

PRELIMINARY SITE INVESTIGATION (PSI)

Property Address

39-41 Fairfax Street, Rutherford NSW

Prepared for

Greentree Projects

Date

July 2023

DOCUMENT CONTROL REGISTER

Document Information				
Job Number	E3008			
Document Number 0				
Report Title Preliminary Site Investigation				
Site Address	39-41 Fairfax Street, Rutherford NSW			
Prepared for	repared for Greentree Projects			

Document Review					
Revision NumberDate IssuedDescriptionIssued By					
0	05/07/2023	Initial Issue	Ben Buckley		

Distribution Register				
Distribution Method Custodian Issued to				
Electronic	B. Buckley	Foundation Earth Sciences Office		
Electronic	G. Tilse	Greentree Projects		

Authorisation and Release				
	Signature	Name	Date	
Reviewed	WSp.	Michael Silk B.Env Sc (CEnvP General)	05/07/2023	
Authorised	ber budley	Benjamin Buckley Principal Environmental Forensic Scientist / Director	05/07/2023	

ABBREVIATIONS

AIP	Australian Institute of Petroleum	QA/QC	Quality Assurance, Quality Control
	Ltd		
ANZECC	NZECC Australian and New Zealand		Remediation Acceptance Criteria
	Environment and Conservation		
	Council		
AST	Aboveground Storage Tank	RAP	Remediation Action Plan
BGL	Below Ground Level	RPD	Relative Percentage Difference
BTEX	Benzene, Toluene, Ethyl benzene and Xylene	SAC	Site Assessment Criteria
COC	Chain of Custody	SVC	Site Validation Criteria
DA	Development Approval	SWL	Standing Water Level
DP	Deposited Plan	TCLP	Toxicity Characteristics Leaching Procedure
DQOs	Data Quality Objectives	ТРН	Total Petroleum Hydrocarbons
EPA	Environment Protection Authority	UCL	Upper Confidence Limit
ESA	Environmental Site Assessment	UST	Underground Storage Tank
HIL	Health-Based Soil Investigation	VHC	Volatile Halogenated Compounds
	Level		
LGA	Local Government Area	VOC	Volatile Organic Compounds
NEHF	National Environmental Health Forum	DPI	Department of Primary Industries
NEPC	National Environmental Protection Council		
NHMRC	National Health and Medical		
	Research Council		
ОСР	Organochlorine Pesticides		
OPP	Organophosphate Pesticides		
PAH	Polycyclic Aromatic Hydrocarbon		
РСВ	Polychlorinated Biphenyl		
PID	Photo Ionisation Detector		
PQL	Practical Quantitation Limit		

TABLE OF CONTENTS

1.0	INTRODUCTION	10
2.0	OBJECTIVE	10
3.0	SCOPE OF WORKS	11
4.0	SITE IDENTIFICATION	12
4.1	SITE IDENTIFICATION	12
5.0	SITE HISTORY AND PROPOSED DEVELOPMENT	13
5.1		
5.2		
5.3		
5.4		
	CORDS	
5.4	1 NSW EPA CONTAMINATED LAND RECORDS	
5.5		
5.6		
5.7		
5.8		-
5.9		-
	0 ANECDOTAL EVIDENCE	
	1 SUMMARY OF SITE HISTORY	
	2 INTEGRITY ASSESSMENT	
5.1	3 PROPOSED DEVELOPMENT	
6.0	SITE CONDITION AND SURROUNDING ENVIRONMENT	22
7.0	SITE INSPECTION	25
7.1	SITE OBSERVATIONS	25
8.0	CONCEPTUAL SITE MODEL (CSM)	26
9.0	REVIEW OF DATA QUALITY OBJECTIVES	30
10.0	PRELIMINARY SOIL INVESTIGATION	34
10	.1 SOIL ASSESSMENT	34
	2 SAMPLING DENSITY AND RATIONALE	
10	3 SAMPLING METHODOLOGY	35
11.0	QUALITY ASSURANCE / QUALITY CONTROL	36
	1 GENERAL QA/QC	
	2 SAMPLE CONTAINERS	
	3 DECONTAMINATION	
	4 SAMPLE TRACKING, IDENTIFICATION AND HOLDING TIMES	

11.5 SAMPLE TRANSPORT	
11.6 TRIP SPIKE	
11.7 TRIP BLANK	
11.8 FIELD DUPLICATE SAMPLES	
11.9 TRIP SPIKE AND TRIP BLANK RESULTS	43
11.10LABORATORY QA/QC	44
11.11 QA/QC RESULTS	45
12.0 SITE ASSESSMENT CRITERIA	48
12.1 SOILS	48
12.1.1 HEALTH INVESTIGATION LEVELS (HILS)	48
12.2 HEALTH SCREENING LEVELS (HSLS)	50
12.3 (EILS) AND (ESLS)	51
12.4 ASBESTOS	54
12.5 AESTHETIC CONSIDERATIONS	54
13.0 SOIL RESULTS	55
13.1 HEAVY METALS	55
13.1 HEAVY METALS 13.1.1 HEATH INVESTIGATION LEVELS	
	55
13.1.1 HEATH INVESTIGATION LEVELS	55 55
13.1.1 HEATH INVESTIGATION LEVELS13.1.2 ECOLOGICAL INVESTIGATION LEVELS	55 55 56
 13.1.1 HEATH INVESTIGATION LEVELS 13.1.2 ECOLOGICAL INVESTIGATION LEVELS	55 55 56 56 56
 13.1.1 HEATH INVESTIGATION LEVELS 13.1.2 ECOLOGICAL INVESTIGATION LEVELS 13.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE 13.2.1 HEATH SCREENING LEVELS & MANAGEMENT LIMITS 	55 55 56 56 56
 13.1.1 HEATH INVESTIGATION LEVELS 13.1.2 ECOLOGICAL INVESTIGATION LEVELS	55 55 56 56 56 57
 13.1.1 HEATH INVESTIGATION LEVELS	55 55 56 56 56 56 57 57
 13.1.1 HEATH INVESTIGATION LEVELS	55 55 56 56 56 56 57 57
 13.1.1 HEATH INVESTIGATION LEVELS	55
 13.1.1 HEATH INVESTIGATION LEVELS	
 13.1.1 HEATH INVESTIGATION LEVELS	55 55 56 56 56 56 57 57 57 57 57
 13.1.1 HEATH INVESTIGATION LEVELS	

LIST OF TABLES

Table 1: Site Identification Review	12
Table 2 Review of Aerial Photographs	13
Table 3 Land Title Information	15
Table 4 PFAS Investigation Screening	18
Table 5: Site Condition and Surrounding Environment Review	22
Table 6: Site Inspection Review	25
Table 7: Areas and Contaminants of Concern	26
Table 8: Potentially Contaminated Media	26
Table 9: Sampling Information - Soil	34
Table 10: QA/QCs Frequencies	36
Table 11: Soil Field Duplicate Samples	39
Table 12: Intra-lab RPD for Soil Sample D1	41
Table 13: Inter-lab RPD for Soil Sample SS1	42
Table 14: Trip Spike	43
Table 15: Trip Blank	44
Table 16: QA/QC Results Summary	45
Table 17: Health Investigation Levels (HIL) Criteria for Soil Contaminants	49
Table 18: Health Screening Levels (HSL) Criteria	50
Table 19: Ecological Investigation Levels (EIL) and Ecological Screening Levels	
(ESL)Criteria	53
Table 20: Health Screening Levels for Asbestos	54

LIST OF APPENDICES

Figure 1	Site Locality		
Figure 2	Site Features and Borehole Location Plan		
Appendix A	DBYD Plans		
Appendix B	Historical Aerial Photographs		
Appendix C	Land Title Information		
Appendix D	NSW EPA Records		
Appendix E	Acid Sulphate Soil Risk Map		
Appendix F	Borehole Logs		
Appendix G	Summary Tables		
Appendix H	NATA Accredited Analytical Results		
Appendix I	DPI (Office of Water) Database Records		
Appendix J	Bureau of Meteorology		
Appendix K	Site Photographs		
Appendix L	Proposed Development Plans		
Appendix M	Unexpected Finds Protocol		

EXECUTIVE SUMMARY

Foundation Earth Sciences was appointed by Greentree Projects to undertake a Preliminary Site Investigation (PSI) for the property situated at 39-41 Fairfax Street, Rutherford NSW ("the site"). The site is proposed to be subdivided for the construction of fifteen new residential houses and nine terraces (twenty-four residential dwellings in total), including landscape areas, a communal space, roadway, footpath and visitor's carpark.

A site visit was undertaken on the 07th March 2023. Fieldwork and reporting were conducted in general accordance with the Foundation Earth Sciences proposal and with reference to relevant regulatory criteria and Foundation Earth Sciences fieldwork protocols.

The preliminary soil data revealed the following:

- The laboratory results for the soil samples analysed were below the adopted detection limits and/or relevant guideline criteria.
- No identified asbestos was detected in the soil samples analysed. No fibro cement fragments were observed in the fill material located within the boreholes. The investigation is limited to the boreholes.

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil contamination at the site are minimal in the context of the proposed use of the site. The site *is suitable* for the proposed development, subject to the following recommendations:

- A site wide asbestos clearance is recommended to be completed prior to any excavation works occurring on the site.
- Any soil requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).
- An unexpected finds protocol has been included in **Appendix M** and should be followed during the excavation phase of the development.

1.0 INTRODUCTION

Foundation Earth Sciences was appointed by Greentree Projects to undertake a Preliminary Site Investigation (PSI) for the property situated at 39-41 Fairfax Street, Rutherford NSW ("the site").

This PSI has been requested to determine the potential for onsite contamination arising from any areas of concern located within the site and its surrounding area. This report shall provide a preliminary assessment of any site contamination and, if required, provide a basis for a more detailed investigation.

A site visit was undertaken on the 07th March 2023. Fieldwork and reporting were conducted in general accordance with the Foundation Earth Sciences proposal and with reference to relevant regulatory criteria and Foundation Earth Sciences fieldwork protocols.

The format of this report closely follows that recommended in the NSW Environment Protection Authority (EPA), "*Consultants Reporting on Contaminated Land*" – 2020.

2.0 OBJECTIVE

The objective of this PSI was to assess the potential for the soils at the site to have been impacted by previous and current activities undertaken at or adjacent to the site and to assess the site suitability for the proposed development.

This report may also recommend additional investigations and / or remediation works and possible strategies for the management of the site.

3.0 SCOPE OF WORKS

The scope of works for this PSI included:

- Research and review of the information available, including previous environmental investigations, past and current titles, aerial photographs, EPA records and anecdotal evidence, site survey, site records on waste management practices;
- Site walkover, including research of the location of sewers, drains, holding tanks and pits, spills, patches of discoloured vegetation, etc;
- Quality Assurance/Quality Control (QA/QC): work will be undertaken in accordance with relevant regulations and are consistent with industry standards; and
- Preliminary Soil Sampling;

4.0 SITE IDENTIFICATION

4.1 Site identification

The site is identified as follows:

Table 1: Site Identification Review

Site Identifier	Site Details		
Site Location	39-41 Fairfax Street, Rutherford NSW		
Lot/DP	Lot 10-11 in DP809354		
Site Coordinates #	S Corner: Latitude: -32.710548, Longitude: 151.521103		
Parish	Gosfort	h	
County	Northumberland		
Site Area	Approximately 9,399m ²		
Local Government Area (LGA)#	City of Maitland		
Zoning##	R1 – Ge	neral residential	
	North	Residential	
Surrounding Land Uses	South	Fairfax street then residential	
	East	Vacant land then Residential	
	West Commercial/Residential		

Notes:

Refer to NSW LPI "Six Maps" https://maps.six.nsw.gov.au/

https://www.planningportal.nsw.gov.au/find-a-property

5.0 SITE HISTORY AND PROPOSED DEVELOPMENT

5.1 Underground Services

'Dial Before You Dig' plans were requested and reviewed for the site. Plans were provided by Ausgrid, Hunter water corporation, Jemena Gas North, NBN Co NswAct and/or Telstra NSW South. The plans did not indicate the presence of any major underground service or utilities easements at the site. It is noted that the associated underground services are considered as a potential preferential pathway.

Refer to **Appendix A** – DBYD Plans.

5.2 Review of Aerial Photographs

Several aerial photographs from Spatial Services were located and a review is presented in the following table:

Year		Site	Surrounding areas
1974	Vacant	The site appeared to be	N: Vacant
		generally vacant with grassed	S: Vacant/residential
		area.	E: Vacant
			W: Vacant/ some commercial warehouses
1984	Vacant	No major changes	N: Vacant
			S: Vacant/residential developments
			E: Vacant/residential developments
			W: Vacant and some commercial buildings
			developed

Table 2 Review of Aerial Photographs

1998	Vacant	A paved driveway and	N: Residential development
		stormwater drainage structure	S: Residential development
		appear to have been developed	E: Residential development
		on site.	W: Residential and commercial/industrial
			development
Current	Vacant	The site is as inspected (section	As per inspection.
		7.1)	

Prior to 1998, the site was generally vacant with consisting mainly of grassed area. Between 1998 and the current there appeared to be a paved driveway and stormwater drainage structure developed on the site. There appears to be no other major changes up until the present on the site.

Up until 1975 the surrounding lands appeared to be mostly vacant land with some type properties or developments and some commercial sites. Between 1975 and 1984 a there appeared to be several residential developments in the surrounding areas. Then it was dominated by residential type properties before 1998 except for the west which appeared to be dominated by commercial/industrial type properties. Between 1998 and the present there has been further residential and commercial/industrial developments in the surrounding areas.

Refer to **Appendix B** – Historical Aerial Photographs.

5.3 Title search

A review of historical documents held at the NSW Department of Lands offices was undertaken to characterise the previous land use and occupiers of the site.

Table 3 Land Title Information

	Lot 10 in DP 809354 (39-41 Fairfax St, Rutl	herford NSW)
Year	Proprietor	Company/ Personal occupation / note
7/06/2017 - Current	Tyton Landscape Supplies Pty Ltd	
13/12/2002	Christopher John Ditton & Denise Ann	
	Ditton	
23/09/1982	Anambah Homes Pty Ltd	
7/01/1972	Walter Desmond Bullier	
28/10/1971	The council of the city of Maitland	
4/06/1971	Christopher Harold Lucas & Verona Jean	
	Lucas	
12/02/1951	Brian Jopseph Bullier & Mary Gertrude	
	Bullier	
16/11/1950	Brian Jopseph Bullier & Mary Gertrude	
	Bullier	
19/06/1934	Hannah Bullier	
6/04/1916	Bulger Balthazar Bullier & Hannah Bullier &	
	Francais Bullier	
19/07/1841	Shaw Rutherford	

Lot 11 in DP 809354 (39-41 Fairfax St, Rutherford NSW)								
Year	Proprietor	Company/ Personal occupation / notes						
7/06/2017 - Current	Tyton Landscape Supplies Pty Ltd							
11/06/2009	Christopher John Ditton & Denise Ann Ditton							
13/12/2002	Terence Joseph Ditton							
23/09/1982	Anambah Homes Pty Ltd							
7/01/1972	Walter Desmond Bullier							

	-	
28/10/1971	The council of the city of Maitland	
4/06/1971	Christopher Harold Lucas & Verona Jean	
	Lucas	
12/02/1951	Brian Jopseph Bullier & Mary Gertrude	
	Bullier	
16/11/1950	Brian Jopseph Bullier & Mary Gertrude	
	Bullier	
19/06/1934	Hannah Bullier	
6/04/1916	Bulger Balthazar Bullier & Hannah Bullier &	
	Francais Bullier	
19/07/1841	Shaw Rutherford	

The land title information for the site indicated private ownership from 1841 up until 1971, after which the site was owned by the council for approximately three months, followed by private ownership between 1972 and 1982 when the properties were owned by a private company for twenty years. 2002 to 2017 the properties were owned privately and are now owned by a private company. The land titles for the subject site have not indicated any potential land use of particular concern.

Refer to **Appendix C** – Land Title Information.

5.4 NSW EPA Contaminated Land Records, List of Notified Sites and POEO Records

5.4.1 NSW EPA Contaminated Land Records

The NSW EPA publishes records of contaminated sites under Section 58 of the Contaminated Land Management (CLM) Act 1997. The notices relate to investigation

and/or remediation of site contamination considered to pose a significant risk of harm under the definition in the CLM Act.

A search of the database revealed that the subject site is not listed and there were no listed properties within the suburb of Rutherford with current notices.

It should be noted that the NSW EPA record of Notices for Contaminated Land does not provide a record of all contaminated land in NSW.

Refer to **Appendix D** – NSW EPA Records.

5.5 NSW EPA POEO Register

A search of the POEO Register revealed the subject site is not listed on the register. There were several listed properties within the suburb of Rutherford with current notices, however these were located more than 500m from the subject site.

Refer to **Appendix D** – NSW EPA Records.

5.6 NSW EPA List of Notified Sites

The NSW EPA publishes a list of notified contaminated sites each month. The list of notified sites contain land that has been notified to the EPA as being potentially contaminated. A search of the list was completed on the 14th March 2023. The search indicated the site was not listed. There were several sites listed in the suburb of Rutherford, however these were located more than 500m from the subject site.

Refer to **Appendix D** – NSW EPA Records.

5.7 Preliminary PFAS Screen

NSW EPA requires that PFAS is considered when investigating land contamination. The preliminary screen is based on guidelines from the PFAS National Environmental Management Plan (NEMP 2020). From this screen a decision can be made as to whether PFAS sampling of soil and groundwater is required.

Preliminary Screen	Risk of Occurrence
Any past or present site activity listed in NEMP 2020 as being activity associated with PFAS contamination? No	L
Any past or present off site activity up-gradient/adjacent to the site listed in NEMP 2020 as being activity associated with PFAS contamination?	L
Did fire training involving the use of suppressants occur from 1970 to 2010?	L
Have fuel fires ever occurred on site from 1970 to 2010?	L
Have PFAS been used in manufacturing or stored on site?	L
Could PFAS have been imported to the site in fill material from a site activity listed in NEMP 2020?	L
Could PFAS contaminated groundwater or run-off migrated to the site?	No Suspected
Is the site or adjacent site listed in the NSW EPA PFAS Investigation Program?	No

Table 4 PFAS Investigation Screening

If the risk is medium or high in any of the above, does the inclusion of	
preliminary sampling/testing of PFAS in soil (including ASLP) and water need to	No
be included?	

- Note 1
 - Risk: L low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale),
 - M medium/moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale);
 - H high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale); r
 - Risk, N/A not applicable (or "-")].
 - o No /Yes
- Note 2 Activities listed in Appendix B of the NEMP (2020).
- Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.
- Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of non-stick cookware, specialised garments and textiles, ScotchguardTM and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam.
- Note 5 https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigationprogram

The potential for PFAS to be present on-site was considered low and thus subsequent

preliminary PFAS sampling / analysis of soil is considered unwarranted during the DSI.

Refer to **Appendix D** – NSW EPA Records.

5.8 Previous Reports

No previous environmental investigation reports were provided or identified at the time of writing this report.

5.9 SafeWork NSW

Foundation Earth Sciences inspected the site on 07th March, 2023 and there were no visual indicator of USTs and/or related infrastructure in accessible areas. Therefore,

based on the weight of evidence above, no SafeWork NSW search was undertaken for this site.

5.10 Anecdotal evidence

Anecdotal evidence was not found for this site.

5.11 Summary of site history

In summary:

- The land title information for the site indicated private ownership from 1841 up until 1971, after which the site was owned by the council for approximately three months, followed by private ownership between 1972 and 1982 when the properties were owned by a private company for twenty years. 2002 to 2017 the properties were owned privately and are now owned by a private company. The land titles for the subject site have not indicated any potential land use of particular concern.
- The aerial photographs have indicated prior to 1998, the site was generally vacant with consisting mainly of grassed areas. Between 1998 and the current there appeared to be a paved driveway and stormwater drainage structure developed on the site. There appears to be no other major changes up until the present on the site. Up until 1975 the surrounding lands appeared to be mostly vacant land with some type properties or developments and some commercial sites. Between 1975 and 1984 a there appeared to be several residential developments in the surrounding areas. Then it was dominated by residential type properties before 1998 except for the west which appeared to be

dominated by commercial/industrial type properties. Between 1998 and the present there has been further residential and commercial/industrial developments in the surrounding areas.

- The site is not listed on the NSW EPA Contaminated Land Record, NSW EPA List of Notified Sites, POEO Register or the NSW EPA PFAS Investigation Program.
- Foundation Earth Sciences inspected the site on 07th March, 2023 and there were no visual indicator of USTs and/or related infrastructure in accessible areas. Therefore, based on the weight of evidence above, no SafeWork NSW search was undertaken for this site.

5.12 Integrity Assessment

The information found in the historical sources has been found to be in general concurrence. It is therefore considered that accuracy of this data is acceptable for this investigation.

5.13 Proposed Development

The site is proposed to be subdivided for the construction of fifteen new residential houses and nine terraces (twenty-four residential dwellings in total), including landscape areas, a communal space, roadway, footpath and visitor's carpark.

6.0 SITE CONDITION AND SURROUNDING ENVIRONMENT

Sensitive ReceiversThe nearest sensitive human receptors are the current and future users of the site, construction workers during the site redevelopment and the general public. The nearest downgradient waterbody is hunter river located approximately 1.7km north west of the site. There are many dams within & surrounding of the properties likely connected to the river.Soil LandscapeThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are broad (200–500 m) with short (300–500 m), convex sideslopes and
general public. The nearest downgradient waterbody is hunter river located approximately 1.7km north west of the site. There are many dams within & surrounding of the properties likely connected to the river.Soil LandscapeThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area.Review of NSW Soil and LandBolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Iocated approximately 1.7km north west of the site. There are many dams within & surrounding of the properties likely connected to the river.Soil LandscapeThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area.Review of NSW Soil and Land Information website ESPADE.Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
within & surrounding of the properties likely connected to the river.Soil LandscapeThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area.Review of NSW Soil and Land Information website ESPADE.Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Soil Landscape The Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area. Review of NSW Soil and Land Bolwarra heights: rolling low hills on Permian sediments in the centre-west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest. Topography The Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Review of NSW Soil and Land Information website ESPADE.Iocated at Bolwarra heights Landscape area.Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Review of NSW Soil and Land Information website ESPADE.Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Information website ESPADE.Bolwarra heights: rolling low hills on Permian sediments in the centre- west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights: Landscape area.Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
west of the sheet in the East Maitland Hills region. Slopes are 5–20%, elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area.Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
elevation to 100 m, local relief to 80 m. Cleared tall open-forest.TopographyThe Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area.Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Topography The Soil Landscape Map viewed on NSW ESPADE indicates that the site is located at Bolwarra heights Landscape area. Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
located at Bolwarra heights Landscape area. Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
located at Bolwarra heights Landscape area. Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
Bolwarra heights: Rolling low hills. Slopes range from 5–20%. Local relief is generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
generally 50 m, but ranging to 80 m. Elevation is 40–100 m. Crests are
broad (200–500 m) with short (300–500 m), convex sideslopes and
narrow, incised drainage lines. Rock outcrop is localised, often occurring
where Muree Sandstone is present (<2%).
Geological Profile The Geological Map of Newcastle (Geological sheet series sheet SI 56-2,
Scale 1:250,000), published by the NSW department of mines, Sydney,
indicates the residual soils within the site to be located in Perminan
Dalwood group Pd: Sandstone, siltstone, mudstone, shale, conglomerate,

Table 5: Site Condition and Surrounding Environment Review

Site Information		Descriptions							
	tuff, basalt, erratics.								
Presence of Acid Sulphate Soils	A review of the "Moruya" map indicated that the site is located in an area								
Review of NSW Department of Land	of "No Known Occurrence" of acid sulphate soils.								
& Water Conservation (DLWC) Acid									
Sulphate Soil Risk Maps (Edition Two,	A review of the NSW ePlanning spatial viewer map indicated the site to be								
December 1997, Scale 1:250,000).	in an area of class 5.								
Appendix E – Acid Sulphate Soil Risk									
Мар									
Localised Hydrogeology	Number	Location	Depth	SWL	Use	Water			
Review of DPI (Office of Water)		from Site	(m BGL)	(m		Bearing			
Database.	BGL) Zones								
	GW201982 634m W 9.4m 8.7m Monitoring 8.0-8								
Appendix I – DPI (Office of Water)) bore								
Database Records.	GW202693 596m SE 7.5m - Monitoring								
	bore								
	GW203443 820m E 90.0m - Irrigation, 60.0-60.1								
	stock 65.0-57.								
	GW201353	1.8km S	6.2m	-	Monitoring	4.2-6.2			
					bore				
	GW202923	1.8km NE	78.0m	26.0	Stock,	43.0-44.0m			
	domestic 66.0-67								
Nearest Surface Water Body	The neare	st downgrad	ient wate	rbody is	s hunter ri	ver located			
	approximate	ely 1.7km north	n west of th	ne site. Th	nere are many	dams within			
	& surrounding of the properties likely connected to the river.								
Local Meteorology	The monthly	/ rainfall of th	e local surr	ounding	area is repres	ented by the			
(Bureau of Meteorology BOM	data collect	ed from the E	30M rainfa	ll gauge	located in Pat	terson (Tocal			
website)	AWS), which	is approximat	tely 11.5km	n from Mo	oruya. The rec	ords indicate			
Appendix J – BOM Data.	that the an	nual mean ra	infall recor	ded for	the month of	f March was			
	125.0mm (da	ate of fieldwor	k).						

Site Information	Descriptions
Nearest Active Service Station & Dry	Service station is 329m south west of the site.
Cleaner	Dry cleaner is 926m south west of the site.
(Google Maps Search)	

7.0 SITE INSPECTION

7.1 Site observations

The site was visited on the 07th March 2023 to inspect the site for any potential sources of contamination. The following observations were made:

Factors Considered	Description of Sites
Buildings & Structures on Site	The site is currently grassed areas, fences, paved driveway and
	stormwater drainage structure.
Percentage Hard-standing surface	Approximate 5%
Concrete Condition	Average
Chemical Storage	Chemical storage areas were not noted at the time of the site
	inspection in accessible areas.
Above and Underground Storage	No above or underground storage tanks areas were noted at
Tanks	the time of the site inspection in accessible areas.
Trade Waste Pits	No trade waste pits were identified at the site.
Nearby Electrical Transformers	No electrical transformers are located within the site. However,
	there are electrical cables located near the south eastern corner
	of the site.
Asbestos	Fibro cement sheeting was not identified within the borehole
	sample locations.
Site Vegetation	Appeared healthy.
Soil Staining and Odours	No odours were identified within the property. No significant
	soil staining was noted during the inspection.
Stormwater and Sewer	Stormwater appeared to be connected to the local utilities.

Table 6: Site Inspection Review

Refer to **Figure 1** - Site Locality and **Figure 2** - Site Features and Borehole Location Plan.

© Foundation Earth Sciences 2023

8.0 CONCEPTUAL SITE MODEL (CSM)

Based on the above information, site history and site walkover, the areas of potential concern and associated contaminants for the site CSM were identified. These are summarised in the following table.

Known and potential	Associated Contaminants
contamination source	
Historical Site Uses (Vacant)	Heavy Metals, TRH, BTEX, PAH, OCP, PCB & Asbestos
Potential Pesticides Use	OCP, OPP
Imported Fill	Heavy Metals, TRH, BTEX, PAH, OCP, PCB & Asbestos
Car parking Areas	TRH, BTEX, PAH
Building degradation/	Heavy Metals and Asbestos
Demolition	

Table 7: Areas and Contaminants of Concern

Table 8: Potentially Contaminated Media

Known and potential	Associated Contaminants
contamination source	
Fill Material	There is the potential for contamination to be present in the upper fill material.
Groundwater	There is the potential for the leaching of contaminants into groundwater onsite and also migration of the contaminants.

Potential for Migration

Contaminants generally migrate from site via a combination of windblown dusts, rainwater infiltration, groundwater migration and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants identified as part of the site history review & site inspection are present in solid (e.g., impacted fill, asbestos) & liquid (e.g., dissolved in water) forms.

Aerial photography has indicated that there are unsealed ground surfaces and therefore there is the potential for migration of contaminants via wind-blown dust.

Rainfall infiltration at the site is expected to occur in unsealed areas. There is therefore the potential that soil contamination could result in impacts to shallow groundwater.

Potential Exposure Pathways

Potential exposure pathways include:

- Dermal;
- Ingestion; and
- Inhalation.

Due to the presence of exposed potentially impacted soil/fill on ground surfaces, dermal exposure is considered a potential exposure pathway.

There is low risk potential for vapour to be present in the underlying profile within the site based on the sampling results.

The potential for ingestion of soil is considered as a potential exposure pathway.

Dermal and inhalation exposure pathways by potentially contaminated groundwater and/or vapour are considered as a low concern based on historical land use.

Receptors

Potential receptors of environmental impact present within the site which will be required to be addressed with respect to the suitability of the site for the proposed use include:

- Excavation/construction/maintenance workers conducting activities at the site, who may potentially be exposed to COPCs through direct contact with impacted soils, Vapour Intrusion and/or groundwater present within excavations and/or inhalation of dusts/fibres associated with impacted soils;
- Future occupants/users of the site may potentially be exposed to COPCs through direct contact with impacted soils and/or ingestion of impacted soils and/or inhalation of dusts/fibres associated with impacted soils and/or exposure to vapour; and/or
- Offsite sensitive receptors of groundwater;
- Flora species to be established on vegetated areas of the site; and
- Hunter River

Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPCs as either liquids or gases.

Man-made preferential pathways are present throughout the site, generally associated with fill materials and services present beneath existing ground surface. Fill materials and service lines are anticipated to have a higher permeability than the underlying natural soil and/or bedrock.

The Plans were provided by Ausgrid, Hunter water corporation, Jemena Gas North, NBN Co NswAct and/or Telstra NSW South. The plans did not indicate the presence of any major underground service or utilities easements at the site. It is noted that the associated underground services are considered as a potential preferential pathway.

9.0 REVIEW OF DATA QUALITY OBJECTIVES

The DQOs were also prepared using Appendix IV of the Site Auditor Guidelines. These require 7 steps. The steps being

- a. State the problem
- b. Identify the decisions
- c. Identify inputs to decision
- d. Define the study boundaries
- e. Develop a decision rule
- f. Specify limits on decision errors
- g. Optimise the design for obtaining data

9.1 State the Problem

The site requires to be confirmed suitable for the proposed development. The site has some areas of potential concern, those being impacts from historical & current uses (rural / residential), imported fill of unknown origin, potential pesticide use, degradation of the building materials and leakages from vehicles on site.

Technically defensible evidence needs to be provided so that the identified Site does not present an unacceptable risk to human health or the environment and is suitable for the intended land use.

9.2 Identify the Decisions

The decisions to be made on the contamination and the new environmental data required includes considering relevant site contamination criteria for each medium (fill, soil and sediment). A proposed use of the 95% UCL on the mean concentrations for all soil chemicals of potential concern must be less than the site criteria identified for the relevant land use suitability.

The decisions made in completing this assessment are as follows:

- Does the site or is the site likely to present a risk of harm to humans or the environment
- Is the site currently suitable for the proposed land use being residential with accessible soil?
- Is there a potential for soil and groundwater contamination?
- Is there a potential for offsite migration issues?
- Do the sampling results meet the site criteria proposed?
- If not, does the site require remediation works

9.3 Identify Inputs to Decision

This step requires the identification of the environmental variables/characteristics that need measuring, identification of which media (fill, soil etc.) need to be collected, identification of the site criteria for each medium of concern and appropriate analytical testing. Inputs include:

• Existing site information

- Site history
- Regional geology, topography and hydrogeology
- Potential contaminants
- Proposed Land Use
- Site assessment criteria
- Results as measured against criteria

9.4 Define the Study Boundaries

Specific spatial and temporal aspects must be provided to identify the boundaries of the investigation and to identify any restrictions that may hinder the assessment process. The site is located at 39-41 Fairfax Street, Rutherford. The site is approximately 9,399m² in area.

9.5 Develop a Decision Rule

The information obtained through this assessment will be used to characterise the soils and the groundwater on the site in terms of contamination issues and risks to human health and the environment. The decision rule in characterising the site will be as follows:

- Laboratory test results will be measured against the criteria provided within this report
- The site will be deemed suitable for the proposed use if the following criteria are fulfilled:
 - Soil and groundwater concentrations are within background levels
 - QA/QC shows data can be relied upon
 - Results generally meet regulatory criteria
 - Results are from NATA accredited laboratories
 - Detection limits are below assessment criteria
 - Results can be shown to be of minimal concern

9.6 Specify Limits on Decision Errors

The limits on decision errors for this assessment are as follows:

- The assessment criteria adopted from the guidelines within this report have risk probabilities already incorporated.
- The acceptable limits for inter/intra laboratory duplicate sample comparisons are laid out within our protocols.
- The acceptable limits for laboratory QA/QC parameters are based upon the laboratory reported acceptable limits and those stated within the NEPM 1999 Guidelines (2013 Amendment)

9.7 Optimise the Design for Obtaining Data

A resource-effective sampling and analysis design was undertaken for data collection that satisfies the DQO's. The sampling and analytical plan is designed to avoid Type 1 and Type 2 errors and includes defining minimum sample numbers required to detect contamination as determined with procedures provided in the NSW EPA 1995 Sampling Design Guidelines and AS 4482.1 - 2005 and appropriate quality control procedures.

Furthermore, only laboratories accredited by NATA for the analysis undertaken were used. The laboratory data was assessed from quality data calculated during this assessment. Field QA/QC protocols adopted and incorporate traceable documentation of procedures used in the sampling and analytical program and in data verification procedures.

10.0 PRELIMINARY SOIL INVESTIGATION

The preliminary soil investigation took place on the 07th March 2023 and was designed to meet the Data Quality Objectives.

10.1 Soil Assessment

Ten (10) soil samples were recovered from ten (10) boreholes labelled BH1 to BH10. These locations were selected to detect any contamination that may have originated from past and present activities, and due to potential excavation and future development in these areas.

Analyte	e / Analyte Group	SAMPLING DATE	HEAVY METALS (8)	TRH	BTEX	РАН	ОСР	РСВ	OPP	PH / CEC / %CLAY	TRH C6-C10 & BTEXN	Asbestos %	Asbestos ID
Sample	Depth (m)	5								, NOLAT	a break		
	0.2.0.2	07.02.2022	x	x	x	x	x	x	x				x
BH1	0.2-0.3	07.03.2023							×				×
BH2	0.1-0.2	07.03.2023	X	Х	X	X	X	X					
BH3	0.0-0.1	07.03.2023	x	х	X	X	X	Х	X	х			X
BH4	0.0-0.1	07.03.2023	x	х	x	х	x	х					
BH5	0.0-0.1	07.03.2023	x	х	x	х	х	х	х				х
BH6	0.0-0.1	07.03.2023	X	х	x	х	х	х					
BH7	0.1-0.2	07.03.2023	X	Х	x	х	X	X	X				X
BH8	0.1-0.2	07.03.2023	X	Х	x	x	x	х					
BH9	0.1-0.2	07.03.2023	X	х	x	х	х	х	x				х
BH10	0.0-0.1	07.03.2023	X	х	x	х	х	х					
D1	-	07.03.2023	X	х	х	х	х	х	х				
SS1	-	07.03.2023	X	х	х	х	х	х	х				
TS1	-										х		
TB1	-										х		

Table 9: Sampling Information - Soil

The locations of the boreholes are shown in **Figure 2** and details of the borehole logs are presented in **Appendix F** – Borehole Logs.

Based on information from all boreholes, the surface and sub-surface profile across the site is generalised as follows:

- Fill: Clayey Silt
- Natural: Silty Clay

10.2 Sampling Density and Rationale

The NSW EPA "Sampling Design Guidelines" (2022) requires a minimum sampling density of twenty-one (21) sampling points for a site area of 9,399m².

Foundation Earth Sciences recovered ten soil samples from ten boreholes across the site. Sampling was preliminary in nature and not designed to meet the above guidelines, but target any potential areas of concern.

10.3 Sampling Methodology

In summary:

- Soil samples were collected using a hand auger, DCP and U50 to collect undisturbed samples.
- Samples were transferred directly into appropriately labelled clean laboratory supplied containers;
- Samples were transferred into chilled eskies for sample preservation;
- A Chain of Custody was completed and forwarded to the laboratory. Sampling analysis was based on field observations and was in accordance with the schedule outlined in Table 9.
- Soil samples were submitted to their respective laboratories as specified in Section 11.

11.0 QUALITY ASSURANCE / QUALITY CONTROL

11.1 General QA/QC

The frequency required for each field quality assurance / quality control (QA/QC) sample is presented in the table below.

Table 10: QA/QCs Frequencies

	Intra Lab	Inter Lab	Rinsate	Spikes	Blanks
Sampling	1 in 20	1 in 20	1/day	1/day	1/day
Frequency					

During the contamination assessment the integrity of data collected is considered vital. With the assessment of the site, a number of measures were taken to ensure the quality of the data. These are as follows:

11.2 Sample Containers

Soil samples collected during subsequent investigations are to be placed immediately into laboratory prepared glass jars with Teflon lid inserts. Standard identification labels are to be adhered to each individual container and labelled according to depth, date, sampling team and media collected.

11.3 Decontamination

All equipment used in the sampling program is to be decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination;
- Cleaning in a solution of Decon 90;
- Rinsing in clean demineralised water then wiping with clean lint free cloths;

Foundation Earth Sciences will also adopt a sampling gradient of lowest to highest potential contamination to minimise the impact of cross contamination. This gradient is determined from the historical review and the on-site inspection to be carried out prior to sampling.

Although Foundation Earth Sciences maintains consistent sampling procedures, a rinsate sample is obtained to ensure false positive samples are not generated and that decontamination procedures are effective in preventing cross contamination. The Rinsate water is collected after being in contact generally with the trowel used for sampling. Analytical results that target the contaminants of concern are compared to a blank sample, which is taken directly from the rinsate water container supplied by the laboratory.

11.4 Sample Tracking, Identification and Holding Times

All samples are to be forwarded to Envirolab under recognised chain of custodies with clear identification outlining the date, location, sampler and sample ID. All samples are to be recorded by the laboratory as meeting their respective holding times. The sample tracking system is considered adequate for the purposes of sample collection.

11.5 Sample Transport

All samples are to be packed into an esky with ice from the time of collection. A trip blank and trip spike are collected where appropriate. These were transported under chain of custody from the site to Envirolab Pty Ltd, a NATA registered laboratory.

Samples are too kept below 4°C at all times, soil samples submitted for asbestos analysis are not required to be kept below 4°C.

11.6 Trip Spike

Trip Spike samples are to be obtained from the laboratory prior to conducting field sampling where volatile substances are suspected. Foundation Earth Sciences QA/QC procedures for the collection of environmental samples involves the collection of trip blanks, trip spikes and duplicate samples both intra and inter laboratory.

11.7 Trip Blank

A trip blank is to accompany the sampling for the sampling process and is not separated from the sample collection and transportation process. The purpose of the trip blank is to identify whether cross-contamination is occurring during the sample collection and transport process.

11.8 Field Duplicate Samples

The tables below list the duplicate soil samples collected with their corresponding primary samples.

Primary Sample	Sample Depth	Intra Duplicate	Inter Duplicate	Date Sampled
	(m BGL)			
BH1	0.2-0.3	D1	SS1	07.03.2023

Table 11: Soil Field Duplicate Samples

Field duplicate samples for soil were prepared in the field through the following process:

- A larger than normal quantity of soil is recovered from the sample location selected for duplication.
- Two Portions of the sub-sample are immediately transferred, one for an intralaboratory duplicate and another as a sample.
- Samples are placed into a labelled, laboratory supplied 250ml glass jar and sealed with an airtight, Teflon screw top lid.
- The fully filled jars are labelled as the sample and duplicate and immediately placed in a chilled esky.

Soil Intra-Laboratory duplicate samples were sent to Envirolab Pty Ltd while Inter-Laboratory duplicate samples were sent to Eurofins.

A summary of the test results with the Relative Percentage Difference (RPD) is presented in the following tables.

The comparisons between the duplicates and original samples indicate acceptable RPDs when they comply with criteria which are commonly set at:

- less than 30% for inorganics and 50% for organics
- greater than five (5) times the laboratory limit of recording (LOR)
- greater than 50% of the relevant health investigation level (HIL) concentration.

The tables, below, give details of intra laboratory and inter laboratory duplicates.

	BH1	ENVIROLAB	RELATIVE PERCENTAGE
ANALYTE	0.0-0.1	D1	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	<4	-
Cadmium	<0.4	<0.4	-
Chromium	16	19	17
Copper	23	1	183
Lead	22	7	103
Mercury	<0.1	<0.1	-
Nickel	17	9	62
Zinc	65	7	161
ТКН			
C10-C16	<50	<50	-
C16-C34	<100	<100	-
C34-C40	<100	<100	-
втех			
Benzene	<0.2	<0.2	-
Toulene	<0.5	<0.5	-
Ethylbenzene	<1	<1	-
Xylenes - Total	<1	<1	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.05	<0.05	-
Total PAH	<0.05	<0.05	-
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.1	<0.1	-
DDD	<0.1	<0.1	-
DDE	<0.1	<0.1	-
DDT	<0.1	<0.1	-
Chlordane (trans & cis)	<0.1	<0.1	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<0.1	-

Table 12: Intra-lab RPD for Soil Sample D1

The comparisons between the intra-laboratory duplicates and corresponding original samples for soil indicated generally acceptable RPD apart from copper, nickel and zinc which exceed the DQOs for this project. However, this exceedance is not considered a concern as they are most likely due to the heterogeneity of the sample or low concentrations within the sample.

	BH1	SGS	RELATIVE PERCENTAGE
ANALYTE	0.0-0.1	SS1	DIFFERENCE
	mg/kg	mg/kg	%
HEAVY METALS			
Arsenic	<4	2	-
Cadmium	<0.4	<0.3	-
Chromium	16	8.4	62
Copper	23	0.7	188
Lead	22	7	103
Mercury	<0.1	<0.05	-
Nickel	17	3.5	132
Zinc	65	5.7	168
ткн			
C10-C14	<50	<20	-
C15-C28	<100	<45	-
C29-C36	<100	<45	-
втех			
Benzene	<0.2	<0.1	-
Toulene	<0.5	<0.1	-
Ethylbenzene	<1	<0.1	-
Xylenes - Total	<1	<0.3	-
POLYCYCLIC HYDROCARBONS (PAH)			
Benzo(a)pyrene	<0.05	<0.1	-
Total PAH	<0.05	<0.8	-
ORGANOCHLORINE PESTICIDES			
Heptachlor	<0.1	<0.1	-
Aldrin	<0.1	<0.1	-
Dieldrin	<0.1	<0.2	-
DDD	<0.1	<0.1	-
DDE	<0.1	<0.1	-
DDT	<0.1	<0.1	-
Chlordane (trans & cis)	<0.1	<0.1	-
POLYCHLORINATED BIPHENYLS			
Total PCB	<0.1	<1	-

Table 13: Inter-lab RPD for Soil Sample SS1

The comparisons between the inter-laboratory duplicates and corresponding original samples for soil indicated generally acceptable RPDs, with the exception of chromium, copper, lead, nickel and zinc which exceeded the DQOs for this project. However this exceedance is not considered a concern as they are most likely due to the heterogeneity of the sample or low concentrations within the sample.

Field duplicates provide an indication of the whole investigation process, including the sampling process, sample preparation and analysis. The accuracy of the data is considered to be adequate due to the effect on confidence intervals with low concentrations in the samples and their duplicates.

11.9 Trip Spike and Trip Blank Results

Trip Spike samples were obtained from the laboratory prior to conducting field sampling where volatile substances are suspected. Trip spike and trip blank samples were collected to assess the effect of sample handling on volatile concentrations in the samples collected and the results are listed in the tables below:

ANALYTE	TS1 Trip Spike % Soil (mg/kg) 07.03.2023
BTEX	
Benzene	101%
Toluene	99%
Ethyl Benzene	101%
M & P Xylenes	101%
O-Xylenes	101%

Table 14: Trip Spike

Results discussed in Section 11.11

ANALYTE	TB1 Trip Blank Soil (mg/kg) 07.03.2023
TRH	
C6-C10	<25
BTEX	
Naphthalene	<1
Benzene	<0.2
Toluene	<0.5
Ethyl Benzene	<1
Total Xylenes	<1

Table 15: Trip Blank

Results discussed in Section 11.11

11.10 Laboratory QA/QC

The integrity of analytical data provides the second step in the QA/QC process for total data compliance. The data validation techniques adopted by Foundation Earth Sciences are based upon techniques published by the US EPA and in line with methods and guidelines adopted by the NSW EPA and outlined in the NEPM, 2013.

Descriptions are provided of the specific mechanisms used in the assessment of accuracy, precision and useability of analytical data within the project.

11.11 QA/QC Results

The QA/QC results for soil collected at the site are summarised in the table below:

Table 16: QA/QC Results Summary

Data Quality Indicator	Results	DQI Met
Completeness		
Soil		
Data from critical samples is considered	Data is considered valid	Yes
valid		
Satisfactory frequency / result for QC	The QC results are considered adequate	Yes
samples	for the purpose of the investigation.	
Field documentation completed	Field records are complete	Yes
Boreholes logs & COCs completed and	Logs, COCs and holding times have been	Yes
holding times complied with	completed and complied with	
Comparability		
Soil		
Standard operating procedures used	Yes	Yes
Consistent field conditions, sampling	Sampling was conducted by one	Yes
staff and laboratory analysis	Foundation Earth Sciences scientist	
	operating under the SOPs. The	
	laboratories remained consistent	
	throughout the investigation	
Same analytical methods used	All analytical methods used between	Yes
	laboratories were based on the	
	USEPA/APHA methods	
Limit of reporting appropriate and	The LORs were the same within each	Yes
consistent	laboratory but differed between the	
	primary and secondary laboratories. The	
	LORs were considered appropriate based	
	on the results.	

Representativeness		
Soil		
Sampling appropriate for media and analytes Samples adequately preserved	All sampling was conducted in accordance with Foundation Earth Sciences SOPs apart from envirolab lab cert 318173. All samples analysed as received. However, samples 318173, 1-5- 9 are below the minimum recommendation of 5 grams as per Australian standard AS964-2004. The majority of samples collected were	Partial
Precision	received by laboratories at the correct temperature. Where relevant, samples were stored in acid-preserved containers supplied by laboratories.	
Soil		
SOPs appropriate and complied with in relation to field duplicates	The recovery of field duplicates was conducted in accordance with Foundation Earth Sciences SOPs s to allow for the assessment of field precision.	Yes
RPDs of the field duplicates within control limits	The RPDs were <50%, the data set was considered to be adequately precise with the exception of metals which exceeded the DQOs for this project, however, this exceedance is not considered significant because it is likely due to the heterogeneity of the sample or low concentrations within the sample.	Partial

DDDs of the lake water we should be		Deutial
RPDs of the laboratory duplicates	Laboratory duplicated were generally	Partial
within control limits	within control limit with the exception of	
	SGS laboratory report SE24404. The	
	laboratory RPDs failed the acceptance	
	criteria in PAHs analytes in soil due to	
	sample heterogeneity. This is considered	
	a non-conformance.	
Accuracy		
Soil		
SOPs appropriate and complied with in	Yes	Yes
relation to field blanks		
Rinsate Blanks, trip blanks & laboratory	Laboratory blanks & trip blanks were free	Yes
blanks free of contaminants	of contaminants.	
Surrogate spikes within control limits	Yes	Yes
Laboratory control spikes within control	Laboratory Control Spike recoveries were	Yes
limits	within control limits.	
Matrix Spike recoveries within control	Matrix spike recoveries were generally	Partial
limits	within control limit with the exception of	
	SGS laboratory report SE24404. The	
	laboratory RPDs failed the acceptance	
	criteria in metal analytes in soil due to	
	sample heterogeneity. The laboratory	
	RPDs failed the acceptance criteria in	
	TRH/BTEX analytes in soil due to matrix	
	interference. These are considered a non-	
	conformance.	
Trip spike recoveries within control	Yes	Yes
limits		

It is therefore considered that the data is sufficiently reliable and that the results can be used for the purpose of this project.

12.0 SITE ASSESSMENT CRITERIA

12.1 SOILS

12.1.1 Health Investigation Levels (HILs)

To assess the contamination status of soils at a site, the NSW EPA refers to the document entitled National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (Amendment 2013).

During any future soil investigations, the site will be assessed against the NEPM exposure scenario 'Residential A' Health Investigation Levels of the above-mentioned guidelines and specifically refers to the following:

HIL 'A' Residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

The soil regulatory guidelines are presented in the table below.

		and the set of the
EARTH	Residential A	Reference
🗙 ŚĆIĘNCES		
Heavy Metals	4.00	NEDU 2042 Table 4/4 M UILA
Arsenic	100 60	NEPM 2013 - Table 1(A)1 HiLs
Beryllium Boron	4500	NEPM 2013 - Table 1(A)1 HILs NEPM 2013 - Table 1(A)1 HILs
Cadmium	4500	NEPM 2013 - Table 1(A)1 HiLs
Chromium (M)	100	NEPM 2013 - Table 1(A)1 HiLs
Cobalt	100	NEPM 2013 - Table 1(A)1 HiLs
Copper	6000	NEPM 2013 - Table 1(A)1 HiLs
Lead	300	NEPM 2013 - Table 1(A)1 HiLs
Manganese	3800	NEPM 2013 - Table 1(A)1 HILs
Mercury (Inorganic)	40	NEPM 2013 - Table 1(A)1 HILs
Methyl Mercury	10	NEPM 2013 - Table 1(A)1 HILs
Nickel	400	NEPM 2013 - Table 1(A)1 HILs
Selenium	200	NEPM 2013 - Table 1(A)1 HILs
Zinc	7400	NEPM 2013 - Table 1(A)1 HILs
Cyanide (Free)	250	NEPM 2013 - Table 1(A)1 HILs
Polycyclic Aromatic Hydrocarbons (PAHs)		
Carcinogenic PAHs (as Bap TE Q)	3	NEPM 2013 - Table 1(A)1 HILs
Total PAH's	300	NEPM 2013 - Table 1(A)1 HILs
Organochlorine Pesticides		
DDT + DDE + DDD	240	NEPM 2013 - Table 1(A)1 HILs
Aldrin + Dieldrin	6	NEPM 2013 - Table 1(A)1 HILs
Chlordane	50	NEPM 2013 - Table 1(A)1 HILs
Endosulfan	270	NEPM 2013 - Table 1(A)1 HILs
Heptachlor	6	NEPM 2013 - Table 1(A)1 HILs
HCB Deceale	10	NEPM 2013 - Table 1(A)1 HILs
Phenols Phenols	3000	NEPM 2013 - Table 1(A)1 HILs
Pertachlorophenol	100	NEPM 2013 - Table 1(A)1 HiLs
Cresols	400	NEPM 2013 - Table 1(A)1 HILS
Polychlorinated Biphenyls (PCBs)	400	NEPM 2013- Table I(A)THES
PCBs	1	NEPM 2013 - Table 1(A)1 HILs
Other Pesticides		
Atrazine	320	NEPM 2013 - Table 1(A)1 HILs
Chlorpyrifos	160	NEPM 2013 - Table 1(A)1 Hills
Bifenthrin	600	NEPM 2013 - Table 1(A)1 HILs
Herbicides		
2,4,5-T	600	NEPM 2013 - Table 1(A)1 HILs
2,4-D	900	NEPM 2013 - Table 1(A)1 HILs
MCPA	600	NEPM 2013 - Table 1(A)1 HILs
мсрв	600	NEPM 2013 - Table 1(A)1 HILs
Месоргор	600	NEPM 2013 - Table 1(A)1 HILs
Picloram	4500	NEPM 2013 - Table 1(A)1 HILs
Other Organics		
PDBE (Br1-Br9)	1	NEPM 2013 - Table 1(A)1 HILs

Table 17: Health Investigation Levels (HIL) Criteria for Soil Contaminants

Note - All values are in mg/kg

12.2 Health Screening Levels (HSLs)

The HSLs are applicable to generic land uses such as residential, commercial/industrial or recreational/public open space and different soil types between the ground surface and soils >4 metres below ground level. The HILs have been applied to assess human health risks via the inhalation and direct contact pathways of exposure.

It should be noted that HSL D can be used in lieu of HSL B for buildings that comprise car parks or commercial properties on the ground floor. For selection of the health screening criteria an assessment of the in-situ soil profile should be undertaken.

FOUNDATION EARTH SCIENCES	HSL A & HSL B	Soil Saturation Concentration (Csat)	Reference			
	0m to <1m	1m to <2m	2m to <4m	4m+		
SAND	160	000	310	540	500	
Toluene		220			560 64	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	55	NL	NL	NL 170		NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	40 3	60 NL	95 NL	170 NL	300 9	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	-		=		-	NEPM 2013 - Table 1(A) 3 HSLs
Benzene F1	0.5 45	0.5	0.5	0.5	360	NEPM 2013 - Table 1(A) 3 HSLs
		70	110	200	950	NEPM 2013 - Table 1(A) 3 HSLs
F2	110	240	440	NL	560	NEPM 2013 - Table 1(A) 3 HSLs
SILT Toluene	480	NL	NL	NL	640	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	480 NL	NL	NL	NL	69	NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	110	310	NL	NL	330	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	5	NL	NL	NL	10	NEPM 2013 - Table 1(A) 3 HSLs
Benzene	0.7	NL 1	NL 2	3	440	NEPM 2013 - Table 1(A) 3 HSLs
F1	50	90	2 150	290	910	NEPM 2013 - Table 1(A) 3 HSLs
F2	280	NL 30	NL	230 NL	570	NEPM 2013 - Table 1(A) 3 HSLs
CLAY	200	INL	INL	INL	570	NEFINIZO13 - TADIE I(A) STISES
Toluene	480	NL	NL	NL	630	NEPM 2013 - Table 1(A) 3 HSLs
Ethylbenzene	NL	NL	NL	NL	68	NEPM 2013 - Table 1(A) 3 HSLs
Xylenes	110	310	NL	NL	330	NEPM 2013 - Table 1(A) 3 HSLs
Naphthalene	5	NL	NL	NL	10	NEPM 2013 - Table 1(A) 3 HSLs
Benzene	0.7	1N∟	2	3	430	NEPM 2013 - Table 1(A) 3 HSLs
F1	50	90	150	290	850	NEPM 2013 - Table 1(A) 3 HSLs
F2	280	NL	NL	NL	560	NEPM 2013 - Table 1(A) 3 HSLs

Table 18: Health Screening Levels (HSL) Criteria

Note - All values are in mg/kg

12.3 (EILs) and (ESLs)

Ecological Investigation Levels (EILs) -

The NEPM 2013 states that "Ecological Investigation Levels" (EILs) for the protection of terrestrial ecosystems have been derived for common contaminants in soil based on a species sensitivity distribution (SSD) model developed for Australian conditions. EILs have been derived for As, Cu, CrIII, DDT, naphthalene, Ni, Pb and Zn.

Insufficient data was available to derive ACLs for arsenic (As), DDT, lead (Pb) and naphthalene. As a result, the derived EILs are generic to all soils and are presented as total soil contaminant concentrations in Tables 1B (4) and 1B (5) within the NEPM 2013.

For the purposes of EIL derivation, a contaminant incorporated in soil for at least two years is considered to be aged for the purpose of EIL derivation. The majority of contaminated sites are likely to be affected by aged contamination. Fresh contamination is usually associated with current industrial activity and chemical spills.

The following process describes the method for calculation of site specific EILs.

<u>A. EILs for Ni, Cr III, Cu, Zn and Pb aged contamination (>2 years)</u>

Steps 1–4 below describe the process for deriving site-specific EILs for the above elements using Tables 1B (1) – 1B (4), which can be found at the end of the NEPM 2013.

 Measure or analyse the soil properties relevant to the potential contaminant of concern (pH, CEC, organic carbon, clay content). Sufficient samples need to be taken for these determinations to obtain representative values for each soil type in which the contaminant occurs.

- Establish the sample ACL for the appropriate land use and with consideration of the soil-specific pH, clay content or CEC. The ACL for Cu may be determined by pH or CEC and the lower of the determined values should be selected for EIL calculation. Note that the ACL for Pb is taken directly from Table 1(B) 4.
- 3. Calculate the contaminant ABC in soil for the particular contaminant and location from a suitable reference site measurement or other appropriate method.
- 4. Calculate the EIL by summing the ACL and ABC:

$$EIL = ABC + ACL$$

B. EILs for As, DDT and naphthalene

EILs for aged contamination for DDT and naphthalene are not available and the adopted EIL is based on fresh contamination taken directly from Table 1B (5). The EILs for As, DDT and naphthalene are generic i.e. they are not dependent on soil type and are taken directly from Table 1B (5). Only EILs for fresh contamination are available for As, DDT and naphthalene due to the absence of suitable data for aged contaminants.

Ecological Screening Levels (ESLs) -

Ecological screening levels (ESLs) are presented based on a review of Canadian guidance for petroleum hydrocarbons in soil and application of the Australian methodology (Schedule B5b) to derive Tier 1 ESLs for BTEX, benzo(a)pyrene and F1 and F2 (Warne 2010a, 2010b) The Canadian Council of the Ministers of the Environment (CCME) has adopted riskbased TPH standards for human health and ecological aspects for various land uses in the Canada-wide standard for petroleum hydrocarbons (PHC) in soil (CCME 2008) (CWS PHC). The standards established soil values including ecologically based criteria for sites affected by TPH contamination for coarse- and fine-grained soil types.

Table 19: Ecological Investigation Levels (EIL) and Ecological Screening Levels (ESL)Criteria

FOUNDATION EARTH SCIENCES	Contaminant Age/Soil Texture	areas of high and open public Commercia		Commercial and industrial	Reference		
Ecological Investigation Levels (EILs)							
Heavy Metals		20	50				
Arsenic	Fresh	20 40	50 100	80 160	NEPM 2013 - Table 1(B) 1-5 EILs NEPM 2013 - Table 1(B) 1-5 EILs		
Chromium (III)	Aged Fresh				NEPM 2013 - Table 1(B) 1-5 EILs		
Ghi	Aged	Site Speci	fic Calculation Requ	ired	NEPM 2013 - Table 1(B) 1-5 EILs		
Copper	Fresh				NEPM 2013 - Table 1(B) 1-5 EILs		
	Aged	Site Speci	fic Calculation Requ	ired	NEPM 2013 - Table 1(B) 1-5 EILs		
Lead	Fresh	110	270	440	NEPM 2013 - Table 1(B) 1-5 EILs		
	Aged	470	1100	1800	NEPM 2013 - Table 1(B) 1-5 EILs		
Nickel	Fresh	Site Speci	fic Calculation Requ	ired	NEPM 2013 - Table 1(B) 1-5 EILs		
7	Aged				NEPM 2013 - Table 1(B) 1-5 EILs		
Zinc	Fresh Aged	Site Speci	fic Calculation Requ	ired	NEPM 2013 - Table 1(B) 1-5 EILs NEPM 2013 - Table 1(B) 1-5 EILs		
Polycyclic Aromatic Hy		AHe)			INCENTZOIS - TABLE I(B) 1-5 EILS		
Naphthalene	Fresh	10	170	370	NEPM 2013 - Table 1(B) 1-5 EILs		
	Aged	10	170	370	NEPM 2013 - Table 1(B) 1-5 EILs		
Organochlorine Pestici		ological Screening Leve	le (ESLe) and Mar	agament l imita	и. И		
=1 (C ₆ -C ₁₀)	Coarse	logical Screening Leve		lagement Limits	NEPM 2013 - Table 1(B) 6-7 EILs		
FT (C6=C10)	Fine	125*	180*	215*	NEPM 2013 - Table 1(B) 6-7 EILs		
F1 (C ₆ -C ₁₀)	Coarse	120	700	700	NEPM 2013 - Table 1(B) 6-7 EILs		
Management Limits)	Fine	_	800	800	NEPM 2013 - Table 1(B) 6-7 EILs		
F2 (>C ₁₀ =C ₁₆)	Coarse		000	000	NEPM 2013 - Table 1(B) 6-7 EILs		
2 (* 010-016)	Fine	25*	120*	170*	NEPM 2013 - Table 1(B) 6-7 EILs		
F2 (>C10=C16)	Coarse	20	1000	1000	NEPM 2013 - Table 1(B) 6-7 EILs		
Management Limits)	Fine	-	1000	1000	NEPM 2013 - Table 1(B) 6-7 EILs		
F3 (>C ₁₆ -C ₃₄)	Coarse	-	300	1700	NEPM 2013 - Table 1(B) 6-7 EILs		
(-10 -34)	Fine	-	1300	2500	NEPM 2013 - Table 1(B) 6-7 EILs		
F3 (>C ₁₆ -C ₃₄)	Coarse		2500	3500	NEPM 2013 - Table 1(B) 6-7 EILs		
(Management Limits)	Fine	-	3500	5000	NEPM 2013 - Table 1(B) 6-7 EILs		
F4 (>C ₃₄ -C ₄₀)	Coarse	-	2800	3300	NEPM 2013 - Table 1(B) 6-7 EILs		
,	Fine	-	5600	6600	NEPM 2013 - Table 1(B) 6-7 EILs		
F4 (>C ₃₄ -C ₄₀)	Coarse		10000	10000	NEPM 2013 - Table 1(B) 6-7 EILs		
(Management Limits)	Fine	-	10000	10000	NEPM 2013 - Table 1(B) 6-7 EILs		
Benzene	Coarse	10	50	75	NEPM 2013 - Table 1(B) 6-7 EILs		
	Fine	10	65	95	NEPM 2013 - Table 1(B) 6-7 EILs		
Toluene	Coarse	10	85	135	NEPM 2013 - Table 1(B) 6-7 EILs		
	Fine	65	105	135	NEPM 2013 - Table 1(B) 6-7 EILs		
Ethylbenzene	Coarse Fine	1.5 40	70 125	165 185	NEPM 2013 - Table 1(B) 6-7 EILs NEPM 2013 - Table 1(B) 6-7 EILs		
Xylenes	Coarse	40	125	185	NEPM 2013 - Table 1(B) 6-7 EILs NEPM 2013 - Table 1(B) 6-7 EILs		
Ayronos	Fine	1.6	45	95	NEPM 2013 - Table 1(B) 6-7 EILs		
Benzo(a)pyrene	Coarse	0.7	0.7	0.7	NEPM 2013 - Table 1(B) 6-7 EILs		
(-/-/-	Fine	0.7	0.7	0.7	NEPM 2013 - Table 1(B) 6-7 EILs		
Notes	Fine	0.7 /public open space is broadly es	0.7	0.7			

- The second and experience of the second and the sec mination should be used
- ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

- Eas are on owned and y categories in the character of y much markets in the task is the sum mode are relationly. ''infracts that fractional information are available to derive a value. To obtain F1, subtract the sum of BTEX concentrations from CG-CLO fraction and subtract naphthalene from <CIO-CL6 to obtain F2. Management limits are applied after consideration of relevant ESIs and HSLs

Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

12.4 Asbestos

Table 20: Health Screening Levels for Asbestos

	Health Screening Levels (w/w)					
Form of Asbestos	Residential A	Residential B	Recreational C	Commercial/Industrial D		
Bonded ACM	0.01%	0.04%	0.02%	0.05%		
FA and AF (Friable Asbestos)		0.001%				
All forms of asbestos		No visible	asbestos for surfa	ace soil		

12.5 Aesthetic Considerations

Schedule B1 in NEPC (2013) requires the consideration of aesthetic issues arising from soils and groundwater within the site. The following assessment criteria are to be adopted when considering aesthetics:

- no persistently malodourous soils or extracted groundwater;
- no persistent hydrocarbon sheen on surface water;
- no staining or discolouration in soils, taking into consideration the natural state of the soil; and
- no large or frequently occurring anthropogenic materials present (to the extent practicable).

Page 55 of 77

13.0 SOIL RESULTS

The laboratory certificates are presented in **Appendix H** – NATA Accredited Laboratory Certificates.

A summary of the results together with the assessment criteria adopted are provided in **Appendix G** – Summary Tables.

13.1 HEAVY METALS

13.1.1 Heath Investigation Levels

As indicated in Table G1 all the heavy metals were below the respective LOR and/or the Health Investigation Levels (HIL A) for a residential development.

13.1.2 Ecological Investigation Levels

The EILs for Copper, Zinc, Lead, Nickel and Chromium III were derived by adding the Ambient Background Concentration (ABC) to the Added Contaminant Limits (ACL), as per the following formula:

EIL = ABC + ACL

The ABC for the site has been determined by recovering a sample from an appropriate reference point, that being:

• BH3 (0.0-0.1m)

The soil samples collected from BH3 were analysed for pH, CEC & %CLAY to provide the background parameters for the soil on the site.

As shown in Tables G1 all of locations were below the site derived EILs for an urban residential and public open space development.

13.2 TRH, BTEX, NAPHTHALENE &/OR BENZO (A) PYRENE

13.2.1 Heath Screening Levels & Management Limits

As indicated in Table G1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), benzene, toluene, ethyl benzene, xylenes and naphthalene concentrations were below the HSL 'A & B' for a SILT soil profile with a source depth of "Om to <1m".

As shown in Table G1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), concentrations were below the Management Limits for fine-grained soil for a residential development.

13.3 Ecological Screening Levels

As indicated in Table G1, the F1 (C_6 - C_{10}), F2 (> C_{10} - C_{16}), F3 (C_{16} - C_{34}), F4 (C_{34} - C_{40}), benzene, toluene, ethyl benzene, xylenes and benzo(a)pyrene concentrations were below the ESL criteria for a fine-grained soil texture in an urban residential and open space development.

13.4 PAH, OCP, OPP & PCB

13.4.1 Heath Investigation Levels

As indicated in Table G1, the concentrations of the benzo(a)pyrene (as TEQ), PAH, OCP, OPP & PCB were below the Health Investigation Level (HIL A) and/or LOR for a residential development.

13.5 EILs & ESLs

As indicated in Table G1, the concentrations of arsenic, naphthalene and DDT were below the adopted EILs & ESLs site criteria.

13.6 Asbestos

As shown in Table G1, no asbestos detected within the samples tested.

14.0 DISCUSSION

14.1 SOILS

The soil data revealed the following:

- The laboratory results for the soil samples analysed were below the adopted detection limits and/or relevant guideline criteria.
- No identified asbestos was detected in the soil samples analysed. No fibro cement fragments were observed in the fill material located within the boreholes. The investigation is limited to the boreholes.

14.2 DUTY TO REPORT

Under Section 60 of the Contaminated Land Management Act 1997, the owner of the land is required to notify contamination in circumstances as indicated in the NSW EPA (2015) Guidelines on Duty to Report Contamination under the Contaminated Land Management Act 1997.

Sites that are significantly impacted by soil, groundwater and ground gases are likely to require notification to the NSW EPA under section 60 of the CLM Act. A decision process for use by site owners or responsible persons considering reporting contamination under section 60 is provided in Appendix 1 (Figure 1) of the aforementioned guidelines.

No notification to NSW EPA is recommended based on the sampling and investigation to date.

15.0 CONCLUSION AND RECOMMENDATION

Based on the results of this investigation it is considered that the risks to human health and the environment associated with soil contamination at the site are minimal in the context of the proposed use of the site. The site **is suitable** for the proposed development, subject to the following recommendations:

- A site wide asbestos clearance is recommended to be completed prior to any excavation works occurring on the site.
- Any soil requiring removal from the site, as part of future site works, should be classified in accordance with the "Waste Classification Guidelines, Part 1: Classifying Waste" NSW EPA (2014).
- An unexpected finds protocol has been included in **Appendix M** and should be followed during the excavation phase of the development.

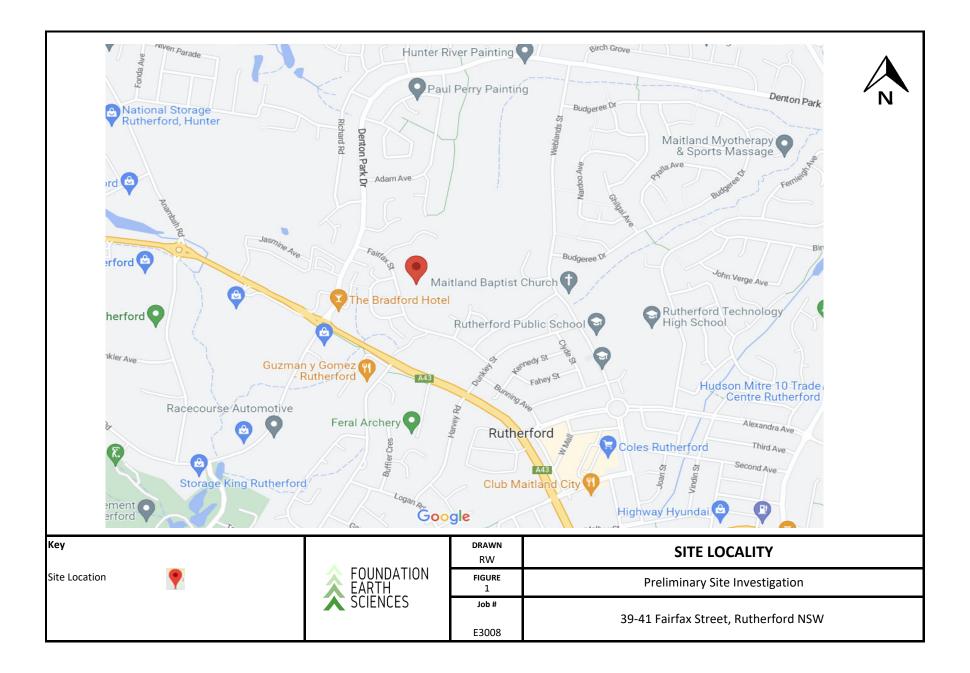
If during any potential site works any significant unexpected occurrence is identified, site works should cease in that area, at least temporarily, and the environmental consultant should be notified immediately to set up a response to this unexpected occurrence.

Thank you for the opportunity of undertaking this work. We would be pleased to provide further information on any aspects of this report.

16.0 LIMITATIONS

To the best of our knowledge information contained in this report is accurate at the date of issue, however, subsurface conditions, including groundwater levels and contaminant concentrations, can change in a limited time. This should be borne in mind if the report is used after a protracted delay.

There is always some disparity in subsurface conditions across a site that cannot be fully defined by investigation. Hence it is unlikely that measurements and values obtained from sampling and testing during environmental works carried out at a site will characterise the extremes of conditions that exist within the site.


There is no investigation that is thorough enough to preclude the presence of material that presently or in the future, may be considered hazardous at the site. Since regulatory criteria are constantly changing, concentrations of contaminants presently considered low may, in the future, fall under different regulatory standards that require remediation.

Opinions expressed herein are judgements and are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions.

REFERENCES

- ANZG Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018).
- Department of Urban Affairs and Planning EPA (1998) "Managing Land Contamination Planning Guidelines SEPP 55 Remediation of Land".
- HEPA 2020, 'PFAS National Environmental Management Plan', Version 2, 2020.
- National Environmental Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure. Amendment 2013
- NSW EPA (2014) "Technical Note: Investigation of Service Station Sites".
- NSW EPA (2009) "Guidelines on Significant Risk of Harm from contaminated land and the duty to report".
- NSW EPA "Consultants Reporting on Contaminated Land" (2020). NSW Environment Protection Authority, Parramatta, April 2020.
- NSW DEC, "Guidelines for the Assessment and Management of Groundwater Contamination" (March 2007).
- NSW DEC "Guidelines for the NSW Site Auditor Scheme" (2006, 2nd edition). NSW Environment Protection Authority, Sydney.
- NSW EPA (2014) "Waste Classification Guidelines, Part 1: Classifying Waste";
- NSW EPA (2014) "Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997";
- NSW EPA "Sampling Design Guidelines Part 1: Application" (2022). NSW Environment Protection Authority, Sydney.
- NSW EPA "Sampling Design Guidelines Part 2: Interpretation" (2022). NSW Environment Protection Authority, Sydney.

FIGURE 1: SITE LOCALITY

FIGURE 2: SITE FEATURES AND BOREHOLE LOCATION PLAN

Fences Tree
Tree
Driveway

Кеу			DRAWN RW	Site Features and Borehole Location Plan	
Site Location		FOUNDATION EARTH	Figure 2	Greentree Projects	
Borehole Location	\bigcirc	ŚCIENCES		Job # E3008	39-41 Fairfax Street, Rutherford NSW

APPENDIX A: DBYD PLANS

Job No 33754528

Caller Details

Contact:	reece wallace	Caller Id:	3311766	Phone:	0402 180 632
Company:	foundation earth sciences				
Address:	119/14 loyalty road north rocks NSW 2151	Email:	reece@foundationes.com.au		

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

wners, who will send information to you	directly.				
User Reference:	39 Fairfax Street				
Working on Behalf of:	Private				
Enquiry Date:	Start Date:	End Date:			
07/03/2023	08/03/2023	08/03/2023			
Address:					
39 Fairfax Street Rutherford NSW 2320					
Job Purpose:	Onsite Activities:				
Design	Planning & Design				
Location of Workplace:	Location in Road:				
Private					
 Check that the location of the dig site is correct. If not you must submit a new enquiry. Should the scope of works change, or plan validity dates expire, you must submit a new enquiry. 					

• Do NOT dig without plans. Safe excavation is your responsibility. If you do not understand the plans or how to proceed safely, please contact the relevant asset owners.

Notes/Description of Works:

Not supplied

Your Responsibilities and Duty of Care

- The lodgement of an enquiry <u>does not authorise</u> the project to commence. You must obtain all necessary information from any and all likely impacted asset owners prior to excavation.
- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.byda.com.au
- · For more information on safe excavation practices, visit www.byda.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days.

Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Before You Dig service, so it is your responsibility to identify and contact any asset owners not listed here directly.

** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans.

Asset owners highlighted with a hash # require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
221983089	Ausgrid	(02) 4951 0899	NOTIFIED
221983091	Hunter Water Corporation	1300 657 657	NOTIFIED
221983090	Jemena Gas North	1300 880 906	NOTIFIED
221983088	NBN Co NswAct	1800 687 626	NOTIFIED
221983092	Telstra NSW Central	1800 653 935	NOTIFIED

END OF UTILITIES LIST

APPENDIX B: HISTORICAL AERIAL PHOTOGRAPHS

Historical Aerial Photographs

39-41 Fairfax Street, Rutherford NSW

1974:

1984:

1998:

Current (Six Maps):

APPENDIX C: LAND TITLE INFORMATION

Title Search

20/03/2023 11:16 AM

Client Reference: DI-E3008

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 10/809354

SEARCH DA	ATE	TIME	ED	ITION NO	DATE
20/3/2023	11:15	AM	8	20/9/2018	

LAND

LOT 10 IN DEPOSITED PLAN 809354 AT RUTHERFORD LOCAL GOVERNMENT AREA MAITLAND PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP809354

FIRST SCHEDULE

TYTON LANDSCAPE SUPPLIES PTY LTD

(T AM473923)

SECOND SCHEDULE (5 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 DP809354 RESTRICTION(S) ON THE USE OF LAND
- 3 EASEMENT(S) AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM CREATED BY:
 DP809354 -TO DRAIN WATER 8 WIDE & VAR
 DP809354 -TO DRAIN WATER 3 WIDE
- 4 EASEMENT(S) APPURTENANT TO THE LAND ABOVE DESCRIBED CREATED BY: DP809354 -RIGHT OF CARRIAGEWAY
- 5 AN723453 MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Historical Search

20/03/2023 11:17 AM

Client Reference: DI-E3008

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

20/3/2023 11:16AM

FOLIO: 10/809354

First Title(s): OLD SYSTEM Prior Title(s): VOL 12256 FOL 145

Recorded		Type of Instrument	C.T. Issue	2
15/4/1991		DEPOSITED PLAN EDITION 1	FOL	IO CREATED
24/4/1991	Z579243	DISCHARGE OF MOR	TGAGE	EDITION 2
12/5/1993	1325538	MORTGAGE	EDITIO	N 3
6/4/1994	U157933	DISCHARGE OF MORT	ГGAGE	EDITION 4
18/12/2002	9230523	TRANSFER	EDITION	15
15/6/2017 7/6/2018	AM47392 AN404274	 3 TRANSFER 4 MORTGAGE • DISCHARGE OF MOF 3 MORTGAGE CORD ISSUE 	EDITI	EDITION 7

*** END OF SEARCH ***

12256-145 CT /Rev:16-Dec-2010 /NSW LRS /Pgs:ALL /Prt:20-Mar-2023 11:20 Reg:R288166 /Doc:CT /Seq:1 of 2 © Office of the Registrar-General /Src:DirectInfo /Ref:DI-E3008 **CERTIFICATE OF TITLE** 12256145 NEW SOUTH WALES REAL PROPERTY ACT, 1900 2230 Appln. No.7141 140 Vol Prior Title Vol.2657 Fol.97 ۲C Edition issued 7-11-1973 N61867 R I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject 500 nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. 2 atoo Registrar General. PLAN SHOWING LOCATION OF LAND (Page 1) Vol. WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES. OFFICE LENGTHS ARE IN METRES 291.94 71 na 500 24.99ha ထ ĉ \$ 82.36 826 843. Û. 拜2 Ω ₽∓ | NEW ENGLAND HIGHWAY (A) EASEMENT FOR SEWERMAIN-VARIABLE WIDTH-R528408 (B) NOW PUBLIC ROAD SEE \$806000 NEISET R REDUCTION RATIO ESTATE AND LAND REFERRED TO Estate in Fee Simple in the part of Lot 1 in Deposited Plan 2881 shown in the plan hereon in the City of Maitland, Parish of Gosforth and County of Northumberland, being part of Portion 70 granted to George Shaw Rutherford on 19-7-1841. FIRST SCHEDULE But Livestock Dealer. SECOND SCHEDULE 1974M909 Rese and the Registral General. Entered 2 1-1972. Withfrow N93429 2. Caveat No.M. 382133 рÀ N934291 (1))> lates Registrar General. Reg. Gen. Restriction on user NorK232230 of land shown by hatching in the plan hereon = 13 - 5 - 1974 ਤੋਂਦਦ Section 27E 18 (6) Main Roads Act, 1924. Entered 5-5-1966. CANCELLED SB06000 . 23.2.1987

CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

ш

ARI

PERSONS

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED.

FIRST SCHEDULE (continued)	continued)	·	<i>,</i> ^		
REGISTERED PROPRIETOR	NATURE	INSTRUMENT	DATE	ENTERED	Signature of Registrar General
Water Desmond Buffer of Martland Livestock Dealer	Transka	N434241	2	26-9-1974	Lautations
ah Homes Pty. Limited by Transfer T239467. Register					James -
A 109354 Registered 12.491					
is cancelled as to whole barf upon crea					
28 in the	CONTRACTOR AND				
ovementioned plan.			· .		
poul in DP S					
S \$06000	The second se	a sabo mana a sa			
		an ann an Anna Anna Anna Anna Anna Anna	ek harman a		
				Andreas and the second seco	
	مىرىپىلى 1949- 1949- تىلىغان يەرىپىلىرىكى تەرىپىلىكى تەرىپىلىكى تەرىپىلىكى تەرىپىلىكى تەرىپىلىكى تەرىپىلىكى تەر تارىخى		-		
SECOND SCHEDULE	(continued)				
NATURE INSTRUMENT DATE PARTICULARS	ENTERED	Signature of Registrar General		CANCELLATION	
at of the land shown hatched in the plan h	bung Lation				2000
Main Roads New Trad vested in the Comm	Commessioner for 6-7-1076	Julian		دید. این ماند است. موال میکند است. موال میکند است.	
lone	file lave				
1 - alexan as building in the film	29-1-1980	france of			
		 All her and the second sec second second sec	Withdrawn	T239466	Share .
mption. The land so indicated in the plan hereon being Lot	101 in DP 578662 is now Public				
Road, Registered 13-1-1982		Aler			
7239468 Mortgage to Walter Desmond Buffier. Research 23-9-1982. 7239468 Mortgage. W414703 Transmission. Mortgagees now Pamela Dawn Buffier and Natl-Walter Buf	1-Waiter Buffier as	Parit	Discharged	W513831	
Joint tenants. Register d 14-7-1986		6	Cancel led	W513831	
Morta In M	ociet 11mital.		ourieer red		Constant of the second se
5-10-49	0	8			

Form: 01T Release: 2 www.lpi.nsw.gov.a	Kedi riupei g	Wales Act 1900	230523E
P Stamp Duty	RIVACY NOTE: this information is legally requi Office of State Revenue use only CLIENT NO. 2100021 STAMP DUTY	STAMP No. 236 SIGNATURE	
) TORRENS TITLE	FOLIO IDENTIFIER 10/809354	YOK.	
b) LODGED BY	Delivery Box DD MORRIS, HAYES DX 420 SYDNEY Reference: 1 BQ7	& EDGAR PH: 9232-2411 AGENTS FC	$\mathcal{CODES} \\ T \\ TW \\ \in \mathcal{R} \\ (Sheriff)$
C) TRANSFEROR	ANAMBAH HOMES PTY LIMITED A.C.N	N. 002 404 560	
	The transferor acknowledges receipt of the consider the land specified above transfers to the transfere		and as regards
) SHARE TRANSFERRED	Encumbrances (if applicable):		· · · · · · · ·
I) TRANSFEREE	CHRISTOPHER JOHN DITTON and DEN TENANCY: Joint Tenants	GAL ISE ANN DITTON	SK.
)	13 Duelle 2004		
by the corporation was affixed pursu of the authorised	// Cardan	on Signature of authorised per	slaus Anthony Carroll
		Certified for the purposes 1900 by the person whose	of the Real Property Act signature appears below.
		Signature:	N

Page 1 of _____ number additional pages sequentially

Land and Property Information NSW.

ffice of the Reg Form: 01T	AM473923 /Rev:16-Jun-2017 /NSW istrar-General /Src:DirectInfo ,	/Ref:DI-E3008		
Firm name: Anderso	25 New S egal Software Pty Limited Real Prov	NSFER outh Wales perty Act 1900 Act) authorises the Registra	AM4739	
by this form for	the establishment and maintenance of th	e Real Property Act Reg	ister. Section 96B RP A	ct requires that
the Register is mad STAMP DUTY	le available to any person for search upon paym Office of State Revenue use only	ient of a fee, if any.	Client No: 104191043 Duty: PIO Transi Asst details: TS S	2448 9091078
(A) TORRENS TITLE	10/809354 & 11/809354	· · ·		
(B) LODGED BY	659M A.C.N. 00 Box LEGAL SE GPO BOX 4103 Ph: 0099-7400 Reference: DX 967	ARCHERS SYDNEY 2001 Fax: 9232-7141 SYDNEY C	ccount Number if any MORLE ママフスチャーラ	CODES T TW
(C) TRANSFEROR	Christopher John DITTON & Denise A	23482P		
 (D) CONSIDERATION (E) ESTATE (F) SHARE TRANSFERRED (G) (U) TRANSFEREE 	The transferor acknowledges receipt of the abovementioned land transfers to th Encumbrances (if applicable):	ne transferee an estate in fe	e simple.	
(H) TRANSFEREE (I)	TYTON LANDSCAPE SUPPLIES PT	Y LID (ACN 613 897 55	5)	
DATE .	7 June 2017	• •		
	eligible witness and that the transferor ing in my presence.	Certified correct 1900 by the trans	for the purposes of the Re feror.	al Property Act
Signature of w	vitness:	Signature of trans	feror:	
Name of witnes Address of witr		Č	See Annes	N
			for the purposes of the Re f the transferee by the pers below.	
		Signature:	C V MM	~~
		Signature: Signatory's name Signatory's capae	÷	ansferee

Annexure A to Transfer

PARTIES:

CHRISTOPHER JOHN DITTON AND DENISE ANN DITTON ("Transferors") AND TYTON LANDSCAPE SUPPLIES PTY LTD ACN 613 897 555 ("Transferees")

I certify that I am an eligible witness and that the Transferor signed this dealing in my presence. [See note* below]

P.L. K Signature of witness

DAUT Name of witness witness Address AMA 2320

I certify that I am an eligible witness and that the Transferor signed this dealing in my presence. [See note* below]

· X Signature of witness JOHK

DAUDNKRIE Name of witness:

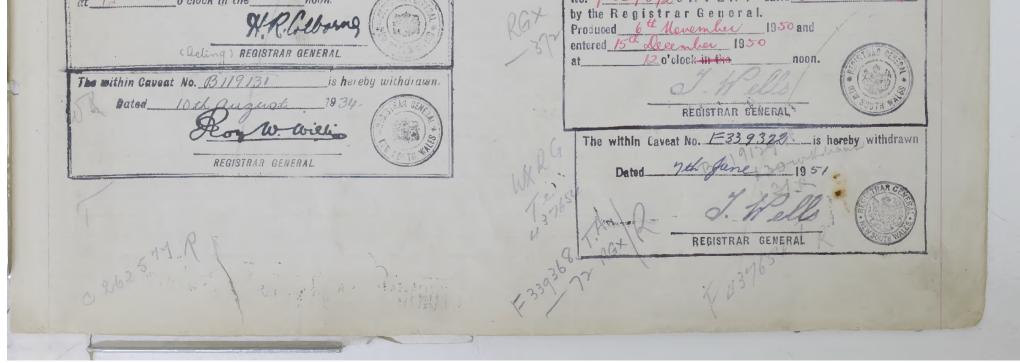
Address of witness:

19 JANTES GI MAITLAND 2320

Certified correct for the purposes of the Real Property Act 1900 by the Transferor.

Signature of the Transferor :

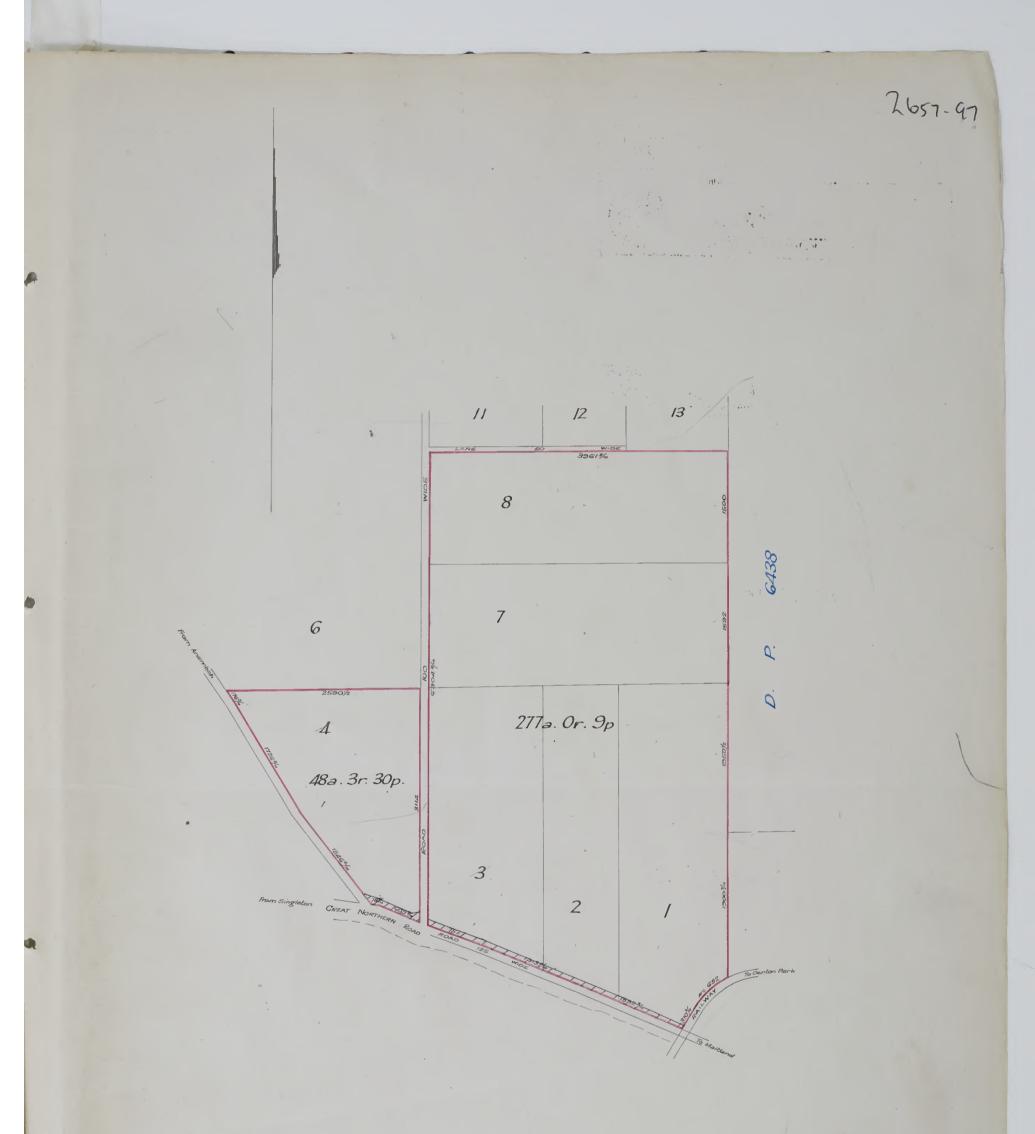
Christopher John DITTON


Certified correct for the purposes of the Real Property Act 1900 by the Transferor.

Signature of the Transferor :

Denise Ann DITTON

Req:R288381 /Doc:CT 02657-097 CT /Rev:31-Jul-2012 /NSW LRS /Prt:20-Mar-2023 11:33 /Seq:1 of 4 © Office of the Registrar-General /Src:DirectInfo /Ref:DI-E3008


New South Wales. [CERTIFICATE OF TITLE.] (C.) (No of Application 7141) REGISTER BOOK, 657 FOLIO Reference to East Certificates Yolume 2413. Johos 219 + 218. CARICELLENK Ger Balthazar Buffier of last Maisland Grazier Transferee under Instrument of Transfer from Enid Ann Friend and erna Elizabeth blift A.A. 228856 is now the properetor of an Estate in Gee Simple subject nevertheless to the reservations and conditions if any contained in the Grant hereinafter referred to and also subject to such encunitrances beins and interests as are notified hereon in Those Creces of land situated in the Shire of Cersnock Carish of Gosforth and County of Northumberland containing Two hundred and seventy seven acces in perches on thereabouts being Lots 1.2.3. 7 and Rand Forty sight acres, three rouds thirty parches and thereabouts being lot 4 in a plan deposited in the land Titles Office Sydney Nº 2881. Which said preces of land are shown in the pear hereon and therein edged red being parts of Two thousand five hundred and sichy acres. (Portion 30 of Parish) delineated in the public map of the said Parish in the appartment of lands originally granted to Gevige shaw Ritherford by thrown Grant dated the number the day of July one thousand aght hundred and forty on for In Witness where of Thave herewro signed my name and affixed my seal this seath day of April ; one thousand nine hundred and Scoteen Signed the Chas try in the presence of Seputy Registrar General Notification referred to Amongst the reservations and conditions contained in the No. 0.262577 TRANSFER dated 19th g Grant above referred to are the following namely from the said Hanngly Buffer, Walter I Reservations of all mines of Gold and of Satver This to of the land within described adeputy Registral Generally Produced 2 gth June 1934 and entered 1 Dith august 1934 o'clock in the after + 1100n. APPLICATION BY TRANSMISSIO Mg. B 119129 BEGISTRAR GENERAL Suffier of bast baitland blidow lealler Suffier Brazier and No. F 339. APPLICATION BY TRANSI Proprietors of the Land within described in pursuance of the above Application. Produced & Lende August _19 L A and entered 3 Proprietors of the land within described in pursuance of the o'clock in the Application Produced_ 19'50 entered 12 o'clock in the _neen. (acting) CAVEAT dated 2 2nd angu No. B 119131 Produced and entered by the Registrar General. REGISTRAR GENERAL 19251 No. 1= 33 9 372 CAVEAT dated bet november o'clock in the noon

Req:R288381 /Doc:CT 02657-097 CT /Rev:31-Jul-2012 /NSW LRS /Prt:20-Mar-2023 11:33 /Seq:2 of 4 © Office of the Registrar-General /Src:DirectInfo /Ref:DI-E3008

y of Moith No. F437654. TRANSFER dated /2 th February 195' from the said Brian Jough Buffier and Mary Gentrule Franças Buffier, to Latter Francis Grazies of the Ind within d scribed --- now the registered proprietor of the land within described being the part Lot 4 in D.P. 2881 atter Resumption LITO392 Producer 25th April in 51 and entered 7th June 195 See TRANSFER No. M 508 403 dated 12 o'cluck in the _____noon. Entered 19th 1973 Welle As to land in this this Deed . is cancelled iates and new Cert ficate issue RTHITRAR STEPAL Sell yes Vol. 12256. Fol. 1 REGISTRAR GENERAL That part of the land within described shown by hatched black in the plan hereon is subject to the redrictions on user imposed by Section 27 E (6) Main Roads act, 1924-1963 As to the residuer ex road this Deed is cancelled and New Certificate of Title issued. Vol. 12756 Follus Dug dated 7-M-1973 Entered 5th May 1966 Se K232290 L170392 N/R 47 Jacon vatas Registrar Gener REGISTRAR GENERAL L 170 392 CF RESUMPTION The Commissioner For Main Roads is the proprietor of fait of the Land within described, being lots 1 and a in D.P. 527815. Freed fromall other interests The residue of land in this folio comprises Entered. and October 1968 134th November 1973 Entered water REGISTRAR GENERAL Registrar General Valter Resmond Buffier of Maittand is now the registered proprietor of the land within described. excluding land in Resumption No. 190392 See Section 63 Application No. M323660 Entered_ markon REGISTRAR GENERAL, CAVEAT by the Registrar General. Resumption No. 2170392. No. M382133 excluding land in Resumption No. Entered 714 January .____ 1972; nda cor al __now the registered proprietors of the land within described 101 being the part Lot 3 in D.P. 2881 after thoughter LITO392 See TRANSFER No. M.506 414 dated 19_ 19 42 September 1973 Entered ____ As to land in this this Dead is concelled las and new Certificate issued REGISTRAR GENERAL

Req:R288381 /Doc:CT 02657-097 CT /Rev:31-Jul-2012 /NSW LRS /Prt:20-Mar-2023 11:33 /Seq:3 of 4 © Office of the Registrar-General /Src:DirectInfo /Ref:DI-E3008

Total area included in certificate. 325a.3r.39p. All lengths shown hereon are in links Scale 10 chains to 1 inch.

Title Search

20/03/2023 11:17 AM

Client Reference: DI-E3008

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 11/809354

SEARCH DA	ATE 7	ГІМЕ	ED	ITION NO	DATE
20/3/2023	11:16 A	AM	9	21/9/2018	

LAND

LOT 11 IN DEPOSITED PLAN 809354 AT RUTHERFORD LOCAL GOVERNMENT AREA MAITLAND PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP809354

FIRST SCHEDULE

TYTON LANDSCAPE SUPPLIES PTY LTD

(T AM473923)

SECOND SCHEDULE (5 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 DP809354 RESTRICTION(S) ON THE USE OF LAND
- 3 EASEMENT(S) AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM CREATED BY:
 DP809354 -RIGHT OF CARRIAGEWAY
 DP809354 -TO DRAIN WATER 8 WIDE & VAR
- 4 EASEMENT(S) APPURTENANT TO THE LAND ABOVE DESCRIBED CREATED BY: DP809354 -TO DRAIN WATER 8 WIDE & VAR DP809354 -TO DRAIN WATER 3 WIDE
- 5 AN727287 MORTGAGE TO WESTPAC BANKING CORPORATION

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

Historical Search

20/03/2023 11:18 AM

Client Reference: DI-E3008

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

20/3/2023 11:17AM

FOLIO: 11/809354

First Title(s): OLD SYSTEM Prior Title(s): VOL 12256 FOL 145

Recorded		Type of Instrument	C.T. Issue	
15/4/1991		DEPOSITED PLAN EDITION 1		IO CREATED
24/4/1991	Z579243	DISCHARGE OF MORT	TGAGE	EDITION 2
12/5/1993	1325538	MORTGAGE	EDITION	13
6/4/1994	U157933	DISCHARGE OF MORT	ſGAGE	EDITION 4
13/2/2003	9373322	TRANSFER		
		MORTGAGE	EDITION	N 5
6/7/2009	AE814072	DISCHARGE OF MOR	TGAGE	
6/7/2009	AE814073	TRANSFER		
6/7/2009	AE814074	MORTGAGE	EDITIO	N 6
15/6/2017	AM47392	2 DISCHARGE OF MOI	RTGAGE	
15/6/2017	AM47392	3 TRANSFER		
15/6/2017	AM47392	4 MORTGAGE	EDITI	ON 7
7/6/2018	AN404274	DISCHARGE OF MOR	TGAGE	EDITION 8
21/9/2018	AN72728'	7 MORTGAGE CORD ISSUE		DN 9

*** END OF SEARCH ***

	eq:R289 Office	175 /Doc:DL A of the Regis	AE814073 /Rev:09-Jul-2009 /NSW LF strar-General /Src:DirectInfo /Re	S /Pgs:ALL /Prt:20- f:DI-E3008	-Mar-2023 12:37	/Seq:1 of 1
Weinds are yourded Rei Property Act 1900 ACE 814073E PRI Model State Revenue us only Control State Revenue us only 236 STAMP DUT Office of State Revenue us only Control State Revenue us only 236 (A) FOLIO OF THE POLIO IDENTIFIER 11/609354 Control State Revenue us only Control S		Form: 01T	TRA			
PRIVACY NOTE: Section 318 of the Real Property Act 1980 (RP Act) automets the upper section 953 RP Act requires that the Register is made available to any person for search upon participal devinasing. STAMP DUTY Office of State Revenue use only Can No. 2100021 236 (A) FOLIO OF THE POLIO IDENTIFIER 11/809354 Can No. 2100021 236 (A) FOLIO OF THE POLIO IDENTIFIER 11/809354 Constrained available to any person for search upon participal devinasing. Constrained available to any person for search upon participal devinasing. (A) FOLIO OF THE POLIO IDENTIFIER 11/809354 Constrained available to any person for search upon participal devinasing. Constrained available to any person for search upon participal devinasing. (A) FOLIO OF THE POLIO IDENTIFIER 11/809354 Constrained available to any person for search upon participal devinasing. Constrained available to any person for search upon participal devinasing. (A) FOLIO OF THE POLIO IDENTIFIER 11/809354 Constrained available to any person for search upon participal devinasing. Constrained available to any person for search upon participal devinasing. (B) LOOGED BY Decument Name, Address or DN. Telephone, and LLPNI if any Upper to any person for search upon participal devinasing. Constrained available to any person for search upon participal devinasing and the person (search upon participal devinasing and the person (search upper participal devinaset to a sto Mose identify I and other weight and the pe		Release: 3.4	New S	auth Wales	C014073	
by this form for the establishment and maintenance of the Test Proget Set Reality. Section 398 RP Act requires that the Register's made available is any percent for search upon participation of the Set Set Set Set Set Set Set Set Set Se		-				
One of back Activity of the constant of the constend of the constant of the constant of the con		by this form for the Register is m	the establishment and maintenance of the	Real Picines IV stati Realis	ter. Section 96B RP	Act requires that
REGISTER COLO LEARTH IN ALLOUSSA (B) LODGED BY Document Collection Bay Allowing System HLLS NSW 2147 LLPN: 123011G COLO LEARTON CODES TWY (Sheriff) (C) TRANSFEROR Reference: CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 1.60,000.00 and as regards (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 1.60,000.00 and as regards (E) ESTATE the above folio of the Register transfers to the transferre an estate in fee simple and as regards (F) SHARE Itemambranes (if applicable): and as regards (G) Encumbranes (if applicable): Itemaster and as regards (H) TRANSFEREE Construct Transfero (J) Icertify that the person(s) signing opposite, with whom otherwise satisfied, signed this instrument in my presence. Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of witness: BAULIDEOFFREY PARKE Signature of transferor. W Name of witness: BAULIDEOFFREY PARKE Signature of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Signature:		STAMP DUTY	Office of State Revenue use only	Duty: \$ 4070 Trans No	5447137	
REGISTER COLO LEARTH IN ALLOUSSA (B) LODGED BY Document Collection Bay Allowing System HLLS NSW 2147 LLPN: 123011G COLO LEARTON CODES TWY (Sheriff) (C) TRANSFEROR Reference: CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 1.60,000.00 and as regards (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 1.60,000.00 and as regards (E) ESTATE the above folio of the Register transfers to the transferre an estate in fee simple and as regards (F) SHARE Itemambranes (if applicable): and as regards (G) Encumbranes (if applicable): Itemaster and as regards (H) TRANSFEREE Construct Transfero (J) Icertify that the person(s) signing opposite, with whom otherwise satisfied, signed this instrument in my presence. Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of witness: BAULIDEOFFREY PARKE Signature of transferor. W Name of witness: BAULIDEOFFREY PARKE Signature of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Signature:						
Image: Non-Section of the consideration of the consideratin consideration of the consideratin considerat	(A)	•	FOLIO IDENTIFIER 11/809354			
Reference: QHLGOL (Sheriff) (C) TRANSFEROR TERENCE JOSEPH DITTON (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 160,000.00 and as regards (E) ESTATE the above folio of the Register transfers to the transferee an estate in fee simple (F) SHARE the above folio of the Register transfers to the transferee an estate in fee simple (G) Encumbrances (if applicable): (H) TRANSFEREE CHRISTOPHER JOHN DITTON and DENISE ANN DITTON (I) TENANCY: Joint Tenants DATE (J-66-01 (I) Icertify that the person(s) signing opposite, with whom is otherwise satisfied, signed this instrument in my presence. Signature of witness: DAVID GEOFFREY PARKE Name of witness: Marce St. Marce Marce St. Marce Marce Marce Marce Marce Marce	(B)	LODGED BY	Collection 197 PROSPECT	HIGHWAY	1 230 11G	Т
(C) TRANSFEROR TERENCE JOSEPH DITTON (D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 160,000.00 and as regards (E) ESTATE the above folio of the Register transfers to the transferce an estate in fee simple (F) SHARE the above folio of the Register transfers to the transferce an estate in fee simple (F) SHARE [F] SHARE (G) Encumbrances (if applicable): (H) TRANSFEREE (G) Encumbrances (if applicable): (H) TRANSFEREE (J) Image: Construct the personally acquisited or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Signature of witness: DAVID GEOFFREY PARKE Name of witness: Image: Address of witness: Image: Address of witness: Image: Address of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Signature appears below.			Reference:	~~~	CN 6702	
 (E) ESTATE the above folio of the Register transfers to the transferee an estate in fee simple (F) SHARE TRANSFERED (G) Encumbrances (if applicable): (H) TRANSFEREE CHRISTOPHER JOHN DITTON and DENISE ANN DITTON (I) TENANCY: Joint Tenants DATE (1.06.09 (I) I certify that the person(s) signing opposite, with whom 1 am personally acquainted or as to whose identity 1 am otherwise satisfied, signed this instrument in my presence. Signature of witness: DAVID GEOFFREY PARKE Name of witness: DAVID GEOFFREY PARKE Name of witness: DAVID GEOFFREY PARKE Name of witness: DAVID GEOFFREY PARKE Signature of witness: DAVID GEOFFREY PARKE 	(C)	TRANSFEROR	TERENCE JOSEPH DITTON			
 (F) SHARE TRANSFERED (G) Encumbrances (if applicable): (H) TRANSFEREE (I) CHRISTOPHER JOHN DITTON and DENISE ANN DITTON (I) TENANCY: Joint Tenants DATE (1.06.09 (I) I certify that the person(s) signing opposite, with whom 1 am personally acquainted or as to whose identity 1 am otherwise satisfied, signed this instrument in my presence. (I) Signature of witness: DAVID GEOFFREY PARKE Name of witness: DAVID GEOFFREY PARKE Name of witness: DAVID GEOFFREY PARKE Name of witness: Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Signature: David Geoffrey Parke 	(D)	CONSIDERATION	The transferor acknowledges receipt of the con-	sideration of \$ 160,000.	00	and as regards
TRANSFERRED (G) Encumbrances (if applicable): (H) TRANSFEREE (H) TRANSFEREE (I) TENANCY: Joint Tenants DATE (I.ecb.01 (I) Icertify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of witness: JAVID GEOFFREY PARKE Signature of transferor: Name of witness: Jb. CAM.RUL_ST_MATCHARD Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Jb. CAM.RUL_ST_MATCHARD Signature: Javid Geoffrey Parke	(E)	ESTATE	the above folio of the Register transfers to the	e transferee an estate	in fee simple	÷
 (H) TRANSFEREE (H) TRANSFEREE (H) TRANSFEREE (H) TENANCY: Joint Tenants (J) I certify that the person(s) signing opposite, with whom I am personally acquained or as to whose identity I am otherwise satisfied, signed this instrument in my presence. (J) I certify that the person (s) signing opposite, with whom I am personally acquained or as to whose identity I am otherwise satisfied, signed this instrument in my presence. (J) I certify that the person (s) signing opposite, with whom I am personally acquained or as to whose identity I am otherwise satisfied, signed this instrument in my presence. (J) Signature of witness: DAVID GEOFFREY PARKE Name of witness: 26. CHURM_ST_MITCLASC Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature: Signature: Signature: David Geoffrey Parke 	(F)	SHARE TRANSFERRED				
(1) IENANCY: Joint Tenants DATE I.eetify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of witness: DAVID GEOFFREY PARKE Signature of transferor: Mame of witness: DAVID GEOFFREY PARKE Signature of transferor: Mame of witness: DAULT ST. MITCHAR Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: Signature appears below.	(G)		Encumbrances (if applicable):			• • • • • • • •
DATE [1.06.0] (1) 1 certify that the person(s) signing opposite, with whom Certified correct for the purposes of the Real 1 am personally acquainted or as to whose identity I am Certified correct for the purposes of the Real Name of witness: DAVID GEOFFREY PARKE Name of witness: Signature of transferor: Jb: CHUPUE_ST	(H)	TRANSFEREE	CHRISTOPHER JOHN DITTON and DE	INISE ANN DITTON		
 (1) I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Signature of witness: DAVID GEOFFREY PARKE Name of witness: 26_CMU.RUL_ST_MIMADO Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of transferor: Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of witness: Certified correct for the purposes of the Real Property Act 1900 by the transferor. Signature of transferor: Signature of transferor:	(I)		TENANCY: Joint Tenants			
I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence. Signature of witness: DAVID GEOFFREY PARKE Name of witness: Address of witness: DC_CMURUL_STMMMMM Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: David Geoffrey Parke			.06.09			
DAVID GEOFFREY PARKE Name of witness: Address of witness: 26_CHURUA_ST_MHITUAN Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: David Geoffrey Parke		I am personally ac	equainted or as to whose identity I am			a)
DAVID GEOFFREY PARKE Name of witness: Address of witness: 26_CHURIN_ST_MHITIAND Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: David Geoffrey Parke		Signature of withe	ess:	Signature of transfer	ror: TP	
Name of witness: Address of witness: <u>26_CHUPUL_ST_MINIAND</u> Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signature: David Geoffrey Parke		-	DAVID GEOFFREY PARKE	-	U	
<u>26 CHUPUL ST MAINING</u> Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signatory's name: David Geoffrey Parke						
Act 1900 by the person whose signature appears below. Signature: Signatory's name: David Geoffrey Parke		Address of witnes				
Signatory's name: David Geoffrey Parke						
				Signature:	N	

.

DEPARTMENT OF LANDS Page 1 of Land and Property Information Division .

·

Req:R © Off	289202 /Doc:DL 93 ice of the Regist:	73322 /Rev:14-Feb-2003 /NS rar-General /Src:DirectInf	W LRS /Pgs:ALL /Prt:20- o /Ref:DI-E3008	-Mar-2023 12:42 /Sec	r:1 of 1
For	n: 0,1T		ANSFER		
	nce: 99M107 insee: Locus Pty Ltd		v South Wales		
	n Name:	Real P	roperty Act 1900		
<u> </u>	STAMP DUTY	Office of State Rovehu Cise Drive	State Revenue	93733220	
		CLIENT No. 2100021 NSW THE STAMP DUTYLEAR 2.00	STAMP No. 236	Rulado	
		TRANSACTIONINDT.Y.		<u>`02</u>	
		ASSESSMENT DETAILS			2
(A)	TORRENS TITLE	Folio Identifier 11/809354			
(**)		· · · · · · · · · · · · · · · · · · ·		NEW SOUTH WALES OUTY	
(B)	LODGED BY	Delivery Name, Address or D	K and Telephone	07 07, 2003 y.	"CODES"
(-)		Box	*	SECTION 18(2)-TRANSFER DUTY \$ 825	F7PST HOME P US ***********2,(0
		UTA NATIO	NAL AUSTRALIA BANK	CONTRACT CONSIDERATION	TW /108,000.00
		S63.	Prospect Highway	COUNTRY-VACANT LAND	(Sheriff)
-		REFERENCE:: 45.0	Fax appr hand		
(C)	TRANSFEROR	ANAMBAH HOMES PTY LIMI	<u>FED</u>	······································	
· ···	···· . ··· · ·		and a second		
(D)	CONSIDERATION	The transferor acknowledges receip	ot of the consideration of \$100,0	00.00 and as regards	<u></u>
(E)		the land specified above transfers to	o the transferee an estate in fee s	simple	
(F)	SHARE TRANSFERRED				
(G)-		Encumbrances (if applicable):			
.(H)	TRANSFEREE	TERENCE JOSEPH DITTON	OSR.		
•					
(I)	•	TENANCY:			
(J)	DATE	13, 12, 2002 dd/1	mmmm/yyyy	AN LIMP	
	Certified correct for the	e purposes of the Real Property Act		THE	A
*		ned below the common seal of which		COMMON SEAL	
		authority specified and in the prese s) whose signature(s) appear(s) belo			
		AH HOMES PTY LIMITED		OF I	
	•	ordance with its Constit	ution	* 095	/
	Signature of authorised	1 person: Maria	U. Signature of authorise	d person: SAl am	r
	Name of authorised pe	Peter Dominic Carro	11	Stanislaus Anth erson:	ony Carroll
	Office held:	Secretary	Office held:	Director	
	011100 IIORI				
				ne purposes of the Real Pro hose signature appears belo	
			Signature:		
			Signatory's name: Da	vid Geoffrey Parke	
			Signatory's capacity:	Solicitor for transferee	
		•	· · · · · ·		

Page_____ of _____. Number additional Pages sequentially

.

APPENDIX D: NSW EPA RECORDS

Public registers

- + POEO Public Register
- Contaminated land record of notices
 - About the record of notices
 - List of notified sites
 - Tips for searching
 - Disclaimer
- Dangerous goods licences
- Pesticide licences
- Radiation licences

Home Public registers Contaminated land record of notices

Search results

Your search for: Suburb: RUTHERFORD

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated
 Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
 Carefully review all sites
- . Contamination at the site may be being managed under the planning process.

More information about particular sites may be available from:

- The <u>POEO public register</u>
- The appropriate planning authority: for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register. POEO public register.

Refine Search

To search for a specific

government area) and

more search tips

site, search by LGA (local

Search TIP

Search Again

Suburb	SiteName	Address	Contamination ActivityType	ManagementClass	Latitude	Longitude
ROZELLE	BP Service Station	Corner Darling Street and Thornton STREET	Service Station	Regulation under CLM Act not required	-33.8591647	151.1716591
RUFUS RIVER	SA Water Depot - Rufus River	Old Wentworth STREET	Other Petroleum	Regulation under CLM Act not required	-34.04191512	141.2679475
RUSHCUTTERS BAY	d'Albora Marinas	1b New Beach ROAD	Other Industry	Contamination currently regulated under POEO Act	-33.87351297	151.2345082
RUTHERFORD	Rutherford Transpacific	11 Kyle STREET	Other Industry	Regulation under CLM Act not required	-32.71105203	151.500311
RUTHERFORD	Shell Coles Express Service Station Rutherford	118 New England HIGHWAY	Service Station	Regulation under CLM Act not required	-32.7208703	151.5394595
RUTHERFORD	Caltex Service Station	134-138 New England HIGHWAY	Service Station	Regulation under CLM Act not required	-32.7202589	151.5381526
RUTHERFORD	Transpacific Industrial Services/Nationwide OII Pty Ltd	99 Kyle STREET	Chemical Industry	Regulation under CLM Act not required	-32.71262159	151.5013865
RUTHERFORD	Former Anambah Landfill	Anambah ROAD	Landfill	Under assessment	-32.70493978	151.512629
RYDALMERE	Caltex Service Station	309 Victoria ROAD	Service Station	Regulation under CLM Act not required	-33.81196193	151.0371185
RYDALMERE	Mitsubishi Electric	348 Victoria ROAD	Other Industry	Contamination currently regulated under CLM Act	-33.81040138	151.0392812
RYDALMERE	Rheem Australia	1 Alan STREET	Other Industry	Contamination formerly regulated under the CLM Act	-33.81545013	151.0295476
RYDALMERE	BP Service Station	265 Victoria ROAD	Service Station	Regulation under CLM Act not required	-33.8109483	151.0328101
RYDALMERE	Hunter Douglas	Victoria ROAD	Chemical Industry	Regulation under CLM Act not required	-33.81009112	151.0384732
RYDALMERE	United Petroleum (former 7-Eleven) Service Station Rydalmere	262-272 Victoria ROAD	Service Station	Regulation under CLM Act not required	-33.81006724	151.032377
RYDE	Shell Coles Express Ryde	45 Lane Cove ROAD	Service Station	Regulation under CLM Act not required	-33.80726028	151.109981

The NSW Government PFAS Investigation Program

View a map of the sites in NSW that may be contaminated with PFAS, learn how to reduce your exposure to these dangerous chemicals, and read about our investigation of the issue.

The EPA is leading an investigation program to assess the legacy of PFAS use across NSW. With the assistance of the NSW PFAS Technical Advisory Group, which includes NSW Health, Department of Primary Industries and the Office of Environment and Heritage, we provide impacted residents with tailored, precautionary dietary advice to help them reduce any exposure to PFAS.

Current investigations are focused on sites where it is likely that large quantities of PFAS have been used. The EPA is currently investigating PFAS at these sites:

	Map viev	V	List view
Cle	ear filters 🛛 🗆 Only show	sites within current map view	Showing 1 of 50 site
¢	Organisation	Address	♦ Status ♦
	filter by organisation	Rutherford	PFAS investigation site
0	Rutherford, Truegain	62 Kyle St, Rutherford NSW 2320	PFAS investigation site

Public registers

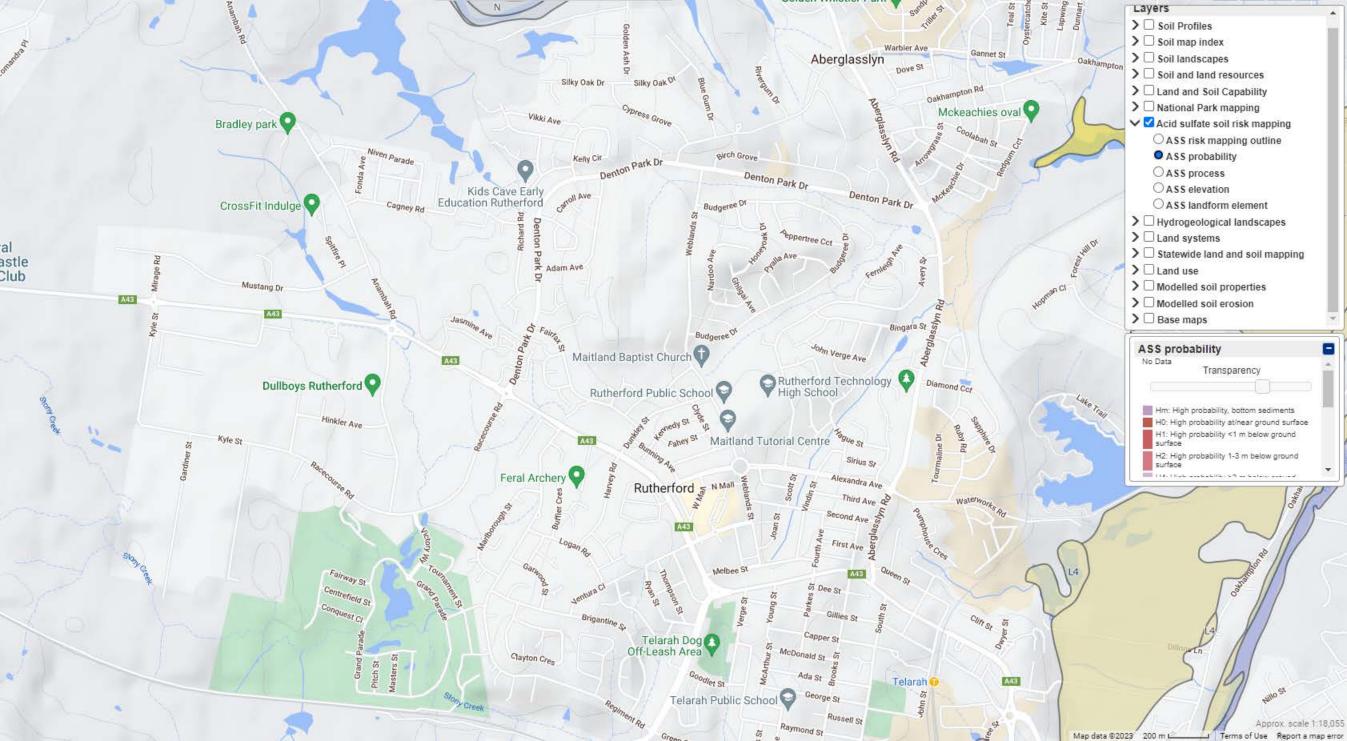
- POEO Public Register
 - Licences, applications and notices search
 - Penalty notices search
 - Enforceable undertakings search
 - Enforceable undertakings media releases
 - Exemptions and approvals search
 - Prosecutions or civil proceedings search
 - Terms of use: POEO public register
 - Licensing FAQs
 - List of licences
 - Unlicensed premises regulated by the EPA
- + Contaminated land record of notices
 - Dangerous goods licences
 - Pesticide licences
 - Radiation licences

Home Public registers POEO Public Register Licences, applications and notices search

Search results

Your search for: POEO Licences with the following criteria

Suburb - Rutherford


returned 16 results

Export to ex	cel	1 of 1 Pages		[Search Again
Number	Name	Location	Туре	<u>Status</u>	Issued date
<u>3426</u>	100% BOTTLING COMPANY PTY LTD	21 GARDINER STREET, RUTHERFORD, NSW 2320	POEO licence	Issued	03 Apr 2000
<u>12092</u>	AUSGRID OPERATOR PARTNERSHIP	35 Green Street, RUTHERFORD, NSW 2320	POEO licence	Surrendere	d 18 Aug 2004
12627	BIODIESEL INDUSTRIES AUSTRALIA PTY LIMITED	62 RACECOURSE ROAD , RUTHERFORD, NSW 2320	POEO licence	Issued	13 Jul 2007
2070	BORAL RESOURCES (COUNTRY) PTY. LIMITED	71 ABERGLASSLYN ROAD, RUTHERFORD, NSW 2320	POEO licence	No longer i force	n 15 Oct 1999
<u>11383</u>	CLEANAWAY OPERATIONS PTY LTD	99 KYLE STREET, RUTHERFORD, NSW 2320	POEO licence	Issued	30 Apr 2001
<u>12555</u>	CLEANAWAY REFINERS PTY LTD	41 KYLE STREET, RUTHERFORD, NSW 2320	POEO licence	Issued	22 May 2007
20065	ENVIRONMENTAL TREATMENT SOLUTIONS PTY LTD	26 HINKLER AVENUE AND 19 FARRIER PLACE , RUTHERFORD, NSW 2320	POEO licence	Issued	23 Jan 2012
<u>2292</u>	FULTON HOGAN INDUSTRIES PTY	Gardiner Street, RUTHERFORD NSW 2320	,POEO licence	No longer i force	n 29 Jun 2000
7575	HYMIX AUSTRALIA PTY LIMITED	15 KYLE ST, RUTHERFORD, NSW 2320	POEO licence	No longer i force	n 09 May 2000
12846	JUROX PTY LIMITED	85 Gardiner Road, RUTHERFORD, NSW 2320	POEO licence	Issued	13 Jun 2008
2463	KYLE STREET HOLDINGS PTY LTD	52 KYLE STREET, RUTHERFORD, NSW 2320	POEO licence	Issued	12 Jan 2000
<u>1348</u>	MAITLAND READY MIXED CONCRETE PTY LTD	LOT 91 NEW ENGLAND HIGHWAY, RUTHERFORD, NSW 2320	POEO licence	No longer i force	n 03 Aug 2000
<u>11956</u>	NATIONAL CERAMIC INDUSTRIES AUSTRALIA PTY LTD	RACECOURSE ROAD, RUTHERFORD, NSW 2320	POEO licence	Issued	01 Aug 2003
13092	RENEWABLE OIL SERVICES PTY LTD	36-38 Bradmill Avenue, RUTHERFORD, NSW 2320	POEO licence	Issued	25 Jun 2009
7638	TRUEGAIN PTY. LIMITED	62 KYLE STREET, RUTHERFORD, NSW 2320	POEO licence	Revoked	07 Dec 2000
<u>11178</u>	WAX CONVERTERS TEXTILES PTY LIMITED	77 RACECOURSE ROAD, RUTHERFORD, NSW 2320	POEO licence	No longer i force	n 19 Sep 2000

.

14 March 2023

APPENDIX E: ACID SULPHATE SOIL RISK MAP

APPENDIX F: BOREHOLE LOGS

			FOUN EART SCIEN	IDA H NCE	TIOI S	N					BOREHOLE : B PAGE 1 C	
						s Pty Ltd eet, Rutherford NSW				UMBER: <u> </u>	E3008 minary Site Investigation	
Da Bo	te Si rehc	tarted ble Loo		023 Refer	to Site	_ Completed : <u>7/03/2023</u> Plan	Logged By : _RW				Checked By : _MS/LM Datum : _m AHD	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
			- - - 0.5 - - - -		СН	FILL - Clayey Silt, brown, low plasticity, w Silty CLAY, grey/red/orange, high plastici		M	[VL]	0.2-0.3	No HC smell, No Staining or No fibro fragments observed. Fill	- - - 0 <u>.5</u> - -
HA/E	Dry		1.0 - - - - 1.50 - - - - -						VSt-H		Residual	1 <u>.0</u> 1 <u>.5</u>
			2 <u>.0</u> - - 2 <u>.5</u> 2.70			Borehole BH1 terminated at 2.70m						2 <u>.0</u> – – 2 <u>.5</u> –
			- 3 <u>.0</u> - - - 3 <u>.5</u>	-								3 <u>.0</u> - - 3 <u>.5</u>
			4.0	-								
Com	ments:							D - Dry M - Moist W - Wet	S F St VSt	- Soft L - Firm M - Stiff D	L - VeryLoose - Loose D - Medium Dense - Dense D - VeryDense	

			FOUN EART SCIEN	DA ⁻ H ICE	tioi S	N				BOR	REHOLE : BH2/T PAGE 1 (
CL	IEN	Г NAM	E: Greer	ntree F	Projects	s Pty Ltd			JOB N	UMBER: E30	008	
SIT	ΈA	DDRE	SS : <u>39-4</u>	1 Fair	fax Stro	eet, Rutherford NSW			PROJI	ECT: Prelimir	nary Site Investigation	
						Completed :7/03/2023					Checked By :	
Eq	uipn	nent:	HA/Exca	vated			Borehole Size :	100	mm	s	ilope :90°	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
			_			FILL - Clayey Silt, brown, low plasticity, v	ith rock fragments	М	[VL]			-
	7									0.1-0.2	No HC smell, No Staining or No fibro fragments observed.	-
HA/E	Dry	-	0.30		СН	Silty CLAY, grey/red/orange, high plastic	ty	D	VSt		Fill	-
			0 <u>.5</u> –							Shrink-Swell Index	Residual	0 <u>.5</u>
			0.70			Borehole BH2/TP2 terminated at 0.70m						-
			1.0									- 1 <u>.0</u>
												1 <u>.0</u>
			-									-
			-									-
			1 <u>.5</u>	-								1 <u>.5</u>
			-									-
			_									-
			2.0									- 2 <u>.0</u>
			-									- 2.0
			-									-
			-									-
			2 <u>.5</u>									2 <u>.5</u>
			-									-
			-									-
			3.0									3.0
			_									-
			-									-
			-									-
			3 <u>.5</u>									3 <u>.5</u>
			-									-
			-									
			4.0									4.0
Co~	nents:	•			•			D - Dry		- Very Soft VL - V	/ery Loose	
							,	M - Moist W - Wet	S F St VSt	- Soft L - I - Firm MD - I - Stiff D - I	very LOSSe Joose Wedium Dense Jeny Dense	

							s Pty Ltd eet, Rutherford NSW				IUMBER: _E	3008 inary Site Investigation	
Во	reho		ation	: <u> </u>	Refer t	o Site	_ Completed : _7/03/2023 Plan	_ Surface RL :				Datum : _ m AHD	
Method	Water	RL (m)	Dept (m)		Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
				 0 <u>.5</u>			FILL - Clayey Silt, brown, low plasticity, fragments	with gravel and rock	Μ	[VL]	0.0-0.1	— No HC smell, No Staining or No fibro fragments observed. Fill	- - - 0 <u>.5</u> -
	Σ		0.80	_ 1 <u>.0</u> _ _ _ 1.5		СН	Silty CLAY, yellow/red/orange, medium with rock fragments	to high plasticity,	D-M	Н	Atterberg Limits & CBF	R	- 1 <u>.0</u> - - - 1.5
HA/E	Dry			 2 <u>.0</u> 								Residual	
			2.50	-	× × × × × × × × × × × × × × × × × × ×		SILTSTONE, extremely weathered, extr grey and brown	emely low strength,				Rock	2 <u>.5</u> - - - 3 <u>.0</u>
<u>Com</u>			3.10	_ _ 3 <u>.5</u> _	× × : × × :		Borehole BH3/TP3 terminated at 3.10m						- - 3 <u>.5</u> -
				4.0									4.0

			FOUN EART SCIEN	NDA H NCE	tioi S	Ν				BOR	REHOLE : BH4/T PAGE 1 (
CL	IENT	NAM	E: Gree	entree F	Project	s Pty Ltd			JOB N	UMBER: <u>E30</u>	008	
SIT	ΈA	DDRE	SS : <u>39-</u> 4	41 Fair	fax Str	eet, Rutherford NSW			PROJI	ECT: Prelimin	nary Site Investigation	
						Completed :7/03/2023 Plan					Checked By : <u>MS/LM</u>	
Eq	uipn	nent :	HA/Exca	avated			Borehole Size :	500	mm	S	lope :90°	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
		()				FILL - Clayey Silt, grey, low plasticity, wit		М	[VL]	0.0-0.1	No HC smell, No Staining or	<u> </u>
HA/E	Dry		0.10 -		СН	Silty CLAY, yellow/red/orange, high / mee plasticity, with gravel and rock fragments	lium to high	М	St-VSt	Atterberg Limits & CBR	No fibro fragments observed. Fill	-
			0.50			SILTSTONE, extremely to highly weather strength, brown	ed, extremely low				Residual Rock	0 <u>.5</u>
			0.60			Borehole BH4/TP4 terminated at 0.60m						-
			- 1 <u>.0</u> -)								1 <u>.0</u>
			-									-
			1 <u>.5</u>	5								1 <u>.5</u>
			-									-
			2 <u>.0</u>)								2 <u>.0</u>
			-									-
			2 <u>.5</u>	5								2 <u>.5</u>
			-	-								-
			3 <u>.0</u>)								3 <u>.0</u>
			-									
			3 <u>.5</u>	<u>;</u> 								3 <u>.5</u>
			-	-								
			4.0									4.0
<u>Com</u>	<u>ments:</u>						N	D - Dry M - Moist W - Wet	S F St VSt	- Soft L - I - Firm MD - I - Stiff D - I	Medium Dense	

			FOUN EART SCIEN	DA H ICE	tioi s	N					BOREHOLE : B PAGE 1 C	
			E: Greer							UMBER: <u>E</u>		
Da Bo	te St reho	arted	:	023 Refer	to Site	eet, Rutherford NSW Completed :7/03/2023 Plan	Surface RL :	2W			Datum : _ m AHD	
Eq	uipn	nent :	_HA/Exca	vated			Borehole Size :	<u>100r</u>	mm		Slope :90°	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
HAVE	Dry		-			FILL - Clayey Silt/Silty Clay, brown, low t plasticity, with yellow/orange/red gravel a	o medium and rock fragments	М	[L]	0.0-0.1	— No HC smell, No Staining or No fibro fragments observed. Fill	-
						Borehole BH5 terminated at 0.50m						
Com	ments:		4.0	1	I	1		D - Dry M - Moist W - Wet	S F St VSt	- Soft L - Firm MD - Stiff D	- Very Loose - Loose - Medium Dense - Dense - Dense - Very Dense	4.0

	 	FOUN EART SCIEN	IDA H NCE	tioi S	N					BOREHOLE : B PAGE 1 C	
					s Pty Ltd eet, Rutherford NSW				UMBER: _E	E3008 minary Site Investigation	
Date s Boreh	Starteo Iole Lo	d: _7/03/2	2023 Refer	to Site	_ Completed : <u>7/03/2023</u> Lo Plan Su	gged By : <u></u> Irface RL :	N -			Checked By : <u>MS/LM</u> Datum : _m AHD	
Method Water		E <u>HA/Exca</u> Depth	Graphic Log	Classification Symbol	Bo	srenole Size :	Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
HA/E Drv		(m) (m) 0.50 0.50 0.60 0.70 1.0 1.0 1.5 1.5 2.0		CH	FILL - Clayey Silt, brown, low plasticity, with y orange/red rock fine gravel and rock fragment Silty CLAY, red, high / medium plasticity, with gravel/fragments SILTSTONE, extremely weathered, extremely brown and grey Borehole BH6 terminated at 0.70m	ts i rock	M 	[L]	0.0-0.1	No HC smell, No Staining or No fibro fragments observed. Fill Residual Rock	
<u>Comment</u> :	<u>5:</u>	<u> </u>		1	1	N) - Dry 1 - Moist V - Wet	S - F - St - VSt-	Soft L Firm M Stiff D	L - Very Loose - Loose ID - Medium Dense - Dense D - Very Dense D - Very Dense	<u>+.0</u>

			FOUN EART SCIEN	DA [:] H ICE	tioi S	N				BOREHOLE : B PAGE 1 (
			E: <u>Greer</u>			s Pty Ltd eet, Rutherford NSW			IUMBER: <u>E</u>	3008 inary Site Investigation	
Da	te St	arted	: 7/03/20)23		_ Completed : _7/03/2023	RW			Checked By :MS/LM	
			HA/Exca								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
HA/E	Dry		0.30 0.40 0.5		3	Fill - Clayey Silt/Silty Clay, brown, low to with yellow/orange/red rock gravel SILTSTONE, extremely weathered, extre grey and brown Borehole BH7 terminated at 0.40m	-		0.1-0.2	No HC smell, No Staining or No fibro fragments observed. Fill Rock	
											- - - -
			1 <u>.0</u> 								1 <u>.0</u> - -
			1 <u>.5</u>								- 1 <u>.5</u> - -
											_ 2 <u>.0</u> _
			 2 <u>.5</u>								- 2 <u>.5</u> -
			3 <u>.0</u>								- 3 <u>.0</u> -
			3 <u>.5</u>								- 3 <u>.5</u> -
			 								4.0
Com	ments:						D - Dry M - Moist W - Wet	S F St VSI	- Soft L - Firm MD - Stiff D	- Very Loose - Loose - Medium Dense - Dense - Very Dense	

			FOUN EARTI SCIEN	DA [:] H ICE	tioi s	N					BOREHOLE : B PAGE 1 (
CL	IENT	r nam	E: Green	ntree F	Projects	s Pty Ltd			JOB N	iumber: <u>E</u>	3008	
SIT	EA	DDRE	SS: <u>39-4</u>	1 Fair	fax Stro	eet, Rutherford NSW			PROJ	ECT: Prelim	inary Site Investigation	
						Completed : 7/03/2023						
						Plan					Datum : AHD	
Eq		nent :	_HA/Exca	vated			Borehole Size :				Siope :90	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Moisture	Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
HA/E	Dry		_			FILL - Clayey Silt/Silty Clay, brown, low plasticity, with yellow/orange/red rock	v to medium gravel and fragments			0.1-0.2	No HC smell, No Staining or No fibro fragments observed. Fill	-
			0.30 0 <u>.5</u>			Borehole BH8 terminated at 0.30m						0 <u>.5</u>
			-									-
			 1.0									
			-									-
			_									-
			1 <u>.5</u>									1 <u>.5</u>
			_									-
			_									-
			2 <u>.0</u>									2 <u>.0</u> _
			-									-
			2 <u>.5</u>									2 <u>.5</u>
			-									-
			-									-
			3 <u>.0</u>									3 <u>.0</u>
			_									-
			3.5									3.5
												-
												-
			4.0									4.0
Com	ments:							D - Dry M - Moist W - Wet	S F St VS	- Soft L - Firm MD - Stiff D	- Very Loose - Loose - Medium Dense - Dense - Very Dense	

CLENT NAME: Greentree Projects Pty Ltd JOB NUMBER: E3008 SITE ADDRESS: 39-41 Fairfax Street, Rutherford NSW PROJECT: Predimary Site Investige Date Started: 7/03/2023 Completed: 7/03/2023 Logged By: RW Checked By: M Borehole Location: Refer to Site Plan Surface RL: Datum: mAHD Equipment: HA/Excavated Borehole Size: 100mm Stope: Value Rt, Daph By W Material Description By By Samples Additional Obs Value Ch Bity CLAY, yellow/orange.with rock fragments, high / I I I I No HC smell, No Value 0.50 - - - - - No HC smell, No Value 0.50 - - - - - No HC smell, No Value 0.50 - - - - - - No HC smell, No Value 0.50 - - - - - - -		
Date Started : 7/03/2023Completed : 7/03/2023Logged By : RWChecked By : M Checked By : M Borehole Location : Refer to Site PlanBurdles : M Datum : mAHD Equipment : HA/ExcavatedBorehole Size : 100mmSige : 90° Borehole Size : 100mmSige : 90° Image: Rtl	tion	
Image: Second	MS/LM	
P C vellow/orange/red rock gravel 0.30 0.30 CH Sitty CLAY, yellow/orange, with rock fragments, high / medium plasticity 0.30 0.50 Borehole BH9 terminated at 0.50m	ervations (E)	
	Staining or s observed - 0.5	
	- - 1 <u>.0</u> - -	
	1 <u>.5</u> - - - 2.0	
	- - - 2 <u>.5</u>	
	- - - 3 <u>.0</u> -	
	- - 3 <u>.5</u> -	
Comments: D - Dry M - Moist W - Wet VS - Very Soft S - Soft W - Wet VL - Very Loose S - Soft W - Wet	- - 4.0	

FOUN EART SCIEN	DATIOI H ICES	N				BOREHOLE : BH PAGE 1 (
					NUMBER:		
	023 Refer to Site	Completed : <u>7/03/2023</u> Plan	Logged By : _RW Surface RL : Borehole Size : _500mm			Datum : _ m AHD	
Method Wethod W (m) W (m) (m)	Graphic Log Classification Symbol	Material Description		Moisture Consistence	Samples Tests Remarks	Additional Observations	Depth (m)
Image: Arrow of the second		FILL - Clayey Silt, yellow, low plasticity, gravel/fragments SILTSTONE, highly weathered, low to m grey and brown Borehole BH10 terminated at 0.30m				Fill No HC smell, No Staining or No fibro fragments observed.	

APPENDIX G: SUMMARY TABLES

<u>Table G1</u>

	Sample	Informatior	n			H	eavy Me	tals (m	ng/kg)					TRH (mg/kg)			BTI	EX (mg/	kg)			PAH (n	ng/kg)					OCF) (mg/l	(g)			ОР	P (mg/kg)		
Label	Depth (m BGL)	Date	Soil Type	ARSENIC	CADMIUM	CHROMIUM	COPPER	LEAD	MERCURY	NICKEL	ZINC	F1 (C ₆ -C ₁₀) ²	F2 (>C ₁₀ -C ₁₆) ³	F1 (C ₆ -C ₁₀)	F2 (>C ₁₀ -C ₁₆)	F3 (C ₁₆ -C ₃₄)	F4 (C ₃₄ -C ₄₀)	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES	NAPHTHALENE	BENZO(A)PYRENE	CARINOGENIC PAHs (as Bap TEC	ТОТАК РАН	NAPHTHALENE	ΟΟΤ + ΟΟΟ + ΟΟE	Aldrin + Dieldrin	CHLORDANE	ENDOSULFAN	ENDRIN	HEPTACHLOR	НСВ	METHOXYCHLOR		- 0	TOTAL PCB	Asbestos ID
		5 PSI 2023																																				
BH1	0.2-0.3	07.03.2023	F-Clayey Silt	<4	<0.4	16	23	22	<0.1	17	65	<25	<50	<25		110	<100	-	<0.5	<1	<1	<1	0.2	<0.5	1.2	<0.1	0.1	<0.1	<0.1		<0.1			<0.1 (.1 <0.1	<0.1	ND
BH2	0.1-0.2	07.03.2023	F-Clayey Silt	<4	<0.4	10	<1	5	<0.1	5	5	<25	<50	<25		<100	<100		<0.5	<1	<1	<1	< 0.05	<0.5	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1		0.1 -	-	<0.1	-
BH3	0.0-0.1	07.03.2023	F-Clayey Silt	<4	<0.4	8	2	/	<0.1	3	22	<25	<50	<25		<100	<100	-	< 0.5	<1	<1	<1	< 0.05	<0.5	< 0.05	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1		0.1 <0	.1 <0.1	< 0.1	ND
BH4	0.0-0.1	07.03.2023 07.03.2023	F- Clayey Silt	<4	< 0.4	24	2	14	<0.1	5	31	<25	<50	<25		<100	<100		< 0.5	<1	<1	<1	< 0.05	< 0.5	<0.05 <0.05		<0.1	<0.1 <0.1	< 0.1	< 0.1	< 0.1	<0.1		<0.1 <		-	< 0.1	-
BH5 BH6	0.0-0.1 0.0-0.1	07.03.2023	F- Clayey Silt F- Clayey Silt	<4 <4	<0.4 <0.4	17 14	<1	8	<0.1 <0.1	5	21 15	<25 <25	<50 <50	<25 <25		<100 <100	<100 <100	-	<0.5 <0.5	<1 <1	<1 <1	<1	<0.05 <0.05	<0.5 <0.5	< 0.05	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1			<0.1 < <0.1 <	0.1 <0	.1 <0.1	<0.1 <0.1	ND
BH0 BH7	0.0-0.1	07.03.2023	F- Clayey Silt	<4 5	<0.4 <0.4	25		9	< 0.1	8	15	<25	<50 <50	<25		<100	<100		<0.5 <0.5	<1	<1	<1 <1	< 0.05	<0.5 <0.5	< 0.05	-	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1		0.1 <0	.1 <0.1	<0.1	ND
BH8	0.1-0.2	07.03.2023	F- Clayey Silt	<4	<0.4	11	1	7	<0.1	5	13	<25	<50	<25		<100	<100	-	< 0.5	<1	<1	<1	< 0.05	<0.5	< 0.05	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1		<0.1 <		.1 \0.1	<0.1	
BH9	0.1-0.2	07.03.2023	F- Clayey Silt	<4	<0.4	13	2	8	<0.1	4	19	<25	<50	<25		<100	<100	-	<0.5	<1	<1	<1	<0.05	<0.5	< 0.05	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1		<0.1		0.1 <0	.1 <0.1	<0.1	ND
BH10	0.0-0.1	07.03.2023	F- Clayey Silt	<4	<0.4	12	2	6	<0.1	5	4	<25	<50	<25		<100	<100	-	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	<0.1	<0.1	<0.1						<0.1 <	-		<0.1	-
D1	-	07.03.2023	F- Clayey Silt	<4	<0.4	19	1	7	<0.1	9	7	<25	<50	<25		<100	<100		<0.5	<1	<1	<1	< 0.05	< 0.5	< 0.05	<0.1	<0.1	<0.1							0.1 <0	.1 <0.1	<0.1	-
SS1	-	07.03.2023	F- Clayey Silt	2	<0.3	8.4	0.7	7	<0.05	3.5	5.7	<25	<25		<25	<90	<120		<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.8	<0.1		<0.3		<0.2				<0.1 <			<1	-
	Limit of F	Resolution (LOR	२)	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1
		(2013) HIL A	·	100	20	100	6,000	300		400	<mark>7,400</mark>													3	300				50							0	1	
)13) EIL & ESLs	1	100					_																	170								1	.80			
		H3 (0.0-0.1m)				410	95	1100		35	200																											
NEPM (Fine Grain Soil										180	120			1,300	5,600	65	105	125	45		0.7															
	•	3) HSL A & B (S	SILT)																																			
		n to <1m	(2)									40	230					0.6		NL	95	4																
		Concentration			_			_				910	570		_			440	640	69	330	10							_	_								
NEPM (<u>, </u>	ement Limit (Fi									_			800	1,000	3,500	10,000		_																	_		
	NEPM (201	.3) HSL - Asbest	itos																																			Detected

 1
 Commerical and industrial is broadly equivalent to the HIL-D land use scenarios in Table 1A(1) Footnote 1 and as described in Schedule B7.

 2
 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

 3
 To obtain F2 subtract naphthalene from the >C10^oC16 fraction.

 NL
 Calculated HSL is Non Limiting per NEPM (2013)

 ND
 Not detected

APPENDIX H: NATA ACCREDITED LABORATORY RESULTS

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 318173

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Michael Silk
Address	PO Box 4405, East Gosford, NSW, 2250

Sample Details	
Your Reference	E3008 Rutherford
Number of Samples	13 Soil
Date samples received	08/03/2023
Date completed instructions received	08/03/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 15/03/2023

 Date of Issue
 15/03/2023

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Stuart Chen Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u>

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Greta Petzold, Assistant Operation Manager Hannah Nguyen, Metals Supervisor Loren Bardwell, Development Chemist Lucy Zhu, Asbestos Supervisor Steven Luong, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	103	103	104	98
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
Our Reference Your Reference	UNITS	318173-6 BH6	318173-7 BH7	318173-8 BH8	318173-9 BH9	318173-10 BH10
	UNITS					
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Your Reference Depth	UNITS	BH6 0-0.1	BH7 0.1-0.2	BH8 0.1-0.2	BH9 0.1-0.2	BH10 0-0.1
Your Reference Depth Date Sampled	UNITS -	BH6 0-0.1 07/03/2023	BH7 0.1-0.2 07/03/2023	BH8 0.1-0.2 07/03/2023	BH9 0.1-0.2 07/03/2023	BH10 0-0.1 07/03/2023
Your Reference Depth Date Sampled Type of sample	UNITS - -	BH6 0-0.1 07/03/2023 Soil	BH7 0.1-0.2 07/03/2023 Soil	BH8 0.1-0.2 07/03/2023 Soil	BH9 0.1-0.2 07/03/2023 Soil	BH10 0-0.1 07/03/2023 Soil
Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023	BH10 0-0.1 07/03/2023 Soil 09/03/2023
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	- - mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀ vTPH C ₆ - C ₁₀ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <25 <0.2	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <25 <0.2	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <25 <0.2
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <25 <0.2 <0.2	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 (325 <25 <25 <25 <25 <0.2	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <25 <0.2 <0.2 <0.5
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 (3/2023)	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 (3/2023)	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 (325 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 (325 (25) (25) (25) (25) (25) (25) (25) (2	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTPH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1 <2 <1 <1	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	BH10 0-0.1 07/03/2023 Soil 09/03/2023 13/03/2023 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2 <1

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		318173-11	318173-12	318173-13
Your Reference	UNITS	D1	TS1	TB1
Depth		-	-	-
Date Sampled		07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	13/03/2023	13/03/2023	13/03/2023
TRH C ₆ - C ₉	mg/kg	<25		<25
TRH C6 - C10	mg/kg	<25		<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		<25
Benzene	mg/kg	<0.2	101%	<0.2
Toluene	mg/kg	<0.5	99%	<0.5
Ethylbenzene	mg/kg	<1	101%	<1
m+p-xylene	mg/kg	<2	101%	<2
o-Xylene	mg/kg	<1	101%	<1
Naphthalene	mg/kg	<1		<1
Total +ve Xylenes	mg/kg	<1		<1
Surrogate aaa-Trifluorotoluene	%	99	101	95

svTRH (C10-C40) in Soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	12/03/2023	12/03/2023	12/03/2023	12/03/2023	12/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	110	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	110	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	77	78	78	78
1						
svTRH (C10-C40) in Soil						
svTRH (C10-C40) in Soil Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
	UNITS	318173-6 BH6	318173-7 BH7	318173-8 BH8	318173-9 BH9	318173-10 BH10
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Our Reference Your Reference Depth	UNITS	BH6 0-0.1	BH7 0.1-0.2	BH8 0.1-0.2	BH9 0.1-0.2	BH10 0-0.1
Our Reference Your Reference Depth Date Sampled	UNITS	BH6 0-0.1 07/03/2023	BH7 0.1-0.2 07/03/2023	BH8 0.1-0.2 07/03/2023	BH9 0.1-0.2 07/03/2023	BH10 0-0.1 07/03/2023
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH6 0-0.1 07/03/2023 Soil	BH7 0.1-0.2 07/03/2023 Soil	BH8 0.1-0.2 07/03/2023 Soil	BH9 0.1-0.2 07/03/2023 Soil	BH10 0-0.1 07/03/2023 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023	BH10 0-0.1 07/03/2023 Soil 09/03/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	- - mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	- - mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆	- - mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	- - mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50
Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36) TRH >C ₁₀ -C ₁₆	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16TRH >C10 - C16 less Naphthalene (F2)	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 12/03/2023 <50	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50 <50 <50 <50	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <100 <50 <50 <50 <50	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <100 <50 <50 <50 <50
Our ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C_{10} - C_{16}TRH >C_{10} - C_{16} less Naphthalene (F2)TRH >C_{16} - C_{34}	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH6 0-0.1 07/03/2023 Soil 09/03/2023 (2003/2023 (2003/2023) (2003/2023 (2003/2023) (2003/2	BH7 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50 <50 <50 <50 <100	BH8 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50	BH9 0.1-0.2 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50 <50 <50 <50 <100	BH10 0-0.1 07/03/2023 Soil 09/03/2023 12/03/2023 <50 <100 <100 <50 <50 <50 <50 <50 <100

svTRH (C10-C40) in Soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date extracted	-	09/03/2023
Date analysed	-	12/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C15 - C28	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
Total +ve TRH (C10-C36)	mg/kg	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C16 -C34	mg/kg	<100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	76

PAHs in Soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.2	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	110	114	114	117	111

PAHs in Soil						
Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.1-0.2	0.1-0.2	0.1-0.2	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	108	111	111	113	111

PAHs in Soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date extracted	-	09/03/2023
Date analysed	-	10/03/2023
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	117

Organochlorine Pesticides in soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	103	108	106	106

Organochlorine Pesticides in soil				_		
Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.1-0.2	0.1-0.2	0.1-0.2	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	104	107	107	105

Organochlorine Pesticides in soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date extracted	-	09/03/2023
Date analysed	-	10/03/2023
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	107

Organophosphorus Pesticides in Soil						
Our Reference		318173-1	318173-3	318173-5	318173-7	318173-9
Your Reference	UNITS	BH1	BH3	BH5	BH7	BH9
Depth		0.2-0.3	0-0.1	0-0.1	0.1-0.2	0.1-0.2
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	108	106	104	107

Organophosphorus Pesticides in Soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date extracted	-	09/03/2023
Date analysed	-	10/03/2023
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	107

PCBs in Soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	103	108	106	106

PCBs in Soil						
Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.1-0.2	0.1-0.2	0.1-0.2	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	10/03/2023	10/03/2023	10/03/2023	10/03/2023	10/03/2023
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	105	104	107	107	105

PCBs in Soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date extracted	-	09/03/2023
Date analysed	-	10/03/2023
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	107

Acid Extractable metals in soil						
Our Reference		318173-1	318173-2	318173-3	318173-4	318173-5
Your Reference	UNITS	BH1	BH2	BH3	BH4	BH5
Depth		0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	14/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Arsenic	mg/kg	<4	<4	<4	6	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	16	10	8	24	17
Copper	mg/kg	23	<1	2	2	<1
Lead	mg/kg	22	5	7	14	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	17	5	3	5	5
Zinc	mg/kg	65	5	22	31	21

Acid Extractable metals in soil						
Our Reference		318173-6	318173-7	318173-8	318173-9	318173-10
Your Reference	UNITS	BH6	BH7	BH8	BH9	BH10
Depth		0-0.1	0.1-0.2	0.1-0.2	0.1-0.2	0-0.1
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
Date analysed	-	14/03/2023	14/03/2023	14/03/2023	14/03/2023	14/03/2023
Arsenic	mg/kg	<4	5	<4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	14	25	11	13	12
Copper	mg/kg	1	<1	1	2	2
Lead	mg/kg	9	8	7	8	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	8	5	4	5
Zinc	mg/kg	15	19	13	19	4

Acid Extractable metals in soil		
Our Reference		318173-11
Your Reference	UNITS	D1
Depth		-
Date Sampled		07/03/2023
Type of sample		Soil
Date prepared	-	09/03/2023
Date analysed	-	14/03/2023
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	19
Copper	mg/kg	1
Lead	mg/kg	7
Mercury	mg/kg	<0.1
Nickel	mg/kg	9
Zinc	mg/kg	7

	318173-1	318173-2	318173-3	318173-4	318173-5
UNITS	BH1	BH2	BH3	BH4	BH5
	0.2-0.3	0.1-02	0-0.1	0-0.1	0-0.1
	07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
	Soil	Soil	Soil	Soil	Soil
-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
%	7.5	6.4	7.0	8.7	13
			•		
	318173-6	318173-7	318173-8	318173-9	318173-10
UNITS	BH6	BH7	BH8	BH9	BH10
	0-0.1	0.1-0.2	0.1-0.2	0.1-0.2	0-0.1
	07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
	Soil	Soil	Soil	Soil	Soil
-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
-	09/03/2023	09/03/2023	09/03/2023	09/03/2023	09/03/2023
%	22	11	17	13	6.3
			1	1	1
	318173-11				
UNITS	D1				
	_				
	07/03/2023				
	UNITS	UNITS BH1 0.2-0.3 07/03/2023 07/03/2023 Soil 1 09/03/2023 09/03/2023 09/03/2023 1 09/03/2023 1 09/03/2023 1 0.1 0 07/03/2023 1 00/	UNITS BH1 BH2 0.2-0.3 0.1-02 07/03/2023 07/03/2023 Soil Soil Soil Soil 1 0.1-02 Soil Soil Soil Soil 1 09/03/2023 09/03/2023 09/03/2023 09/03/2023 09/03/2023 % 7.5 6.4 UNITS BH6 BH7 0-0.1 0.1-0.2 07/03/2023 0-0.1 0.1-0.2 07/03/2023 07/03/2023 09/03/2023 09/03/2023 Soil Soil Soil 1 09/03/2023 09/03/2023 % 22 11 UNITS 318173-11 UNITS 318173-11 D1 -	UNITS BH1 0.2-0.3 07/03/2023 BH2 0.1-02 07/03/2023 BH3 0-0.1 07/03/2023 07/03/2023 07/03/2023 07/03/2023 1 09/03/2023 09/03/2023 09/03/2023 1 09/03/2023 09/03/2023 09/03/2023 1 09/03/2023 09/03/2023 09/03/2023 1 09/03/2023 09/03/2023 09/03/2023 1 0-0.1 0.1-0.2 0.1-0.2 1 0-0.1 0.1-0.2 0.1-0.2 1 0-0.1 0.1-0.2 0.1-0.2 0 0-0.1 0.1-0.2 0.1-0.2 0 0-0.1 0.1-0.2 0.1-0.2 0 0-0.1 0.1-0.2 0.1-0.2 0 0-0.1 0.1-0.2 0.1-0.2 0 0.01 0.1-0.2 0.1-0.2 0 0.1 0.1 0.2 0 0.1 0.2 0.1 0 0.2 0.1 0.2 0 0.0 0.2 0.2	UNITS BH1 BH2 BH3 BH4 0.2-0.3 0.1-02 0-0.1 0-0.1 07/03/2023 07/03/2023 07/03/2023 07/03/2023 Soil Soil Soil Soil Soil 1 0.1-02 0.1-02 07/03/2023 07/03/2023 Soil Soil Soil Soil Soil 1 0.1-0 09/03/2023 09/03/2023 09/03/2023 09/03/2023 1 0.1 0.1 0.1 0.1 0.1 0.1 1 7.5 6.4 7.0 8.7 0 0.1 0.1-0.2 0.1-0.2 0.1-0.2 0 0.1 0.1-0.2 0.1-0.2 0.1-0.2 0 0.1 0.1-0.2 0.1-0.2 0.1-0.2 0 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.

Date Sampled		07/03/2023
Type of sample		Soil
Date prepared	-	09/03/2023
Date analysed	-	09/03/2023
Moisture	%	5.3

Asbestos ID - soils						
Our Reference		318173-1	318173-3	318173-5	318173-7	318173-9
Your Reference	UNITS	BH1	BH3	BH5	BH7	BH9
Depth		0.2-0.3	0-0.1	0-0.1	0.1-0.2	0.1-0.2
Date Sampled		07/03/2023	07/03/2023	07/03/2023	07/03/2023	07/03/2023
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	13/03/2023	13/03/2023	13/03/2023	13/03/2023	13/03/2023
Sample mass tested	g	<5g	Approx. 5g	<5g	Approx. 5g	<5g
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Misc Inorg - Soil		
Our Reference		318173-3
Your Reference	UNITS	BH3
Depth		0-0.1
Date Sampled		07/03/2023
Type of sample		Soil
Date prepared	-	10/03/2023
Date analysed	-	10/03/2023
pH 1:5 soil:water	pH Units	5.5

Clay 50-120g		
Our Reference		318173-3
Your Reference	UNITS	BH3
Depth		0-0.1
Date Sampled		07/03/2023
Type of sample		Soil
Date prepared	-	13/03/2023
Date analysed	-	14/03/2023
Clay in soils <2µm	% (w/w)	13

CEC		
Our Reference		318173-3
Your Reference	UNITS	BH3
Depth		0-0.1
Date Sampled		07/03/2023
Type of sample		Soil
Date prepared	-	14/03/2023
Date analysed	-	14/03/2023
Exchangeable Ca	meq/100g	2.4
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	1.4
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	4.0

Method ID	Methodology Summary
AS1289.3.6.3	Particle Size Distribution using in house method INORG-107 by way of sieving and/or hydrometer sedimentation testing. Clay fraction at <2µm reported.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023
Date analysed	-			13/03/2023	1	13/03/2023	13/03/2023		13/03/2023	13/03/2023
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	115	108
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	115	108
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	128	121
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	121	114
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	98	93
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	113	107
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	117	111
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	103	104	1	102	99

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	09/03/2023	09/03/2023			[NT]
Date analysed	-			[NT]	11	13/03/2023	13/03/2023			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	11	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	11	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	11	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	11	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	11	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	11	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	11	99	103	4		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023
Date analysed	-			12/03/2023	1	12/03/2023	12/03/2023		12/03/2023	12/03/2023
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	92	88
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	81	77
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	86	119
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	92	88
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	110	120	9	81	77
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	86	119
Surrogate o-Terphenyl	%		Org-020	78	1	79	78	1	81	78

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	09/03/2023	09/03/2023			
Date analysed	-			[NT]	11	12/03/2023	12/03/2023			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	11	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	11	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	11	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	11	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	11	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	11	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	11	76	77	1		

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023
Date analysed	-			10/03/2023	1	10/03/2023	10/03/2023		10/03/2023	10/03/2023
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	112	111
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	112
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	123	120
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	118	108
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	116	111
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	123	117
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.2	67	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	79	76
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	0.2	0.3	40	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.2	0.2	0	134	120
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.2	0.2	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	117	1	110	116	5	107	104

QUALI		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	09/03/2023	09/03/2023			[NT]
Date analysed	-			[NT]	11	10/03/2023	10/03/2023			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	11	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	11	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	11	117	110	6		[NT]

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3	
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023	
Date analysed	-			10/03/2023	1	10/03/2023	10/03/2023		10/03/2023	10/03/2023	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	116	
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	116	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	127	123	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	116	116	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	117	114	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	128	126	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	134	129	
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	134	129	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	116	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	110	110	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	102	1	105	105	0	100	101	

QUALITY CO	ONTROL: Organo		Du	plicate		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	09/03/2023	09/03/2023			[NT]
Date analysed	-			[NT]	11	10/03/2023	10/03/2023			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025	[NT]	11	107	104	3		[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3	
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023	
Date analysed	-			10/03/2023	1	10/03/2023	10/03/2023		10/03/2023	10/03/2023	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	136	135	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	107	105	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	135	137	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	128	132	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	122	124	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	138	140	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	127	137	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	102	1	105	105	0	100	101	

QUALITY CONTRO	L: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	09/03/2023	09/03/2023			[NT]
Date analysed	-				11	10/03/2023	10/03/2023			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022		11	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		11	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-022/025		11	107	104	3		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3	
Date extracted	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023	
Date analysed	-			10/03/2023	1	10/03/2023	10/03/2023		10/03/2023	10/03/2023	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	132	138	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-021	102	1	105	105	0	100	101	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	11	09/03/2023	09/03/2023		[NT]		
Date analysed	-			[NT]	11	10/03/2023	10/03/2023		[NT]		
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	11	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-021	[NT]	11	107	104	3	[NT]		

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	318173-3	
Date prepared	-			09/03/2023	1	09/03/2023	09/03/2023		09/03/2023	09/03/2023	
Date analysed	-			14/03/2023	1	14/03/2023	14/03/2023		14/03/2023	14/03/2023	
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	95	97	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	93	90	
Chromium	mg/kg	1	Metals-020	<1	1	16	15	6	93	95	
Copper	mg/kg	1	Metals-020	<1	1	23	25	8	93	102	
Lead	mg/kg	1	Metals-020	<1	1	22	23	4	94	91	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	85	87	
Nickel	mg/kg	1	Metals-020	<1	1	17	17	0	95	97	
Zinc	mg/kg	1	Metals-020	<1	1	65	66	2	94	80	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	11	09/03/2023	09/03/2023			[NT]	
Date analysed	-			[NT]	11	14/03/2023	14/03/2023			[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	11	<4	<4	0		[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0		[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	11	19	17	11		[NT]	
Copper	mg/kg	1	Metals-020	[NT]	11	1	1	0		[NT]	
Lead	mg/kg	1	Metals-020	[NT]	11	7	6	15		[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0		[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	11	9	9	0		[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	11	7	7	0	[NT]	[NT]	

QUALITY		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date prepared	-			10/03/2023	[NT]		[NT]	[NT]	10/03/2023	
Date analysed	-			10/03/2023	[NT]		[NT]	[NT]	10/03/2023	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	100	[NT]

QU	QUALITY CONTROL: CEC								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date prepared	-			14/03/2023	[NT]	[NT]	[NT]	[NT]	14/03/2023		
Date analysed	-			14/03/2023	[NT]	[NT]	[NT]	[NT]	14/03/2023		
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	108		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	103		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	107		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	111		

Client Reference: E3008 Rutherford

Result Definiti	Result Definitions								
NT	Not tested								
NA	Test not required								
INS	Insufficient sample for this test								
PQL	Practical Quantitation Limit								
<	Less than								
>	Greater than								
RPD	Relative Percent Difference								
LCS	Laboratory Control Sample								
NS	Not specified								
NEPM	National Environmental Protection Measure								
NR	Not Reported								

Client Reference: E3008 Rutherford

Quality Contro	Quality Control Definitions								
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Note: All samples analysed as received. However, samples 318173-1,5,9 are below the minimum recommendation of 5 grams as per Australian Standard AS4964-2004.

	FOUNDA EARTH SCIENCE	TION							Gh	កៅភេច	ſœuś	tody	Record	1				Job No Date Re Time Re Receive Tem C	ceived ceceived aceived rd By:		St . 167 100
lient De			Foundation E PO Box 4405, email: ben@f michael@fou ph: +61466 3	East Gosfo foundation indationes.	rd NSW 2 ès.com.a	u	oundation	es.com.au		Project I Sampled		<u></u>		Michae RW	l Silk	,		Project #:E3008 Project Name: Rutherfo	rd		
Delivery	Details:		Envirolab Pty 12 Ashley Str email: ahie@ ph: +612 991	eet, Chatsv envirolab.c		V 2067				Purchas Page #:	e Ord <u>e</u> r #	, ¥		N/Å 1 of <u>1</u>		^÷		Quote #: Turnaround: Standard			
#	Sample ID	Depth	Date Sampled	Matrix	ph	CEC	%CLAY	Heavy Metals (8)	TRH	BTEXN	РАН	EC	PH	OPP			Asbestos ID	TRH C6-C10 & BTEXN	ОСР РСВ	Envirolah Suites	Comm
1	BH1	0.2-0.3	07.03.2023	Soil				- X	x	x	x	 		x			x		x	Combo 6a	Ke
2	BH2	0.1-0.2	07.03.2023	Soil				X	X	x	X								X	Combo 5	Ke
3	BH3	0-0.1	07.03.2023	Soil	×	×	×	<u> </u>	<u>x</u>	X	X			×			×		X X	Combo 6a Combo 5	Ke Ke
4	BH4_` BH5	~ 0-0.1 0-0.1	07.03.2023	Soil Soil	<u> </u>			<u>x</u>	X X	X X	X			x				<u> </u>	X	Combo 6a	Ke
6	BH6	0-0.1	07.03.2023	Soil		+		X	x	x	x	+ •			1				X	Combo 5	Ke
7	BH7	0.1-0.2	07.03.2023	Soil				x	X	X	X			X			×		X	Combo 6a	Ke
8	BH8	0.1-0.2	07.03.2023	Soil				x	x	X	X	1					<u> </u>	<u> </u>	X	Combo 5	Ke
9	BH9	0.1-0.2	07.03.2023	Soil	L			<u>x</u>	X		X	·	<u> </u>	x			×		X X	Combo 6a Combo 5	Ke Ke
10 11	BH10 D1	0-0.1	07.03.2023	Soil Soil	<u> </u>		<u> </u>	<u> </u>	X X	X X	X X			x					x x	Combo 6	Ke
11 12		-	-	-	<u> </u>		╞╴┤	^	<u>⊢^</u> _	<u>⊢</u> ^	<u>⊢</u> ^-	+		<u>^</u>	1			x	Ľ		Ke
13		-		-	1						<u> </u>	1	<u> </u>	-		-		x			Ke
-																					
		<u> </u>					┼───┦	· · · · ·			<u> </u>	+	· · · -							1	
Special	Directions a	and Coments	3:		1	·	۱ – ۱		·				L .	-							
Relinqui						RW			Receive			the				- <u>.</u>					
Signatur	e		<u> </u>			RW 8,03,202			Signatu	re		<u> </u>	<u>~8 }</u>	17					4		-
Date			1		G	ia.U3.202	23		Date			1		1.4			,		1		

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Foundation Earth Sciences Pty Ltd
Attention	Michael Silk

Sample Login Details		
Your reference	E3008 Rutherford	
Envirolab Reference	318173	
Date Sample Received	08/03/2023	
Date Instructions Received	08/03/2023	
Date Results Expected to be Reported	15/03/2023	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	13 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	14
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201

customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils	Misc Inorg - Soil	Clay 50-120g	CEC
BH1-0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
BH2-0.1-02	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				
BH3-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH4-0-0.1	\checkmark	\checkmark	\checkmark	\checkmark		✓	\checkmark				
BH5-0-0.1	\checkmark	✓	✓	\checkmark	\checkmark	✓	✓	✓			
BH6-0-0.1	✓	✓	✓	✓		✓	✓				
BH7-0.1-0.2	✓	✓	✓	✓	\checkmark	✓	✓	✓			
BH8-0.1-0.2	✓	✓	✓	✓		✓	✓				
BH9-0.1-0.2	✓	✓	✓	✓	\checkmark	✓	✓	✓			
BH10-0-0.1	✓	✓	✓	✓		✓	✓				
D1	✓	✓	✓	✓	✓	✓	✓				
TS1	\checkmark										
TB1	\checkmark										

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Ben Buckley	Manager	Huong Crawford
Client	FOUNDATION EARTH SCIENCES PTY LTD	Laboratory	SGS Alexandria Environmental
Address	UNIT 119/14 LOYALTY ROAD NORTH ROCKS NSW 2151	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	ben@foundationes.com.au	Email	au.environmental.sydney@sgs.com
Project	E3008 Rutherford	SGS Reference	SE244204 R0
Order Number	E3008	Date Received	8/3/2023
Samples	1	Date Reported	15/3/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN Chemist

kinty

Ly Kim HA Organic Section Head

Bles

Bennet LO Senior Chemist

ion

Shane MCDERMOTT Inorganic/Metals Chemist

Dong LIANG Metals/Inorganics Team Leader

Kamrul AHSAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

VOC's in Soil [AN433] Tested: 10/3/2023

			SS1
			SOIL - 7/3/2023
PARAMETER	UOM	LOR	SE244204.001
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6
Naphthalene (VOC)*	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 10/3/2023

			SS1
			SOIL
			- 7/3/2023
PARAMETER	UOM	LOR	SE244204.001
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 10/3/2023

PARAMETER	NOM	LOR	SS1 SOIL - 7/3/2023 SE244204.001
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 10/3/2023

			SS1
			SOIL
PARAMETER	UOM	LOR	7/3/2023 SE244204.001
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

SE244204 R0

OC Pesticides in Soil [AN420] Tested: 10/3/2023

			SS1
			SOIL
PARAMETER	UOM	LOR	SE244204.001
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane (gamma BHC)	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE*	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD*	mg/kg	0.1	<0.1
o,p'-DDT*	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1
Total OC VIC EPA	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 10/3/2023

			SS1
PARAMETER	UOM	LOR	7/3/2023 SE244204.001
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 10/3/2023

			SS1
PARAMETER	UOM	LOR	SOIL - 7/3/2023 SE244204.001
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 10/3/2023

			SS1
			SOIL
			- 7/3/2023
PARAMETER	UOM	LOR	SE244204.001
Arsenic, As	mg/kg	1	2
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.4
Copper, Cu	mg/kg	0.5	0.7
Lead, Pb	mg/kg	1	7
Nickel, Ni	mg/kg	0.5	3.5
Zinc, Zn	mg/kg	2	5.7

Mercury in Soil [AN312] Tested: 10/3/2023

			SS1
			SOIL
			- 7/3/2023
PARAMETER	UOM	LOR	SE244204.001
Mercury	mg/kg	0.05	<0.05

Moisture Content [AN002] Tested: 10/3/2023

			SS1
			SOIL
			-
			7/3/2023
PARAMETER	UOM	LOR	SE244204.001
% Moisture	%w/w	1	4.4

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D). Total PAH calculated from individual analyte detections at or above the limit of reporting.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Ben Buckley FOUNDATION EARTH SCIENCES PTY LTD UNIT 119/14 LOYALTY ROAD NORTH ROCKS NSW 2151	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	(Not specified)	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	ben@foundationes.com.au	Email	au.environmental.sydney@sgs.com
Project	E3008 Rutherford	SGS Reference	SE244204 R0
Order Number	E3008	Date Received	08 Mar 2023
Samples	1	Date Reported	15 Mar 2023

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	10 items
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
	Volatile Petroleum Hydrocarbons in Soil	1 item

Sample cooling method ice Bricks	Sample counts by matrix Samples received in good order Sample temperature upon receipt Sample cooling method	1 Soil Yes 11.2C Ice Bricks	Date documentation received Samples received without headspace Turnaround time requested	8/3/2023 Yes Standard	
----------------------------------	---	--------------------------------------	--	-----------------------------	--

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

0400 www.sgs.com.au

HOLDING TIME SUMMARY

SE244204 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

Mercury in Soil							Method:	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273661	07 Mar 2023	08 Mar 2023	04 Apr 2023	10 Mar 2023	04 Apr 2023	13 Mar 2023
loisture Content							Method:	ME-(AU)-[ENV]AN(
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273656	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	15 Mar 2023	13 Mar 2023
C Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273651	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	19 Apr 2023	13 Mar 2023
OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273651	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	19 Apr 2023	14 Mar 2023
AH (Polynuclear Aromati	ic Hydrocarbone) in Soil						Method	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273651	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	19 Apr 2023	14 Mar 2023
CBs in Soil							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273651	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	19 Apr 2023	13 Mar 2023
otal Recoverable Elemen	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273657	07 Mar 2023	08 Mar 2023	03 Sep 2023	10 Mar 2023	03 Sep 2023	14 Mar 2023
RH (Total Recoverable H	lydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273651	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	19 Apr 2023	13 Mar 2023
OC's in Soil							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
SS1	SE244204.001	LB273653	07 Mar 2023	08 Mar 2023	21 Mar 2023	10 Mar 2023	21 Mar 2023	14 Mar 2023
olatile Petroleum Hydroc	arbons in Soil						Method:	ME-(AU)-[ENV]AN
								_
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	SS1	SE244204.001	%	60 - 130%	101
OP Pesticides in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	SS1	SE244204.001	%	60 - 130%	111
d14-p-terphenyl (Surrogate)	SS1	SE244204.001	%	60 - 130%	121
PAH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	SS1	SE244204.001	%	70 - 130%	111
d14-p-terphenyl (Surrogate)	SS1	SE244204.001	%	70 - 130%	121
d5-nitrobenzene (Surrogate)	SS1	SE244204.001	%	70 - 130%	129
PCBs in Soil				Method: M	E-(AU)-[ENV]AN420
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
TCMX (Surrogate)	SS1	SE244204.001	%	60 - 130%	102
VOC's in Soli				Method: M	E-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
Bromofluorobenzene (Surrogate)	SS1	SE244204.001	%	60 - 130%	80		
d4-1,2-dichloroethane (Surrogate)	SS1	SE244204.001	%	60 - 130%	92		
d8-toluene (Surrogate)	SS1	SE244204.001	%	60 - 130%	92		
Volatile Petroleum Hydrocarbons in Soil							
Devemator	Comula Nome	Comple Number	Linita	Critoria	Decessory 0/		

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	SS1	SE244204.001	%	60 - 130%	80
d4-1,2-dichloroethane (Surrogate)	SS1	SE244204.001	%	60 - 130%	92
d8-toluene (Surrogate)	SS1	SE244204.001	%	60 - 130%	92

METHOD BLANKS

SE244204 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB273661.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

Pesticides in Soil				od: ME-(AU)-[EN\
ample Number	Parameter	Units	LOR	Result
273651.001	Alpha BHC	mg/kg	0.1	<0.1
	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Lindane (gamma BHC)	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	Endrin aldehyde	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endrin ketone	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	100
Pesticides in Soil			Meth	od: ME-(AU)-[EN\
nple Number	Parameter	Units	LOR	Result
273651.001	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	95
Currogales	d14-p-terphenyl (Surrogate)	%		102
			-	

Sample Number	Parameter	Units	LOR	Result
LB273651.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

SE244204 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number	matic Hydrocarbons) in Soil (co	Parameter	Units	LOR	od: ME-(AU)-[ENV]A Result
LB273651.001				0.1	<0.1
_B273051.001		Indeno(1,2,3-cd)pyrene	mg/kg		
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	123
		2-fluorobiphenyl (Surrogate)	%	-	95
		d14-p-terphenyl (Surrogate)	%	-	102
CBs in Soil				Meth	od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
_B273651.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochior 1260	mg/kg	0.2	<0.2
		Arochior 1260		0.2	<0.2
			mg/kg		
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	TCMX (Surrogate)	%	-	101
otal Recoverable Ele	ements in Soil/Waste Solids/Mat	erials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
Sample Number		Parameter	Units	LOR	Result
_B273657.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
	ble Hydrocarbons) in Soil				od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
LB273651.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
				Meth	od: ME-(AU)-[ENV]A
'OC's in Soil					
		Parameter	Inite		Result
Sample Number	Monocyclic Aromatic	Parameter Benzene	Units ma/ka	LOR	Result <0.1
Sample Number	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
Sample Number	Monocyclic Aromatic Hydrocarbons	Benzene Toluene	mg/kg mg/kg	0.1	<0.1 <0.1
Sample Number		Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1
Sample Number		Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.2
Sample Number	Hydrocarbons	Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.2 <0.1
Sample Number	Hydrocarbons Polycyclic VOCs	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1
Sample Number	Hydrocarbons	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.2 0.1 0.1 0.1 -	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 95
Sample Number	Hydrocarbons Polycyclic VOCs	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg % %	0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 95 99
Sample Number	Hydrocarbons Polycyclic VOCs Surrogates	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data Vaphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg %	0.1 0.1 0.2 0.1 0.1 - - -	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 95 99 97
Sample Number	Hydrocarbons Polycyclic VOCs	Benzene Toluene Ethylbenzene m/p-xylene o-xylene Naphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg % %	0.1 0.1 0.2 0.1 0.1 -	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 95 99
'OC's in Soil Sample Number .B273653.001 'olatile Petroleum Hy	Hydrocarbons Polycyclic VOCs Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data Vaphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % %	0.1 0.1 0.2 0.1 - - - 0.6	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 95 99 97 <0.6
Sample Number B273653.001 'olatile Petroleum Hy	Hydrocarbons Polycyclic VOCs Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Total BTEX*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % % % mg/kg	0.1 0.1 0.2 0.1 0.1 - - 0.6 Methy	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 95 99 97 <0.6 <0.6
Sample Number .B273653.001	Hydrocarbons Polycyclic VOCs Surrogates Totals	Benzene Toluene Ethylbenzene m/p-xylene o-xylene data Vaphthalene (VOC)* d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % %	0.1 0.1 0.2 0.1 - - - 0.6	<0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 95 99 97 <0.6

Method: ME (ALD JENN/JANI/20

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Mercury in Soil					(ENVJAN312		
Original	Duplicate	Parameter	Units LC	R Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273661.014	Mercury	mg/kg 0.0	5 <0.05	<0.05	200	0
SE244285.036	LB273661.018	Mercury	mg/kg 0.0	5 <0.05	<0.05	200	0

Moisture Content

Moisture Content	loisture Content Method: ME-(AU)-[ENV]AN00.					ENVJAN002		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273656.011	% Moisture	%w/w	1	5.9	5.9	47	0
SE244285.036	LB273656.024	% Moisture	%w/w	1	9.3	10.1	40	8

OR Resticides in Soil

P Pesticides in S	Soil						Metr	od: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273651.014		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
		-	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.6	30	0
	Aromatic Hydrocarbo	ane) in Soil					Moth	od: ME-(AU)-	
	-				1.0.5				
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD %
SE244285.020	LB273651.027		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0.2	106	51
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	0.2	0.5	60	69 (9)
			Anthracene	mg/kg	0.1	<0.1	0.1	131	26
			Fluoranthene	mg/kg	0.1	0.2	0.4	61	70 ⑨
			Pyrene	mg/kg	0.1	0.4	0.8	47	65 (9)
			Benzo(a)anthracene	mg/kg	0.1	0.2	0.4	67	69 (9)
			Chrysene	mg/kg	0.1	0.2	0.4	63	65 (9)
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.4	63	67
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.1	140	19
			Benzo(a)pyrene	mg/kg	0.1	0.2	0.4	62	62 (9)
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	0.3	79	61
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	0.3	79	61
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td>0.5</td><td>59</td><td>63 (9)</td></lor=0*<>	mg/kg	0.2	0.3	0.5	59	63 (9)
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>mg/kg</td><td>0.2</td><td>0.3</td><td>0.6</td><td>54</td><td>56 (9)</td></lor=lor>	mg/kg	0.2	0.3	0.6	54	56 (9)
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>mg/kg</td><td>0.3</td><td>0.4</td><td>0.6</td><td>69</td><td>50</td></lor=lor*<>	mg/kg	0.3	0.4	0.6	69	50
			Total PAH (18)	mg/kg	0.8	2.0	4.2	33	72
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.6	30	2
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	30	1
CBs in Soil							Meth	od: ME-(AU)-	(ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273651.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE244119.003	LB273651.014		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	30	2
otal Recoverable	Elements in Soil/Wa							-(AU)-[ENV]A	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE244119.003	LB273657.014		Arsenic, As	mg/kg	1	<1	<1	137	0
52244115.005	LD2/303/.014		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr			1.7			3
				mg/kg	0.5		1.3	64 64	2
			Copper, Cu	mg/kg	0.5	1.7			
			Nickel, Ni	mg/kg	0.5	1.2	0.8	80	3
			Lead, Pb	mg/kg	1	4	6	51	3
			Zinc, Zn	mg/kg	2	12	13	46	5
SE244285.036	LB273657.018		Arsenic, As	mg/kg	1	7	9	43	2
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	(
			Chromium, Cr	mg/kg	0.5	12	12	34	1
			Copper, Cu	mg/kg	0.5	20	12	33	52
			Nickel, Ni	mg/kg	0.5	7.6	5.2	38	3
			Lead, Pb	mg/kg	1	18	20	35	9
			Zinc, Zn	mg/kg	2	35	25	37	3
RH (Total Recov	erable Hydrocarbons) in Soil					Met	nod: ME-(AU)-	[ENV]/
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE244119.003	LB273651.014		TRH C10-C14	mg/kg	20	<20	<20	200	C
			TRH C15-C28	mg/kg	45	<45	<45	200	C
			TRH C29-C36	mg/kg	45	<45	<45	200	(
			TRH C37-C40	mg/kg	100	<100	<100	200	C
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	C
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	(
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	(
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	C
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	C
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE244285.020	LB273651.027		TRH C10-C14	mg/kg	20	<20	<20	200	C
52244200.020	20210001.021		TRH C15-C28	mg/kg	45	<45	89	98	6
			TRH C29-C36		45	210	270	49	2
				mg/kg				200	C
			TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg	100 110	<100 210	<100 360	69	5
				IIIQ/KQ	110	210	300	09	
					040	000	220	107	~
			TRH >C10-C40 Total (F bands)	mg/kg	210	230	320	107	
		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg mg/kg	25	<25	<25	200	C
		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg	25 25	<25 <25	<25 <25	200 200	C
		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 230	<25 <25 320	200 200 63	((3
		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg mg/kg	25 25	<25 <25	<25 <25	200 200	((3
DC's in Soil		TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 230	<25 <25 320 <120	200 200 63	((3 (
'OC's in Soil Original	Duplicate	TRH F Bands	TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2) TRH >C16-C34 (F3)	mg/kg mg/kg mg/kg mg/kg	25 25 90	<25 <25 230	<25 <25 320 <120 Mett	200 200 63 200	<u> </u>

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273653.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	9.2	50	5
			d8-toluene (Surrogate)	mg/kg	-	8.6	9.1	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	8.3	50	5
		Totals	Total BTEX*	mg/kg	0.6	<0.3	<0.3	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
SE244285.020	LB273653.027	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

VOC's in Soil (continued)

VOC's in Soil (con	tinued)						Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244285.020	LB273653.027	Monocyclic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.0	8.5	50	5
			d8-toluene (Surrogate)	mg/kg	-	9.7	9.1	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	9.1	50	4
		Totals	Total BTEX*	mg/kg	0.6	<0.3	<0.3	200	0
			Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
Volatile Petroleum	Hydrocarbons in Soi	I					Meth	od: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE244119.003	LB273653.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.8	9.2	30	5
			d8-toluene (Surrogate)	mg/kg	-	8.6	9.1	30	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.0	8.3	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE244285.020	LB273653.027		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.0	8.5	30	5
			d8-toluene (Surrogate)	mg/kg	-	9.7	9.1	30	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	9.1	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	Aethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB273661.002	Mercury	mg/kg	0.05	0.20	0.2	80 - 120	99

B273651.002 Delta BHC mg/kg 0.1 0.2 0.2 60 - 140 95 Aldrin mg/kg 0.1 0.2 0.2 60 - 140 95 Aldrin mg/kg 0.1 0.2 0.2 60 - 140 95 Aldrin mg/kg 0.1 0.2 0.2 60 - 140 103 Dieldrin mg/kg 0.2 0.2 0.2 60 - 140 103 Dieldrin mg/kg 0.2 0.2 0.2 60 - 140 104 Edmin mg/kg 0.2 0.2 0.2 60 - 140 104 pp'-DDT mg/kg 0.1 0.2 0.2 60 - 140 104 Pesticides in Sol mg/kg 0.1 0.15 40 - 130 104 Pesticides in Sol Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Chiorpyrifos (Chiorpyrifos Ethyl) mg/kg 0.5 1.6 2 60 - 140	DC Pesticides in Soil					N	Method: ME-(A	U)-[ENV]AN42
Heptachlor mg/kg 0.1 0.2 0.2 60 - 140 95 Addin mg/kg 0.1 0.2 0.2 60 - 140 103 Dieledin mg/kg 0.2 0.2 0.2 60 - 140 104 Endin mg/kg 0.1 0.2 0.2 60 - 140 104 p.PODT mg/kg 0.1 0.2 0.2 60 - 140 104 p.PODT mg/kg 0.1 0.2 0.2 60 - 140 104 p.PoDT mg/kg 0.1 0.2 0.2 60 - 140 104 p.PoDT mg/kg 0.1 0.2 0.2 60 - 140 104 p.Potometer Parameter Units LOR Result Expected Color 60 - 140 104 p.Potomoter Mg/kg 0.2 1.8 2 60 - 140 104 104 104 104 104 104 104 104 104 104 104 104	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Addrin mg/g 0.1 0.2 0.2 60 - 140 103 Dieldrin mg/g 0.2 0.2 0.2 0.0 104 p.DT mg/g 0.2 0.2 0.2 0.0 104 p.DT mg/g 0.2 0.2 0.2 0.1 0.1 Surrogates Tetachloro-m-xylene (TCMX) (Surrogate) mg/g 0.2 0.1 0.15 40 - 130 Pesticides In Sol Tetachloro-m-xylene (TCMX) (Surrogate) mg/g 0.2 1.8 2 60 - 140 91 B273651.02 Chloryrifos Ethyl) mg/g 0.2 1.8 2 60 - 140 91 B273651.02 Dichloryrifos Ethyl) mg/g 0.5 1.8 2 60 - 140 91 B273651.02 Dichloryrifos Ethyl) mg/g 0.5 1.6 2 60 - 140 91 Burrogates Ethion mg/g 0.5 0.5 0.5 0.5 1.4 1.4 Burrogates <td< td=""><td>LB273651.002</td><td>Delta BHC</td><td>mg/kg</td><td>0.1</td><td>0.2</td><td>0.2</td><td>60 - 140</td><td>77</td></td<>	LB273651.002	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	77
Dieldrin mg/kg 0.2 0.2 0.2 0.2 0.1 0.4 Endrin mg/kg 0.1 0.2 0.2 0.2 0.2 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 <		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	95
Endnin mg/kg 0.2 0.2 0.2 0.0 0.04 0.04 p.p ⁻ DDT mg/kg 0.1 0.2 0.2 60 - 140 79 surrogates Tetachloro-m-xylene (TCMX) (surrogate) mg/kg 0.1 0.16 0.15 40 - 130 104 Pesticides In Sol mg/kg 0.2 1.8 0.16 0.15 Kercovery ample Number Parameter Parameter Units LOR Result Exported Criteria % Recovery B273851.002 Ethion mg/kg 0.5 1.9 2 60 - 140 91 Ethion mg/kg 0.5 1.6 2 60 - 140 91 Surrogates Ethion mg/kg 0.5 1.6 2 60 - 140 91 Surrogates Ethion mg/kg 0.5 0.5 40 - 130 102 Mt/Polytifos(Chloryvrifos (Chloryvrifos Ethyl) mg/kg 0.1 0.6 0.5 40 - 130 102		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	103
p.p-DDT mgkg 0.1 0.2 0.2 60 - 140 79 Surrogates Tetrachloro-m-xylen (TCMX) (Surrogate) mg/kg - 0.16 0.15 40 - 130 104 P Pestidides In Soll Image Number Farameter Units Lexhod: ME-(AU)-(EN V)AN ample Number Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Chlorpyrifios Ethyl) mg/kg 0.5 1.6 2 60 - 140 91 Diazion (Dimpylate) mg/kg 0.5 1.6 2 60 - 140 93 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 93 Ethion mg/kg 0.5 1.6 2 60 - 140 114 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.5 0.5 40 - 130 112 Mt Polynuclear Aromatic Hydrocarbory Name mg/kg 0.1 4.3 4 60 - 140 100 <td></td> <td>Dieldrin</td> <td>mg/kg</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>60 - 140</td> <td>104</td>		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	104
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) mg/kg - 0.16 0.15 40 - 130 104 P Pesticides in Soll Method: ME-(AU)-(EI/V)AN ample Number Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.8 2 60 - 140 93 Diazinon (Dimpylate) mg/kg 0.5 1.9 2 60 - 140 93 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 93 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 93 Dichlorvos mg/kg 0.5 0.5 40 - 130 102 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.6 0.5 40 - 130 102 Mthoditer Artomatic Hydrocarbors) In Soll mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.3 4		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	104
P Pesticides in Soli Method: ME-(AU)-jENVIAN ample Number Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.8 2 60 - 140 93 Diazion (Dimpylate) mg/kg 0.5 1.9 2 60 - 140 93 Dichlorvos mg/kg 0.5 1.6 2 60 - 140 93 Surrogates 2-filorobiphenyl (Surrogate) mg/kg 0.5 1.6 2 60 - 140 114 Surogates 2-filorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 1012 VH (Polynuclear Aromatic Hydrocarbors) in Soli mg/kg - 0.6 0.5 40 - 130 1012 Surogates Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.3 4 60 - 140 106 Phenanthrene mg/kg 0.1 </td <td></td> <td>p,p'-DDT</td> <td>mg/kg</td> <td>0.1</td> <td>0.2</td> <td>0.2</td> <td>60 - 140</td> <td>79</td>		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	79
ample Number Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Chiorpyrifos (Chiorpyrifos Ethyl) mg/kg 0.2 1.8 2 60 - 140 91 Diazinon (Dimpylate) mg/kg 0.5 1.9 2 60 - 140 93 Dichorvos mg/kg 0.5 1.6 2 60 - 140 114 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 2.3 2 60 - 140 114 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 Ht (Polynuclear Aromatic Hydrocarbors) in Soit method: ME-(AU)-(ENV)AN ample Number Parameter Units LOR Result Expected Criteria % Recovery 20551.002 Naphtalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthy	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	40 - 130	104
B273651.002 Chlorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 1.8 2 60-140 91 Diazinon (Dimpylate) mg/kg 0.5 1.9 2 60-140 93 Dichlorvos mg/kg 0.5 1.6 2 60-140 93 Ethion mg/kg 0.5 1.6 2 60-140 79 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg 0.2 2.3 2 60-140 114 Murphenyl (Surrogate) mg/kg 0.2 0.5 0.5 40-130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40-130 112 H (Polynuclear Aromatic Hydrocarbors) In Sol mg/kg - 0.6 0.5 40-130 112 ample Number Parameter Parameter Units LOR Result Expected Critoria % Recovery 5273651.002 Naphthalene mg/kg 0.1 4.4 4 60-140 103	P Pesticides in Soil					N	Nethod: ME-(A	U)-[ENV]AN4
Diazinon (Dimyklat) mg/kg 0.5 1.9 2 60 - 140 93 Dicklorvos mg/kg 0.5 1.6 2 60 - 140 79 Ethion mg/kg 0.2 2.3 2 60 - 140 114 Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 WH (Polynuclear Aromatic Hydrocarbons) in Soll mg/kg 0.1 4.3 4 60 - 140 107 B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.4 4 60 - 140 106 Acenaphthylene mg/kg 0.1 4.1 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.2 4	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
Dichlorvos mg/kg 0.5 1.6 2 60 - 140 79 Ethion mg/kg 0.2 2.3 2 60 - 140 114 Surogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 H (Polynuclear Aromatic Hydrocarbors) in Soil mg/kg - 0.6 0.5 40 - 130 112 ample Number Parameter Vitits LOR Result Expected Criteria % Recovery 8273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1	LB273651.002	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	91
Ethion mg/kg 0.2 2.3 2 60 - 140 114 Surogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 H (Polynuclear Aromatic Hydrocarbos) in Soil mg/kg 0.1 4.3 4 60 - 140 107 ample Number Parameter Maphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.4 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.1 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 106 Phenen mg/kg 0.1 4.4		Diazinon (Dimpylate)	mg/kg	0.5	1.9	2	60 - 140	93
Surrogates 2-fluorobiphenyl (Surrogate) mg/kg - 0.5 0.5 40 - 130 102 d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 Ht (Polynuclear Aromatic Hydrocarbox) in Soil wethod: ME-(AU)-[ENV]AN LOR Result Expected Criteria % Recovery B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 110 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.2 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.4 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 106 Pyrene mg/kg 0.1		Dichlorvos	mg/kg	0.5	1.6	2	60 - 140	79
d14-p-terphenyl (Surrogate) mg/kg - 0.6 0.5 40 - 130 112 Ht (Polynuclear Aromatic Hydrocarbos) in Soil wethod: ME-(AU)-[ENV]AN ample Number Parameter LOR Result Expected Criteria % Recovery B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 110 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 110 Acenaphthylene mg/kg 0.1 4.1 4 60 - 140 100 Phenanthrene mg/kg 0.1 4.2 4 60 - 140 100 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 100 Pyrene mg/kg 0.1 4.2 4 60 - 140 100 Hubber mg/kg 0.1 4.2 4 60 - 140 100 Hubber mg/kg 0.1 4.2 4 60 - 140 100 Hubber mg/kg 0.1		Ethion	mg/kg	0.2	2.3	2	60 - 140	114
Method: ME-(AU)-[ENV]AN ample Number Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 110 Acenaphthene mg/kg 0.1 4.4 4 60 - 140 108 Phenanthrene mg/kg 0.1 4.1 4 60 - 140 103 Anthracene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.2 4 60 - 140 103 Pyrene mg/kg 0.1 4.2 4 60 - 140 106	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
Parameter Units LOR Result Expected Criteria % Recovery B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 110 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.1 4 60 - 140 103 Anthracene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.2 4 60 - 140 106 Pyrene mg/kg 0.1 4.4 4 60 - 140 106		d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	112
B273651.002 Naphthalene mg/kg 0.1 4.3 4 60 - 140 107 Acenaphthylene mg/kg 0.1 4.4 4 60 - 140 110 Acenaphthylene mg/kg 0.1 4.2 4 60 - 140 106 Phenanthrene mg/kg 0.1 4.1 4 60 - 140 103 Anthracene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.2 4 60 - 140 106 Pyrene mg/kg 0.1 4.2 4 60 - 140 106	AH (Polynuclear Aromatic Hydr	ocarbons) in Soil				N	vethod: ME-(A	U)-[ENV]AN4
Acenaphthylenemg/kg0.14.4460 - 140110Acenaphthenemg/kg0.14.2460 - 140106Phenanthrenemg/kg0.14.1460 - 140103Anthracenemg/kg0.14.2460 - 140106Fluoranthenemg/kg0.14.4460 - 140106Pyrenemg/kg0.14.4460 - 140109	Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
Acenaphthenemg/kg0.14.2460 - 140106Phenanthrenemg/kg0.14.1460 - 140103Anthracenemg/kg0.14.2460 - 140106Fluoranthenemg/kg0.14.4460 - 140109Pyrenemg/kg0.14.2460 - 140105	LB273651.002	Naphthalene	mg/kg	0.1	4.3	4	60 - 140	107
Phenanthrene mg/kg 0.1 4.1 4 60 - 140 103 Anthracene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.2 4 60 - 140 109		Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	110
Anthracene mg/kg 0.1 4.2 4 60 - 140 106 Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.2 4 60 - 140 109		Acenaphthene	mg/kg	0.1	4.2	4	60 - 140	106
Fluoranthene mg/kg 0.1 4.4 4 60 - 140 109 Pyrene mg/kg 0.1 4.2 4 60 - 140 105		Phenanthrene	mg/kg	0.1	4.1	4	60 - 140	103
Pyrene mg/kg 0.1 4.2 4 60 - 140 105		Anthracene	mg/kg	0.1	4.2	4	60 - 140	106
		Fluoranthene	mg/kg	0.1	4.4	4	60 - 140	109
Benzo(a)pyrene mg/kg 0.1 4.0 4 60 - 140 101		Pyrene	mg/kg	0.1	4.2	4	60 - 140	105
		Benzo(a)pyrene	mg/kg	0.1	4.0	4	60 - 140	101

	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	112
PCBs in Soil					N	lethod: ME-(A	U)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB273651.002	Arochlor 1260	mg/kg	0.2	0.5	0.4	60 - 140	126

mg/kg

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Surrogates

d5-nitrobenzene (Surrogate)

Total Recoverable	Elements in Soil/V	aste Solids/Materials by ICPOES					Method:	ME-(AU)-[ENV	JAN040/AN320
Sample Number		Parameter	ι	Units	LOR	Result	Expected	Criteria %	Recovery %
LB273657.002		Arsenic, As	mg	g/kg	1	360	318.22	80 - 120	114
		Cadmium, Cd	mg	g/kg	0.3	4.7	4.81	70 - 130	98
		Chromium, Cr	mg	g/kg	0.5	39	38.31	80 - 120	102
		Copper, Cu	mg	g/kg	0.5	320	290	80 - 120	112
		Nickel, Ni	mg	g/kg	0.5	190	187	80 - 120	100
		Lead, Pb	mg	g/kg	1	93	89.9	80 - 120	104
		Zinc, Zn	mg	g/kg	2	280	273	80 - 120	102
TRH (Total Recove	rable Hydrocarboi	ns) in Soll					N	lethod: ME-(Al	J)-[ENV]AN403
Sample Number		Parameter	ι	Units	LOR	Result	Expected	Criteria %	Recovery %
LB273651.002		TRH C10-C14	mg	g/kg	20	44	40	60 - 140	111
		TRH C15-C28	mg	g/kg	45	46	40	60 - 140	115
		TRH C29-C36	mg	g/kg	45	<45	40	60 - 140	85
	TRH F Bands	TRH >C10-C16	mg	g/kg	25	46	40	60 - 140	115
		TRH >C16-C34 (F3)	mg	g/kg	90	<90	40	60 - 140	109
		TRH >C34-C40 (F4)	mg	g/kg	120	<120	20	60 - 140	78
VOC's in Soil							N	lethod: ME-(Al	J)-[ENV]AN433

Sample Number

Page 9 of 14

40 - 130

128

0.6

0.5

VPH F Bands

TRH C6-C10 minus BTEX (F1)

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Number Result Expected Criteria % Recovery % Parameter Units LOR LB273653.002 60 - 140 Monocyclic 0.1 3.7 Benzene mg/kg 5 73 Aromatic Toluene mg/kg 0.1 4.3 5 60 - 140 87 Ethylbenzene 0.1 4.5 5 60 - 140 89 mg/kg m/p-xylene 0.2 8.6 10 60 - 140 86 mg/kg o-xylene mg/kg 0.1 47 5 60 - 140 95 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 9.8 10 70 - 130 98 70 - 130 10.0 100 d8-toluene (Surrogate) 10 mg/kg Bromofluorobenzene (Surrogate) mg/kg 9.2 10 70 - 130 92 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB273653.002 TRH C6-C10 mg/kg 25 69 92.5 60 - 140 74 TRH C6-C9 mg/kg 20 59 80 60 - 140 74 d4-1,2-dichloroethane (Surrogate) 70 - 130 98 Surrogates 9.8 10 mg/kg -Bromofluorobenzene (Surrogate) 9.2 10 70 - 130 92 mg/kg

mg/kg

25

43

62.5

60 - 140

69

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Mett	nod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE244108.001	LB273661.004	Mercury	mg/kg	0.05	0.23	0.06	0.2	85

OC Pesticides in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE244108.001	LB273651.004		Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane (gamma BHC)	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	90
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	82
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	91
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDE*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	92
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	96
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			o,p'-DDD*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT*	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	82
			Endrin ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
			Total OC VIC EPA	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.13	0.13	-	88
Bs in Soil							Mett	nod: ME-(AL)-[ENV]AN42
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery

651.004	Arochlor 1016 Arochlor 1221	mg/kg	0.2	<0.2	-0.0		1
	Araphler 1221			-0.2	<0.2	-	-
		mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	103
	Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
	Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
	Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
Surrogates	TCMX (Surrogate)	mg/kg	-	0	0	-	89
nts in Soil/Waste Solids/Materi	als by ICPOES				Method: ME	-(AU)-[ENV]	AN040/AN320
le Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
	ts in Soil/Waste Solids/Materi	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Surrogates TCMX (Surrogate) ts in Soil/Waste Solids/Materials by ICPOES	Arochlor 1242 mg/kg Arochlor 1248 mg/kg Arochlor 1248 mg/kg Arochlor 1254 mg/kg Arochlor 1260 mg/kg Arochlor 1262 mg/kg Arochlor 1262 mg/kg Total PCBs (Arochlors) mg/kg Surrogates TCMX (Surrogate) mg/kg	Arochlor 1242 mg/kg 0.2 Arochlor 1248 mg/kg 0.2 Arochlor 1254 mg/kg 0.2 Arochlor 1254 mg/kg 0.2 Arochlor 1260 mg/kg 0.2 Arochlor 1262 mg/kg 0.2 Arochlor 1268 mg/kg 0.2 Total PCBs (Arochlors) mg/kg 1 Surrogates TCMX (Surrogate) mg/kg - ts in Soll/Waste Solids/Materials by ICPOES UCPOES UCPOES	Arochlor 1242 mg/kg 0.2 <0.2	Arochlor 1242 mg/kg 0.2 <0.2	Arochlor 1242 mg/kg 0.2 <0.2

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE244108.001	LB273657.004	Arsenic, As	mg/kg	1	55	2	50	104
		Cadmium, Cd	mg/kg	0.3	48	<0.3	50	96
		Chromium, Cr	mg/kg	0.5	55	4.7	50	101
		Copper, Cu	mg/kg	0.5	55	5.3	50	99
		Nickel, Ni	mg/kg	0.5	49	1.1	50	96
		Lead, Pb	mg/kg	1	93	44	50	99
		Zinc, Zn	mg/kg	2	120	39	50	166

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

RH (Total Reco	verable Hydrocarbo	ns) in Soil					Mett	od: ME-(AL	J)-[ENV]AN40
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE244108.001	LB273651.004		TRH C10-C14	mg/kg	20	43	<20	40	96
			TRH C15-C28	mg/kg	45	45	<45	40	96
			TRH C29-C36	mg/kg	45	<45	<45	40	76
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F	TRH >C10-C16	mg/kg	25	44	<25	40	97
		Bands	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	44	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	82
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
OC's in Soil							Mett	od: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE244108.001	LB273653.004	Monocyclic	Benzene	mg/kg	0.1	3.4	<0.1	5	69
022 14100.001		Aromatic	Toluene	mg/kg	0.1	3.9	<0.1	5	77
			Ethylbenzene	mg/kg	0.1	4.0	<0.1	5	81
			m/p-xylene	mg/kg	0.2	8.0	<0.2	10	79
			o-xylene	mg/kg	0.1	4.5	<0.1	5	89
		Polycyclic	Naphthalene (VOC)*	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	8.6	10	93
			d8-toluene (Surrogate)	mg/kg	-	8.0	9.1	10	80
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	8.9	10	83
		Totals	Total BTEX*	mg/kg	0.6	24	<0.6	-	-
			Total Xylenes*	mg/kg	0.3	12	<0.3	-	-
/olatile Petroleu	m Hydrocarbons in S	Soil					Mett	od: ME-(AU	J)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE244108.001	LB273653.004		TRH C6-C10	mg/kg	25	110	<25	92.5	120
			TRH C6-C9	mg/kg	20	96	<20	80	118
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.3	8.6	10	93
			d8-toluene (Surrogate)	mg/kg	-	8.0	9.1	10	80
			Bromofluorobenzene (Surrogate)	mg/kg	-	8.3	8.9	-	83
		VPH F	Benzene (F0)	mg/kg	0.1	3.4	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	88	<25	62.5	139 ④

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS EHS Sydney COC SE244204

	FOUNDAT EARTH SCIENCES	TION						Ch	ain o	f Cust	ody I	Reco	rd					
Client D	etails:		Foundation E PO Box 4405 email: ben@ michael@fou	, East Gos foundatio	ford NSV nes.com	.au	ofoundatio	mes.com.au		Project N	/lanager:		Michael	Silk		Project #: E3008		
			ph: +61466 3							Sampled	By:		RW			Project Name: Rutherford	d	
Delivery	Details:		SGS Laborato							Purchase	e Order #	:	N/A			Quote #:		
	And a star		Unit 16, 33 N email: au.san ph: +612 859	nplerecei			NSW 2015			Page #:			1			Turnaround: Standard		
		4	-										Analyte	s	··			Sample
#	Sample ID	Depth	Date Sampled	Matrix	ph	CEC	%CLAY	Heavy Metals	TRH	BTEXN	РАН	ос	РСВ	OPP	Asbestos ID	РН	Suites	Comments
1	SS1	-	07.03.2023	Soil				X	x	X	X	x	x	x			CL17	Кеер
		the state of										8				36		
				· .					-									
Specia	Directions ar	nd Coments														1 1	1	
Relinqui	ished by					RW			Receive	d By		141	Bar	son				
Signatur	re			-		RW			Signatu	ire		1		- (1		
Date				· · · · ·	0	8.03.202	23		Date			8.	3:2)	2	253			

- - -

10

. . ..

SAMPLE RECEIPT ADVICE

LIENT DETAIL	5			NILS				
ntact	Ben Buckley		Manager	Huong Crawford				
ent	FOUNDATION EARTH SCIE	ENCES PTY LTD	Laboratory	SGS Alexandria Environmental				
dress	UNIT 119/14 LOYALTY ROAD NORTH ROCKS NSW 2151		Address	Unit 16, 33 Maddox St Alexandria NSW 2015				
ephone	(Not specified)		Telephone	+61 2 8594 0400				
csimile	(Not specified)		Facsimile	+61 2 8594 0499				
nail	ben@foundationes.com.au		Email au.environmental.sydney@sgs.com					
oject	E3008 Rutherford		Samples Received	Wed 8/3/2023				
der Number			Report Due	Wed 15/3/2023				
mples	1		SGS Reference	SE244204				
ase quote S	n that 1 sample was received o GS reference SE244204 when ounts by matrix			ple integrity upon receipt.	5/3/2023. 8/3/2023			
	eceived in good order	Yes		d without headspace	Yes			
	mperature upon receipt	11.2C	Turnaround time		Standard			
Oumpic oc		Ice Bricks						
Iess otherwis	ooling method se instructed, water and bulk sa		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			
	-		month from date of report, and	d soil samples will be held t	for two months.			

This document is issued by the Company under its General Conditions of Service accessible at www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

SAMPLE RECEIPT ADVICE

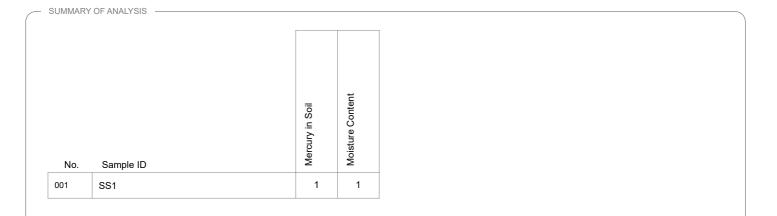
CLIENT DETAILS

Client FOUNDATION EARTH SCIENCES PTY LTD

Project E3008 Rutherford

- SUMMARY	OF ANALYSIS								
		ides in Soil	ides in Soil	(Polynuclear Aromatic ocarbons) in Soil	Soil	Recoverable ents in Soil/Waste	l Recoverable ons) in Soil	Soil	Petroleum trbons in Soil
No.	Sample ID	OC Pesticides	OP Pesticides	PAH (Polynucle Hydrocarbons)	PCBs in S	Total Reco Elements i	TRH (Total Rec Hydrocarbons)	VOC's in S	Volatile Petrol Hydrocarbons
001	SS1	30	14	26	11	7	10	11	7

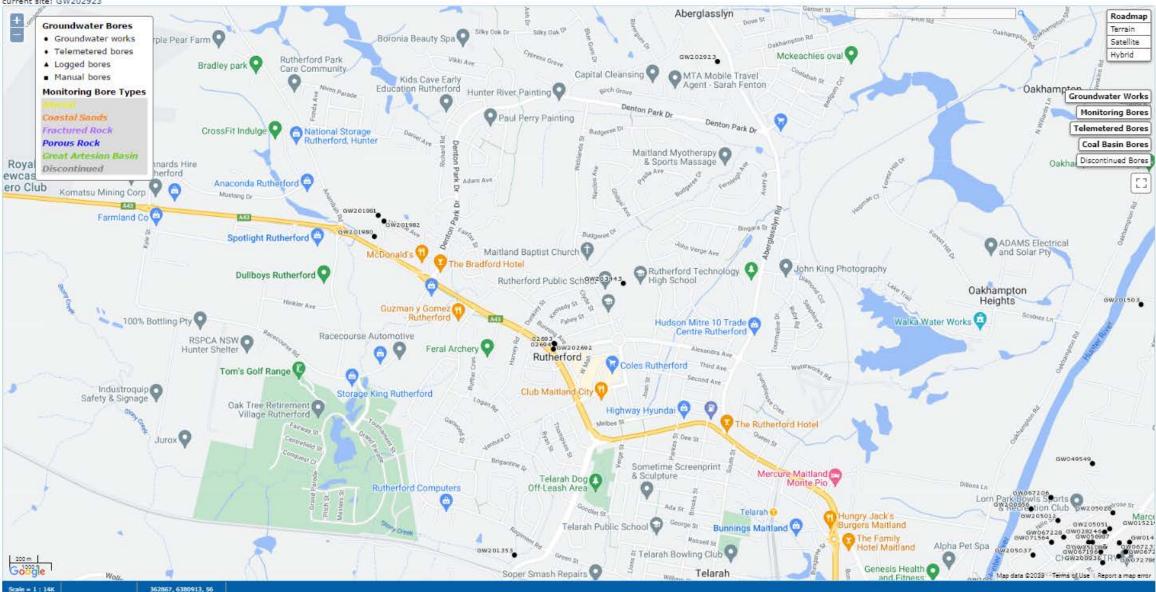
CONTINUED OVERLEAF



SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client FOUNDATION EARTH SCIENCES PTY LTD


Project E3008 Rutherford

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

APPENDIX I: DPI (OFFICE OF WATER) DATABASE RECORDS

current site: GW202923

GW201353

Licence:

Licence Status:

Authorised Purpose(s): Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Owner Type: Private

Commenced Date: Completion Date: 03/12/2009

Contractor Name: Total Drilling Driller: Christopher David Kiernan

Assistant Driller: Stuart North

Property: GWMA: GW Zone:

Site Details

Site Chosen By:

	County Form A: NORTHUMBERLAND Licensed:	ParishCadastreGOSFO22//1170078
Region: 20 - Hunter	CMA Map: 9232-4S	
River Basin: 210 - HUNTER RIVER Area/District:	Grid Zone:	Scale:
Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown	Northing: 6378081.000 Easting: 361537.000	Latitude: 32°43'35.0"S Longitude: 151°31'20.6"E
GS Map: -	MGA Zone: 56	Coordinate Source: GPS - Global

Standing Water Level (m):

Salinity Description:

Yield (L/s):

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		To (m)		Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	6.20	150			Auger - Solid Flight
1		Annulus	Concrete	0.00	0.30	150	50		PL:Poured/Shovelled
1		Annulus	Bentonite	0.30	3.00	150	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	3.00	6.20	150	50		Graded, PL:Poured/Shovelled
1	1	Casing	Pvc Class 18	0.00	6.20	50	44		Seated on Bottom, Screwed
1	1	Opening	Slots - Horizontal	4.70	6.20	50			Mechanically Slotted, PVC Class 18, Screwed, SL: 45.0mm, A: 6.00mm

Final Depth: 6.20 m Drilled Depth: 6.20 m

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	Yield (L/s)	Hole Depth (m)	 Salinity (mg/L)
4.20	6.20	2.00	Unknown				

Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00	1.50	1.50	Sandy Clay, grey, fine	Sandy Clay	
1.50	6.20	4.70	Sandy Clay, grey yellow, fine	Sandy Clay	

Remarks

03/12/2009: Form A Remarks:

Nat Carling, 30-Mar-2012; GPS provided by the driller. No completion date provided, taken from driller's signature on the form.

*** End of GW201353 ***

GW201982

Licence:

Licence Status:

Authorised Purpose(s): Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Owner Type: Private

Commenced Date: Completion Date: 07/10/2008

Contractor Name: BRIAN ATKINS DRILLING Driller: Brian Richard Atkins

Assistant Driller: D Dudley

Property: GWMA: GW Zone:

Site Details

Site Chosen By:

	County Form A: NORTHUMBERLAND Licensed:	ParishCadastreGOSFO611//86720		
Region : 20 - Hunter	CMA Map: 9232-4S			
River Basin: 210 - HUNTER RIVER Area/District:	Grid Zone:	Scale:		
Elevation: 0.00 m (A.H.D.) evation Source: Unknown	Northing: 6380163.000 Easting: 360688.000		atitude: 32°42'27.0"S gitude: 151°30'49.1"E	
GS Map: -	MGA Zone: 56	Coordinate	Source: GPS - Global	

Construction

Ele

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		То		Inside	Interval	Details
				(m)	(m)	Diameter (mm)	Diameter (mm)		
		Hole	Hole	0.00	9.40	<u> </u>	<u>` /</u>		Auger - Solid Flight
		пое	пое	0.00	9.40	100			Auger - Soliu Flight
1		Annulus	Waterworn/Rounded	1.00	5.20	100	60		Graded, PL:Poured/Shovelled
1		Annulus	Bentonite	5.20	5.70	100	60		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	5.70	9.40	100	60		Graded, PL:Poured/Shovelled
1	1	Casing	Pvc Class 18	0.00	6.40	60	50		Seated on Bottom, Screwed
1	1	Opening	Slots	6.40	9.40	60		0	Mechanically Slotted, PVC Class 18, Screwed

Water Bearing Zones

file:///G/...20E3999/E3008%20Rutherford/To%20be%20Reviewed%20-%20PSI/Appendix%20I%20-%20DPI%20Records/GW201982.htm[5/07/2023 12:29:19 PM]

Final Depth: 9.40 m Drilled Depth: 9.40 m

Standing Water Level (m): 8.700 Salinity Description: Yield (L/s):

- 1	-		Thickness (m)	51.5	S.W.L. (m)	D.D.L. (m)	(L/s)	 Duration (hr)	Salinity (mg/L)
	8.00	8.20	0.20	Unknown	9.70				

Drillers Log

From (m)	-	Thickness Drillers Description (m)		Geological Material	Comments
0.00	0.20	0.20	Topsoil; Silty Clay, medium plasticity, brown	Topsoil	
0.20	9.40	9.20	Clay; medium to high plasticity, brown	Clay	

Remarks

07/10/2008: Form A Remarks: Nat Carling, 17-May-2012; GPS provided by driller/client.

*** End of GW201982 ***

GW202693

Licence:

Licence Status:

Authorised Purpose(s): Intended Purpose(s): MONITORING BORE

Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Owner Type: Private

Commenced Date: Completion Date: 16/08/2011

Contractor Name: Groundtruth Pty Ltd Driller: Simon Carl Lott Assistant Driller: Hayden Hopley

> Property: GWMA: GW Zone:

Site Details

Site Chosen By:

	County Form A: NORTHUMBERLAND Licensed:	ParishCadastreGOSFO2//517903
Region: 20 - Hunter	CMA Map: 9232-4S	
River Basin: 210 - HUNTER RIVER Area/District:	Grid Zone:	Scale:
Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown	Northing: 6379408.000 Easting: 361767.000	Latitude: 32°42'52.0"S Longitude: 151°31'30.1"E
GS Map: -	MGA Zone: 56	Coordinate Source: GPS - Global

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		To (m)		Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	7.50	114			Auger - Solid Flight
1		Annulus	Cement	0.00	0.20	114	60		PL:Poured/Shovelled
1		Annulus	Bentonite	0.20	4.00	114	60		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	4.00	7.50	114	60		Graded, PL:Poured/Shovelled
1	1	Casing	Pvc Class 18	0.00	4.50	60	50		Seated on Bottom, Screwed
1	1	Opening	Slots - Horizontal	4.50	7.50	60			Mechanically Slotted, PVC Class 18, Screwed, SL: 40.0mm, A: 0.50mm

Final Depth: 7.50 m Drilled Depth: 7.50 m

Standing Water Level (m): Salinity Description: Yield (L/s):

Drillers Log

From (m)	-	Thickness (m)	Drillers Description	Geological Material	Comments
0.00	1.00		Silt, Clayey; brown, dry, trace plasticity, @ 1m trace gravel	Silt	
1.00	7.50		Silty Clay; brown, dry, high plasticity, @ 3m brown-grey, @ 4.5m grey, mottled red, @ 5m grey, @ 6.5m brown, @ 7.5m refu	Silty Clay	

Remarks

16/08/2011: Form A Remarks:

Nat Carling, 4-Nov-2013; GPS provided by the drillers.

*** End of GW202693 ***

GW202923

Licence: 20WA212682

Licence Status: CURRENT

Authorised Purpose(s): DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore Work Status: Supply Obtained Construct.Method: Down Hole Hamm Owner Type: Private

Commenced Date: Completion Date: 05/02/2014

Contractor Name: Ace drilling

Driller: Michael Patrick O'neill Assistant Driller: Scott Thompson

> Property: N/A 253 Aberglasslyn Rd ABERGLASSLYN 2320 NSW GWMA: -GW Zone: -

Site Details

Site Chosen By:

Final Depth: 78.00 m Drilled Depth: 78.00 m

Standing Water Level (m): 26.000

Salinity Description: Yield (L/s): 0.890

Cadastre County Parish Form A: NORTHUMBERLAND GOSFO 1012//1195152 Licensed: NORTHUMBERLAND GOSFORD Whole Lot 1012//1195152 Region: 20 - Hunter CMA Map: 9232-4S River Basin: 210 - HUNTER RIVER Grid Zone: Scale: Area/District: Northing: 6381188.000 Elevation: 0.00 m (A.H.D.) Latitude: 32°41'54.6"S Elevation Source: Unknown Easting: 362767.000 Longitude: 151°32'09.5"E

GS Map: -

MGA Zone: 56

Coordinate Source: GIS - Geogra

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	78.00	200			Down Hole Hammer
1	1	Casing	Pvc Class 9	-1.00	78.00	166	152		Seated on Bottom, Riveted and Glued, S: 67.00-78.00m
1	1	Opening	Slots - Vertical	-1.00	78.00	166		0	Sawn, PVC Class 9, Riveted and Glued, SL: 200.0mm,
									A: 2.00mm

Water Bearing Zones

file:///G/...20E3999/E3008%20Rutherford/To%20be%20Reviewed%20-%20PSI/Appendix%20I%20-%20DPI%20Records/GW202923.htm[5/07/2023 12:29:19 PM]

Т

Т

From (m)		Thickness (m)	51.4	S.W.L. (m)	 (L/s)	 	Salinity (mg/L)
43.00	44.00	1.00	Unknown	26.00	0.51		
66.00	67.00	1.00	Unknown		0.38		

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.00	1.00	Topsoil	Topsoil	
1.00	12.00	11.00	Sandstone, weathered	Sandstone	
12.00	15.00	3.00	Clay	Clay	
15.00	31.00	16.00	Shale	Shale	
31.00	35.00	4.00	Sandstone	Sandstone	
35.00	51.00	16.00	Conglomerate	Conglomerate	
51.00	78.00	27.00	Conglomerate & Quartz	Conglomerate	

Remarks

05/02/2014: Form A Remarks:

Nat Carling, 28-Mar-2014; No location was provided, based in the centre of the authorised land. Map sent to owner for true location. 24/06/2014: Nat Carling, 24-June-2014; Updated coordinates & cadastre, based on location map received from the owner.

*** End of GW202923 ***

GW203443

Licence: 20CA217091 Licence Status: CURRENT Authorised Purpose(s): IRRIGATION, STOCK Intended Purpose(s): STOCK, IRRIGATION Work Type: Bore Work Status: Supply Obtained Construct.Method: Down Hole Hamm Owner Type: School Commenced Date: Final Depth: 90.00 m Completion Date: 01/06/2015 Drilled Depth: 90.00 m Contractor Name: Ace drilling Driller: David Mayled Assistant Driller: Property: RUTHERFORD TECHNOLOGY HIGH Standing Water Level (m): AVERY STREET RUTHERFORD 2320 GWMA: -Salinity Description: GW Zone: -Yield (L/s): 3.125 Site Details Site Chosen By: Daviala

	County Form A: NORTHUMBERLAND Licensed: NORTHUMBERLAND	Parish GOSFO GOSFORTH	Cadastre 1//712760 Whole Lot 1//712760	
Region: 20 - Hunter	CMA Map: 9232-4S			
River Basin: 210 - HUNTER RIVER Area/District:	Grid Zone:	Scale:		
Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown	Northing: 6379795.000 Easting: 362196.000		e: 32°42'39.6"S e: 151°31'46.8"E	
GS Map: -	MGA Zone: 56	Coordinate Source	e: Unknown	

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From	То	Outside	Inside	Interval	Details
I				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	7.00	220			Down Hole Hammer
1		Hole	Hole	7.00	90.00	203			Down Hole Hammer
1	1	Casing	Pvc Class 9	0.00	90.00	150	132		Seated on Bottom, Riveted and Glued, S: 84.00-90.00m
1	1	Casing	Galvinised Steel	0.00	7.00	220	208		
1	1	Opening	Slots - Vertical	60.00	84.00	150		0	Casing - Hand Sawn Slot, PVC Class 9, Riveted and
									Glued, SL: 130.0mm, A: 2.00mm

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
							(m)		
60.0	0 61.00	1.00	Unknown			0.63			
65.0	0 67.00	2.00	Unknown			2.50			

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.00	1.00	Topsoil; dark	Topsoil	
1.00	3.00	2.00	Loam	Loam	
3.00	7.00	4.00	Clay; red	Clay	
7.00	90.00	83.00	Sandstone; light grey	Sandstone	

Remarks

01/06/2015: Nat Carling, 15-Sept-2015; No location was provided, based in the centre of the authorised land. Map sent to owner for true location. Adjusted hole diameter to fit casing protector.

*** End of GW203443 ***

APPENDIX J: BUREAU OF METEOROLOGY

Summary statistics for all years

Move mouse over highest daily rainfall to view dates.

APPENDIX K: SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

FOUNDATION EARTH SCIENCES

Photo 1

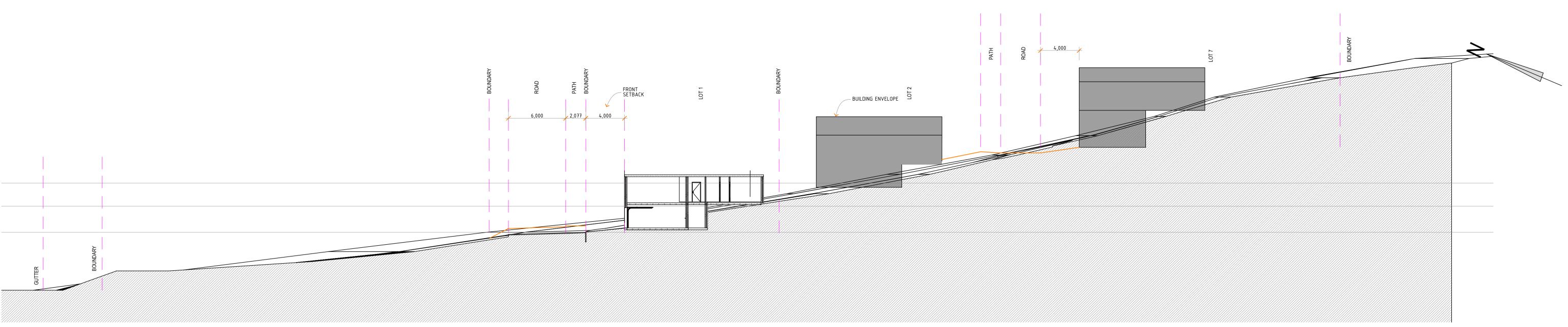
View of the site at BH1 looking south Inspected 07.03.2023

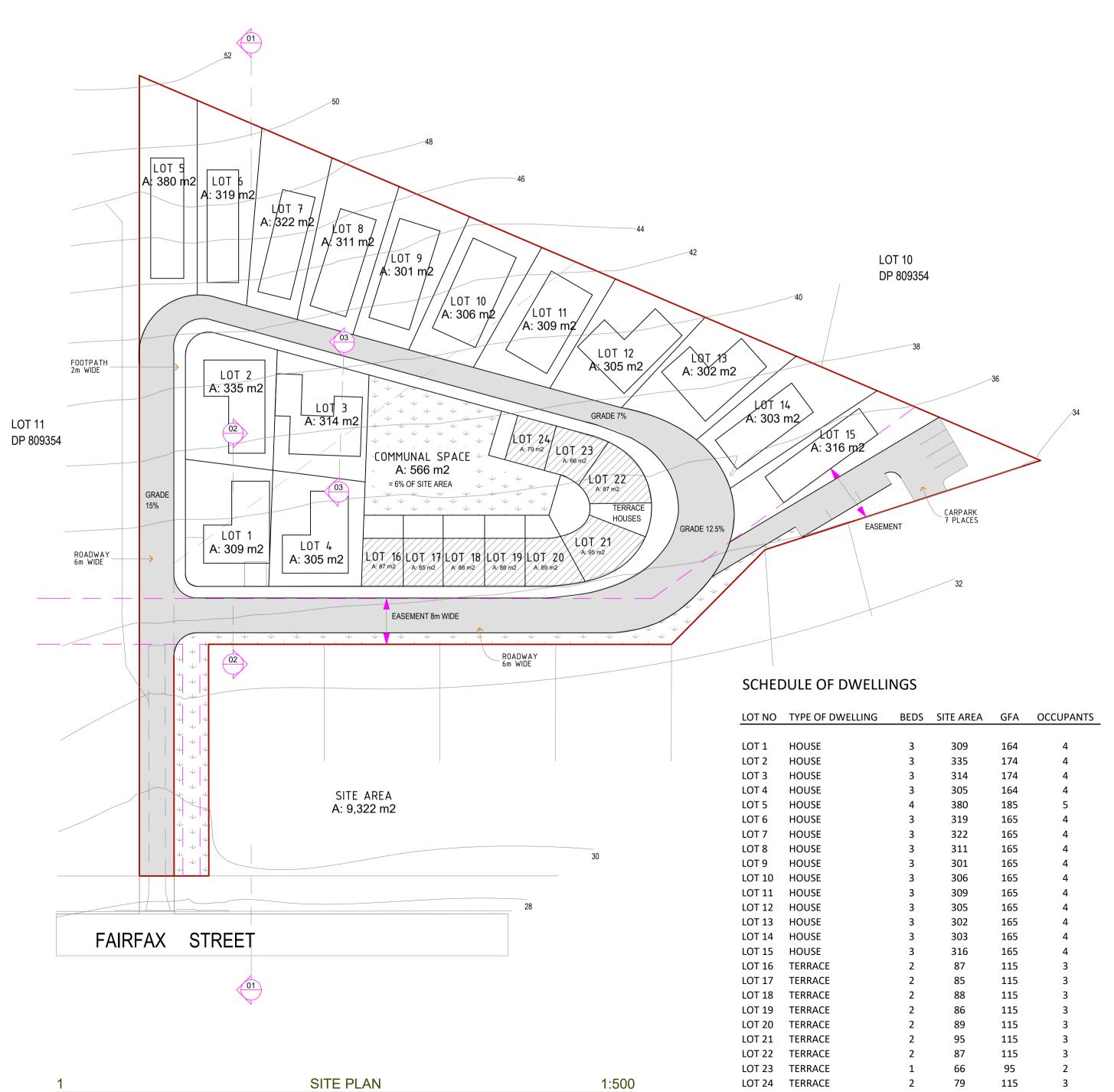
Photo 3

Looking south near BH3 Inspected 07.03.2023

Photo 5

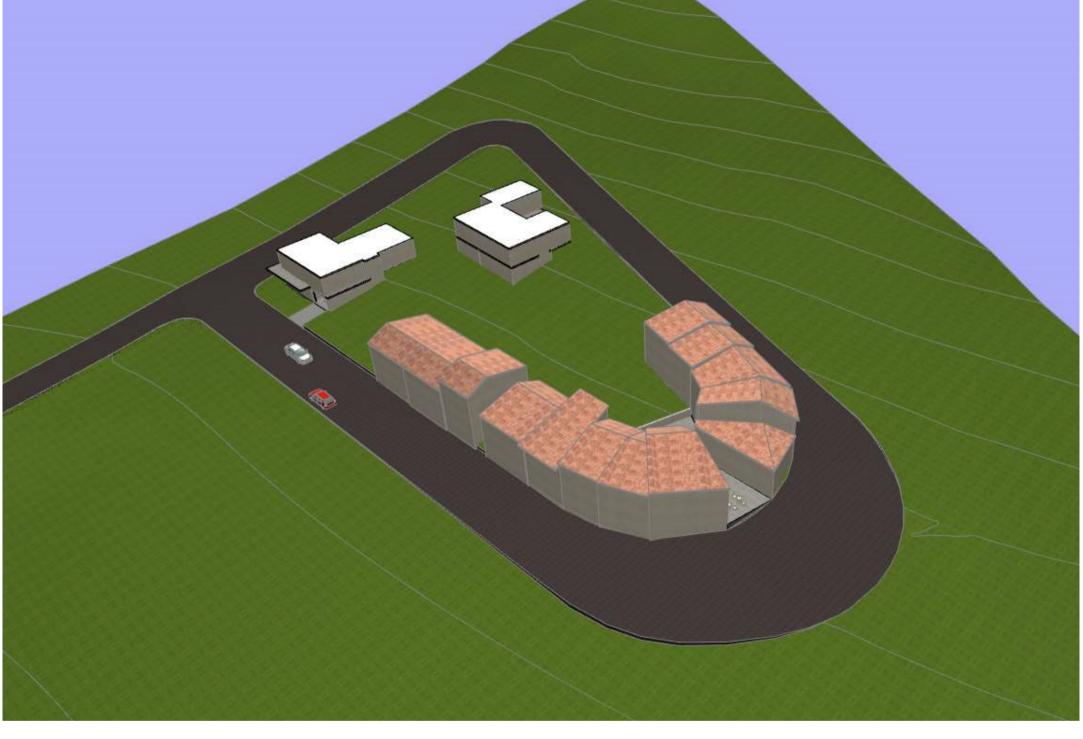
Looking south at BH10 Inspected 07.03.2023


View of the site at BH1 looking east Inspected 02.02.2023


Photo 4

Looking south near BH7 Inspected 07.03.2023

APPENDIX L: PROPOSED DEVELOPMENT PLANS



2

TOTALS

3

AERIAL VIEW 1

ING	BEDS	SITE AREA	GFA	OCCUPANTS
	3	309	164	4
	3	335	174	4
	3	314	174	4
	3	305	164	4
	4	380	185	5
	3	319	165	4
	3	322	165	4
	3	311	165	4
	3	301	165	4
	3	306	165	4
	3	309	165	4
	3	305	165	4
	3	302	165	4
	3	303	165	4
	3	316	165	4
	2	87	115	3
	2	85	115	3
	2	88	115	3
	2	86	115	3
	2	89	115	3
	2	95	115	3
	2	87	115	3
	1	66	95	2
	2	79	115	3
		5499	3526	87

1:142.86

MULTI DWELLING HOUSING 39-41 FAIRFAX STREET RUTHERFORD 2320

LOTS 10 & 11 DP 809354

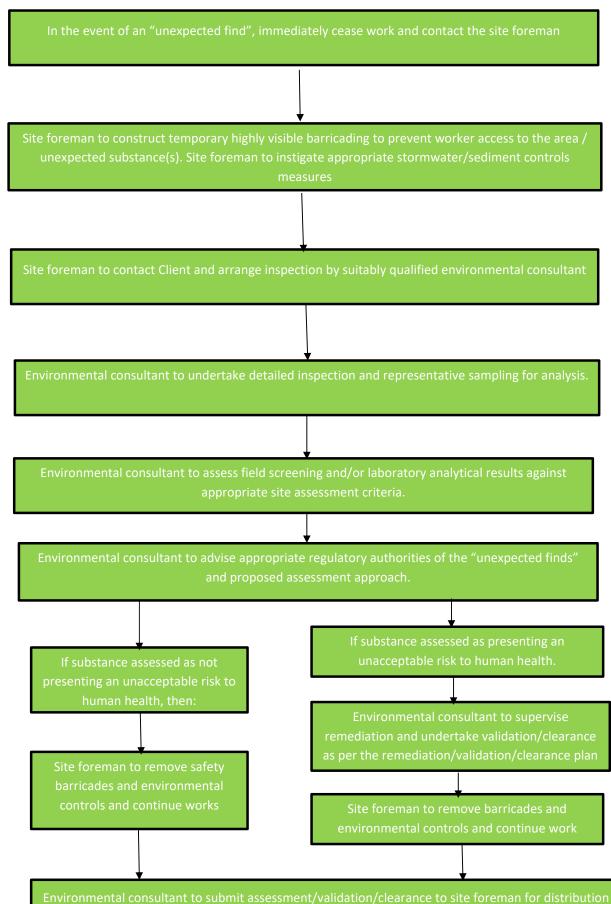
TBA

MORRELL ARCHITECTS 9 Marine View Newcastle NSW 2300 Australia

mobile: 0432566293 martin@morrellarchitects.com Martin Morrell Pty Limited ABN 62067732692 Nominated Architect: Martin Morrell 7932

·L·E·W·I·S· Engineering

ABN 91 051 427 484 2/74 PARK AVENUE KOTARA NSW 2289 Ph: (02)49693144 Email: lewis@leweng.com.au


SITE PLAN & SECTION

Scale: AS SHOWN	Date: 13 SEP 2022
Status: CONCEPT	Drawn by: MMA
Project No.:	Drawing No.: Amend.:
14222	01

14222

APPENDIX M: UNEXPECTED FINDS PROTOCOL

to Client and appropriate regulatory authoriti