

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

Project Description: Duplex SDA Housing
Site Address: 26 Pear Street, Gillieston Heights, NSW, 2321
Client: PNP Residential Constructions
Drawings: VA design studio, Oct 2023
Assessment Number: 240999
Assessment Date: 02/04/2024

DISCLAIMER: This report is based on specific project information supplied to Accelerate Sustainability Assessments Pty Ltd (ABN 81 625 027 778) at the time of publication. The subsequent results are specific to this data and shall become null and void due to any error, omission or misrepresentation of information. Where information has not been noted on the drawings nor supplied in writing, default values and worst-case assumptions have been applied accordingly. The results of this simulation and report are for regulatory compliance purposes only and do not reflect actual energy use and/or thermal performance.

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

Project Details	Address: Lot and Plan: Council:	26 Pear Street, Gillieston Heights, NSW, 2321 1336 DP1277104 Maitland City Council				
	Climate Zone: Description: Classification:	5 Duplex SDA Housing 3				
Result	The building complies with performance requirement J1P1 using assessment method J1V3 – Verification using a reference building.					
Construction Details and	Roof and ceiling					
Minimum Requirements	Roof colour	The solar absorptance of the upper surface of a roof must not be more than 0.475				
	R-Value	R3.0 (Total system value)				
		Example roof type: Metal roof with R3.5 ceiling batts or equivalent				
	Roof lights					
		Nil				
	Wall and Glazing					
	Glazing	Glazing must not exceed max total U-value of 7.00 and a max SHGC value of 0.81 (Total system value).				
	External walls	R1.0 (Total system value) as per table J1.5a, accounting for thermal bridging				
		Example Lightweight wall: Cladding with a non- reflective cavity to a steel frame with R1.5 batts or equivalent.				
	Floor construction					
	Ground floor slab	R1.71 (Total system value)				
		Nil insulation to concrete slab				
	Other					
		The building must also comply with the additional requirements in Specification 33.				
Assessor Details	Name: Accreditation: Signature:	Kevin Luu HERA 10259				

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

1.0 Introduction

The Australian Building Codes Board (ABCB) specifies minimum performance standards for the energy efficiency of buildings through the National Construction Code (NCC) 2022 - Volume One, Section J.

To enable flexibility of the architectural design of the building, a performance solution has been used to comply with the Performance Requirement – JIPI (Energy use).

The assessment method, J1V3 (Verification using a reference building), has been used and is an alternative solution for the building fabric only. As such, a proposed building with the proposed fabric has been modelled as part of this approach, to compare against the reference building services.

To meet the acceptance criteria, the annual Green House Gas (GHG) emissions of the proposed building must be less than the reference building services.

The proposed building must also maintain a Predicted Mean Vote (PMV) thermal comfort level between -1 and +1 across 95% of occupied floor area for at least 98% of the annual hours of operation.

The proposed building must also meet the additional requirements in Specification 33.

Speckel

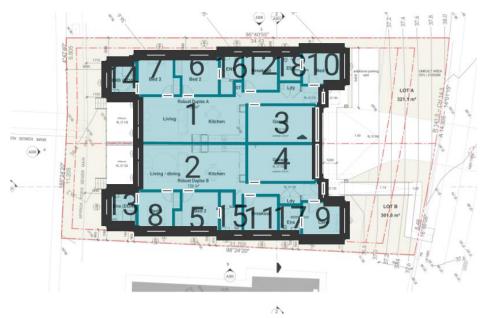
This project was modelled in Speckel, using EnergyPlus v22.2.0, meeting the ANSI/ASHRAE Standard 140 requirements for a building's thermal envelope and fabric test.

Speckel provides various calculations in line with the NCC 2022 - Volume One, Section J. These calculations are tested in line with all applicable NCC equations or NCC referenced primary or secondary documents, for them to represent an accurate performance solution against the Performance Requirement – JIP1 (Energy use).

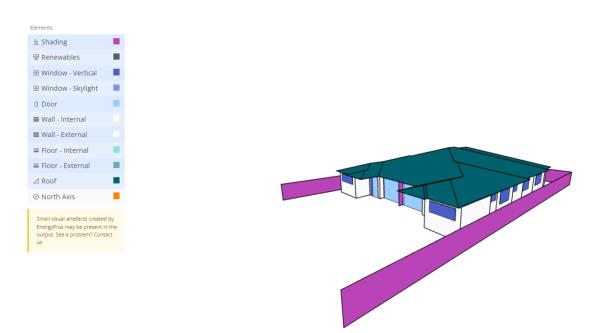
A performance solution must be shown to comply with the relevant performance requirements through one or a combination of assessment methods. Speckel is a valid assessment method by comparison with the Deemed-to-Satisfy (DTS) provisions of each relevant area.

Assumptions/Limitations

- The results of this simulation and report are for regulatory compliance purposes only and do not reflect actual energy use and/or thermal performance.
- Parts J3, J5, J6, J7, J8 and J9 are not part of this assessment.
- Specification 34 (Modelling parameters for JIV3), S34C1 (Scope), S34C2(Reference building) and S34C3 (Proposed building and reference building) have been used to form the basis of the method of assessment.
- S34C4 (Services proposed and reference building) is not part of this assessment, as the minimum performance requirements of the services are not included.
- To ensure the reference building can be calculated, windows are limited to a maximum of 99% window-to-wall ratio.
- When the simulated shading multipliers feature is enabled, each window is simulated in EnergyPlus twice, to compare a completely unshaded window, to a window affected by attached shading, building self-shading, and surrounding structures. The multiplier is based on the ratio of shaded versus unshaded annual average external incident solar radiation, limited between 0.0 and 1.0.


Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

2.0 Simulation and Analysis


2.1 Location & Climate

This project is located in Maitland.Visitors.Centre,NSW AUS. The climate file used in all simulations was AUS_NSW_Maitland.Visitors.Centre.957750_TMYx.2007-2021, sourced from Climate.OneBuilding, an online repository collated from public sources.

2.2 Building Envelope

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

2.3 Simulation Inputs

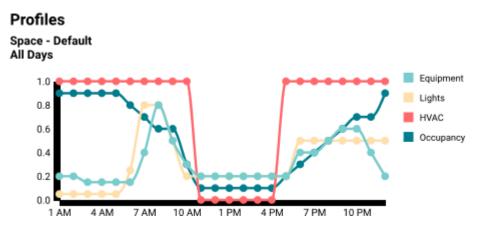


Figure 1: Occupancy and operation profiles from table S35C2b (Modelling profiles).

People, Lighting, Equipment, Infiltration & Thermostat				
Occupancy Density (m²/person)	11.0			
Clothing	Dynamic Clothing Model ASHRAE55			
Activity (W/person)	130 (as per table S35C2n)			
Air velocity (m/s)	0.1			
Lighting (W/m²)	5.0 (as per table J7D3a)			
Equipment (W/m²)	No load (as per table S35C2I)			
Infiltration on (ACH)	0.35			
Infiltration off (ACH)	0.70			

Table 1: Profile settings and inputs used as per S34C3 (Proposed and reference building), S34C4 (Services – proposed and reference building) and S35C2 (Modelling profiles).

Occupant density (m²/person), Lighting power density (W/m²) and Equipment density (W/m²) are stipulated in each thermal zone, subject to the function and purpose of the space. Internal heat gains for the Reference and Proposed Reference Building's occupant, lighting and equipment densities have been nominated as identical.

2.4 HVAC Details

As a fabric only assessment, air-condition equipment and mechanical ventilation rates for the reference and proposed building are identical. Minimum mechanical ventilation is required as per Part F6P3 (Outdoor air supply).

HVAC Details				
HVAC TypeVariable refrigerant flow (EnergyPlus HVAC				
	template)			
Cooling setpoint (°C)	24			
Heating setpoint (°C)	20			

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

2.5 Building fabric

2.5.1 Walls

Total System R-values of all walls include the effects of thermal bridging, which are calculated in accordance with AS/NZS 4859.2 and NZ 4214:2006 (as per J4D3 Thermal construction — General (5)) or are stated values.

For the purpose of the reference building, the wall total system R-value of the wall-glazing construction has been calculated in accordance with J4D6 (Walls and glazing) and Specification 37 (Calculation of U-Value and solar admittance).

2.5.2 Roofs

Total system R-values of all roofs include the effects of thermal bridging are calculated in accordance with AS/NZS 4859.2 and NZ 4214:2006, as per J4D3 (Thermal construction — General (5)) or are stated values.

For the purpose of the reference building, the roof total system R-value has been assumed in accordance with J4D4 (Roof and ceiling construction).

2.5.3 Floors

Total system R-values of all floors include the effects of thermal bridging are calculated in accordance with AS/NZS 4859.2, NZ 4214:2006 and Section 3.5 of CIBSE Guide A, as per J4D3 (Thermal construction — General (5)) or are stated values.

For the purpose of the reference building, the floor total system R-value has been assumed in accordance with J4D7 (Floors).

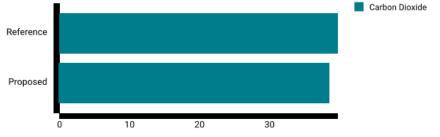
2.5.4 Windows

Total system U-values of all windows include the effects of thermal bridging at the frame, which are calculated in accordance with ISO 15099, as per J4D3 (Thermal construction — General (5)).

For the purpose of the reference building, the glazing total system U-value and solar admittance of the wall-glazing construction has been calculated in accordance with J4D6 (Walls and glazing) and Specification 37 (Calculation of U-Value and solar admittance).

Building Fabric	DTS Reference	JV3 Proposal		
Roof colour	The solar absorptance of the upper surface of a roof must not be more than 0.45 as per J4D4 (2)	0.475 solar absorptance		
Roof & ceiling R- value	R3.7 (Total system value) downwards heat flow in a climate zone 5 as per J4d4(1)	R3.2 (Total system value)		
Skylights	Nil			
Glazing	U-value of 5.80 and a max SHGC value of 0.77 (Total system value).	U-value of 6.60 and a max SHGC value of 0.80 (Total system value).		
External walls	R1.4 (Total system value) as per table J4D6(a), accounting for thermal bridging	R2.0 (Total system value), accounting for thermal bridging		
Concrete Slab	R2.0 (Total system value) as per table J4D7.	R0.30 Concrete slab		

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778


3.0 Results

3.1 Greenhouse Gas Emissions

Greenhouse gas emission factors are used according to NCC 2022 – Volume One, Specification 34 (Modelling parameters) - Table S34C3 Greenhouse gas emissions factors (kgCO2-e/GJ). In the case of this project, 236 kgCO2-e/GJ has been used for electricity only, based on the site location.

Building Emissions

To meet the acceptance criteria, annual Supplied Energy emissions must be less than **39.75** kgC02-e/m². Based on a treated floor area of 300.02 m², the simulated building achieved **38.62** kgC02-e/m², **meeting** the acceptance criteria.

Emissions (kgCO2-e/m²)

Greenhouse gas emission factors have been nominated as **236.00** kilogram / GJ for electricity , and **51.53** kilogram / GJ for natural gas.

3.2 Thermal Comfort Level

The Predicted Mean Vote (PMV) is the thermal perception of building occupants determined in accordance with ANSI/ASHRAE Standard 55.

The results below indicate thermal comfort levels where the PMV is between -1 and +1.

Thermal Comfort

To meet the acceptance criteria, ${\bf 95}$ % of total area across the assessed zones must meet the conditions:

- zone thermal comfort is between -1.0 and 1.0 PMV
- for at least 98 % of hours
- when above 20 % occupancy

A total area of 211.31 m^2 across 10 zones were assessed, where zones of 100.00 % area achieved the conditions, meeting the acceptance criteria.

Level	Zone	Area (m²)	Assessed (Hrs)	Pass (Hrs)	Ratio	Pass
1	1. Lot A Kitchen/Living/Dining/ Hallway	54.08	6205	6197	99.87	~
1	12. Lot A Breakout	11.36	6205	6205	100.00	~
1	11. Lot B Breakout	11.52	6205	6205	100.00	~
1	10. Lot A Bed 1	13.02	6205	6205	100.00	~
1	8. Lot B Bed 3	13.20	6205	6205	100.00	~
1	7. Lot A Bed 3	13.36	6205	6205	100.00	~
1	6. Lot A Bed 2	13.83	6205	6205	100.00	~
1	5. Lot B Bed 2	13.96	6205	6205	100.00	~
1	2. Lot B Kitchen/Living/Dining/ Hallway	53.81	6205	6099	98.29	~
1	9. Lot B Carer	13.18	6205	6205	100.00	~
					Pass	~

Phone: 07 3707 6650 Email: info@accsa.net.au A.B.N: 81 625 027 778

4.0 Conclusion

The assessment method J1V3 (Verification using a reference building), has been used to show compliance with performance requirement J1P1.

It has been determined that the annual GHG emissions of the proposed building are less than the GHG emissions of the reference building. Provided that the building fabric requirements for the proposed building are followed, the simulated building is predicted to produce 38.62 kgCO2-e/m² compared to the reference building which would produce 39.75 kgCO2-e/m².

A PMV of -1 to +1 has also been achieved across at least 95% of the floor area of all occupied zones for at least 98% of the annual hours of operation.