	L	15% to ≤35%	
Medium Dense	MD	35% to ≤65%	
Dense	D	65% to ≤85%	
Very Dense	VD	>85%	

The plasticity of cohesive soils is defined by the Liquid Limit (LL) as follows.

Plasticity	Silt LL	Clay LL
Low plasticity	≤ 35%	≤ 35%
Medium plasticity	N/A	> 35% ≤ 50%
High plasticity	> 50%	> 50%

The moisture condition of soil (*w*) is described by appearance and feel and may be described in relation to the Plastic Limit (PL), Liquid Limit (LL) or Optimum Moisture Content (OMC).

Moisture condition and description		
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running	
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere	
Wet	Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere	

The structure of the soil may be described as follows.

Zoning	Description
Layer	Continuous across exposure or sample
Lens	Discontinuous layer (lenticular shape)
Pocket	Irregular inclusion of different material

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

The soil origin may also be noted if possible to deduce.

Soil origin a	Soil origin and description			
Fill	Anthropogenic deposits or disturbed material			
Topsoil	Zone of soil affected by roots and root fibres			
Peat	Significantly organic soils			
Colluvial	Transported down slopes by gravity/water			
Aeolian	Transported and deposited by wind			
Alluvial	Deposited by rivers			
Estuarine	Deposited in coastal estuaries			
Lacustrine	Deposited in freshwater lakes			
Marine	Deposits in marine environments			
Residual soil	Soil formed by in situ weathering of rock, with no structure/fabric of parent rock evident			
Extremely weathered material	Formed by in situ weathering of geological formations, with the structure/fabric of parent rock intact but with soil strength properties			

The origin of the soil generally cannot be deduced solely on the appearance of the material and the inference may be supplemented by further geological evidence or other field observation. Where there is doubt, the terms 'possibly' or 'probably' may be used

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-2017 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Rock types are generally described according to the predominant grain or crystal size, and in groups for each rock type as follows.

Rock type	Groups
Sedimentary	Deposited, carbonate (porous or non), volcanic ejection
Igneous	Felsic (much quartz, pale), Intermediate, or mafic (little quartz, dark)
Metamorphic	Foliated or non-foliated
Duricrust	Cementing minerology (iron oxides or hydroxides, silica, calcium carbonate, gypsum)

Reference should be made to AS1726 for details of the rock types and methods of classification.

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and symbol		Definition
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties. Mass structure and substance still evident
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores. May be distinguished into MW (Moderately Weathered) and HW (Highly Weathered).
weathered	SVV	change of strength from fresh rock
Fresh Rock	FR	The rock shows no sign of decomposition or staining

The rock material strength can be defined based on the point load index as follows.

Term and symbol		Point Load Index I₅50 (MPa)	
Very Low	VL	0.03 to 0.1	
Low	L	0.1 to 0.3	
Medium	Μ	0.3 to 1.0	
High	Н	1.0 to 3	
Very High	VH	3 to 10	
Extremely High	EH	> 10	

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing (mm)
Thinly laminated	< 6
Laminated	6 to 20
Very thinly bedded	20 to 60
Thinly bedded	60 to 200
Medium bedded	200 to 600
Thickly bedded	600 to 2000
Very thickly bedded	> 2000

Terms for describing rock and defects are as follows.

Defect Terms			
Joint	JT	Sheared zone	SZ
Bedding Parting	BP	Seam	SM
Foliation	FL	Vein	VN
Cleavage	CL	Drill Lift	DL
Crushed Seam	CS	Handling Break	HB
Fracture Zone	FZ	Drilling Break	DB

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulose	UN	Smooth	S
Irregular	IR	Slickensided	SL
Stepped	ST	Polished	POL
Discontinuous	DIS		

The coating or infill associated with defects in the rock mass are described as follows.

Infill and Coating				
Clean	CN			
Stained	SN			
Carbonaceous	Х			
Minerals	MU	Unidentified mineral		
	MS	Secondary mineral		
	KT	Chlorite		
	CA	Calcite		
	Fe	Iron Oxide		
	Qz	Quartz		
Veneer	VNR	Thin or patchy coating		
Coating	СТ	Infill up to 1mm		

Graphic Symbols Index

APPENDIX

LABORATORY TEST RESULTS

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: CBR:NEWC22S-10766

Issue No: 1

California Bearing Ratio Test Report Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Stantec Australia Pty Ltd Level 22, 570 Bourke Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Melbourne VIC 3000 Gendest **Principal:** 757-NEWC00160AA Project No.: Approved Signatory: Jason Condran Hac-MRA Project Name: CMT Services (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: -TRN: -Date of Issue: 6/02/2023 Sample Details Sample ID: NEWC22S-10766 Sampling Method: Submitted by client* Client ID: Material: **Existing Ground** Date Sampled: 6/12/2022 Source: On-Site Date Submitted: 13/12/2022 Specification: No Specification Date Tested: 31/01/2023 Project Location: Various Locations Sample Location: Scoobies Lane, NSW, TB02 - 0.5 - 1.0m **Test Results** Load vs Penetration AS 1289.6.1.1 30 CBR at 2.5mm (%): 8 Dry Density before Soaking (t/m³): 1.78 Density Ratio before Soaking (%): 100.0 15.5 Moisture Content before Soaking (%): 100.5 Moisture Ratio before Soaking (%): 1.79 Dry Density after Soaking (t/m³): Density Ratio after Soaking (%): 100.0 Swell (%): 0.0 2.0 Moisture Content of Top 30mm (%): 19.3 .oad on Piston (kN) Moisture Content of Remaining Depth (%): 17.2 Compaction Hammer Used: Standard AS 1289.5.1.1 Surcharge Mass (kg): 4.50 Period of Soaking (Days): 4 Retained on 19 mm Sieve (%): 5 CBR Moisture Content Method: AS 1289.2.1.1 1.0 Sample Curing Time (h): 33 Plasticity Determination Method: Visual/Tactile - AS 1289.2.1.1 -In Situ (Field) Moisture Content (%): 15 1 0.0 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0 100 110 120 130 0.0 Penetration (mm)

Comments

Comments

Form No: 18995, Report No: MDD:NEWC22S-10766

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: CBR:NEWC22S-10767

Issue No: 1

California Bearing Ratio Test Report

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Gendese

Approved Signatory: Jason Condran (Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 6/02/2023

AS 1289.6.1.1

8

1.88

99.0

99.0

1 87

98 5

0.5

13.8

4.50

4

2

29

78

Standard AS 1289.5.1.1

AS 1289.2.1.1

Visual/Tactile

57

Comments

0.0

0.0

1.0

2.0 3.0

*Results relate only to the items tested or sampled.

40 5.0 6.0 7.0 8.0

Penetration (mm)

9.0

100 110 120 130

Newcastle Laboratory Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Comments

Form No: 18995, Report No: MDD:NEWC22S-10767

Page 1 of 1

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: CBR:NEWC22S-10768

Issue No: 1

California Bearing Ratio Test Report

Client:	Stantec Australia Pty Ltd Level 22, 570 Bourke Street Melbourne VIC 3000	
Principal:		
Project No.:	757-NEWC00160AA	
Project Name:	CMT Services	
Lot No.: -		TRN: -

Sample Details

Sample ID:	NEWC22S-10768
Client ID:	-
Date Sampled:	6/12/2022
Date Submitted:	13/12/2022
Date Tested:	16/12/2022
Project Location:	Various Locations
Sample Location:	Scoobies Lane, NSW, BH03 - 0.15 - 0.5m

Client ID:	-	Material:
Date Sampled:	6/12/2022	Source:
Date Submitted:	13/12/2022	Specification:
Date Tested:	16/12/2022	
Project Location:	Various Locations	
Sample Location:	Scoobies Lane, NSW, BH03 - 0.15 - 0.5m	
Load vs Pene	tration	
0.5 t	1 4 - 1 4 4 1 1 - 111 + 1 - 4 1 - 1 - 111 - 1 - 4 1 - 1 - 4 1 + 1 - 1 - 4 1 + 1 - 1 - 4 1 + 1 - 1 - 4 1 + 1 - 1	

23 	
23	
13	3
	-

NATA Hac-MRA

Sampling Method: Submitted by client*

Existing Ground On-Site

No Specification

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Services

Approved Signatory: Jason Condran (Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 30/01/2023

Test Results	
AS 1289.6.1.1	
CBR at 2.5mm (%):	2.0
Dry Density before Soaking (t/m ³):	1.41
Density Ratio before Soaking (%):	101.0
Moisture Content before Soaking (%):	30.0
Moisture Ratio before Soaking (%):	96.0
Dry Density after Soaking (t/m³):	1.40
Density Ratio after Soaking (%):	100.5
Swell (%):	0.5
Moisture Content of Top 30mm (%):	31.3
Moisture Content of Remaining Depth (%):	31.5
Compaction Hammer Used:	Standard
	AS 1289.5.1.1
Surcharge Mass (kg):	4.50
Period of Soaking (Days):	4
Retained on 19 mm Sieve (%):	0
CBR Moisture Content Method:	AS 1289.2.1.1
Sample Curing Time (h):	28
Plasticity Determination Method:	AS 1289.3.1.1
AS 1289.2.1.1 —	
In Situ (Field) Moisture Content (%):	29.0

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: MDD:NEWC22S-10768

Issue No: 1

Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Approved Signatory: Jason Condran (Geotechnician) NATA Accredited Laboratory Number:431

Comments

coffey

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: CBR:NEWC22S-10769 Issue No: 1 Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Stantec Australia Pty Ltd Level 22, 570 Bourke Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Melbourne VIC 3000 **Principal:** Genderal 757-NEWC00160AA Project No.: Approved Signatory: Jason Condran Hac-MR/ Project Name: CMT Services (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: -TRN: -Date of Issue: 30/01/2023 Sample Details NEWC22S-10769 Sample ID: Sampling Method: Submitted by client* Client ID: Material: **Existing Ground** Date Sampled: 6/12/2022 Source: On-Site Date Submitted: 13/12/2022 Specification: No Specification Date Tested: 16/12/2022 Project Location: Various Locations Sample Location: Scoobies Lane, NSW, BH04 - 0.3 - 0.65m **Test Results** Load vs Penetration AS 1289.6.1.1 2.4 CBR at 5.0mm (%): 6 Dry Density before Soaking (t/m³): 1.63 2.2 Density Ratio before Soaking (%): 100.0 20.0 Moisture Content before Soaking (%): 2.0 99.5 Moisture Ratio before Soaking (%): Dry Density after Soaking (t/m³): 1.62 1.8 Density Ratio after Soaking (%): 99 5 Swell (%): 0.5 1.6 Moisture Content of Top 30mm (%): 24.9 (kN) (kN) Moisture Content of Remaining Depth (%): 20.7 1.4 Compaction Hammer Used: Standard AS 1289.5.1.1 1.7 Surcharge Mass (kg): 4.50 Period of Soaking (Days): 4 1.0 Retained on 19 mm Sieve (%): 0 CBR Moisture Content Method: AS 1289.2.1.1 0.6 Sample Curing Time (h): 31 Plasticity Determination Method: AS 1289.3.1.1 0.6 - AS 1289.2.1.1 -0.4 In Situ (Field) Moisture Content (%): 167 0.2 0.0 1.0 2.0 3.0 40 6.0 11.0 12.0 13.0 0.0 5.0 7.0 8.0 9.0 10.0 Penetration (mm)

California Bearing Ratio Test Report

Comments

Material Test Report

Newcastle Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: NEWC22S-10768-1 Issue No: 1 Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Stantec Australia Pty Ltd Level 22, 570 Bourke Street NATA the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Melbourne VIC 3000 Slowlood **Principal:** Project No.: 757-NEWC00160AA Approved Signatory: Jason Condran Hac-MRA Project Name: CMT Services (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: -TRN: -Date of Issue: 30/01/2023

Sample Details

Sample ID / Client ID:	NEWC22S-10768 / -
Date Sampled:	06/12/2022
Source:	On-Site
Material:	Existing Ground
Specification:	No Specification
Sampling Method:	Submitted by client*
Project Location:	Various Locations
Sample Location:	Scoobies Lane, NSW
-	BH03 - 0.15 - 0.5m

Test Results

Description	Method	Result Limit	ts
Moisture Content (%)	AS 1289.2.1.1	29.0	_
Date Tested		14/12/2022	
Sample History	AS 1289.1.1	Oven-Dried	_
Preparation	AS 1289.1.1	Dry-Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	12.0	
Mould Length (mm)		254	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	46	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	25	
Plasticity Index (%)	AS 1289.3.3.1	21	
Date Tested		29/01/2023	

Comments

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

				Report No: NEWC	222S-10769-1
Material Tes	st Report				13300 110. 1
Client: Stantec Level 22 Melbour Principal: Project No.: 757-NE	Australia Pty Ltd 2, 570 Bourke Street rne VIC 3000 WC00160AA			Accredited for compliance with Testing. NATA is a signatory to Recognition Arrangement for th the equivalence of testing, mee inspection, proficiency testing s reference materials producers	ISO/IEC 17025 - o the ILAC Mutual he mutual recognition of dical testing, calibration, scheme providers and reports and certificates
Project Name: CMT Se Lot No.: -	ervices TRN: -		The state of the s	(Geotechnician) NATA Accredited Laboratory N Date of Issue: 30/01/2023	lumber:431
Sample Details			Particle S	ize Distribution	
Sample ID / Client ID: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:	NEWC22S-10769 / - 06/12/2022 On-Site Existing Ground No Specification Submitted by client* Various Locations Scoobies Lane, NSW BH04 - 0.3 - 0.65m		Method: Drying By: Date Tested: Note: Sieve Size 4.75mm 2.36mm 1.18mm	AS 1289.3.6.1 Oven 19/12/2022 Sample Washed % Passing 100 100 100	Limits
Other Test Result Description Moisture Content (%) Date Tested Sample History Preparation Linear Shrinkage (%) Mould Length (mm) Crumbling Curling Curling Cracking Liquid Limit (%) Method Plastic Limit (%) Plasticity Index (%) Date Tested Standard MDD (t/m ³)	S Method Resu AS 1289.2.1.1 16 14/12/202 AS 1289.1.1 Oven-Drid AS 1289.1.1 Dry-Sieve AS 1289.3.4.1 5 24 N AS 1289.3.4.1 5 24 N AS 1289.3.1.1 5 Four Poi AS 1289.3.2.1 5 28/01/202 AS 1289.5.1.1 1	Limits .7 22 ed .5 .54 No .63 .11 .22 .22 .5 .5 .54 No .53 .11 .22 .33 .12 .23 .32	425μm 300μm 150μm 75μm	99 97 86 66	
Standard OMC (%) Retained Sieve (mm) Oversize Material (%) Curing Time (h) LL Method Date Tested CBR at 5.0mm (%) Dry Density before Soak Density Ratio before Soak Moisture Content before Soak Moisture Ratio before Soak Moisture Ratio before Soak Dry Density after Soakin Density Ratio after Soak Swell (%) Moisture Content of Top	20 1 Visual / Tactile Assessme 15/12/20 AS 1289.6.1.1 ing (t/m³) 1.0 aking (%) 20 paking (%) 99 g (t/m³) 1.0 ing (%) 99 g (t/m³) 1.0 ing (%) 99 30mm (%) 24	.0 19 0 71 nt 22 6 33 .0 .0 .5 .5 .9	Chart		

Comments

Newcastle Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

				Report No: NEW	C22S-10769-1
Material Tes	st Report			A severality of fear a several large state	
Client: Stanted Level 2 Melbou	Australia Pty Ltd 2, 570 Bourke Street rne VIC 3000		NATA	Accredited for compliance wit Testing. NATA is a signatory Recognition Arrangement for the equivalence of testing, me inspection, proficiency testing reference materials producers	h ISO/IEC 17025 - to the ILAC Mutual the mutual recognition o edical testing, calibration, scheme providers and s reports and certificates
Project No.: 757-NE	WC00160AA		Hac-MRA	Approved Signatory: Jason C	ondran
Lot No.: -		1 : -		(Geotechnician) NATA Accredited Laboratory Date of Issue: 30/01/2023	Number:431
Sample Details			Particle S	ize Distribution	l
Sample ID / Client ID: Date Sampled: Source: Material: Specification:	NEWC22S-10769 / - 06/12/2022 On-Site Existing Ground		Method: Drying By: Date Tested: Note:	AS 1289.3.6.1 Oven 19/12/2022 Sample Washed	
Specification: Sampling Method: Project Location: Sample Location:	No Specification Submitted by client* Various Locations Scoobies Lane, NSW BH04 - 0.3 - 0.65m		Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm	% Passing 100 100 100 100 99	Limits
Other Test Result	ts		300µm 150µm	97 86	
Moisture Content of Remainir Compaction Hammer Us Surcharge Mass (kg) Period of Soaking (Days Retained on 19 mm Siev CBR Moisture Content M Sample Curing Time (h) Plasticity Method Sample Moisture Conter Date Tested	ng Depth (%) sed ;) /e (%) /ethod A nt A	20.7 Standard 4.50 4 0 \S 1289.2.1.1 31 \S 1289.3.1.1 \S 1289.2.1.1 16/12/2022			
			Chart		
Comments					

*Results relate only to the items tested or sampled.

Material Test Report

Newcastle Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Report No: NEWC22S-10770-1 Issue No: 1 Accredited for compliance with ISO/IEC 17025 -Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of Client: Stantec Australia Pty Ltd Level 22, 570 Bourke Street NATA Melbourne VIC 3000 Condesi **Principal:** Project No.: 757-NEWC00160AA Approved Signatory: Jason Condran Hac-MRA Project Name: CMT Services (Geotechnician) NATA Accredited Laboratory Number:431 Lot No.: -TRN: -Date of Issue: 30/01/2023

Sample Details

Sample ID:	NEWC22S-10770
Date Sampled:	06/12/2022
Source:	On-Site
Material:	Existing Ground
Specification:	No Specification
Sampling Method:	Submitted by client*
Project Location:	Various Locations
Sample Location:	Scoobies Lane, NSW
	BH04 - 1.7 - 2.0m

Test Results

Method	Result	Limits
AS 1289.1.1	Oven-Dried	
AS 1289.1.1	Dry-Sieved	
AS 1289.3.4.1	6.0	
	250.05	
	No	
	No	
	Yes	
AS 1289.3.1.1	31	
	Four Point	
AS 1289.3.2.1	19	
AS 1289.3.3.1	12	
	28/01/2023	
	Method AS 1289.1.1 AS 1289.1.1 AS 1289.3.4.1 AS 1289.3.1.1 AS 1289.3.2.1 AS 1289.3.3.1	Method Result AS 1289.1.1 Oven-Dried AS 1289.1.1 Dry-Sieved AS 1289.3.4.1 6.0 250.05 No No Yes AS 1289.3.1.1 31 Four Point AS 1289.3.2.1 AS 1289.3.3.1 12 28/01/2023 28/01/2023

Comments

*Results relate only to the items tested or sampled.

the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates

Newcastle Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

Material Te	st Report			Report No: NEWC22S-10771-1 Issue No: 1
Client: Stante Level Melbo Principal: Project No.: 757-N Project Name: CMT Lot No.: -	ec Australia Pty Ltd 22, 570 Bourke Street burne VIC 3000 IEWC00160AA Services TRN: -		NATA NATA Nac MRA	Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates Approved Signatory: Jason Condran (Geotechnician) NATA Accredited Laboratory Number:431 Date of Issue: 30/01/2023
Sample ID: Date Sampled: Source: Material: Specification: Sampling Method: Project Location: Sample Location:	NEWC22S-10771 06/12/2022 On-Site Existing Ground No Specification Submitted by client* Various Locations Scoobies Lane, NSW BH05 - 0.7 - 1.0m		Method: Drying By: Date Tested: Note: Sieve Size 2.36mm 1.18mm 600µm 425µm 300µm	AS 1289.3.6.1 Oven 20/12/2022 Sample Washed % Passing Limits 100 100 99 85
Other Test Resu Description Sample History Preparation Linear Shrinkage (%) Mould Length (mm) Crumbling Curling Cracking Liquid Limit (%) Method Plastic Limit (%) Plasticity Index (%) Date Tested	Its Method Result AS 1289.1.1 Oven-Dried AS 1289.1.1 Dry-Sieved AS 1289.3.4.1 4.0 250 No No Yes AS 1289.3.1.1 30 Four Point AS 1289.3.2.1 19 AS 1289.3.3.1 11 28/01/2023	Limits	-	38 10
			Chart	

*Results relate only to the items tested or sampled.

Newcastle Laboratory Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

*Results relate only to the items tested or sampled.

EwS-COD-Jun/1

CHAIN OF CUSTODY RECORD

LAD Namo	Envroiab																		
Audress	12 Ashley 5t, Chalsword NSW	2067													ro#				
Client	Stanted Australia Pty LI4			-	Conta	ct Num	Nors					1			T	-			
	Suite 2, Level 2, 22 Honeysuck	le Drive			Phone	•			0249	65455	ā			્ય	🔊 N Star	itec			
	Newcestle	NSW 2300			Fax				0249	85486	6								
Contars	Dave Bashan			1	E-mai	ų	ð:	rock cai	unson,	Qcar	נ יתבהו בלו			da da	wid.basilan@car	dno com au		_	-
Sampled by	Brock Collinson			1						-							_		
Project Ref:	304100979			1	Date /	Result	Regu	ired	Stant	lard T.	AT								
		[Ma	trix			Ċ	ontaine	rs'Pra	serv a :	:on				Analysia	Required			
Laboratory LENS ID	Client Sample ID	Date Sempled	501	Water	Sol Lar (3) Nati Oranga	Turple JAR	O-9nge Jar	sfimt vr)A vai (6) 150, Maroon	U.1.1.0 die (P. H ₁ SO, Marcon	0.2-1 0 dre (5) H ₂ S/0 <u>4</u> Marcon	0.1-02 ;PFF1ere-122 Y-Y65, N-No (HNO3) Red	0 21 (P) NSCH But	Other - Zip Lock Bag	Acid Sultate Field Screen	SCr 3uile	ENK Suile excluding toreign materiels	Hsiđ		
1	[BHD6 0.02-0.1	J/12/2022	×		[×		[l .	[- ×		er	
2	PH06 0.6-0.7	3/12/2022	×										¥	×				륲	
3	BHD7 0.4-0.5	8/12/2022	<u> × </u>		<u> </u>		I _	L _	L_		·			× .				2	
<u>+</u>	TB5C107-075	5/12/2022	×		¥									×		*		1	
5	T85C2 0.4-0.5	5/12/2 <u>C</u> 22	<u> </u>	<u> </u>	. .	<u> </u>		<u> </u>								×		-	ت ـ
6	8503 0 6-0 7	5(12)2022	×		×											×		E E	E.
7	T85C4 0 6-0 7	5(12(2))22	*		x												<u>×</u>	Ē	S.
<u>5</u>	T85C5 16-17	5/12/2022	. ×_	L	. ×			1	L I					. <u>×</u>			· ·	<u> </u>	5
			ж														+		Ē
		<u> </u>	×	I				-									+	륻	Ē
			×					_				· ·					. _		19
			×				L										+	<u> </u>	•
			×														\square	2	
			×																
			×					1										<u> </u>	
			×					•										्य	
Relinguished by	Brock Collinson	Segnature	14		n	aleCo	ne			. .									

Signature

DateTime

Custody Sesis Intact7 / Samples Received Chilled?

Page 5 of 3

¥ 312836 (22) 13|2236 (22) C1/14#4

COC Keld: 13/12/22-C 1494 CD Cardno

Internal Laboratory Chain of Custody

.

. •

.

				_						
Client Nan	NB		Stanlec			Sampler	BCUE			
Client Add	1626				·	Method	Drill rig with auger/ Excavator w auger			
Project Re	1		304100979	-		Dispatch by	BCAJE			
Project Na	me		Pavement In:	/estigation	Envirolity Services	Date	9/12/2022			
Site Locati	ian		Scobies Lane	<u> </u>	ETWIRDLING Charlyward draw 2067	Request by	BC			
Componer	ntiSleg	e	Stage 5		Ph: (02) 0010 6220	Date	9/12/2022			
					JOD NOT Date Received Time Received Heceived By Temp Contracting Cooling: Icentering Society Icentering					
Location		Dapth	Dete	Туре	Material Description					
81:06	١	0.08-0.1	08/12/22	Enviro	Silty SAND; dark brown					
BH06	7	0.6-0.7	08/12/22	Envro	Silty CLAY; brown, grey and orange					
BH07	>	0.4-0.5	08/12/22	Enviro	Sillty CLAY; dark brown, orange brown and red		1			
T8501	Ŷ	0.7-0.75	05/12/22	Enviro	Sendy SILT; dark brown					
T8502	Ś	0.4-0.5	05/12/22	Enviro	Silly Gravelly SAND; dark gray	· ·	1	· -		
TB503	Y	0.6-0.7	05/12/22	Enviro	Gravelly Sifty SAND; brown					
TB504	7	0.6-0.7	05/12/22	Enviro	Gravelly SAND; brown-grey					
TB505	\$	1.6-1,7	05/12/22	Enviro	SII.T: dark brown					
	•			-						
_									-	
	_				•					
		1]		
		ľ								
		L								
]		
<u> </u>			<u> </u>	I				<u> </u>		
i		L	_	-	. I					
		1						·		
	— .	L		-	_	_				
	_ ·	ι								

11

:

. .

.

-

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 312836

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	Brock Collinson
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details	
Your Reference	<u>304100979</u>
Number of Samples	8 Soil
Date samples received	12/12/2022
Date completed instructions received	13/12/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	20/12/2022						
Date of Issue	20/12/2022						
NATA Accreditation Number 2901. This do	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 1	7025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Jenny He, Senior Chemist Josh Williams, Organics and LC Supervisor Liam Timmins, Organic Instruments Team Leader Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 312836 Revision No: R00

Page | 1 of 19

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Date analysed	-	19/12/2022	19/12/2022	19/12/2022	19/12/2022
TRH C6 - C9	mg/kg	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	124	103	101	109

svTRH (C10-C40) in Soil					
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Date analysed	-	16/12/2022	16/12/2022	16/12/2022	16/12/2022
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	160	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	260	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	230	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	230	<50
Surrogate o-Terphenyl	%	80	83	87	84

PAHs in Soil					
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Date analysed	-	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Naphthalene	mg/kg	<0.1	<0.1	0.3	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.3	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.3	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.3	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.3	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.3	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	1	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	1.0	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.6	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.4	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	5.6	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	1.2	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	1.3	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	1.3	<0.5
Surrogate p-Terphenyl-d14	%	82	89	91	83

Acid Extractable metals in soil				_	
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	16/12/2022	16/12/2022	16/12/2022	16/12/2022
Date analysed	-	19/12/2022	19/12/2022	19/12/2022	19/12/2022
Arsenic	mg/kg	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	7	13	9
Copper	mg/kg	2	<1	8	11
Lead	mg/kg	7	4	18	250
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	3	12	8
Zinc	mg/kg	15	3	36	17

Misc Inorg - Soil					
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	19/12/2022	19/12/2022	19/12/2022	19/12/2022
Date analysed	-	19/12/2022	19/12/2022	19/12/2022	19/12/2022
pH 1:5 soil:water	pH Units	4.6	5.8	6.2	6.8
Electrical Conductivity 1:5 soil:water	µS/cm	280	160	200	130

Moisture					
Our Reference		312836-1	312836-4	312836-5	312836-6
Your Reference	UNITS	BH06	TB501	TB502	TB503
Depth		0.08-0.1	0.7-0.75	0.4-0.5	0.6-0.7
Date Sampled		08/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	14/12/2022	14/12/2022	14/12/2022	14/12/2022
Date analysed	-	15/12/2022	15/12/2022	15/12/2022	15/12/2022
Moisture	%	11	13	14	5.7

sPOCAS field test					
Our Reference		312836-2	312836-3	312836-4	312836-8
Your Reference	UNITS	BH06	BH07	TB501	TB505
Depth		0.6-0.7	0.4-0.5	0.7-0.75	1.6-1.7
Date Sampled		08/12/2022	08/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022
Date analysed	-	20/12/2022	20/12/2022	20/12/2022	20/12/2022
pH _F (field pH test)	pH Units	6.7	7.0	7.1	6.7
pH _{FOX} (field peroxide test)	pH Units	4.1	6.0	3.2	5.1
Reaction Rate*	-	Low reaction	Low reaction	Low reaction	Medium reaction

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" th="" that="" the="" this="" to="" when="" zero.=""></pql></pql>
	3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" th="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	312836-4		
Date extracted	-			14/12/2022	1	14/12/2022	14/12/2022		14/12/2022	14/12/2022		
Date analysed	-			19/12/2022	1	19/12/2022	19/12/2022		19/12/2022	19/12/2022		
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	117	106		
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	117	106		
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	109	99		
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	113	102		
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	112	101		
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	125	114		
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	122	110		
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-023	116	1	124	124	0	117	103		

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	312836-4
Date extracted	-			14/12/2022	1	14/12/2022	14/12/2022		14/12/2022	14/12/2022
Date analysed	-			16/12/2022	1	16/12/2022	16/12/2022		16/12/2022	16/12/2022
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	88	89
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	88	83
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	100	101
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	88	89
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	88	83
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	100	101
Surrogate o-Terphenyl	%		Org-020	80	1	80	89	11	78	78

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	312836-4
Date extracted	-			14/12/2022	1	14/12/2022	14/12/2022		14/12/2022	14/12/2022
Date analysed	-			14/12/2022	1	14/12/2022	14/12/2022		14/12/2022	14/12/2022
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	92
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	83
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	86
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	94
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	88
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	87
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	73	65
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	74	70
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	80	1	82	82	0	85	79

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	312836-4
Date prepared	-			16/12/2022	1	16/12/2022	16/12/2022		16/12/2022	16/12/2022
Date analysed	-			19/12/2022	1	19/12/2022	19/12/2022		19/12/2022	19/12/2022
Arsenic	mg/kg	4	Metals-020	<4	1	<4	7	55	95	86
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	99	88
Chromium	mg/kg	1	Metals-020	<1	1	8	10	22	104	88
Copper	mg/kg	1	Metals-020	<1	1	2	1	67	99	97
Lead	mg/kg	1	Metals-020	<1	1	7	7	0	100	87
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	89	94
Nickel	mg/kg	1	Metals-020	<1	1	3	3	0	100	89
Zinc	mg/kg	1	Metals-020	<1	1	15	14	7	101	85

QUALITY	CONTROL	Misc Ino	rg - Soil		Duplicate Spik					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date prepared	-			19/12/2022	1	19/12/2022	19/12/2022		19/12/2022	[NT]
Date analysed	-			19/12/2022	1	19/12/2022	19/12/2022		19/12/2022	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	1	4.6	4.6	0	101	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	1	280	290	4	108	[NT]

QUALITY	CONTROL:	sPOCAS	field test		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			20/12/2022	[NT]		[NT]	[NT]	20/12/2022	
Date analysed	-			20/12/2022	[NT]		[NT]	[NT]	20/12/2022	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Samples were out of the recommended holding time for this analysis pH in soil.

CHAIN OF CUSTODY RECORD

NWS-COC-6974

5/0|

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 313195

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	David Bastian
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details	
Your Reference	<u>304100979</u>
Number of Samples	6 Soil
Date samples received	15/12/2022
Date completed instructions received	15/12/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	22/12/2022	
Date of Issue	22/12/2022	
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.	
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Nick Sarlamis, Assistant Operation Manager Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		313195-1	313195-2	313195-3	313195-4	313195-5
Your Reference	UNITS	BH02 0.45	BH02 0.95	BH03 0.45	BH04 0.45	BH05 0.95
Date Sampled		05/12/2022	05/12/2022	05/12/2022	05/12/2022	05/12/2022
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
Date analysed	-	21/12/2022	21/12/2022	21/12/2022	21/12/2022	21/12/2022
pH _F (field pH test)	pH Units	7.1	7.2	7.2	7.2	7.2
pHFOX (field peroxide test)	pH Units	4.5	5.8	6.2	5.1	6.1
Reaction Rate*	-	Low reaction	High reaction	Extreme reaction	Extreme reaction	High reaction

sPOCAS field test		
Our Reference		313195-6
Your Reference	UNITS	BH05 1.45
Date Sampled		05/12/2022
Type of sample		Soil
Date prepared	-	21/12/2022
Date analysed	-	21/12/2022
pH _F (field pH test)	pH Units	7.2
pH _{FOX} (field peroxide test)	pH Units	5.6
Reaction Rate*	-	High reaction

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

QUALITY	CONTROL:	sPOCAS	field test			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/12/2022	[NT]		[NT]	[NT]	21/12/2022	
Date analysed	-			21/12/2022	[NT]		[NT]	[NT]	21/12/2022	
pH _F (field pH test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	100	
pH _{FOX} (field peroxide test)	pH Units		Inorg-063	[NT]	[NT]		[NT]	[NT]	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Newcastle Laboratory

Coffey Testing Pty Ltd ABN 92 114 364 046 16 Callistemon Close Warabrook NSW 2304

Phone: +61 2 4016 2300

TESTING						Report No: ASM:NEWC23W00585		
Materia	l Te	st Report					Issue No: 1	
Client:	Stante Level Melbo	ec Australia Pty Ltd 22, 570 Bourke Stre ourne VIC 3000	et			NATA	Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration inspection, proficiency testing scheme providers and reference materials producers reports and certificates	
Project No.:	757-N	FWC00160AA					0	
Project Name: CMT Services					Hac-MRA	Approved Signatory: Jason Condran (Geotechnician)		
Lot No.: NA	Lot No.: NA		TRN: NA		NATA Accredited Laboratory Number:431 Date of Issue: 17/02/2023			
Matorial Do	taile							
	lans	Secobies Lane NSV						
Location Scoobles Land Source On-Site Description Existing Group Sampling Method Submitted by an other state		On-Site Existing Ground Submitted by client*	V Sampled From Specification			No Specification		
Sample Det	ails							
Sample ID Field Sample II Date Sampled Date Submitted Sample Locatio	D d: on:		NEWC23S-01270 01265 6/12/2022 17/02/2023 BH06 Depth:0.08 - 0.1m	NEWC23S-01271 01266 6/12/2022 17/02/2023 TB501 Depth:0.7 - 0.75	NEWC23S-01272 01267 6/12/2022 17/02/2023 TB502 Depth:0.4 - 0.5m	NEWC23S-01273 01268 6/12/2022 17/02/2023 TB503 Depth:0.6 - 0.7m		
Other Test	Resu	lts						
Description		Method			Res	ults	Limits	
Foreign Materials	s Conter	nt RMS T276	FG 2	65.2	97.0	40.0		
Retained on 4.75mm	I SIEVE (%	1)	50.3 0.0	05.3	87.0 0.0	49.0		
Metal.Glass.Asphalt.Stone.Cera	mics and Slag		0.0	0.0	0.0	0.0		
Type II (%) Plaster.Clay lumps and other Friable Material		0.0	0.0	0.0	0.0			
Type III (%) Rubber, Plastic, Bitumen, Paper, Cloth, Wood and other		0.0	0.0	1.7	19.1			

Comments

Ming To

Greta Petzoldi From: Wednesday, 15 February 2023 10:24 AM Sent: Ted Bartlett, Samplereceipt To: Josh Edmunds; Brock Collinsor; Dave Bastian Cc: RE Acid Sulphate Testing Subject:

Additional

Ref: 312836-A 7AT: Standard. Due: 22/02/2023. и**п**

H⁻ Ted,

Categories:

No worries, we'll get that organised for you.

Cheers

Kind Regards,

Greta Petzold | Operations Manager | Envirolab Services

Great Science, Great Service.

12 Aakley Street Costswood NSW 2037 T 612 9510 3230 El<u>GPetzold:Be</u>nvirolali,<u>com au</u> Wi<u>wswitorwito</u>ląbicom,au

Follow us on: Linked n | Facabook | <u>Twitter</u>

Samples will be analysed per our T&C's.

- - -From: Ted Bartlett <edward.bartlett@cardno.com.au> Sent: Tuesday, 14 February 2023 7:45 PM To: Greta Petzold < GPetzold@enviro.ab com.au> Ce: Josh Edmunds <Joshua.Edmunds@cardno.com.au>, Brock Collinson <brook.collinson@cordnn.com.au>; Dave Bastran <Dav:d,Bastian@cardho.com.au> Subject: RE. Acid Sulphate Testing

.

.-

CAUTION: This entail originated from outs de of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thanks for chasing these up Grefa.

Could we please run the detailed chromium ASS suite on the following samples.

4. TE501: 0.7-0 75m (312836-4)

- 8H.04 D.45m (313195-4)
- BH05: 0.6-0.7m (312836-2) 2.

Cheers.

Ted Bortlett Geotechnical Engineer

Phone: +61 2 4949 6523

6dward.bartlett@cardnn.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 312836-A

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	Edward Bartlett
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details					
Your Reference	<u>304100979</u>				
Number of Samples	additional analysis				
Date samples received	12/12/2022				
Date completed instructions received	14/02/2023				

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	21/02/2023			
Date of Issue	21/02/2023			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 312836-A Revision No: R00

Page | 1 of 6

Chromium Suite			
Our Reference		312836-A-2	312836-A-4
Your Reference	UNITS	BH06	TB501
Depth		0.6-0.7	0.7-0.75
Date Sampled		08/12/2022	05/12/2022
Type of sample		Soil	Soil
Date prepared	-	21/02/2023	21/02/2023
Date analysed	-	21/02/2023	21/02/2023
pH _{kcl}	pH units	4.0	5.5
s-TAA pH 6.5	%w/w S	0.12	<0.01
TAA pH 6.5	moles H+ /t	74	<5
Chromium Reducible Sulfur	%w/w	0.01	0.02
a-Chromium Reducible Sulfur	moles H+ /t	7	10
S _{HCI}	%w/w S	0.018	[NT]
Skci	%w/w S	0.018	[NT]
Snas	%w/w S	<0.005	[NT]
ANC _{BT}	% CaCO ₃	[NT]	[NT]
s-ANC _{BT}	%w/w S	[NT]	[NT]
s-Net Acidity	%w/w S	0.13	0.020
a-Net Acidity	moles H+ /t	81	13
Liming rate	kg CaCO₃ /t	6	1
a-Net Acidity without ANCE	moles H+ /t	81	13
Liming rate without ANCE	kg CaCO₃ /t	6.1	0.96
s-Net Acidity without ANCE	%w/w S	0.13	0.020
Method ID	Methodology Summary		
-----------	--		
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.		

QUALITY	CONTROL:	Chromiu	ım Suite			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	[NT]
Date analysed	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	[NT]
pH _{kcl}	pH units		Inorg-068	[NT]	[NT]		[NT]	[NT]	99	[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	[NT]		[NT]	[NT]	[NT]	[NT]
TAA pH 6.5	moles H+/t	5	Inorg-068	<5	[NT]		[NT]	[NT]	127	[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	114	[NT]
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	[NT]		[NT]	[NT]	[NT]	[NT]
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO ₃	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

From: Sent: To: Cc: Subject: Greta Petzold Wednesday, 15 February 2023 10:24 AM Ted Bartlett: Samplereceipt Josh Sdmunds; Brock Collinson; Dave Bastian RE: Acid Sulphate Testing Additional

82f:313195-A TATI:Standard Oro:22(02)2023 M7

≺i Teć,

Categories:

No worries, we'l get that organised for you.

Cheets

Kind Regards,

Greta Petzold | Operations Manager ; Envirolab Services

Great Science, Great Service,

12 Ashley Street Chatavisod NSW 2057 T 512 9910 0200 E <u>GRegalo Scowolat, sam an</u> (Wi<u>wow envirolational) an</u> .

Follow us on: Linkedin | Facebook | Twitter

Samples will be analysed per our T&G's.

From: Ted Bartlett <edward.bartlett@cardno.com.au> Sent: Tuesday, 14 February 2023 7:45 PM To: Greta Petzold <GPetzold@envirolab.com.au> Ce: Josh Edmunds <Joshua.Edmunds@cardno.com.au>, Brock Collinson <brock.collinson@cardno.com.au>; Dave Bastian <David.Bastian@cardno.com.au> Subject: RE: Acid Sulphate Testing

- - -

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thanks for phasing these up Greta.

Could we blease run the detailed chromium ASS suite on the following samples:

- TB501: 0.7-0.75m (312836-4)
- 4. BHC4: 0.45m (313195-4)
 - BH06: 0.6-0.7m (312836-2)

Cheers,

Ted **Sartlett** Geolechnical Engineer

Phone: +81 2 4940 5523

edwayd.bertici@cardno.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 313195-A

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	Edward Bartlett
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details	
Your Reference	<u>304100979</u>
Number of Samples	additional analysis
Date samples received	15/12/2022
Date completed instructions received	14/02/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	21/02/2023
Date of Issue	21/02/2023
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 313195-A Revision No: R00

Chromium Suite		
Our Reference		313195-A-4
Your Reference	UNITS	BH04 0.45
Date Sampled		05/12/2022
Type of sample		Soil
Date prepared	-	21/02/2023
Date analysed	-	21/02/2023
pH _{kcl}	pH units	6.1
s-TAA pH 6.5	%w/w S	<0.01
TAA pH 6.5	moles H+ /t	<5
Chromium Reducible Sulfur	%w/w	0.009
a-Chromium Reducible Sulfur	moles H+ /t	6
S _{HCI}	%w/w S	[NT]
S _{KCI}	%w/w S	[NT]
Snas	%w/w S	[NT]
ANCBT	% CaCO₃	[NT]
s-ANC _{BT}	%w/w S	[NT]
s-Net Acidity	%w/w S	0.0090
a-Net Acidity	moles H+ /t	5.5
Liming rate	kg CaCO₃ /t	<0.75
a-Net Acidity without ANCE	moles H+ /t	5.5
Liming rate without ANCE	kg CaCO₃ /t	<0.75
s-Net Acidity without ANCE	%w/w S	0.0090

Method ID	Methodology Summary
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Net acidity including ANC has a safety factor of 1.5 applied. Neutralising value (NV) of 100% is assumed for liming rate. Based on National acid sulfate soils identification and laboratory methods manual June 2018. The recommendation that the SHCL concentration be multiplied by a factor of 2 to ensure retained acidity is not underestimated, has not been applied in the SHCL results reported.

QUALITY	CONTROL:	Chromiu	ım Suite			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	[NT]
Date analysed	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	[NT]
pH _{kcl}	pH units		Inorg-068	[NT]	[NT]		[NT]	[NT]	97	[NT]
s-TAA pH 6.5	%w/w S	0.01	Inorg-068	<0.01	[NT]		[NT]	[NT]	[NT]	[NT]
ТАА рН 6.5	moles H+ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	119	[NT]
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	110	[NT]
a-Chromium Reducible Sulfur	moles H+ /t	3	Inorg-068	<3	[NT]		[NT]	[NT]	[NT]	[NT]
S _{HCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
S _{KCI}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
S _{NAS}	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
ANC _{BT}	% CaCO₃	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	[NT]
s-ANC _{BT}	%w/w S	0.05	Inorg-068	<0.05	[NT]		[NT]	[NT]	[NT]	[NT]
s-Net Acidity	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]
a-Net Acidity	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	[NT]
Liming rate	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-068	<5	[NT]		[NT]	[NT]	[NT]	[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-068	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]
s-Net Acidity without ANCE	%w/w S	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

From: Sent: To: Cc: Subject: Greta Petzo'd Monday, 20 February 2023 1:52 PM Ted Bartlett; Samplereceipt Dave Bastian; SydneyMoilbox RE: Acid Sulphate Testing

Categories:

Additional

Ref: 312826-A "747:1 day. Due: 2110212023

Hi Tedo,

No worries, we'll get that organised for you.

@Samplereceipt, A job please

Kind Regards,

Greta Petzold | Operations Manager | Envirolab Services

Great Science, Great Service,

12 Ashley Street Chalawood NSW 2057 T 612 9910 6200 E <u>GPetada@en</u>vgo actorniauji Wiwww.env?ro!abio<u>pintauj</u>i

Follow us on: ginkedin | Facebook | <u>Twitter</u>

Samples will be analysed per our T&C's.

From: Ted Bartlett kedward.bartlett@cardbo.com.au> Sent: Monday, February 20, 2023 1:36 PM To: Greta Petzold <GPetzolo@envirolah.com.au> Co: Dave Bastian <David.Bastian@cardno.com.au>; SydneyMallbox <Sydney@envirolab.com.au> Subject: RF: Acid Sulphate Testing

EAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open afterheads unless you recognise the sender and know the content is authentic and safe.

Hi Greta,

We're chasing up some additional TCLP testing for the same work order as below - hoping the samples are still in storage.

Provided the labist I has them could we please action the following testing.

TBS02: 0.4-0 5m – TCLP for B(a)P (envirolab ID. 312836-5) 5

TB503: 0.5-0.7m + TCLP for Lead (envirolab ID: 312836-6) 5.

Thanks!

Ted Barllett Geolechnical Engineer

Phone +61 2 4940 5523

edward bortleit@cardno.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 312836-B

Client Details	
Client	Cardno (NSW/ACT) Pty Ltd
Attention	Edward Bartlett
Address	PO Box 19, St Leonards, NSW, 1590

Sample Details	
Your Reference	<u>304100979</u>
Number of Samples	additional analysis
Date samples received	12/12/2022
Date completed instructions received	20/02/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	21/02/2023						
Date of Issue	21/02/2023						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By Hannah Nguyen, Metals Supervisor Josh Williams, Organics Supervisor Kyle Gavrily, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

TCLP Preparation - Acid			
Our Reference		312836-B-5	312836-B-6
Your Reference	UNITS	TB502	TB503
Depth		0.4-0.5	0.6-0.7
Date Sampled		05/12/2022	05/12/2022
Type of sample		Soil	Soil
pH of soil for fluid# determ.	pH units	7.2	7.2
pH of soil TCLP (after HCl)	pH units	1.6	1.6
Extraction fluid used		1	1
pH of final Leachate	pH units	4.9	4.9

PAHs in TCLP (USEPA 1311)		
Our Reference		312836-B-5
Your Reference	UNITS	TB502
Depth		0.4-0.5
Date Sampled		05/12/2022
Type of sample		Soil
Date extracted	-	21/02/2023
Date analysed	-	21/02/2023
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	96

Metals from Leaching Fluid pH 2.9 or 5		
Our Reference		312836-B-6
Your Reference	UNITS	TB503
Depth		0.6-0.7
Date Sampled		05/12/2022
Type of sample		Soil
Date extracted	-	21/02/2023
Date analysed	-	21/02/2023
Lead	mg/L	0.2

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONT		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	
Date analysed	-			21/02/2023	[NT]		[NT]	[NT]	21/02/2023	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	86	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	84	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	90	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	108	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	66	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	90	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALITY CONTROL	: Metals fror	n Leachir		Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/02/2023	[NT]			[NT]	21/02/2023	[NT]
Date analysed	-			21/02/2023	[NT]			[NT]	21/02/2023	[NT]
Lead	mg/L	0.03	Metals-020	<0.03	[NT]	[NT]	[NT]	[NT]	95	[NT]

Result Definitions							
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

	Acid Extractable metals in soil						Misc Inorg - Soil Moisture				Moisture								PAH		
	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	pH 1:5 soil:water1:5 soil:water	Electrical Conductivity 1:5 soil:water	Foreign Materials	Moisture Content	Naphthalene	Total PAH (NEPM/WHO 16)	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH Units	μS/cm	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
EQL	4	0.4	1	1	1	0.1	1	1		1		0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NSW 2014 Excavated Natural Material (Absolute Max)	40	1	150	200	100	1	60	300	4.5 to 10	3000	0.1			40							
NSW 2014 Excavated Natural Material (Max Average)	20	0.5	75	100	50	0.5	30	150	5 to 9	1500	0.05			20							

Borehole	Depth	Date	Matrix_Description																					
BH06	0.08-0.1	8/12/2022	FILL: Silty SAND	<4	<0.4	8	2	7	<0.1	3	15	4.6	280	0	11	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TB501	0.7-0.75	5/12/2022	Sandy SILT	<4	<0.4	7	<1	4	<0.1	3	3	5.8	160	0	13	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TB502	0.4-0.5	5/12/2022	FILL: Gravelly Silty SAND/Silty SAND	5	<0.4	13	8	18	<0.1	12	36	6.2	200	1.7	14	0.3	5.6	0.3	<0.1	<0.1	0.3	0.3	0.3	0.3
TB503	0.6-0.7	5/12/2022	FILL: Gravelly Silty SAND	<4	<0.4	9	11	250	<0.1	8	17	6.8	130	19.1	5.7	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Statistical Summary																					
Number of Results	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Number of Detects	1	0	4	3	4	0	4	4	4	4	4	4	1	1	1	0	0	1	1	1	1
Minimum Concentration	<4	<0.4	7	<1	4	<0.1	3	3	4.6	130	0	5.7	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Minimum Detect	5	ND	7	2	4	ND	3	3	4.6	130	1.7	5.7	0.3	5.6	0.3	ND	ND	0.3	0.3	0.3	0.3
Maximum Concentration	5	<0.4	13	11	250	<0.1	12	36	6.8	280	19.1	14	0.3	5.6	0.3	<0.1	<0.1	0.3	0.3	0.3	0.3
Maximum Detect	5	ND	13	11	250	ND	12	36	6.8	280	19.1	14	0.3	5.6	0.3	ND	ND	0.3	0.3	0.3	0.3
Average Concentration	2.8	0.2	9.3	5.4	70	0.05	6.5	18	5.9	193	5.2	11	0.11	1.4	0.11	0.05	0.05	0.11	0.11	0.11	0.11
Median Concentration	2	0.2	8.5	5	12.5	0.05	5.5	16	6	180	0.85	12	0.05	0.025	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Standard Deviation	1.5	0	2.6	5	120	0	4.4	14	0.93	65	9.3	3.7	0.13	2.8	0.13	0	0	0.13	0.13	0.13	0.13
Number of Guideline Exceedances	0	0	0	0	1	0	0	0	4	0	2	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	1	0	0	0	4	0	2	0	0	0	0	0	0	0	0	0	0

in Soil								
Benz(a) anthracene	Chrysene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a, h) anthracene	Benzo(g,h,i)perylene	Benzo(a)pyrene TEQ (Zero LOR)	Benzo(a)pyrene TEQ (Half LOR)_1	Benzo(a)pyrene TEQ (Full LOR)
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0.1	0.1	0.05	0.1	0.1	0.1	0.5	0.5	0.5
		1						
		0.5						
<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
0.2	0.3	1	0.6	<0.1	0.4	1.2	1.3	1.3
<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
4	4	4	4	4	4	4	4	4
1	1	1	1	0	1	1	1	1
<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
0.2	0.3	1	0.6	ND	0.4	1.2	1.3	1.3
0.2	0.3	1	0.6	<0.1	0.4	1.2	1.3	1.3
0.2	0.3	1	0.6	ND	0.4	1.2	1.3	1.3
0.088	0.11	0.27	0.19	0.05	0.14	0.49	0.51	0.51
0.05	0.05	0.025	0.05	0.05	0.05	0.25	0.25	0.25
0.075	0.13	0.49	0.28	0	0.18	0.48	0.53	0.53
0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0

							svTRH	(C10-C40	D) in Soil							vTRH(C6-C10)	/BTEXN	in Soil			
				C10-C16	C16-C34	C34-C40	C10 - C40 (Sum of total)	F2: >C10-C16 less NAPHTHALENE	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	Naphthalene (VOC)	C6-C10	F1: C6-C10 less BTEX	Benzene	Toluene	Ethylbenzene	C6 - C9	Xylene (m & p)	Xylene (o)	Xylene Total
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				50	100	100	50	50	50	100	100	50	1	25	25	0.2	0.5	1	25	2	1	1
NSW 2014 E	xcavated Natura	al Material (Absolute	Max)									500				0.5	65	25				15
NSW 2014 E	xcavated Natura	al Material (Max Ave	rage)									250										
Borehole	Depth	Date	Matrix_Description																			
BH06	0.08-0.1	8/12/2022	FILL: Silty SAND	<50	<100	<100	<50	<50	<50	<100	<100	<50	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
TB501	0.7-0.75	5/12/2022	Sandy SILT	<50	<100	<100	<50	<50	<50	<100	<100	<50	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
TB502	0.4-0.5	5/12/2022	FILL: Gravelly Silty SAND/Silty SAND	<50	230	<100	230	<50	<50	160	100	260	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
TB503	0.6-0.7	5/12/2022	FILL: Gravelly Silty SAND	<50	<100	<100	<50	<50	<50	<100	<100	<50	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
Statistical Su	ummary																					
Number of F	Results			4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Number of D	Detects			0	1	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0
Minimum Co	oncentration			<50	<100	<100	<50	<50	<50	<100	<100	<50	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
Minimum De	etect			ND	230	ND	230	ND	ND	160	100	260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum C	oncentration			<50	230	<100	230	<50	<50	160	100	260	<1	<25	<25	<0.2	<0.5	<1	<25	<2	<1	<1
Maximum D	etect			ND	230	ND	230	ND	ND	160	100	260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Cor	centration			25	95	50	76	25	25	78	63	84	0.5	13	13	0.1	0.25	0.5	13	1	0.5	0.5
Median Con	centration			25	50	50	25	25	25	50	50	25	0.5	12.5	12.5	0.1	0.25	0.5	12.5	1	0.5	0.5
Standard De	viation			0	90	0	103	0	0	55	25	118	0	0	0	0	0	0	0	0	0	0
Number of C	Guideline Excee	dances		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Number of 0	Guideline Excee	dances(Detects Only)		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0

Xylene (m & p)	Xylene (o)	Xylene Total
g/kg	mg/kg	mg/kg
2	1	1
		15
<2	<1	<1
.2	۲1	<1
<2	~1	~1
<2 <2	<1	<1
<2 <2 <2	<1 <1 <1	<1 <1 <1

						Acid E	xtractab	le meta	ls in soil			Misc I	norg - Soil	Moisture									PAHs	in Soil								
				Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	pH 1:5 soll:water1:5 soil:water	Electrical Conductivity 1:5 soll:water	Moisture Content	N ap hthale ne	Total PAH (NEPM/WHO 16)	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a) ant hracene	Chrysene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo (a, h) anthracene	Benzo(g,h,i)perylene	Benzo(a)pyrene TEQ (Zero LOR)	Benzo(a)pyrene TEQ (Half LOR)_1	Benzo(a)pyrene TEQ (Full LOR)
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH Units	μS/cm	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				4	0.4	1	1	1	0.1	1	1		1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.5	0.5	0.5
NSW 201	4 General Solid Waste CT	1 (No Leaching)		100	20	100		100	4	40																0.8						
NSW 201	4 General Solid Waste SC	C1 (with leached)		500	100	1900		1500	50	1050																10						
NSW 201	4 Restricted Solid Waste	CT2 (No Leaching)		400	80	400		400	16	160																3.2						
Borehole	Depth	Date	Matrix_Description																													
BH06	0.08-0.1	8/12/2022	FILL: Silty SAND	<4	<0.4	8	2	7	< 0.1	3	15	4.6	280	11	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
TB501	0.7-0.75	5/12/2022	Sandy SILT	<4	<0.4	7	<1	4	< 0.1	3	3	5.8	160	13	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
TB502	0.4-0.5	5/12/2022	FILL: Gravelly Silty SAND/Silty SAND	5	<0.4	13	8	18	< 0.1	12	36	6.2	200	14	0.3	5.6	0.3	<0.1	<0.1	0.3	0.3	0.3	0.3	0.2	0.3	1	0.6	<0.1	0.4	1.2	1.3	1.3
TB503	0.6-0.7	5/12/2022	FILL: Gravelly Silty SAND	<4	<0.4	9	11	250	<0.1	8	17	6.8	130	5.7	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
Statistica	l Summary																															
Number	of Results			4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Number	of Detects			1	0	4	3	4	0	4	4	4	4	4	1	1	1	0	0	1	1	1	1	1	1	1	1	0	1	1	1	1
Minimum	Concentration			<4	<0.4	7	<1	4	< 0.1	3	3	4.6	130	5.7	<0.1	< 0.05	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5
Minimum	Detect			5	ND	7	2	4	ND	3	3	4.6	130	5.7	0.3	5.6	0.3	ND	ND	0.3	0.3	0.3	0.3	0.2	0.3	1	0.6	ND	0.4	1.2	1.3	1.3
Maximun	n Concentration			5	<0.4	13	11	250	<0.1	12	36	6.8	280	14	0.3	5.6	0.3	<0.1	<0.1	0.3	0.3	0.3	0.3	0.2	0.3	1	0.6	<0.1	0.4	1.2	1.3	1.3
Maximun	n Detect			5	ND	13	11	250	ND	12	36	6.8	280	14	0.3	5.6	0.3	ND	ND	0.3	0.3	0.3	0.3	0.2	0.3	1	0.6	ND	0.4	1.2	1.3	1.3
Average	Concentration			2.8	0.2	9.3	5.4	70	0.05	6.5	18	5.9	193	11	0.11	1.4	0.11	0.05	0.05	0.11	0.11	0.11	0.11	0.088	0.11	0.27	0.19	0.05	0.14	0.49	0.51	0.51
Median	oncentration			2	0.2	8.5	5	12.5	0.05	5.5	16	6	180	12	0.05	0.025	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.025	0.05	0.05	0.05	0.25	0.25	0.25
Standard	Deviation			1.5	0	2.6	5	120	0	4.4	14	0.93	65	3./	0.13	2.8	0.13	U	U	0.13	0.13	0.13	0.13	0.075	0.13	0.49	0.28	0	0.18	0.48	0.53	0.53
Number	of Guideline Exceedances	(Detects Oals)			0	0	0	1	0	0	0		0		0	0	0	0	0	U	0	0	0	0	0	1	0	0	0	0	0	0
Number	of Guideline Exceedances	Detects Unly)		0	0	0	0	1	0	0	0	0	0	0	0	0	0	U	U	U	U	Ű	U	0	0	1	U	U	0	<u> </u>	U	0

							svTRH	C10-C40) in Soil							vTR	H(C6-C1	0)/BTEX	N in Soil			
				c10-C16	C16-C34	C34-C40	C10 - C40 (Sum of total)	F2: >C10-C16 less NAPHTHALENE	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)	Naphthalene (VOC)	C6-C10	F1: C6-C10 less BTEX	Benzene	Toluene	Ethylbenzene	ce - c9	Xylene (m & p)	Xylene (o)	Xylene Total
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				50	100	100	50	50	50	100	100	50	1	25	25	0.2	0.5	1	25	2	1	1
NSW 2014	4 General Solid Waste (T1 (No Leaching)										10000				10	288	600	650			1000
NSW 2014	4 General Solid Waste S	CC1 (with leached)										10000				18	518	1080	650 6500			1800
NSW 201	4 Restricted Solid Wast	e CT2 (No Leaching)										40000				40	1152	2400	2600			4000
NSW 2014	4 Restricted Solid Wast	e SCC2 (with leached)										40000				72	2073	4320	2600			7200
Borehole	e Depth	Date	Matrix Description																			
BH06	0.08-0.1	8/12/2022	FILL: SIIty SAND	<50	<100	<100	<50	.50	.50	<100	<100	<50	<1	<25	<25							
TB501	0.7-0.75	5/12/2022	Sandy SILT	.50			\3U	<50	<50	~100			- <u></u>	< <u>2</u> 3	~2.5	<0.2	< 0.5	<1	<25	<2	<1	<1
TB502			Januy Jili	<50	<100	<100	<50	<50	<50	<100	<100	<50	<1	<25	<25	<0.2	<0.5 <0.5	<1 <1	<25 <25	<2 <2	<1 <1	<1 <1
	0.4-0.5	5/12/2022	FILL: Gravelly Silty SAND/Silty SAND	<50	<100 230	<100 <100	<50 230	<50 <50 <50	<50 <50 <50	<100 <100 160	<100 100	<50 260	<1 <1 <1	<25 <25 <25	<25 <25 <25	<0.2 <0.2 <0.2	<0.5 <0.5 <0.5	<1 <1 <1	<25 <25 <25	<2 <2 <2	<1 <1 <1	<1 <1 <1
TB503	0.4-0.5 0.6-0.7	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50	<100 230 <100	<100 <100 <100	<50 230 <50	<50 <50 <50 <50	<50 <50 <50 <50	<100 <100 160 <100	<100 100 <100	<50 260 <50	<1 <1 <1 <1	<25 <25 <25 <25	<25 <25 <25 <25	<0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1	<25 <25 <25 <25	<2 <2 <2 <2 <2	<1 <1 <1 <1	<1 <1 <1 <1
TB503	0.4-0.5	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50	<100 230 <100	<100 <100 <100	<50 230 <50	<50 <50 <50 <50	<50 <50 <50	<100 <100 160 <100	<100 100 <100	<50 260 <50	<1 <1 <1 <1	<25 <25 <25 <25	<25 <25 <25 <25	<0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1	<25 <25 <25 <25	<2 <2 <2 <2	<1 <1 <1 <1	<1 <1 <1 <1
TB503 Statistica	0.4-0.5 0.6-0.7 al Summary	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50	<100 230 <100	<100 <100 <100	<50 230 <50	<50 <50 <50 <50	<50 <50 <50	<100 <100 160 <100	<100 100 <100	<50 260 <50	<1 <1 <1 <1	<25 <25 <25 <25	<25 <25 <25 <25	<0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1	<25 <25 <25 <25	<2 <2 <2 <2 <2	<1 <1 <1 <1	<1 <1 <1 <1
TB503 Statistica Number o	0.4-0.5 0.6-0.7 al Summary of Results	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50	<100 230 <100	<100 <100 <100	<50 230 <50	<50 <50 <50 <50	<50 <50 <50 <50	<100 <100 160 <100	<100 100 <100 4	<50 260 <50	<1 <1 <1 <1 4	<25 <25 <25 <25	<25 <25 <25 <25	<0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1 <1	<25 <25 <25 <25	<2 <2 <2 <2 <2	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1
TB503 Statistica Number o Number o	0.4-0.5 0.6-0.7 al Summary of Results of Detects	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50	<100 230 <100 4 1	<100 <100 <100	<50 230 <50 4 1	<50 <50 <50 <50	<50 <50 <50 <50 4 0	<100 <100 160 <100 4 1	<100 100 <100 4 1	<50 260 <50 4 1	<1 <1 <1 <1 <1 0	<pre><25 <25 <25 <25 <4 0</pre>	<25 <25 <25 <25	<0.2 <0.2 <0.2 <0.2	<0.5 <0.5 <0.5 <0.5 4 0	<1 <1 <1 <1 <1 4 0	<25 <25 <25 <25 4 0	<2 <2 <2 <2 <2 <2 4 0	<1 <1 <1 <1 <1 4 0	<1 <1 <1 <1 <1 4 0
TB503 Statistica Number of Number of Minimum	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50	<100 230 <100 4 1 <100	<100 <100 <100	<50 230 <50 4 1 <50	<50 <50 <50 <50 4 0 <50	<50 <50 <50 <50 4 0 <50	<100 <100 160 <100 4 1 <100	<100 100 <100 4 1 <100	<50 260 <50 4 1 <50	<1 <1 <1 <1 4 0 <1	<25 <25 <25 <25 <25 <25	<25 <25 <25 <25 4 0 <25	<0.2 <0.2 <0.2 <0.2 4 0 <0.2	<0.5 <0.5 <0.5 <0.5 4 0 <0.5	<1 <1 <1 <1 <1 4 0 <1	<25 <25 <25 <25 4 0 <25	<2 <2 <2 <2 <2 <2 <2 <2 <2 2<br 2</td <td><1 <1 <1 <1 <1 4 0 <1</td> <td><1 <1 <1 <1 <1 <1 <1 <1 <1</td>	<1 <1 <1 <1 <1 4 0 <1	<1 <1 <1 <1 <1 <1 <1 <1 <1
TB503 Statistica Number o Minimum Minimum	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ND	<100 230 <100 4 1 <100 230	<100 <100 <100 <100 4 0 <100 ND	<50 230 <50 4 1 <50 230	<50 <50 <50 <50 4 0 <50 ND	<50 <50 <50 <50 4 0 <50 ND	<100 <100 160 <100 4 1 <100 160	<100 100 <100 4 1 <100 100	<50 260 <50 4 1 <50 260	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	<25 <25 <25 <25 4 0 <25 ND	<25 <25 <25 <25 4 0 <25 ND	<0.2 <0.2 <0.2 <0.2 <0.2 4 0 <0.2 ND	<0.5 <0.5 <0.5 <0.5 <0.5 4 0 <0.5 ND	<1 <1 <1 <1 <1 4 0 <1 ND	<25 <25 <25 <25 4 0 <25 ND	<2 <2 <2 <2 4 0 <2 ND	<1 <1 <1 <1 <1 4 0 <1 ND	<1 <1 <1 <1 <1 <1 0 <1 ND
TB503 Statistica Number o Number o Minimum Minimum Maximum	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect m Concentration	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ×50 ND <50	<100 230 <100 4 1 <100 230 230	<100 <100 <100 <100 <100 <100 ND <100	<50 <50 230 <50 4 1 <250 230 230 230	<50 <50 <50 <50 4 0 <50 ND <50	<50 <50 <50 <50 4 0 <50 ND <50	<100 <100 160 <100 <100 4 1 <100 160 160	<100 100 <100 4 1 <100 100 100	<50 260 <50 4 1 <50 260 260	4 <1 <1 <1 4 0 <1 ND <1	<25 <25 <25 <25 <25 <25 ND <25	425 425 425 4 0 425 ND 425	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 ND <0.2	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ND <0.5	<1 <1 <1 <1 <1 4 0 <1 ND <1	<25 <25 <25 <25 4 0 <25 ND <25	<2 <2 <2 <2 <2 <2 <2 <2 <2 40ND	<1 <1 <1 <1 <1 <1 0 <1 ND <1	<1 <1 <1 <1 <1 <1 0 <1 ND <1
TB503 Statistica Number o Number o Minimum Minimum Maximum Maximum	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect m Concentration m Detect	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND	<50 <50 <50 4 0 <50 ND <50 ND	<100 230 <100 4 1 <100 230 230 230 230	<100 <100 <100 <100 <100 ×100 ND <100 ND	<50 <50 230 <50 4 1 <	<50 <50 <50 <50 4 0 <50 ND <50 ND	<50 <50 <50 <50 4 0 <50 ×50 ×50 ND	<100 <100 <100 <100 <100 <100 160 160 160	<100 100 <100 4 1 1 <100 100 100 100	-50 <50 260 <50 4 1 <	4 (1 (1 (1 (1) (1) (1) (1) (1) (4 0 <25 <25 <25 <25 <25 ND <25 ND <25 ND	 4 25 25 25 25 25 25 25 ND 25 ND 25 ND 	<0.2 <0.2 <0.2 <0.2 <0.2 4 0 <0.2 ND <0.2 ND	<0.5 <0.5 <0.5 <0.5 <0.5 4 0 <0.5 ND <0.5 ND	<1 <1 <1 <1 <1 0 <1 ND <1 ND	<25 <25 <25 <25 4 0 <25 ND <25 ND	<2 <2 <2 <2 <2 4 0 <2 ND <2 ND <2 ND	<1 <1 <1 <1 <1 0 <1 ND <1 ND	<1 <1 <1 <1 <1
TB503 Statistica Number of Minimum Minimum Maximum Average of	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect m Concentration m Detect Concentration	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ND 25	<100 230 <100 4 1 <100 230 230 230 95	<100 <100 <100 <100 <100 ND <100 ND 50	<50 <50 230 <50 4 1 <	<50 <50 <50 <50 4 0 <50 ND <50 ND 25	<50 <50 <50 <50 4 0 <50 ×50 ×50 ND 25	<100 <100 160 <100 <100 4 1 100 160 160 160 78	<100 100 <100 4 1 <100 100 100 100 63	 -50 -50 -260 -50 	<pre><1 </pre> <1 <1 <1 <1 <0.5	4 0 <25 <25 <25 <25 <25 ND <25 ND 13	 <25 <25 <25 <25 <25 ND <25 ND 13 	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 ND <0.2 ND 0.1	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ND <0.5 ND <0.5 ND 0.25	<1 <1 <1 <1 4 0 <1 ND (1 ND 0.5	<25 <25 <25 <25 4 0 <25 ND <25 ND 13	<2 <2 <2 <2 <2 <2 ND <2 ND <2 ND 1	<1 <1 <1 <1 <1 0 <1 ND 0.5	<1 <1 <1 <1 <1
TB503 Statistica Number of Number of Minimum Maximum Maximum Average of Median of	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect n Concentration m Detect Concentration Concentration	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ND 25 25 25	<100 230 <100 4 1 <100 230 230 230 230 95 50	4 (100 (100 (100 (100 ND (100 ND (100 ND (100 (100 (100 (100) (10	<50 <50 230 <50 4 1 <50 230 230 230 230 76 25	<50 <50 <50 <50 4 0 <50 ND <50 ND 25 25 25	<50 <50 <50 <50 4 0 <50 ND <50 ND 25 25 25	<100 <100 160 <100 <100 4 100 160 160 160 78 50	<100 100 <100 4 1 (100 100 100 63 50	-50 -50 260 <50 4 1	<pre><1 </pre> <1 <1 <1 <1 <0.5 <0.5	 <25 <25 <25 <25 <25 ND <25 ND 13 12.5 	 <25 <25 <25 <25 <25 ND <25 ND 13 12.5 	 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 ND <0.2 ND 0.1 0.1 	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ND <0.5 ND 0.25 0.25	<1 <1 <1 <1 4 0 <1 ×1 ND <1 ND 0.5 0.5	<25 <25 <25 <25 4 0 <25 ND <25 ND 13 12.5	<2 <2 <2 <2 <2 ND <2 ND 1 1	<1 <1 <1 <1 4 0 <1 ND <1 ND 0.5 0.5	<1 <1 <1 <1 <1
TB503 Statistica Number of Number of Minimum Minimum Maximum Average of Median O Standard	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect Concentration Detect Concentration Detect Deviation	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0	<100 230 <100 4 1 <100 230 230 230 230 95 50 90	4 (100 (100 (100 (100 ND (100 ND (100 ND (100 (100 (100 (100) (10	 <50 <50 230 <50 4 1 <50 230 230 230 230 230 76 25 103 	<su <50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0</su 	<pre><su <="" pre=""><pre><su <="" pre=""><pre><su <="" pre=""><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre></su></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre< td=""><td><100</td> <100</pre<></su></pre></su></pre>	<100	<100 100 <100 4 1 <100 100 100 63 50 25	-50 -50 260 -50 4 1 -50 260 260 260 260 260 84 25 118	4 (1) (1) (1) (1) (1) (1) (1) (1)	 <25 <25 <25 <25 <25 ND <25 ND 13 12.5 0 	 <25 <25 <25 <25 <25 ND <25 ND 13 12.5 0 	 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 ND <0.2 ND <0.1 0.1 0 	<0.5 <0.5 <0.5 <0.5 <0.5 ND <0.5 ND 0.25 0.25 0	<1 <1 <1 <1	<25 <25 <25 <25 <25 4 0 <25 ND <25 ND 13 12.5 0	<2 <2 <2 <2 <2 ND <2 ND <2 ND 1 1 1 0	<1 <1 <1 <1 0 <1 ND <1 ND <1 ND 0.5 0.5 0	<1 <1 <1 <1 <1 ND <1 ND <1 ND 0.5 0.5 0
TB503 Statistica Number of Minimum Maximum Maximum Average of Median C Standard Number of	0.4-0.5 0.6-0.7 al Summary of Results of Detects n Concentration n Detect Concentration Detect Concentration Deviation of Guideline Exceedance	5/12/2022 5/12/2022	FILL: Gravelly Silty SAND/Silty SAND FILL: Gravelly Silty SAND	<50 <50 <50 4 0 <50 ND 25 25 25 0 0	<100 230 <100 4 1 <100 230 230 230 230 230 95 50 90 0	 <100 <100 <100 <100 <100 <100 ND <100 ND 50 50 0 0 0 	<30 <50 230 <50 4 1 4 1 <td><su <50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0 0 0</su </td> <td><su <50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0 0 0</su </td> <td><100</td> <100	<su <50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0 0 0</su 	<su <50 <50 <50 4 0 <50 ND <50 ND 25 25 25 0 0 0</su 	<100	<100 100 <100 4 1 1 <100 100 100 63 50 25 0	<pre> <pre> <pre> </pre> </pre> <pre> </pre> </pre> <pre> </pre> <pre> </pre>	4 (1) (1) (1) (1) (1) (1) (1) (1)	4 0 <25 ×25 ×25 ×25 ×25 ×25 ×25 ×25 ×25 ×25 ×	 <25 <25 <25 <25 <25 ND <25 ND 13 12.5 0 0 	 <0.2 <0.2 <0.2 <0.2 <0.2 ND <0.2 ND <0.2 ND 0.1 0.1 0 0 0 	<0.5 <0.5 <0.5 <0.5 <0.5 ND <0.5 ND 0.25 0.25 0 0 0 0	<1 <1 <1 <1 4 0 <1 ND <1 ND <1 ND 0.5 0.5 0 0 0	<25 <25 <25 <25 <25 <25 ND <25 ND <25 ND 13 12.5 0 0	<2 <2 <2 <2 <2 ND <2 ND <2 ND 1 1 1 0 0 0	<1 <1 <1 <1 0 <1 ND <1 ND <1 ND 0.5 0.5 0 0	<1 <1 <1 <1 <1 ND <1 ND <1 ND 0.5 0.5 0 0 0

Maitland City Council

		:
-		
	1	
	1	

	Metals from Leaching Fluid pH 2.9 or 5							PAHs	in TCL	P (USE	PA 13	L1)					
	re ad	Naphthalene	Total PAH (NEPM/WHO 16)	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a) anth racene	Chrysene	Benzo(b+j) & Benzo(k)fluoranthene	Benzo(a) pyrene	Indeno(1,2,3-c,d) pyrene	Dibenzo(a,h)anthracene	Benzo(g, h,i) perylene
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	μg/L	µg/L
EQL	30	1		1	1	1	1	1	1	1	1	1	2	0.001	1	1	1
NSW 2014 General Solid Waste TCLP1 (leached)	5000													0.04			
NSW 2014 Restricted Solid Waste TCLP2 (leached)	20000													0.16			

Field_ID Sample_Depth_Range Sampled_Date_Time Matrix_Description

TB502	0.4-0.5	5/12/2022	FILL: Silty Sandy CLAY	-	<1	0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	< 0.001	<1	<1	<1
TB503	0.6-0.7	5/12/2022	FILL: Gravelly Silty SAND	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Statistical Summary																	
Number of Results	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of Detects	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	200	<1	0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	< 0.001	<1	<1	<1
Minimum Detect	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Concentration	200	<1	0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	< 0.001	<1	<1	<1
Maximum Detect	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Concentration																	
Median Concentration	200	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0.0005	0.5	0.5	0.5
Standard Deviation																	
Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX

DESIGN OUTPUTS

Client: Maitland City Council Project Reference: 304100929-005 Project Name: MCC Capital Works Program Road Section: Scobies Lane & S Willards Lane Location: Oakhampton Heights

Traffic Information	
Annual Average Daily Traffic (AADT)	780 vehicles/day
Direction Factor	0.5
Percentage Heavy Vehicles	3.0 %
Lane Distribution Factor	1.00
Traffic Loading	
Number of Axle Groups per Heavy Vehicle (N _{HVAG})	2.5
Traffic Load Distribution	AGPT02-12 Example TLD
Design Life	
Design Period	20 years
Heavy Vehicle Growth Rate	2.0% p.a.

Design Traffic			
Cumulative Heavy Vehicle Axle Groups (HVAG)	5.16E+05		
Average number of ESA per Heavy Vehicle Axle Group (ESA/HVAG)	0.70		
Design number of Equivalent Standard Axles (DESA)	3.63E+05		
Standard Axle Repetitions per ESA for damage type k (SARk/ESA)			
Fatigue of asphalt: SAR _a /ESA	1.1		
Rutting and shape loss (subgrade strain): SAR _s /ESA	1.6		
Fatigue of cemented materials: SAR _c /ESA	12		
Design number of Standard Axle Repetitions for damage type k (DSARk)			
Fatigue of asphalt: DSAR _a	4.00E+05		
Rutting and shape loss (subgrade strain): DSAR _s	5.81E+05		
Fatigue of cemented materials: DSAR _c	4.36E+06		
Calculated by: DGB			

Checked by: Date: 1/03/2023

Notes: Supplied ADT value 679 projected from September 2016 using assumed growth rate of 2%

Client: Maitland City Council Project Reference: 304100929-005 Project Name: MCC Capital Works Program Road Section: Scobies Lane & S Willards Lane Location: Oakhampton Heights

Traffic Information	
Annual Average Daily Traffic (AADT)	780 vehicles/day
Direction Factor	0.5
Percentage Heavy Vehicles	3.0 %
Lane Distribution Factor	1.00
Traffic Loading	
Number of Axle Groups per Heavy Vehicle (N _{HVAG})	2.5
Traffic Load Distribution	AGPT02-12 Example TLD
Design Life	
Design Period	30 years
Heavy Vehicle Growth Rate	2.0% p.a.

Design Traffic			
Cumulative Heavy Vehicle Axle Groups (HVAG)	8.62E+05		
Average number of ESA per Heavy Vehicle Axle Group (ESA/HVAG)	0.70		
Design number of Equivalent Standard Axles (DESA)	6.07E+05		
Standard Axle Repetitions per ESA for damage type k (SARk/ESA)			
Fatigue of asphalt: SAR _a /ESA	1.1		
Rutting and shape loss (subgrade strain): SAR _s /ESA	1.6		
Fatigue of cemented materials: SAR _c /ESA	12		
Design number of Standard Axle Repetitions for damage type k (DSARk)			
Fatigue of asphalt: DSAR _a	6.67E+05		
Rutting and shape loss (subgrade strain): DSAR _s	9.71E+05		
Fatigue of cemented materials: DSAR _c	7.28E+06		
Calculated by: DGB			

Checked by: Date: 1/03/2023

Notes: Supplied ADT value 679 projected from September 2016 using assumed growth rate of 2%

Client: Maitland City Council Project Reference: 304100929-005 Project Name: MCC Capital Works Program Road Section: Oakhampton Road Location: Oakhampton Heights

Traffic Information	
Annual Average Daily Traffic (AADT)	1596 vehicles/day
Direction Factor	0.5
Percentage Heavy Vehicles	5.5 %
Lane Distribution Factor	1.00
Traffic Loading	
Number of Axle Groups per Heavy Vehicle (N _{HVAG})	2.5
Traffic Load Distribution	AGPT02-12 Example TLD
Design Life	
Design Period	20 years
Heavy Vehicle Growth Rate	2.0% p.a.

Design Traffic	
Cumulative Heavy Vehicle Axle Groups (HVAG)	1.95E+06
Average number of ESA per Heavy Vehicle Axle Group (ESA/HVAG)	0.70
Design number of Equivalent Standard Axles (DESA)	1.37E+06
Standard Axle Repetitions per ESA for damage type k (SARk/ESA)	
Fatigue of asphalt: SAR _a /ESA	1.1
Rutting and shape loss (subgrade strain): SAR _s /ESA	1.6
Fatigue of cemented materials: SAR _c /ESA	12
Design number of Standard Axle Repetitions for damage type k (DSARk)	
Fatigue of asphalt: DSAR _a	1.51E+06
Rutting and shape loss (subgrade strain): DSAR _s	2.19E+06
Fatigue of cemented materials: DSAR _c	1.64E+07
Calculated by: DGB	

Checked by: Date: 1/03/2023

Notes: Supplied ADT value 1417 projected from August 2017 using assumed growth rate of 2%

Client: Maitland City Council Project Reference: 304100929-005 Project Name: MCC Capital Works Program Road Section: Oakhampton Road Location: Oakhampton Heights

Traffic Information	
Annual Average Daily Traffic (AADT)	1596 vehicles/day
Direction Factor	0.5
Percentage Heavy Vehicles	5.5 %
Lane Distribution Factor	1.00
Traffic Loading	
Number of Axle Groups per Heavy Vehicle (N _{HVAG})	2.5
Traffic Load Distribution	AGPT02-12 Example TLD
Design Life	
Design Period	30 years
Heavy Vehicle Growth Rate	2.0% p.a.

Design Traffic				
Cumulative Heavy Vehicle Axle Groups (HVAG)	3.25E+06			
Average number of ESA per Heavy Vehicle Axle Group (ESA/HVAG)	0.70			
Design number of Equivalent Standard Axles (DESA)	2.29E+06			
Standard Axle Repetitions per ESA for damage type k (SARk/ESA)				
Fatigue of asphalt: SAR _a /ESA	1.1			
Rutting and shape loss (subgrade strain): SAR _s /ESA	1.6	1.6		
Fatigue of cemented materials: SAR _c /ESA	12			
Design number of Standard Axle Repetitions for damage type k (DSARk)				
Fatigue of asphalt: DSAR _a	2.52E+06			
Rutting and shape loss (subgrade strain): DSAR _s	3.66E+06			
Fatigue of cemented materials: DSAR _c	2.75E+07			
Calculated by: DGB				

Checked by: Date: 1/03/2023

Notes: Supplied ADT value 1417 projected from August 2017 using assumed growth rate of 2%

Client: Maitland City Council Project Reference: 304100929-005 Project Name: MCC Capital Works Program Road Section: Proposed Flood Access Road Location: Oakhampton Heights

Traffic Information	
Annual Average Daily Traffic (AADT)	1430 vehicles/day
Direction Factor	0.5
Percentage Heavy Vehicles	3.0 %
Lane Distribution Factor	1.00
Traffic Loading	
Number of Axle Groups per Heavy Vehicle (N _{HVAG})	2.5
Traffic Load Distribution	AGPT02-12 Example TLD
Design Life	
Design Period	30 years
Heavy Vehicle Growth Rate	2.0% p.a.

Design Traffic				
Cumulative Heavy Vehicle Axle Groups (HVAG)	1.58E+06			
Average number of ESA per Heavy Vehicle Axle Group (ESA/HVAG)	0.70			
Design number of Equivalent Standard Axles (DESA)	1.11E+06	1.11E+06		
Standard Axle Repetitions per ESA for damage type k (SARk/ESA)				
Fatigue of asphalt: SAR _a /ESA	1.1			
Rutting and shape loss (subgrade strain): SAR _s /ESA	1.6	1.6		
Fatigue of cemented materials: SAR _c /ESA	12			
Design number of Standard Axle Repetitions for damage type k (DSARk)				
Fatigue of asphalt: DSAR _a	1.22E+06			
Rutting and shape loss (subgrade strain): DSAR _s	1.78E+06			
Fatigue of cemented materials: DSAR _c	1.33E+07			
Calculated by: DGB				

Calculated by: DGB Checked by: Date: 1/03/2023

Notes: Supplied ADT 1430 and assumed HV 3% used

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

6.10E+05

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Load No. ID		Load Load Category Type		Load Type		Radius	Pressure/ Expone Ref. stress	
1 1	ESA750-Full ESA750-Full Vertical Forc				Vertical Force		0.75	0.00
Load Lo	cations:							
Locatio	n Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.0	0	.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0	.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0	.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0	.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: Flex Title: Flexible unbound

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	Gran 350	Aniso.	3.50E+02	0.35	2.59E+02	1.75E+02	0.35
2	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Re	lationships:						
Layer	Locatio	n Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
3	top	Sub_CBR3	ΕZΖ	0.009300	7.000	1.600		
Reliab	ility Fa	ctors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 3 1.00 Subgrade (Austroads 2004)

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	130.00	Gran 350		n/a		n/a
2	380.00	Gran 250		n/a		n/a
3	0.00	Sub_CBR3	ESA750-Full		1.28E-03	9.14E-01

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

1.10E+06

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Load No. ID		Load Category	Load Type		Radius	Pressure/ Ref. stress	Exponent	
1 ES	A750-Full	ESA750-Full	'ull Vertica		Forc	e 92.1	0.75	0.00
Load Loca	tions:							
Location	Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.	0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.	0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.	0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.	0	0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: Flex Title: Flexible unbound

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	Gran 350	Aniso.	3.50E+02	0.35	2.59E+02	1.75E+02	0.35
2	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rei	lationships:						
Layer	Locatio	n Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
3	top	Sub_CBR3	EZZ	0.009300	7.000	1.600		
Reliat	ility Fac	ctors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 3 1.00 Subgrade (Austroads 2004)

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	135.00	Gran 350		n/a		n/a
2	400.00	Gran 250		n/a		n/a
3	0.00	Sub_CBR3	ESA750-Full		1.18E-03	9.55E-01

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

2.30E+06

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Load No. ID		Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent	
1 1	ESA750-Full	ESA750-Full	Full Vertic		Force 92.1		0.75	0.00	
Load Lo	cations:								
Locatio	n Load	Gear	Х	Y		Scaling	Theta		
No.	ID	No.				Factor			
1	ESA750-Full	1	-165.0	0	.0	1.00E+00	0.00		
2	ESA750-Full	1	165.0	0	.0	1.00E+00	0.00		
3	ESA750-Full	1	1635.0	0	.0	1.00E+00	0.00		
4	ESA750-Full	1	1965.0	0	.0	1.00E+00	0.00		

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: Flex Title: Flexible unbound

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	Gran 350	Aniso.	3.50E+02	0.35	2.59E+02	1.75E+02	0.35
2	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Re	lationships:						
Layer	Locatio	n Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
3	top	Sub_CBR3	ΕZΖ	0.009300	7.000	1.600		
Reliab	ility Fa	ctors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 3 1.00 Subgrade (Austroads 2004)

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	145.00	Gran 350		n/a		n/a
2	425.00	Gran 250		n/a		n/a
3	0.00	Sub_CBR3	ESA750-Full		1.07E-03	9.63E-01

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Load No. ID		Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1 E	SA750-Full	50-Full ESA750-Full Vertical Force		orce	92.1	0.75	0.00	
Load Loc	ations:							
Location	Load	Gear	Х	Y	Sc	aling	Theta	
No.	ID	No.			Fa	ctor		
1	ESA750-Full	1	-165.0	0.	0 1.	00E+00	0.00	
2	ESA750-Full	1	165.0	0.	0 1.	00E+00	0.00	
3	ESA750-Full	1	1635.0	0.	0 1.	00E+00	0.00	
4	ESA750-Full	1	1965.0	0.	0 1.	00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: Flex w select Title: Flexible unbound with select $% \left({{{\left[{{{\left[{{{\left[{{{c_{{\rm{s}}}}} \right]}} \right]}_{\rm{s}}}}}} \right]_{\rm{sol}}} \right)$

Movements

2.30E+06

Layer No.	Lower i/face	Material ID	Isotropy	Modulus (or Ev)	P.Ratio (or vvh)	F	Eh	vh
1	rough	Gran 350	Aniso.	3.50E+02	0.35	2.59E+02	1.75E+02	0.35
2	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	subsltCB15	Aniso.	1.50E+02	0.45	1.03E+02	7.50E+01	0.45
4	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rel	ationships:						
Layer	Location	Material	Component	Perform.	Perform.	Traffic		
No.		ID	-	Constant	Exponent	Multiplier		
3	top	subsltCB15	ΕZΖ	0.009300	7.000	1.600		
4	top	Sub_CBR3	ΕZΖ	0.009300	7.000	1.600		

Reliability Factors: Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 3 1.00 Subgrade (Selected Material) 4 1.00 Subgrade (Austroads 2004)

Detail	ls of	Laye	ers	to	be	sublayer	red:
Layer	no.	1:	Aus	tro	bads	(2004)	sublayering
Layer	no.	2:	Aus	tro	bads	(2004)	sublayering
Layer	no.	3:	Aus	tro	bads	(2004)	sublayering

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	145.00	Gran 350		n/a		n/a
2	135.00	Gran 250		n/a		n/a
3	300.00	subsltCB15	ESA750-Full		9.08E-04	3.11E-01
4	0.00	Sub_CBR3	ESA750-Full		1.06E-03	8.90E-01
Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

1.10E+06

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Lo No. ID	ad	Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1 ES	A750-Full	ESA750-Full		Vertical	Forc	e 92.1	0.75	0.00
Load Loca	tions:							
Location	Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.	0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.	0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.	0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.	0	0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: Flex Title: Flexible unbound

Layer	Lower	Material	Isotropy	Modulus	P.Ratio			
No.	i/face	ID		(or Ev)	(or vvh)	F	Eh	vh
1	rough	Gran 350	Aniso.	3.50E+02	0.35	2.59E+02	1.75E+02	0.35
2	rough	Gran 250	Aniso.	2.50E+02	0.35	1.85E+02	1.25E+02	0.35
3	rough	Sub_CBR8	Aniso.	8.00E+01	0.45	5.52E+01	4.00E+01	0.45
Perfor	mance Re	lationships:						
Layer	Locatio	n Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
3	top	Sub_CBR8	EZZ	0.009300	7.000	1.600		
Reliab	ility Fa	ctors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 3 1.00 Subgrade (Austroads 2004)

Details of Layers to be sublayered: Layer no. 1: Austroads (2004) sublayering Layer no. 2: Austroads (2004) sublayering

Layer	Thickness	Material	Load		Critical	CDF
No.		ID	ID		Strain	
1	135.00	Gran 350		n/a		n/a
2	165.00	Gran 250		n/a		n/a
3	0.00	Sub_CBR8	ESA750-Full		1.18E-03	9.12E-01

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

6.10E+05

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load L No. II	oad D	Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1 E	SA750-Full	ESA750-Full		Vertical	Force	e 92.1	0.75	0.00
Load Loc	ations:							
Location	Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.	0 (0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.	0 (0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.	0 (0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.	0 (0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: HBB Title: Heavily bound base - new construction

Layer No. 1	Lower i/face rough	Material ID Cement5000	Isotropy Iso.	Modulus (or Ev) 5.00E+03	P.Ratio (or vvh) 0.20	F	Eh	vh
2	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rel	ationships:						
Layer	Location	Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
1	bottom	Cement5000	ETH	0.000310	12.000	12.000		
2	top	Sub_CBR3	ΕZΖ	0.009300	7.000	1.600		
Reliab	ility Fac	tors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 1 1.00 Cement Stabilised 2 1.00 Subgrade (Austroads 2004)

Layer	Thickness	Material	Load	Critical	CDF
No.		ID	ID	Strain	
1	335.00	Cement5000	ESA750-Full	-8.26E-05	9.36E-01
2	0.00	Sub_CBR3	ESA750-Full	2.45E-04	8.65E-06

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

1.10E+06

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load L No. II	oad D	Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1 E	SA750-Full	ESA750-Full		Vertical	Force	e 92.1	0.75	0.00
Load Loc	ations:							
Location	Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.	0 (0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.	0 (0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.	0 (0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.	0 (0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: HBB Title: Heavily bound base - new construction

Layer No. 1	Lower i/face rough	Material ID Cement5000	Isotropy Iso.	Modulus (or Ev) 5.00E+03	P.Ratio (or vvh) 0.20	F	Eh	vh
2	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rel	ationships:						
Layer	Location	n Material	Component	Perform.	Perform.	Traffic		
No.		ID		Constant	Exponent	Multiplier		
1	bottom	Cement5000	ETH	0.000310	12.000	12.000		
2	top	Sub_CBR3	ΕZΖ	0.009300	7.000	1.600		
Reliab	ility Fac	tors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 1 1.00 Cement Stabilised 2 1.00 Subgrade (Austroads 2004)

Layer	Thickness	Material	Load	Critical	CDF
No.		ID	ID	Strain	
1	345.00	Cement5000	ESA750-Full	-7.90E-05	9.89E-01
2	0.00	Sub_CBR3	ESA750-Full	2.35E-04	1.15E-05

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Traffic Spectrum Details:

Load	Load
No.	ID

1 ESA750-Full 2.30E+06

Movements

Details of Load Groups:

Load I No. I	Load ID	Load Category		Load Ivpe		Radius	Pressure/ Ref. stress	Exponent
1 H	ESA750-Full	ESA750-Full	,	Vertical	Force	92.1	0.75	0.00
Load Loo	cations:							
Locatior	n Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.0	0	.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0	.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0	.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0	.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: HBB Title: Heavily bound base - new construction

Layer No.	Lower i/face	Material ID	Isotropy	Modulus (or Ev)	P.Ratio (or vvh)	F	Eh	vh
1	rough	Cement5000	Iso.	5.00E+03	0.20			
2	rough	Sub_CBR3	Aniso.	3.00E+01	0.45	2.07E+01	1.50E+01	0.45
Perfor	mance Rel	ationships:						
Layer	Location	n Material	Component	Perform.	Perform.	Traffic		
No.		ID	_	Constant	Exponent	Multiplier		
1	bottom	Cement5000	ETH	0.000310	12.000	12.000		
2	top	Sub_CBR3	EZZ	0.009300	7.000	1.600		
Reliab	ility Fac	ctors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 1 1.00 Cement Stabilised 2 1.00 Subgrade (Austroads 2004)

Layer	Thickness	Material	Load	Critical	CDF
No.		ID	ID	Strain	
1	360.00	Cement5000	ESA750-Full	-7.40E-05	9.48E-01
2	0.00	Sub_CBR3	ESA750-Full	2.20E-04	1.54E-05

Job Title: Scobies

Damage Factor Calculation

Assumed number of damage pulses per movement: Combined pulse for gear (i.e. ignore NROWS)

Movements

1.10E+06

Traffic Spectrum Details:

Load	Load
No.	ID
1	ESA750-Full

Details of Load Groups:

Load Lo No. II	oad D	Load Category		Load Type		Radius	Pressure/ Ref. stress	Exponent
1 ES	SA750-Full	ESA750-Full		Vertical	Force	e 92.1	0.75	0.00
Load Loca	ations:							
Location	Load	Gear	Х	Y		Scaling	Theta	
No.	ID	No.				Factor		
1	ESA750-Full	1	-165.	0 (0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.	0 (0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.	0 (0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.	0 (0.0	1.00E+00	0.00	

Layout of result points on horizontal plane: Xmin: 0 Xmax: 165 Xdel: 165 Y: 0

Details of Layered System:

ID: HBB Title: Heavily bound base - new construction

Layer No. 1 2	Lower i/face rough rough	Material ID Cement5000 Sub_CBR8	Isotropy Iso. Aniso.	Modulus (or Ev) 5.00E+03 8.00E+01	P.Ratio (or vvh) 0.20 0.45	F 5.52E+01	Eh 4.00E+01	vh 0.45
Perfor	mance Rel	ationships:						
Layer	Location	Material	Component	Perform.	Perform.	Traffic		
No.		ID	-	Constant	Exponent	Multiplier		
1	bottom	Cement5000	ETH	0.000310	12.000	12.000		
2	top	Sub_CBR8	EZZ	0.009300	7.000	1.600		
Reliab	ility Fac	tors:						

Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type 1 1.00 Cement Stabilised 2 1.00 Subgrade (Austroads 2004)

Layer	Thickness	Material	Load	Critical	CDF
No.		ID	ID	Strain	
1	300.00	Cement5000	ESA750-Full	-7.71E-05	7.42E-01
2	0.00	Sub_CBR8	ESA750-Full	1.94E-04	3.05E-06