

559 ANAMBAH ROAD GOSFORTH

Transport Impact Assessment

30 AUGUST 2024

SCT Consulting acknowledges the traditional owners of the lands on which we work. We pay our respects to Elders past, present and emerging.

Quality Assurance

Project:	559 Anambah Road Gosforth					
Project Number:	SCT_00581					
Client:	Thirdi Anambah Pty Ltd	ACN:	661 880 619			
Prepared by:	SCT Consulting PTY. LTD. (SCT Consulting)	ABN:	53 612 624 058			

Information	Name	Position	Signature
Author:	Shawn Cen	Principal Consultant	Showelen
Reviewer:	Jonathan Busch	Associate Director	JDR
Authoriser:	Andy Yung	Director	Andrey

Version	Date	Details
1.0	30 July 2024	Draft report
2.0	26 August 2024	Updated draft report
3.0	29 August 2024	Final report
4.0	30 August 2024	Updated final report

© SCT Consulting PTY LTD (SCT Consulting)

SCT Consulting's work is intended solely for the use of the Client and the scope of work and associated responsibilities outlined in this document. SCT Consulting assumes no liability with respect to any reliance that the client places upon this document. Use of this document by a third party to inform decisions is the sole responsibility of that third party. Any decisions made or actions taken as a result of SCT Consulting's work shall be the responsibility of the parties directly involved in the decisions or actions. SCT Consulting may have been provided information by the client and other third parties to prepare this document which has not been verified. This document may be transmitted, reproduced or disseminated only in its entirety and in accordance with the above.

Contents

Exec	cutive	summary	/	i
	Back	ground		i
	The p	proposal		i
	Traffi	c impacts		i
	Conc	lusion		II
1.0	Intro	duction		1
	1.1	Backgrou	und	
	1.2	Purpose	of this report	1
	1.3	Report st	tructure	2
2.0	Exist	ing condit	tions	
	2.1	The site.		
	2.2	Road net	twork	
	2.3	Public tra	ansport	
	2.4	Active tra	ansport	5
	2.5	Intersecti	ion performance	6
		2.5.1	Traffic surveys	6
		2.5.2	Modelling	
		2.5.3	Intersection level of service definition	
		2.5.4	Intersection performance	7
3.0	The p	proposal		
	3.1	Proposed	d development	
	3.2	Street cro	oss-section	
	3.3	Proposed	d active transport	
	3.4	Proposed	d bus route	
4.0	Traffi	ic impact a	assessment	
	4.1	Trip gene	eration and distribution	
	4.2	Road net	twork impact	
		4.2.1	Intersection on New England Highway	
		4.2.2	Site Entry Road	
	4.3	Walking	and cycling	
	4.4	Public tra	ansport	
5.0	Conc	lusion		
Арр	əndix A	SIDR	A output	

Appendix B	TfNSW email correspondence

Executive Summary

Background

SCT Consulting has been engaged by Thirdi Anambah Pty Ltd to prepare a Traffic Impact Assessment for a proposed residential subdivision development application (DA) at 599 Anambah Road in the suburb of Gosforth, within the Maitland City Local Government Area.

The proposal

The proposed site covers a land area of approximately 66 hectares zoned R1 General Residential, which is located in the northernmost proportion of the Anambah Urban Release Area (URA). It is proposed that the site be subdivided for residential development, with associated roads and services including Stage 1 works and a concept master plan for full development. Stage 1 of the development seeks consent for 240 residential allotments and the full development will deliver up to 900 dwellings. The east-west and north-south sub-arterial roads form the higher-order roads in the subdivision master plan.

Access to the state road network would be via Anambah Road to New England Highway only, which permits all movements in and out.

The proposed cross-sections of the internal road network are designed according to Maitland City Council's Manual of Engineering Standards. The deviations are additional width for shared paths along watercourses and the edge of the subdivision. The carriageway is widened locally to satisfy bus movement.

Traffic impacts

As requested by TfNSW, and documented in correspondence dated 31 May 2024, the modelling assumptions have been confirmed as follows:

- 70% west and 30% east traffic distribution (A 50%:50% sensitivity analysis will be included at the request of TfNSW)
- A release rate of 300 lots per year in Lochinvar URA
- Three per cent p.a. growth on New England Highway in addition to development traffic from the Lochinvar URA
- Site completion year of 2028 and sensitivity test of 2038 (This will be carried out for 240 dwellings of Stage 1 and 900 dwellings of full development)
- Adoption of 0.71/0.78 veh/h (AM peak/PM peak) traffic generation rates for residential dwellings across the area.
- Based on the access strategy of the proposal, New England Highway / Anambah Road / Shipley Drive (roundabout) is considered for traffic modelling.

The modelling scenarios are summarised below.

Development scenario	Without background traffic growth	2028 with background growth	2038 with background growth	
Future year base	-	Yes	Yes	
With Stage 1 (240 lots)	Yes	Yes	Yes	
Full development (900 lots)	Yes	Yes	Yes	

The modelling confirms that the existing infrastructure will accommodate both the Stage 1 development and the full development scenario without any background traffic growth.

Existing infrastructure will cater for traffic growth generated by Stage 1 by 2028 (with background growth), without infrastructure upgrade. For the full development in 2028 (with background growth), an additional left turn lane for eastbound traffic would be required at the existing roundabout to maintain a satisfactory level of service (refer to **Figure 4-1**).

Without any infrastructure upgrade, the roundabout will fail in 2038 based on background growth alone (i.e. before the introduction of <u>any</u> additional traffic from the proposal). Hence, the roundabout needs to be upgraded by 2038 to respond to the significant background traffic growth on New England Highway including Lochinvar URA. These upgrades include a full signalisation at the Anambah Road intersection and additional lanes on New England Highway.

No further upgrade is required for Stage 1 development in 2038 (with background growth) due to the subject development's additional 240 lots. For full development (900 lots), traffic modelling indicates that additional upgrades are required at the Anambah Road intersection, such as additional lanes on the north approach and right turn lanes on the east approach (refer to **Figure 4-3**).

Given the complexities and uncertainty resulting from background growth and timing, along with multiple different Urban Release Areas, developments and landowners contributing to the need for upgrades, the exact timing and scope of any upgrades should be re-evaluated closer to the delivery dates and during each future subdivision application.

Conclusion

Due to background growth alone, the roundabout at the intersection of New England Highway / Anambah Road / Shipley Drive will fail by 2038, independent of any additional traffic resulting from the proposal. Conversely, without any background growth applied to the New England Highway corridor, the roundabout can accommodate all 900 lots under the proposal.

The study concludes that the impacts of the proposed development are at a level able to be accommodated by the existing and proposed infrastructure and that a Traffic Impact Assessment will be prepared for each Stage subsequent to Stage 1 to fully consider the impacts of actual traffic growth at that time.

1.0 Introduction

1.1 Background

SCT Consulting has been engaged by Thirdi Anambah Pty Ltd to prepare a Traffic Impact Assessment for a proposed subdivision development application (DA) at 599 Anambah Road Gosforth, in Maitland City Local Government Area (LGA).

As shown in **Figure 1-1**, the site is located in the northernmost portion of the Anambah Urban Release Area (URA). It is currently R1 General Residential zoned land, which is located around 10km to the northwest of Maitland City Centre and 5km to the New England Highway. The subdivision will deliver 900 residential lots covering a land area of about 66 hectares whereas Stage 1 (labelled in purple) is expected to deliver 240 lots in the east portion of the site including the access road with Anambah Road. This DA will therefore consider both the concept master plan for full development and the Stage 1 works.

Figure 1-1 Proposed master plan and staging

Source: Northrop, 2024

1.2 Purpose of this report

SCT Consulting has assessed traffic impacts to support the subdivision. The report includes the following:

- A review of existing conditions
- Traffic data collection during the weekday morning and afternoon peak periods for the intersection of Anambah Road / New England Highway
- Future vehicle trip generation from the proposed development and surrounding urban growth area and distribution of the trips to the surrounding road network based on preferred access strategies and travel patterns
- SIDRA intersection modelling for the scenarios requested by TfNSW
- Assessment of cumulative impacts on the road, active transport, and public transport network

- Evaluation of the consistency of the proposed road cross-sections as part of this DA with Council's guidelines.

1.3 Report structure

The report comprises the following sections:

- Section 2 describes the existing transport conditions for all modes of transport
- Section 3 describes the proposed development, including its access strategy and proposed road network
- Section 4 assesses the estimated trips generated, their distribution based on the preferred access strategy, and the likely traffic impacts associated with the additional trips
- Section 5 summarises the report and presents the conclusion.

2.0 Existing conditions

2.1 The site

The proposed development is located in the northernmost portion of Anambah URA at 559 Anambah Road, bounded to the east by Anambah Road (**Figure 2-1**). The site is predominantly rural land with small vegetation patches across the central and northern parts of the site.

Figure 2-1 Existing site aerial

Source: Nearmap, 2024

2.2 Road network

The road network in the vicinity of the site is shown in **Figure 2-2** where New England Highway is a classified State road and other roads are all Local roads. New England Highway connects to Maitland and through onto Newcastle to the east. To the west, it connects to Branxton. There are interchanges with the M15 Hunter Expressway via Allandale Road and Lovedale Road at Allandale.

Figure 2-2 Classified state and regional road network

Source: Transport for NSW, 2024

- New England Highway is a state road, classified as a primary road. It would provide the main access for residents to the site in all directions. It generally varies between one and two lanes with no on-street parking provided. Speed limit also varies from 40 and 50 km/h in urban areas and school zones to 90 km/h west of Lochinvar. The New England Highway provides key connections to the Hunter Expressway and Pacific Highway / Motorway.
- Anambah Road is a local rural road, which is the only existing road connected to the site. The speed limit is 100 km/h and one travel lane is available in each direction. No formal on-street parking is provided, however, in some locations, there is sufficient shoulder width for vehicles to park. No kerb or gutter is currently in place along the road. Anambah Road connects to the New England Highway at a dual-lane roundabout in Rutherford.
- River Road is a local two-lane road, providing access to the nearby suburb of Windella. The speed limit is 50 km/h and no on-street parking is provided, however, there would be space to park on the road shoulder at places along its length. The formed section of River Road is currently 1.3km in length and ends at a turnaround point to the north. River Road connects to the New England Highway with a priority (give-way) intersection. There is an unformed section of River Road from the northern extent of the formed section of River Road and the southern boundary of the Site.

2.3 Public transport

The closest bus stop is on Anambah Road before Cagney Road where Route 178 (Loop service Rutherford to Anambah Road) is running at 11 services per day. Other bus stops on New England Highway are 600m to the west of the Anambah Road roundabout where Routes 179 and 180 follow a similar route (Maitland and Stockland Green Hills). The frequency is approximately hourly from 8 am to 6 pm (**Figure 2-3**). Two school bus routes (2481 and 2482) are provided along Anambah Road.

Source: Transport for NSW, 2023

Lochinvar Station is 7km to the southwest of the site. There are no feeder bus routes to this station. Lochinvar Station is served by the Hunter Line, which has an approximately hourly frequency from 7am to 10pm. The Hunter Line connects Lochinvar to Newcastle Interchange and Scone.

2.4 Active transport

There are no dedicated active transport facilities located near the site. With a lack of footpaths along any local roads, pedestrians and cyclists are required to utilise road shoulders or the roadway if they need to walk or cycle.

The walking and cycling infrastructure along New England Highway is shown in Figure 2-4 and Figure 2-5.

 Petertian facility (footpath, signalised crossing, zeta)
 Parede paie

Figure 2-4 Walking and cycling infrastructure – Anambah Road/ New England Highway

---- Cyclist facility (on road cycle lane/wide shoulder)

Source: Nearmaps, SCT Consulting, 2024

There are shared paths on all legs of the New England Highway/ Anambah Road roundabout. There are wide shoulders along New England Highway that would be suitable for experienced cyclists.

Shared path

Cyclist facility (on road cycle lane/wide shoulder)

Source: Nearmaps, SCT Consulting, 2024

There is a footpath within the subdivision area to the south of the New England Highway with crossings on all legs of New England Highway/ Wyndella Road.

There are on-road cycle lanes on the eastern, western and southern approaches to New England Highway/ Wyndella Road. There are wide shoulders along New England Highway that would be suitable for experienced cyclists. A shared path runs along the western side of Springfield Drive south of New England Highway.

2.5 Intersection performance

To determine the impact of the development on future traffic, the current performance of nearby intersections should be understood. The key intersection to this project was identified as New England Highway / Anambah Road / Shipley Drive (roundabout) because the subject site will only be accessed via Anambah Road.

2.5.1 **Traffic surveys**

Intersection turning count surveys were undertaken at the roundabout on 11 October 2023 (Wednesday). Surveys were conducted between 7am-9am and 3pm-5pm to capture typical weekday peak periods. The survey was within the school term and collected turning counts of light and heavy vehicles within fifteen-minute intervals. Queue lengths were also collected in five-minute intervals for calibration.

2.5.2 Modelling

Intersections were modelled in SIDRA 9.1. SIDRA models the delay to road users based on demands and geometry of intersections, it is a typical software used for developments of this scale. Queue lengths were used to calibrate the model.

2.5.3 Intersection level of service definition

Intersection Level of Service (LoS) is a typical measure used by traffic engineers to identify when roads are congested. The Level of Service, as defined in TfNSW Traffic Modelling Guidelines, is provided in Table 2-1.

Level of Service	Average delay per vehicle	Performance explanation
А	Less than 14.5s	Good operation
В	14.5s to 28.4s	Good with acceptable delays and spare capacity
С	28.5s to 42.4s	Satisfactory
D	42.5s to 56.4s	Operating near capacity
E	56.5s to 70.4s	At capacity. At signals incidents will cause excessive delays. Roundabouts require another control method.
F	70.5s or greater	At capacity. At signals incidents will cause excessive delays. Roundabouts require another control method.

Table 2-1 Level of Service definitions

Source: Roads and Maritime Services (2002), Traffic Modelling Guidelines

In addition, the following measure of performance is included to complement the Level of Service measure:

 Degree of Saturation (DoS): a measure of the volume/capacity for the worst turning movement at the intersection. A DoS of 1.0 implies the turning movement is at capacity.

2.5.4 Intersection performance

The performance of the intersection is presented in Table 2-2:

Table 2-2 2023 existing intersection performance

Intersection	Delay	LoS	DoS	Delay	LoS	DoS
intersection	Weekday AM peak					
New England Highway / Anambah Road / Shipley Drive	17.5s	В	0.47	16.5s	В	0.54

Traffic modelling confirms that there are no existing capacity issues at the intersection. It is currently operating satisfactorily with limited delay and excess capacity for some future growth.

SIDRA output summaries are documented in Appendix A.

3.0 The proposal

3.1 Proposed development

The proposed site covers a land area of approximately 66 hectares zoned R1 General Residential which is proposed to be subdivided for residential development, with associated roads and services. The subdivision will deliver 240 residential lots in Stage 1 (labelled in purple in **Figure 3-1**) and 900 lots when fully developed. The layout plan is based on a grid road network containing different road hierarchies.

Figure 3-1 Proposed master plan

Source: Northrop, 2024

The east-west and north-south sub-arterial roads form the higher-order roads in the subdivision and intersect as a roundabout in the centre of the site. They are further extended as sub-arterial and distributor to the west and north. Lower hierarchy roads are provided across the four quadrants to ensure connectivity and permeability for the subdivision. The site would gain strategic access as follows via Anambah Road to New England Highway, which permits all movements in and out

3.2 Street cross-section

The Maitland City Council's Manual of Engineering Standards (MOES) – Road Design defines the requirements for street cross sections for the DA (**Figure 3-2**).

Figure 3-2 Street cross sections for different road types

ROAD TYPE	MAX NO. LOTS	RESERVE WIDTH (m) ^a	CARRIAGEWAY / KERB-KERB (m) ^b	ON-ROAD BICYCLE FACILITY	FOOTWAY VERGE (m) ^c	KERB ^d	FOOTPATH (1.5m WIDE) ^e	DESIGN ESA ^f
Local – Place	10	17	8	Mixed	4.5	Rolled	As Required	1 x10 ⁵
Local – Access	20	17	8	Mixed	4.5	Rolled	One side	1 x10 ⁵
Local – Secondary	50	17	8	Mixed	4.5	Rolled	One side	2 x10 ⁵
Local - Primary	100	17	8	Mixed	4.5	Rolled	One side	5 x10 ⁵
Collector - Secondary	200	17	8	Mixed (Parking)	4.5	Upright	One side	1 x10 ⁶
Collector - Primary ^{Iv}	300	20	11	Mixed (Parking) ^P	4.5	Upright	One side	1.5 x10 ⁶
Distributor –Secondary ^v	400	23	14	Mixed (Parking) ^p	4.5	Upright	Both sides	2 x10 ⁶
Distributor - Primary ^{m v}	500	24	15 ^q	1.5m Lane	4.5	Upright	Both sides	5 x10 ⁶
Sub-Arterial "	3500	24.4	15.4	1.7m Lane ^s	4.5	Upright	Both sides	1 x10'min
Industrial - Secondary	10 ^s	22	13	Mixed	4.5	Upright	As Required	5 x10°
Industrial - Primary	> 10	22	13	Mixed	4.5	Upright	As Required	1x10 ⁷
School Bus/Public Route °			9min / 12min					2/5 x10 ⁶ min
Business / School Precinct			15.4	1.7m Lane	5.5 min ^h	Upright		1 x10 ⁷ min

Source: Maitland City Council, 2024

The proposed road sections as shown in Figure 3-3 and Figure 3-4 generally follow MOES including:

- Type 1A: Sub-arterial road (24.4m wide)
- Type 1B: Sub-arterial (25.4m wide)
- Type 1C: Sub-arterial road (24.4m wide)
- Type 2: Distributor secondary (24m wide)

Figure 3-3 Road cross-sections – 24-25.4m wide roads

- Type 3A: Collector primary (20m wide)
- Type 3B: Collector primary (21m wide)
- Type 3C: Collector primary (20m wide)
- Type 4: Parking on one side only Planning for bush fire protection (17m wide)

Source: Northrop, 2024

Figure 3-4 Road cross-sections - 17-21m wide roads

Source: Northrop, 2024

Table 3-1 assessed the proposed road cross-sections against the Council's requirements. The justification of the deviations is discussed as follows.

- 25.4m Type 1B Sub-arterial (from 24.4m): the verge close to the watercourse(s) is/are widened by 1m to accommodate a shared path per local examples. There is no widening for the verge given no street trees and limited services. The proposed section is beneficial to promote active transport given it complies with Council's requirement and includes an additional shared path.
- 24.4m Type 1C Sub-arterial (from 24.4m): the 4.5m verge close to the watercourse(s) accommodates 2.5m shared path per local examples. The proposed section is beneficial to promote active transport given it complies with Council's requirement and includes an additional shared path.
- 24m Type 2 Distributor secondary (from 23m): the verge close to the watercourse is widened by 1m to
 accommodate a shared path per local examples. The proposed section is beneficial to promote active transport
 given it complies with Council's requirement and includes an additional shared path.
- 21m Type 3B Collector Primary with Bus Route (from 20m): the carriageway width is widened by 1m to accommodate bus movement, which improves its functionality and is beneficial to bus use increase.
- 17m Type 6 Parking on one side only Planning for bush fire protection (from 17m): There is no change to the cross-section for a local primary. Parking is allowed on one side only which leaves the space for two-way movements.

Table 3-1 Proposed road characteristics and DCP compliance

Road type	Indicative number of dwellings that the road would serve under this DA	Proposed reserve width	Proposed carriageway / kerb – kerb width	On-Road Bicycle Facility	Footpath (1.5m wide)	Compliance
1A Sub-Arterial	Up to 630 dwellings	24.4m	15.4m	1.7m	Both sides	Yes
1B Sub-Arterial	Up to 630 dwellings	25.4m	15.4m	1.7m	One side with shared path on the other side	See justification above
1C Sub-Arterial	Up to 630 dwellings	24.4m	15.4m	1.7m	One side with shared path on the other side	See justification above
2 Distributor - Secondary	Up to 400 dwellings	24m	14m	Mixed (Parking)	Both sides	See justification above
3A Collector – Primary without bus route	Up to 300 dwellings	20m	11m	Mixed (Parking)	One side	Yes
3B Collector – Primary with bus route	Up to 300 dwellings	21m	12m	Mixed (Parking)	One side	See justification above
3C Collector – Primary without bus route	Up to 300 dwellings	20m	11m	Mixed (Parking)	One side	Yes
4 Parking on one side only – Planning for bush fire protection	Up to 100 dwellings	17m	8m	Mixed	One side	See justification above

3.3 Proposed active transport

On-road bicycle lanes are provided on the sub-arterial. 2.5m shared paths are also available around the proposed park. The verges will accommodate a 2.5m shared path when it faces with watercourse or on the edge of the site, which provides further opportunity for safe cycling within the subdivision.

Footpaths are available on all roads with additional pedestrian pathways available to cross the watercourse in the south.

3.4 Proposed bus route

Bus routes are proposed for development both at Stage 1 and at full development. The potential routes are proposed along E-W Road and N-S Road and directed to the centre of the development, as shown in **Figure 3-5**. It is evident that the majority of the properties are within a 400m radial distance of the bus route.

Figure 3-5 Bus route

4.0 Traffic impact assessment

4.1 Trip generation and distribution

According to correspondence with TfNSW dated on 31 May 2024 (**Appendix B**), the modelling assumptions have been confirmed as follows:

- 70% west and 30% east traffic distribution (A 50%:50% sensitivity analysis will be included at the request of TfNSW)
- A release rate of 300 lots per year in Lochinvar URA
- Three per cent p.a. growth on New England Highway. This is in addition to development traffic from the Lochinvar URA
- Site completion year of 2028 and sensitivity test of 2038 (This will be carried out for 240 dwellings of Stage 1 and 900 dwellings of full development)
- Adoption of 0.71/0.78 veh/h (AM peak/PM peak) traffic generation rates for residential dwellings in the area.
- A 90% outbound and 10% inbound ratio is applied to the development traffic in the AM peak, which is inversed for the PM peak hour.

The trip generation from Lochinvar and the proposal are shown in Table 4-1.

|--|

Development Precinct		Expected number	Trip generation	Peak hour traffic		
		of lots	rate	AM peak	PM peak	
Traffic growth by LURA		Up to 4,200 dwellings by 2038		+2,982 trips	+3,276 trips	
Development traffic	Stage 1	240 dwellings	0.71/0.78 veh/dwg for AM	+170 trips	+187 trips	
	Full development	900 dwellings	and PM peak hour	+639 trips	+702 trips	
Total		4,440 – 5,100 dwellings		+3,153 – 3,621 trips	+3,463 – 3,978 trips	

4.2 Road network impact

4.2.1 Intersection on New England Highway

SIDRA 9.1 modelling was undertaken for the intersection of New England Highway / Anambah Road / Shipley Drive given it provides strategic access for the proposal. The following scenarios were tested to assess the cumulative impact of the development on the New England Highway according to TfNSW requirements (**Table 4-2**).

Table 4-2 Modelling scenarios

Development scenario	Without back	ground traffic wth	2028 with b gro	oackground wth	2038 with b gro	ackground wth
Future year base			Y	es	Y	es
Stage 1 (240 dwellings)	Yes (70%:30% distribution)	Yes (50%:50% distribution)	Yes (70%:30% distribution)	Yes (50%:50% distribution)	Yes (70%:30% distribution)	Yes (50%:50% distribution)
Full development (900 dwellings)	Yes (70%:30% distribution)	Yes (50%:50% distribution)	Yes (70%:30% distribution)	Yes (50%:50% distribution)	Yes (70%:30% distribution)	Yes (50%:50% distribution)

Modelling results are shown in Table 4-3 and detailed SIDRA summary are shown in Appendix A.

Table 4-3 Intersection performances – New England Highway / Anambah Road

	With	out back	ground gr	owth		20	28 (with developi	infrastruc ment of 9	cture upg 00 dwellir	ade for f ngs only)	ull		2038 (wi	ith infras	tructure u	pgrade)	
Delay	LoS	DoS	Delay	LoS	DoS	Delay	LoS	DoS	Delay	LoS	DoS	Delay	LoS	DoS	Delay	LoS	DoS
Wee	kday AM	peak	Wee	kday PM	peak	Weel	kday AM	peak	Wee	kday PM	peak	Wee	kday AM	peak	Wee	kday PM	peak
								Future y	ear base								
	22.4s B 0.64 21.1s B 0.64											52.5s	D	0.96	53.8s	D	0.96
						With Sta	age 1 (24	0 dwellin	gs) – 70%	:30% dis	tribution						
19.1s	В	0.48	16.6s	В	0.63	21.7s	В	0.65	23.0s	В	0.73	55.4s	D	0.97	52.0s	D	0.99
						With Sta	age 1 (24	0 dwellin	gs) – 50%	:50% dis	tribution						
18.7s	В	0.48	17.0s	В	0.63	20.9s	В	0.65	23.9s	В	0.73	54.3s	D	0.96	54.5s	D	1.00
					F	ull devel	opment (900 dwell	lings) – 70)%:30% c	listributio	n					
36.0s	С	0.74	31.7s	С	0.92	44.3s	D	0.9	32.9s	С	0.8	53.9s	D	0.95	54.7s	D	0.93
					F	ull devel	opment (900 dwell	lings) – 50)%:50% c	listributio	on					
29.8s	С	0.78	36.5s	С	0.93	35.4s	С	0.95	46.9s	D	0.89	53.6s	D	0.95	56.2s	D	0.95

4.2.1.1 Without background traffic growth

The modelling confirms that the existing infrastructure (i.e. the existing roundabout) will accommodate the traffic growth as a result of both the Stage 1 development (240 lots) and the full development (900 lots) scenarios without any background traffic growth applied. No infrastructure upgrade is required.

4.2.1.2 Future 2028

The modelling confirms that the existing infrastructure will accommodate traffic growth generated by Stage 1 by 2028, including background growth. For the full development in 2028 (with background growth applied), however, the roundabout fails in the PM peak hour with a LoS of F with a degree of saturation of 1.04 at the west approach. An additional left turn lane on the west approach would improve the intersection performance which results in a LoS of D (Delay at 44 seconds) for the roundabout. This infrastructure is shown in **Figure 4-1**.

Figure 4-1 Intersection upgrade for future 2028 + 900 dwellings

Note that the yellow section represents the infrastructure required for the development.

4.2.1.3 Future 2038

Future year base 2038

Traffic modelling confirms that without any infrastructure upgrade, the roundabout will fail in 2038 based on background growth alone (i.e. before the introduction of any additional traffic from the proposal). The modelling shows a LoS F with a degree of saturation of 1.60 for the Anambah Road roundabout in the PM peak.

Hence, the roundabout needs to be upgraded by 2038 independent of any additional traffic from the proposal to respond to the significant background traffic growth on New England Highway (**Figure 4-2**):

- Signalisation of the intersection
- Duplication of the west approach and exit
- High angle slip lane for left turners on the westbound approach of the New England Highway
- Additional westbound right turn bay of the New England Highway
- Additional eastbound right turn bay of the New England Highway.

Figure 4-2 Intersection upgrade for future base case 2038

Note that the blue section represents the infrastructure required for the background traffic growth

The proposed infrastructure upgrade is considered a minimum requirement to cater for background traffic growth and would result in a satisfactory intersection performance, i.e. a 53.8-second delay (LoS D) at Anambah Road.

Future year with development 2038

No further upgrade is required for Stage 1 development except for phase time optimisation.

For the full development, additional upgrades may be required at the Anambah Road intersection due to the increased development traffic in both peak hours (**Figure 4-3**).

Note that the blue section represents the infrastructure required for the background growth/ the yellow section represents the infrastructure required for the development.

The proposed upgrade will include:

- High angle slip lane for left turners on the southbound Anambah Road
- Additional southbound right turn bay of Anambah Road
- Additional eastbound left turn bay of the New England Highway
- Additional westbound right turn bays of the New England Highway.

The above upgrade at the Anambah Road intersection would ensure the intersection performance is maintained at a satisfactory level by 2038 with the addition of full development traffic.

4.2.2 Site Entry Road

Given the site location and the nature of the surrounding development, it is expected that the mid-block traffic volume on Anambah Road in the vicinity of the site will be low. In line with the intersection modelling for New England Highway, the traffic modelling was undertaken for the Site Entry Road / Anambah Road to make sure there is no

capacity issue at the proposed access. The modelling result indicates that there is no capacity issue at the proposed Anambah Road access point (**Table 4-4**).

Table 4-4 Intersection performances – Site Entry Road

Comparing	Delay	LoS	DoS	Delay	LoS	DoS
Scenarios						
Full development (900 dwellings)	5.7s	А	0.41	7.8s	Α	0.38

4.3 Walking and cycling

A minimum of 1.5m footpath is provided at least on one side across the precinct, which will encourage walking. Onroad cycle paths are proposed according to the *Maitland Manual of Engineering Standards* including 1.7m wide on both sides of the sub-arterial. Additional shared paths of 2.5m are available adjacent to the park and near watercourses. This complies with the Council-recommended geometric design for shared paths. With the high-quality cycleway, the cycling facility will promote cycling to and from nearby destinations.

It is expected that pedestrian refuges are available near the roundabout (where east and west sub-arterial roads intersect) to facilitate pedestrian crossings. The proposed pedestrian infrastructure, including footpaths and walkways in the landscape, will ensure pedestrian comfort and permeability while shortening walking distances overall from surrounding destinations.

Due to the long travel distances, walking and cycling is expected to be low, regardless of infrastructure provision. However, the proposed on-road bike lane on the north-south sub-arterial road together with the shared paths and footpaths on the lower-hierarchy road network can be further integrated into the future development to the south, which will enhance active transport accessibility within the entire urban release area.

4.4 Public transport

Bus-capable carriageway is available within the site to satisfy future bus needs. Given the scale of the development, it is expected that the public transport demand would be limited, hence no significant impact on the public transport network.

5.0 Conclusion

This traffic impact assessment shows:

- The cross-section requirements per Maitland Council's Manual of Engineering Standards Road Design are generally met.
- Some deviations exist due to the provision of additional shared paths and bus-capable carriageways. The
 proposed sections are beneficial to promote active transport and bus use given it complies with the Council's
 requirements and have better functional outcomes.
- The roundabout of Anambah Road / New England Highway performs at a satisfactory level,
 - With proposal but without background traffic growth
 - With background traffic growth up to 2028 with Stage 1 of the development.
- An additional left turn lane (west to north) is proposed for the roundabout due to full development by 2028 (with background growth), which will ensure the roundabout operates at Level of Service D.
- Intersection upgrades would be required in 2038 (with background growth only), due to growth on the road network and the release of the Lochinvar URA, independent of the proposed development.
- No further upgrade is required for Stage 1 development in 2038 (with background growth) at the intersection.
- Additional development traffic as the result of the full development in 2038 (with background growth) indicates that the development does trigger the need for further upgrades at the Anambah Road intersection, especially turning lanes in the east, north and west approaches that service the development.

APPENDIX A SIDRA OUTPUT

W Site: 5AM_X [NEW_ANA_23_AM_X (Site Folder: Base Year)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Derr Fl [Total veh/h	nand lows HV] %	Ar Fl [Total] veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% I Qu [Veh. veh	Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.228	15.3	LOS B	0.9	6.9	0.71	0.81	0.71	48.4
2	T1	All MCs	39	8.1	39	8.1	0.228	13.4	LOS A	1.1	8.1	0.71	0.83	0.71	48.4
3	R2	All MCs	71	10.4	71	10.4	0.228	17.5	LOS B	1.1	8.1	0.71	0.89	0.71	46.6
Appro	ach		153	8.3	153	8.3	0.228	15.8	LOS B	1.1	8.1	0.71	0.85	0.71	47.5
East: I	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.189	3.5	LOS A	1.0	7.1	0.25	0.37	0.25	54.9
5	T1	All MCs	681	7.7	681	7.7	0.239	3.6	LOS A	1.5	11.2	0.24	0.41	0.24	54.4
6	R2	All MCs	198	1.6	198	1.6	0.239	9.6	LOS A	1.5	11.2	0.24	0.42	0.24	53.2
Appro	ach		1106	5.7	1106	5.7	0.239	4.7	LOS A	1.5	11.2	0.24	0.40	0.24	54.3
North:	Anan	nbah Roa	d												
7	L2	All MCs	154	8.9	154	8.9	0.282	7.3	LOS A	1.2	9.1	0.67	0.74	0.67	52.7
8	T1	All MCs	34	3.1	34	3.1	0.282	7.8	LOS A	1.2	9.1	0.67	0.80	0.67	51.1
9	R2	All MCs	49	12.8	49	12.8	0.163	15.7	LOS B	0.6	4.7	0.66	0.85	0.66	48.1
Appro	ach		237	8.9	237	8.9	0.282	9.1	LOS A	1.2	9.1	0.67	0.77	0.67	51.4
West:	New	England H	Highwa	y (W))										
10	L2	All MCs	27	7.7	27	7.7	0.468	5.8	LOS A	2.6	19.5	0.54	0.51	0.54	53.2
11	T1	All MCs	802	6.4	802	6.4	0.468	5.1	LOS A	2.7	19.8	0.54	0.52	0.54	53.4
12	R2	All MCs	60	8.8	60	8.8	0.468	12.0	LOS A	2.7	19.8	0.54	0.53	0.54	52.1
Appro	ach		889	6.6	889	6.6	0.468	5.6	LOS A	2.7	19.8	0.54	0.52	0.54	53.3
All Vel	nicles		2385	6.5	2385	6.5	0.468	6.2	LOS A	2.7	19.8	0.43	0.51	0.43	53.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 3:46:13 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

W Site: 5PM_X [NEW_ANA_23_PM_X (Site Folder: Base Year)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ט ו		Class	FI [Total	IOWS HV/1	FI [Total]	ows HV/1	Sath	Delay	Service	Qu [Veh	eue Dist 1	Que	Stop Rate	NO. OT Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		- Tato		km/h
South	Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.316	11.3	LOS A	1.4	9.9	0.69	0.78	0.72	50.9
2	T1	All MCs	49	4.3	49	4.3	0.316	10.0	LOS A	1.4	9.9	0.69	0.78	0.72	51.3
3	R2	All MCs	306	1.0	306	1.0	0.498	15.8	LOS B	2.9	20.6	0.74	0.90	0.91	47.3
Appro	ach		447	2.1	447	2.1	0.498	14.3	LOS A	2.9	20.6	0.73	0.86	0.85	48.4
East: I	New E	England H	lighway	(E)											
4	L2	All MCs	244	3.0	244	3.0	0.336	4.0	LOS A	1.9	13.9	0.35	0.41	0.35	54.4
5	T1	All MCs	635	4.3	635	4.3	0.425	4.0	LOS A	2.8	20.3	0.36	0.43	0.36	54.0
6	R2	All MCs	159	7.3	159	7.3	0.425	10.1	LOS A	2.8	20.3	0.36	0.44	0.36	52.7
Appro	ach		1038	4.5	1038	4.5	0.425	5.0	LOS A	2.8	20.3	0.36	0.43	0.36	53.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	283	2.6	283	2.6	0.465	9.1	LOS A	2.7	19.4	0.80	0.88	0.95	51.4
8	T1	All MCs	55	5.8	55	5.8	0.240	10.9	LOS A	1.0	7.2	0.74	0.86	0.74	49.7
9	R2	All MCs	32	3.3	32	3.3	0.240	16.5	LOS B	1.0	7.2	0.74	0.86	0.74	48.9
Appro	ach		369	3.1	369	3.1	0.465	10.0	LOS A	2.7	19.4	0.79	0.87	0.90	50.9
West:	New	England I	Highwa	y (W)	1										
10	L2	All MCs	34	3.1	34	3.1	0.541	7.3	LOS A	3.8	27.6	0.70	0.69	0.80	52.5
11	T1	All MCs	849	5.2	849	5.2	0.541	6.9	LOS A	3.8	27.6	0.70	0.70	0.80	52.6
12	R2	All MCs	59	0.0	59	0.0	0.541	13.6	LOS A	3.8	27.3	0.70	0.71	0.80	51.5
Appro	ach		942	4.8	942	4.8	0.541	7.3	LOS A	3.8	27.6	0.70	0.70	0.80	52.5
All Vel	nicles		2797	4.0	2797	4.0	0.541	7.9	LOS A	3.8	27.6	0.59	0.65	0.66	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 3:46:14 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM_X [NEW_ANA_23_AM_X_Stage 1 (Site Folder: Base Year Stage 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	lows	FI Total	ows ม\/ 1	Satn	Delay	Service	Q [\/ob		Que	Stop	No. of	Speed
			veh/h	· · · · j %	veh/h	%	v/c	sec		veh	m		Tale	Cycles	km/h
South	Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.261	17.7	LOS B	1.1	8.1	0.76	0.85	0.76	47.2
2	T1	All MCs	39	8.1	39	8.1	0.261	15.3	LOS B	1.2	9.4	0.76	0.86	0.76	47.2
3	R2	All MCs	71	10.4	71	10.4	0.261	19.1	LOS B	1.2	9.4	0.76	0.91	0.76	45.7
Appro	ach		153	8.3	153	8.3	0.261	17.8	LOS B	1.2	9.4	0.76	0.88	0.76	46.5
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	227	3.2	227	3.2	0.196	3.7	LOS A	1.1	7.9	0.35	0.40	0.35	54.4
5	T1	All MCs	681	7.7	681	7.7	0.249	3.9	LOS A	1.8	13.3	0.36	0.42	0.36	53.8
6	R2	All MCs	203	1.6	203	1.6	0.249	9.7	LOS A	1.8	13.3	0.37	0.43	0.37	52.7
Appro	ach		1112	5.7	1112	5.7	0.249	4.9	LOS A	1.8	13.3	0.36	0.42	0.36	53.7
North:	Anan	nbah Roa	d												
7	L2	All MCs	202	6.8	202	6.8	0.383	7.9	LOS A	1.8	13.6	0.71	0.79	0.78	52.3
8	T1	All MCs	34	3.1	34	3.1	0.383	7.4	LOS A	1.8	13.6	0.71	0.79	0.78	52.8
9	R2	All MCs	162	3.9	162	3.9	0.294	13.8	LOS A	1.3	9.0	0.68	0.85	0.68	48.4
Appro	ach		398	5.3	398	5.3	0.383	10.3	LOS A	1.8	13.6	0.70	0.81	0.74	50.6
West:	New	England I	Highway	y (W))										
10	L2	All MCs	40	5.3	40	5.3	0.476	5.8	LOS A	2.7	20.1	0.55	0.52	0.55	53.2
11	T1	All MCs	802	6.4	802	6.4	0.476	5.1	LOS A	2.8	20.4	0.55	0.53	0.55	53.4
12	R2	All MCs	60	8.8	60	8.8	0.476	12.1	LOS A	2.8	20.4	0.55	0.53	0.55	52.1
Appro	ach		902	6.5	902	6.5	0.476	5.6	LOS A	2.8	20.4	0.55	0.53	0.55	53.3
All Ve	nicles		2565	6.1	2565	6.1	0.476	6.8	LOS A	2.8	20.4	0.50	0.54	0.51	52.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 3:46:18 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM_X [NEW_ANA_23_PM_X_Stage 1 (Site Folder: Base Year Stage 1)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows	FI Total	OWS	Satn	Delay	Service	Qu U/ch	eue	Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		veh	m Dist j		Nale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.334	12.0	LOS A	1.5	10.7	0.71	0.81	0.77	50.4
2	T1	All MCs	49	4.3	49	4.3	0.334	10.9	LOS A	1.5	10.7	0.71	0.81	0.77	50.8
3	R2	All MCs	306	1.0	306	1.0	0.523	16.6	LOS B	3.1	22.2	0.77	0.93	0.98	46.8
Appro	ach		447	2.1	447	2.1	0.523	15.1	LOS B	3.1	22.2	0.75	0.89	0.91	47.9
East: I	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.357	4.1	LOS A	2.1	15.2	0.38	0.42	0.38	54.3
5	T1	All MCs	635	4.3	635	4.3	0.452	4.2	LOS A	3.1	22.5	0.39	0.45	0.39	53.7
6	R2	All MCs	212	5.5	212	5.5	0.452	10.2	LOS A	3.1	22.5	0.40	0.47	0.40	52.3
Appro	ach		1091	4.2	1091	4.2	0.452	5.3	LOS A	3.1	22.5	0.39	0.45	0.39	53.6
North:	Anan	nbah Roa	d												
7	L2	All MCs	289	2.5	289	2.5	0.498	9.9	LOS A	3.1	22.1	0.83	0.90	1.02	50.9
8	T1	All MCs	55	5.8	55	5.8	0.272	10.8	LOS A	1.2	8.6	0.76	0.87	0.76	49.4
9	R2	All MCs	45	2.3	45	2.3	0.272	16.4	LOS B	1.2	8.6	0.76	0.87	0.76	48.6
Appro	ach		389	3.0	389	3.0	0.498	10.8	LOS A	3.1	22.1	0.82	0.89	0.95	50.4
West:	New	England I	Highway	y (W)											
10	L2	All MCs	159	0.7	159	0.7	0.634	8.8	LOS A	5.3	38.0	0.78	0.79	0.97	52.1
11	T1	All MCs	849	5.2	849	5.2	0.634	8.5	LOS A	5.3	38.0	0.78	0.79	0.98	52.1
12	R2	All MCs	59	0.0	59	0.0	0.634	15.2	LOS B	5.2	37.7	0.78	0.80	0.98	51.1
Appro	ach		1067	4.2	1067	4.2	0.634	8.9	LOS A	5.3	38.0	0.78	0.79	0.97	52.0
All Vel	nicles		2995	3.8	2995	3.8	0.634	8.8	LOS A	5.3	38.0	0.64	0.69	0.75	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:53:16 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM_X [NEW_ANA_23_AM_X_Stage 1 50% (Site Folder: Base Year Stage 1 50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	H Total	IOWS	H Total	OWS H\/1	Satn	Delay	Service	QL [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.252	17.1	LOS B	1.0	7.7	0.75	0.84	0.75	47.5
2	T1	All MCs	39	8.1	39	8.1	0.252	14.8	LOS B	1.2	9.1	0.75	0.85	0.75	47.5
3	R2	All MCs	71	10.4	71	10.4	0.252	18.7	LOS B	1.2	9.1	0.75	0.90	0.75	45.9
Appro	ach		153	8.3	153	8.3	0.252	17.2	LOS B	1.2	9.1	0.75	0.87	0.75	46.8
East:	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.195	3.6	LOS A	1.1	7.7	0.32	0.39	0.32	54.6
5	T1	All MCs	681	7.7	681	7.7	0.247	3.8	LOS A	1.7	12.8	0.33	0.42	0.33	54.0
6	R2	All MCs	207	1.5	207	1.5	0.247	9.7	LOS A	1.7	12.8	0.33	0.43	0.33	52.8
Appro	ach		1115	5.7	1115	5.7	0.247	4.9	LOS A	1.7	12.8	0.33	0.41	0.33	53.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	234	5.8	234	5.8	0.432	8.2	LOS A	2.2	16.2	0.72	0.82	0.83	52.1
8	T1	All MCs	34	3.1	34	3.1	0.432	7.8	LOS A	2.2	16.2	0.72	0.82	0.83	52.5
9	R2	All MCs	130	4.9	130	4.9	0.276	14.7	LOS B	1.1	8.2	0.68	0.86	0.68	47.9
Appro	ach		398	5.3	398	5.3	0.432	10.3	LOS A	2.2	16.2	0.71	0.83	0.78	50.6
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	37	5.7	37	5.7	0.476	5.8	LOS A	2.7	20.0	0.56	0.52	0.56	53.2
11	T1	All MCs	802	6.4	802	6.4	0.476	5.2	LOS A	2.7	20.3	0.56	0.53	0.56	53.4
12	R2	All MCs	60	8.8	60	8.8	0.476	12.1	LOS A	2.7	20.3	0.56	0.54	0.56	52.1
Appro	ach		899	6.6	899	6.6	0.476	5.7	LOS A	2.7	20.3	0.56	0.53	0.56	53.3
All Ve	hicles		2565	6.1	2565	6.1	0.476	6.7	LOS A	2.7	20.3	0.49	0.55	0.50	52.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:55:37 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM_X [NEW_ANA_23_PM_X_Stage 1 50% (Site Folder: Base Year Stage 1 50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows	FI Total	OWS	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			veh/h	· · · · j %	veh/h	~~ %	v/c	sec		veh	m		Tale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.341	12.3	LOS A	1.5	11.0	0.72	0.82	0.79	50.2
2	T1	All MCs	49	4.3	49	4.3	0.341	11.3	LOS A	1.5	11.0	0.72	0.82	0.79	50.6
3	R2	All MCs	306	1.0	306	1.0	0.533	17.0	LOS B	3.2	22.8	0.78	0.94	1.00	46.6
Appro	ach		447	2.1	447	2.1	0.533	15.4	LOS B	3.2	22.8	0.76	0.90	0.93	47.7
East: I	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.367	4.1	LOS A	2.2	15.8	0.38	0.42	0.38	54.3
5	T1	All MCs	635	4.3	635	4.3	0.465	4.2	LOS A	3.2	23.3	0.39	0.46	0.39	53.7
6	R2	All MCs	248	4.7	248	4.7	0.465	10.1	LOS A	3.2	23.3	0.40	0.48	0.40	52.2
Appro	ach		1127	4.1	1127	4.1	0.465	5.5	LOS A	3.2	23.3	0.39	0.45	0.39	53.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	293	2.5	293	2.5	0.503	9.8	LOS A	3.1	22.2	0.83	0.90	1.02	50.9
8	T1	All MCs	55	5.8	55	5.8	0.268	10.9	LOS A	1.1	8.3	0.76	0.87	0.76	49.4
9	R2	All MCs	41	2.5	41	2.5	0.268	16.5	LOS B	1.1	8.3	0.76	0.87	0.76	48.7
Appro	ach		389	3.0	389	3.0	0.503	10.7	LOS A	3.1	22.2	0.81	0.90	0.95	50.4
West:	New	England I	Highwa	y (W)	1										
10	L2	All MCs	123	0.9	123	0.9	0.628	9.1	LOS A	5.1	37.3	0.78	0.80	0.99	52.0
11	T1	All MCs	849	5.2	849	5.2	0.628	8.7	LOS A	5.1	37.3	0.79	0.81	0.99	52.0
12	R2	All MCs	59	0.0	59	0.0	0.628	15.5	LOS B	5.1	36.9	0.79	0.81	1.00	50.9
Appro	ach		1032	4.4	1032	4.4	0.628	9.2	LOS A	5.1	37.3	0.79	0.81	0.99	51.9
All Vel	hicles		2995	3.8	2995	3.8	0.628	8.9	LOS A	5.1	37.3	0.64	0.70	0.75	51.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:56:04 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM_X [NEW_ANA_23_AM_X_wDev (Site Folder: Base Year with Dev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	lows	FI Total	OWS	Satn	Delay	Service	Qı [\/ob		Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓v] %	v/c	sec		veh	m Dist j		Nale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.402	27.4	LOS B	2.1	15.5	0.88	0.97	1.05	43.3
2	T1	All MCs	39	8.1	39	8.1	0.402	23.7	LOS B	2.1	15.5	0.88	0.97	1.05	43.3
3	R2	All MCs	71	10.4	71	10.4	0.402	36.0	LOS C	2.0	15.1	0.88	1.02	1.10	38.0
Appro	ach		153	8.3	153	8.3	0.402	30.4	LOS C	2.1	15.5	0.88	0.99	1.07	40.6
East:	New E	England F	lighway	′ (E)											
4	L2	All MCs	227	3.2	227	3.2	0.246	4.5	LOS A	1.7	12.2	0.60	0.49	0.60	53.3
5	T1	All MCs	681	7.7	681	7.7	0.311	5.3	LOS A	3.0	22.1	0.66	0.49	0.66	52.5
6	R2	All MCs	218	1.4	218	1.4	0.311	10.5	LOS A	3.0	22.1	0.68	0.49	0.68	51.4
Appro	ach		1126	5.6	1126	5.6	0.311	6.2	LOS A	3.0	22.1	0.65	0.49	0.65	52.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	335	4.1	335	4.1	0.647	11.4	LOS A	4.3	30.9	0.82	0.96	1.13	49.9
8	T1	All MCs	34	3.1	34	3.1	0.647	11.1	LOS A	4.3	30.9	0.82	0.96	1.13	50.2
9	R2	All MCs	473	1.3	473	1.3	0.743	18.5	LOS B	5.9	42.0	0.86	1.06	1.31	45.8
Appro	ach		842	2.5	842	2.5	0.743	15.4	LOS B	5.9	42.0	0.84	1.01	1.23	47.4
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	74	2.8	74	2.8	0.506	5.9	LOS A	3.2	23.7	0.60	0.55	0.62	53.1
11	T1	All MCs	802	6.4	802	6.4	0.506	5.5	LOS A	3.2	23.8	0.60	0.57	0.62	53.2
12	R2	All MCs	60	8.8	60	8.8	0.506	12.5	LOS A	3.2	23.8	0.60	0.58	0.62	51.9
Appro	ach		937	6.3	937	6.3	0.506	6.0	LOS A	3.2	23.8	0.60	0.57	0.62	53.1
All Ve	hicles		3058	5.1	3058	5.1	0.743	9.9	LOS A	5.9	42.0	0.70	0.68	0.82	50.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 3:01:44 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM_X [NEW_ANA_23_PM_X_wDev (Site Folder: Base Year with Dev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows	FI [Total]	ows ม\/ 1	Satn	Delay	Service	Qu [\/ob		Que	Stop Poto	No. of	Speed
			veh/h	· · · · j %	veh/h	%	v/c	sec		veh	m		TALE	Cycles	km/h
South	Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.390	14.4	LOS A	1.8	13.2	0.76	0.89	0.90	48.8
2	T1	All MCs	49	4.3	49	4.3	0.390	14.0	LOS A	1.8	13.2	0.76	0.89	0.90	49.2
3	R2	All MCs	306	1.0	306	1.0	0.601	19.5	LOS B	4.0	27.9	0.83	1.01	1.16	45.3
Appro	ach		447	2.1	447	2.1	0.601	17.9	LOS B	4.0	27.9	0.81	0.97	1.08	46.3
East: I	New E	England H	ighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.417	4.3	LOS A	2.6	18.7	0.45	0.44	0.45	53.9
5	T1	All MCs	635	4.3	635	4.3	0.528	4.5	LOS A	3.9	28.1	0.47	0.49	0.47	53.2
6	R2	All MCs	358	3.2	358	3.2	0.528	10.3	LOS A	3.9	28.1	0.48	0.52	0.48	51.6
Appro	ach		1237	3.7	1237	3.7	0.528	6.1	LOS A	3.9	28.1	0.47	0.49	0.47	52.8
North:	Anan	nbah Roa	d												
7	L2	All MCs	305	2.4	305	2.4	0.631	13.9	LOS A	4.9	34.8	0.93	1.00	1.27	48.2
8	T1	All MCs	55	5.8	55	5.8	0.631	13.0	LOS A	4.9	34.8	0.85	0.94	0.99	47.8
9	R2	All MCs	83	1.3	83	1.3	0.364	18.2	LOS B	1.9	13.6	0.83	0.93	0.92	46.9
Appro	ach		443	2.6	443	2.6	0.631	14.6	LOS B	4.9	34.8	0.90	0.98	1.17	47.9
West:	New	England F	lighwa	y (W)											
10	L2	All MCs	500	0.2	500	0.2	0.924	25.0	LOS B	17.8	126.7	1.00	1.42	2.30	42.8
11	T1	All MCs	849	5.2	849	5.2	0.924	24.9	LOS B	17.8	126.7	1.00	1.43	2.33	42.6
12	R2	All MCs	59	0.0	59	0.0	0.924	31.7	LOS C	17.0	124.0	1.00	1.43	2.34	41.9
Appro	ach		1409	3.2	1409	3.2	0.924	25.2	LOS B	17.8	126.7	1.00	1.42	2.32	42.6
All Vel	nicles		3537	3.2	3537	3.2	0.924	16.3	LOS B	17.8	126.7	0.78	0.98	1.37	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 3:02:09 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5AM_X [NEW_ANA_23_AM_X_wDev 50% (Site Folder: Base Year with Dev 50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	H Total	IOWS	H Total	OWS H\/1	Satn	Delay	Service	Ql [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.344	21.3	LOS B	1.7	12.6	0.84	0.92	0.94	45.9
2	T1	All MCs	39	8.1	39	8.1	0.344	18.8	LOS B	1.7	12.6	0.84	0.93	0.94	45.9
3	R2	All MCs	71	10.4	71	10.4	0.344	29.8	LOS C	1.6	12.3	0.84	0.98	0.98	40.4
Appro	ach		153	8.3	153	8.3	0.344	24.6	LOS B	1.7	12.6	0.84	0.95	0.96	43.1
East:	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.224	4.1	LOS A	1.4	10.3	0.50	0.45	0.50	53.7
5	T1	All MCs	681	7.7	681	7.7	0.284	4.7	LOS A	2.5	18.5	0.55	0.46	0.55	53.0
6	R2	All MCs	232	1.4	232	1.4	0.284	10.1	LOS A	2.5	18.5	0.56	0.46	0.56	51.8
Appro	ach		1140	5.5	1140	5.5	0.284	5.7	LOS A	2.5	18.5	0.54	0.46	0.54	52.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	456	3.0	456	3.0	0.781	13.6	LOS A	6.7	47.8	0.88	1.07	1.42	48.4
8	T1	All MCs	34	3.1	34	3.1	0.781	13.4	LOS A	6.7	47.8	0.88	1.07	1.42	48.8
9	R2	All MCs	352	1.8	352	1.8	0.621	17.1	LOS B	3.9	28.0	0.81	0.99	1.09	46.5
Appro	ach		842	2.5	842	2.5	0.781	15.0	LOS B	6.7	47.8	0.85	1.04	1.28	47.6
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	61	3.4	61	3.4	0.503	6.1	LOS A	3.2	23.3	0.60	0.56	0.62	53.0
11	T1	All MCs	802	6.4	802	6.4	0.503	5.6	LOS A	3.2	23.3	0.60	0.58	0.62	53.2
12	R2	All MCs	60	8.8	60	8.8	0.503	12.6	LOS A	3.1	23.3	0.60	0.59	0.62	51.8
Appro	ach		923	6.4	923	6.4	0.503	6.1	LOS A	3.2	23.3	0.60	0.58	0.62	53.1
All Ve	hicles		3058	5.1	3058	5.1	0.781	9.3	LOS A	6.7	47.8	0.66	0.68	0.79	50.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:59:16 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5PM_X [NEW_ANA_23_PM_X_wDev 50% (Site Folder: Base Year with Dev 50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	ırn Mov Demand		nand	Arrival		Deg.	Aver.	Level of	95% Back Of		Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	lows	FI Total	OWS	Satn	Delay	Service	Qu Uvah	eue	Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		veh	m Dist		Nale	Cycles	km/h
South: Shipley Drive															
1	L2	All MCs	92	4.6	92	4.6	0.427	16.0	LOS B	2.0	14.9	0.80	0.93	0.98	47.7
2	T1	All MCs	49	4.3	49	4.3	0.427	16.0	LOS B	2.0	14.9	0.80	0.93	0.98	48.1
3	R2	All MCs	306	1.0	306	1.0	0.654	21.8	LOS B	4.5	31.9	0.86	1.06	1.29	44.1
Appro	ach		447	2.1	447	2.1	0.654	20.0	LOS B	4.5	31.9	0.84	1.02	1.19	45.2
East: New England Highway (E)															
4	L2	All MCs	244	3.0	244	3.0	0.455	4.3	LOS A	3.0	22.0	0.46	0.44	0.46	53.9
5	T1	All MCs	635	4.3	635	4.3	0.576	4.6	LOS A	4.7	33.7	0.48	0.49	0.48	53.0
6	R2	All MCs	491	2.4	491	2.4	0.576	10.4	LOS A	4.7	33.7	0.50	0.54	0.50	51.1
Appro	ach		1370	3.4	1370	3.4	0.576	6.6	LOS A	4.7	33.7	0.48	0.50	0.48	52.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	320	2.3	320	2.3	0.617	12.6	LOS A	4.5	32.4	0.91	0.98	1.22	49.0
8	T1	All MCs	55	5.8	55	5.8	0.354	12.0	LOS A	1.8	12.7	0.82	0.92	0.90	48.3
9	R2	All MCs	69	1.5	69	1.5	0.354	17.6	LOS B	1.8	12.7	0.82	0.92	0.90	47.6
Appro	ach		443	2.6	443	2.6	0.617	13.3	LOS A	4.5	32.4	0.89	0.96	1.13	48.7
West:	West: New England Highway (W)														
10	L2	All MCs	367	0.3	367	0.3	0.926	29.8	LOS C	17.9	127.7	1.00	1.51	2.55	40.7
11	T1	All MCs	849	5.2	849	5.2	0.926	29.5	LOS C	17.9	127.7	1.00	1.51	2.56	40.4
12	R2	All MCs	59	0.0	59	0.0	0.926	36.5	LOS C	16.8	122.5	1.00	1.51	2.57	39.7
Appro	ach		1276	3.5	1276	3.5	0.926	29.9	LOS C	17.9	127.7	1.00	1.51	2.56	40.5
All Vel	hicles		3537	3.2	3537	3.2	0.926	17.5	LOS B	17.9	127.7	0.77	0.99	1.40	46.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:59:47 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9
V Site: 5AM28_F [NEW_ANA_28_AM_F (Site Folder: Future Year 2028)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows H\/1	l-I I Total	OWS H\/1	Satn	Delay	Service	Qı [\/eh	Jeue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.255	14.5	LOS A	1.1	8.5	0.75	0.84	0.75	49.2
2	T1	All MCs	39	8.1	39	8.1	0.255	13.1	LOS A	1.1	8.5	0.75	0.84	0.75	49.2
3	R2	All MCs	71	10.4	71	10.4	0.255	22.4	LOS B	1.1	8.2	0.76	0.91	0.76	43.8
Appro	ach		153	8.3	153	8.3	0.255	17.8	LOS B	1.1	8.5	0.75	0.87	0.75	46.5
East: I	New E	England H	ighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.212	3.5	LOS A	1.1	8.3	0.26	0.37	0.26	54.9
5	T1	All MCs	810	7.5	810	7.5	0.268	3.8	LOS A	1.8	13.1	0.25	0.40	0.25	54.4
6	R2	All MCs	198	1.6	198	1.6	0.268	9.6	LOS A	1.8	13.1	0.25	0.41	0.25	53.3
Appro	ach		1235	5.8	1235	5.8	0.268	4.7	LOS A	1.8	13.1	0.25	0.39	0.25	54.3
North:	Anan	nbah Roa	d												
7	L2	All MCs	154	8.9	154	8.9	0.370	9.3	LOS A	1.8	13.2	0.77	0.87	0.86	51.3
8	T1	All MCs	34	3.1	34	3.1	0.370	9.6	LOS A	1.8	13.2	0.77	0.89	0.83	50.0
9	R2	All MCs	49	12.8	49	12.8	0.214	18.2	LOS B	0.8	6.2	0.77	0.91	0.77	46.6
Appro	ach		237	8.9	237	8.9	0.370	11.2	LOS A	1.8	13.2	0.77	0.88	0.84	50.0
West:	New	England F	lighwa	y (W)	1										
10	L2	All MCs	27	7.7	27	7.7	0.641	7.0	LOS A	5.3	38.7	0.66	0.62	0.74	52.6
11	T1	All MCs	1165	5.1	1165	5.1	0.641	6.4	LOS A	5.3	38.7	0.66	0.63	0.74	52.9
12	R2	All MCs	60	8.8	60	8.8	0.641	13.5	LOS A	5.3	38.7	0.66	0.63	0.75	51.6
Appro	ach		1252	5.3	1252	5.3	0.641	6.8	LOS A	5.3	38.7	0.66	0.63	0.74	52.8
All Vel	nicles		2877	6.0	2877	6.0	0.641	6.8	LOS A	5.3	38.7	0.50	0.56	0.54	52.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Thursday, 25 July 2024 2:11:35 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM28_F [NEW_ANA_28_PM_F (Site Folder: Future Year 2028)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	lows	FI Totol	OWS	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		ven. veh	m Dist		Rale	Cycles	km/h
South	Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.416	17.3	LOS B	2.0	14.2	0.79	0.92	0.96	48.0
2	T1	All MCs	49	4.3	49	4.3	0.416	14.5	LOS A	2.0	14.2	0.79	0.92	0.96	48.3
3	R2	All MCs	306	1.0	306	1.0	0.635	21.1	LOS B	4.3	30.1	0.85	1.05	1.25	44.5
Appro	ach		447	2.1	447	2.1	0.635	19.6	LOS B	4.3	30.1	0.83	1.01	1.16	45.5
East: I	New E	England H	ighway	′ (E)											
4	L2	All MCs	244	3.0	244	3.0	0.448	4.1	LOS A	3.0	21.2	0.40	0.41	0.40	54.2
5	T1	All MCs	997	3.2	997	3.2	0.567	4.7	LOS A	4.5	32.8	0.42	0.43	0.42	53.9
6	R2	All MCs	159	7.3	159	7.3	0.567	10.3	LOS A	4.5	32.8	0.44	0.43	0.44	52.6
Appro	ach		1400	3.6	1400	3.6	0.567	5.2	LOS A	4.5	32.8	0.42	0.42	0.42	53.8
North:	Anan	nbah Roa	d												
7	L2	All MCs	283	2.6	283	2.6	0.526	10.7	LOS A	3.2	23.2	0.85	0.94	1.07	50.3
8	T1	All MCs	55	5.8	55	5.8	0.272	11.9	LOS A	1.1	8.4	0.79	0.89	0.81	49.0
9	R2	All MCs	32	3.3	32	3.3	0.272	17.5	LOS B	1.1	8.4	0.79	0.89	0.81	48.3
Appro	ach		369	3.1	369	3.1	0.526	11.5	LOS A	3.2	23.2	0.84	0.93	1.01	49.9
West:	New	England F	lighwa	y (W)											
10	L2	All MCs	34	3.1	34	3.1	0.637	8.3	LOS A	5.3	39.0	0.77	0.76	0.94	52.1
11	T1	All MCs	1007	5.1	1007	5.1	0.637	8.0	LOS A	5.3	39.0	0.77	0.77	0.95	52.2
12	R2	All MCs	59	0.0	59	0.0	0.637	14.7	LOS B	5.3	38.5	0.77	0.78	0.95	51.2
Appro	ach		1099	4.7	1099	4.7	0.637	8.3	LOS A	5.3	39.0	0.77	0.77	0.95	52.2
All Vel	nicles		3316	3.7	3316	3.7	0.637	8.9	LOS A	5.3	39.0	0.64	0.67	0.76	51.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Thursday, 25 July 2024 2:11:36 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM28_O1 [NEW_ANA_28_AM_O1 (Site Folder: Future Year 2028 wDev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	lows	FI Total	OWS	Satn	Delay	Service		ueue	Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓v] %	v/c	sec		ven.	m Dist j		Nale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.301	21.4	LOS B	1.3	9.7	0.80	0.89	0.87	45.5
2	T1	All MCs	39	8.1	39	8.1	0.301	18.1	LOS B	1.4	10.8	0.80	0.90	0.87	45.6
3	R2	All MCs	71	10.4	71	10.4	0.301	21.7	LOS B	1.4	10.8	0.81	0.94	0.85	44.3
Appro	ach		153	8.3	153	8.3	0.301	20.7	LOS B	1.4	10.8	0.80	0.92	0.86	44.9
East:	New E	England H	lighway	′ (E)											
4	L2	All MCs	227	3.2	227	3.2	0.222	3.8	LOS A	1.4	10.1	0.38	0.40	0.38	54.3
5	T1	All MCs	810	7.5	810	7.5	0.282	4.2	LOS A	2.3	17.2	0.40	0.42	0.40	53.8
6	R2	All MCs	203	1.6	203	1.6	0.282	9.8	LOS A	2.3	17.2	0.41	0.42	0.41	52.6
Appro	ach		1241	5.7	1241	5.7	0.282	5.1	LOS A	2.3	17.2	0.40	0.41	0.40	53.7
North:	Anan	nbah Roa	d												
7	L2	All MCs	202	6.8	202	6.8	0.427	9.7	LOS A	2.2	15.9	0.79	0.90	0.92	50.9
8	T1	All MCs	34	3.1	34	3.1	0.427	9.7	LOS A	2.2	15.9	0.79	0.95	0.93	48.5
9	R2	All MCs	163	3.9	163	3.9	0.427	16.1	LOS B	2.1	15.4	0.79	0.95	0.93	47.6
Appro	ach		399	5.3	399	5.3	0.427	12.3	LOS A	2.2	15.9	0.79	0.92	0.92	49.3
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	40	5.3	40	5.3	0.650	6.9	LOS A	5.5	40.0	0.67	0.63	0.76	52.6
11	T1	All MCs	1165	5.1	1165	5.1	0.650	6.6	LOS A	5.5	40.1	0.67	0.64	0.76	52.8
12	R2	All MCs	60	8.8	60	8.8	0.650	13.0	LOS A	5.5	40.1	0.67	0.64	0.76	51.6
Appro	ach		1265	5.3	1265	5.3	0.650	6.9	LOS A	5.5	40.1	0.67	0.64	0.76	52.8
All Ve	hicles		3057	5.6	3057	5.6	0.650	7.5	LOS A	5.5	40.1	0.58	0.60	0.64	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 14 June 2024 10:07:05 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_lots_v0.3.sip9

V Site: 5PM28_O1 [NEW_ANA_28_PM_O1 (Site Folder: Future Year 2028 wDev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	IOWS	l-I I Total	OWS H\/1	Satn	Delay	Service	Qu [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.443	18.6	LOS B	2.1	15.5	0.81	0.94	1.02	47.2
2	T1	All MCs	49	4.3	49	4.3	0.443	15.5	LOS B	2.1	15.5	0.81	0.94	1.02	47.6
3	R2	All MCs	306	1.0	306	1.0	0.674	23.0	LOS B	4.7	33.5	0.87	1.09	1.35	43.5
Appro	ach		447	2.1	447	2.1	0.674	21.3	LOS B	4.7	33.5	0.85	1.04	1.24	44.6
East: I	New E	England H	ighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.471	4.2	LOS A	3.2	23.1	0.43	0.42	0.43	54.0
5	T1	All MCs	997	3.2	997	3.2	0.596	4.9	LOS A	5.0	36.0	0.46	0.44	0.46	53.7
6	R2	All MCs	212	5.5	212	5.5	0.596	10.3	LOS A	5.0	36.0	0.48	0.45	0.48	52.3
Appro	ach		1453	3.5	1453	3.5	0.596	5.6	LOS A	5.0	36.0	0.46	0.44	0.46	53.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	289	2.5	289	2.5	0.570	11.9	LOS A	3.8	27.0	0.88	0.97	1.15	49.5
8	T1	All MCs	55	5.8	55	5.8	0.312	11.8	LOS A	1.4	10.3	0.80	0.92	0.86	48.5
9	R2	All MCs	45	2.3	45	2.3	0.312	17.9	LOS B	1.4	10.3	0.80	0.92	0.86	47.8
Appro	ach		389	3.0	389	3.0	0.570	12.6	LOS A	3.8	27.0	0.86	0.96	1.07	49.1
West:	New	England F	lighwa	y (W)											
10	L2	All MCs	158	0.7	158	0.7	0.734	10.1	LOS A	7.5	54.1	0.86	0.88	1.17	51.0
11	T1	All MCs	1007	5.1	1007	5.1	0.734	10.2	LOS A	7.5	54.1	0.86	0.89	1.18	51.0
12	R2	All MCs	59	0.0	59	0.0	0.734	16.5	LOS B	7.4	53.6	0.86	0.90	1.18	50.0
Appro	ach		1224	4.2	1224	4.2	0.734	10.5	LOS A	7.5	54.1	0.86	0.89	1.18	50.9
All Vel	nicles		3514	3.5	3514	3.5	0.734	10.1	LOS A	7.5	54.1	0.69	0.73	0.88	50.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 14 June 2024 10:07:06 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_lots_v0.3.sip9

W Site: 5AM28_O1 [NEW_ANA_28_AM_O1_50% (Site Folder: Future Year 2028 wDev_50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	H [Total]	IOWS	H Total	lows H\/ 1	Satn	Delay	Service	Qu [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.289	20.3	LOS B	1.2	9.2	0.79	0.88	0.84	46.0
2	T1	All MCs	39	8.1	39	8.1	0.289	17.2	LOS B	1.4	10.3	0.79	0.89	0.84	46.1
3	R2	All MCs	71	10.4	71	10.4	0.289	20.9	LOS B	1.4	10.3	0.79	0.93	0.82	44.7
Appro	ach		153	8.3	153	8.3	0.289	19.8	LOS B	1.4	10.3	0.79	0.91	0.83	45.4
East:	New E	England H	lighway	′ (E)											
4	L2	All MCs	227	3.2	227	3.2	0.221	3.7	LOS A	1.4	9.9	0.36	0.39	0.36	54.4
5	T1	All MCs	810	7.5	810	7.5	0.279	4.1	LOS A	2.3	16.6	0.37	0.41	0.37	53.9
6	R2	All MCs	206	1.6	206	1.6	0.279	9.8	LOS A	2.3	16.6	0.37	0.42	0.37	52.7
Appro	ach		1244	5.7	1244	5.7	0.279	5.0	LOS A	2.3	16.6	0.37	0.41	0.37	53.8
North:	Anan	nbah Roa	d												
7	L2	All MCs	234	6.8	234	6.8	0.491	10.4	LOS A	2.6	19.4	0.81	0.93	0.99	50.4
8	T1	All MCs	34	3.1	34	3.1	0.395	10.0	LOS A	1.9	13.5	0.78	0.95	0.90	48.3
9	R2	All MCs	132	3.9	132	3.9	0.395	16.4	LOS B	1.9	13.5	0.78	0.95	0.90	47.5
Appro	ach		399	5.5	399	5.5	0.491	12.4	LOS A	2.6	19.4	0.80	0.94	0.95	49.2
West:	New	England I	Highwa	y (W)	1										
10	L2	All MCs	37	5.3	37	5.3	0.650	6.9	LOS A	5.5	39.9	0.67	0.63	0.77	52.6
11	T1	All MCs	1165	5.1	1165	5.1	0.650	6.6	LOS A	5.5	40.1	0.67	0.64	0.77	52.8
12	R2	All MCs	60	8.8	60	8.8	0.650	13.1	LOS A	5.5	40.1	0.67	0.65	0.76	51.6
Appro	ach		1262	5.3	1262	5.3	0.650	6.9	LOS A	5.5	40.1	0.67	0.64	0.77	52.8
All Ve	hicles		3057	5.6	3057	5.6	0.650	7.5	LOS A	5.5	40.1	0.57	0.60	0.63	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Thursday, 25 July 2024 10:26:05 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_lots_v0.3.sip9

V Site: 5PM28_O1 [NEW_ANA_28_PM_O1_50% (Site Folder: Future Year 2028 wDev_50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI	lows	FI Tatal I	ows	Satn	Delay	Service	QL		Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		ven.	m Dist		Rale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.454	19.1	LOS B	2.2	16.0	0.82	0.95	1.04	46.9
2	T1	All MCs	49	4.3	49	4.3	0.454	16.0	LOS B	2.2	16.0	0.82	0.95	1.04	47.2
3	R2	All MCs	306	1.0	306	1.0	0.690	23.9	LOS B	4.9	34.8	0.88	1.11	1.39	43.1
Appro	ach		447	2.1	447	2.1	0.690	22.1	LOS B	4.9	34.8	0.86	1.06	1.28	44.2
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.481	4.2	LOS A	3.3	23.8	0.43	0.42	0.43	54.0
5	T1	All MCs	997	3.2	997	3.2	0.609	4.9	LOS A	5.2	37.5	0.46	0.45	0.46	53.6
6	R2	All MCs	247	5.5	247	5.5	0.609	10.3	LOS A	5.2	37.5	0.48	0.46	0.48	52.2
Appro	ach		1488	3.5	1488	3.5	0.609	5.7	LOS A	5.2	37.5	0.46	0.45	0.46	53.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	293	2.5	293	2.5	0.573	11.8	LOS A	3.8	27.1	0.88	0.97	1.15	49.6
8	T1	All MCs	55	5.8	55	5.8	0.307	11.8	LOS A	1.4	10.0	0.80	0.92	0.85	48.6
9	R2	All MCs	42	2.3	42	2.3	0.307	17.8	LOS B	1.4	10.0	0.80	0.92	0.85	47.9
Appro	ach		389	3.0	389	3.0	0.573	12.4	LOS A	3.8	27.1	0.86	0.96	1.08	49.2
West:	New	England H	Highwa	y (W))										
10	L2	All MCs	123	0.7	123	0.7	0.731	10.4	LOS A	7.4	53.4	0.86	0.90	1.19	50.7
11	T1	All MCs	1007	5.1	1007	5.1	0.731	10.6	LOS A	7.4	53.4	0.86	0.91	1.20	50.7
12	R2	All MCs	59	0.0	59	0.0	0.731	16.9	LOS B	7.2	52.7	0.86	0.91	1.20	49.7
Appro	ach		1189	4.3	1189	4.3	0.731	10.9	LOS A	7.4	53.4	0.86	0.90	1.20	50.7
All Ve	nicles		3514	3.6	3514	3.6	0.731	10.3	LOS A	7.4	53.4	0.69	0.74	0.88	50.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Thursday, 25 July 2024 10:26:06 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_lots_v0.3.sip9

V Site: 5AM28_O1 [NEW_ANA_28_AM_O1_No Wyndella (Site Folder: Future Year 2028 wDev (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Intel I	lows µ\/1	l Into T	OWS H\/1	Satn	Delay	Service	Qu [\/eh	eue Diet 1	Que	Stop Rate	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		TALC	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.475	35.2	LOS C	2.6	19.2	0.91	1.01	1.16	40.4
2	T1	All MCs	39	8.1	39	8.1	0.475	29.7	LOS C	2.6	19.2	0.91	1.01	1.16	40.6
3	R2	All MCs	71	10.4	71	10.4	0.475	44.4	LOS D	2.4	18.0	0.91	1.06	1.23	35.1
Appro	ach		153	8.3	153	8.3	0.475	38.0	LOS C	2.6	19.2	0.91	1.03	1.20	37.7
East:	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.279	4.5	LOS A	2.0	14.6	0.63	0.49	0.63	53.1
5	T1	All MCs	810	7.5	810	7.5	0.353	5.9	LOS A	3.6	26.4	0.69	0.48	0.69	52.5
6	R2	All MCs	218	1.4	218	1.4	0.353	10.6	LOS A	3.6	26.4	0.71	0.48	0.71	51.3
Appro	ach		1256	5.7	1256	5.7	0.353	6.5	LOS A	3.6	26.4	0.68	0.48	0.68	52.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	335	4.1	335	4.1	0.886	26.1	LOS B	8.3	60.2	0.95	1.31	2.04	41.6
8	T1	All MCs	34	3.1	34	3.1	0.886	25.8	LOS B	8.3	60.2	0.95	1.31	2.04	41.9
9	R2	All MCs	473	1.3	473	1.3	0.976	48.1	LOS D	15.7	111.2	0.99	1.71	3.22	34.0
Appro	ach		842	2.5	842	2.5	0.976	38.5	LOS C	15.7	111.2	0.97	1.53	2.70	36.9
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	74	2.8	74	2.8	0.685	7.7	LOS A	6.4	46.9	0.73	0.68	0.85	52.4
11	T1	All MCs	1165	5.1	1165	5.1	0.685	7.2	LOS A	6.4	47.0	0.73	0.69	0.86	52.5
12	R2	All MCs	60	8.8	60	8.8	0.685	14.3	LOS A	6.4	47.0	0.73	0.69	0.86	51.3
Appro	ach		1299	5.1	1299	5.1	0.685	7.5	LOS A	6.4	47.0	0.73	0.69	0.86	52.5
All Ve	hicles		3550	4.8	3550	4.8	0.976	15.8	LOS B	15.7	111.2	0.78	0.83	1.25	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 16 August 2024 12:35:32 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM28_O1 [NEW_ANA_28_PM_O1_No Wyndella (Site Folder: Future Year 2028 wDev (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows	FI Total	OWS	Satn	Delay	Service	Qu [\/ob	eue	Que	Stop	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.535	23.6	LOS B	2.8	20.0	0.87	1.01	1.19	44.5
2	T1	All MCs	49	4.3	49	4.3	0.535	21.4	LOS B	2.8	20.0	0.87	1.01	1.19	44.8
3	R2	All MCs	306	1.0	306	1.0	0.805	33.2	LOS C	6.9	48.5	0.93	1.25	1.80	39.1
Appro	ach		447	2.1	447	2.1	0.805	29.9	LOS C	6.9	48.5	0.91	1.17	1.61	40.6
East: I	New E	England H	lighway	′ (E)											
4	L2	All MCs	244	3.0	244	3.0	0.534	4.5	LOS A	3.8	27.6	0.51	0.45	0.51	53.6
5	T1	All MCs	997	3.2	997	3.2	0.676	5.4	LOS A	6.2	44.7	0.56	0.48	0.56	53.0
6	R2	All MCs	358	3.2	358	3.2	0.676	10.6	LOS A	6.2	44.7	0.58	0.51	0.58	51.5
Appro	ach		1599	3.2	1599	3.2	0.676	6.4	LOS A	6.2	44.7	0.56	0.48	0.56	52.8
North:	Anan	nbah Roa	d												
7	L2	All MCs	305	2.4	305	2.4	0.700	17.1	LOS B	5.7	40.6	0.96	1.07	1.42	46.3
8	T1	All MCs	55	5.8	55	5.8	0.700	14.9	LOS B	5.7	40.6	0.88	0.99	1.08	46.7
9	R2	All MCs	83	1.3	83	1.3	0.404	19.8	LOS B	2.1	15.3	0.85	0.96	0.99	46.0
Appro	ach		443	2.6	443	2.6	0.700	17.3	LOS B	5.7	40.6	0.93	1.04	1.30	46.3
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	499	0.2	499	0.2	1.038	67.5	LOS E	43.2	308.0	1.00	2.51	4.93	28.8
11	T1	All MCs	1007	5.1	1007	5.1	1.038	67.6	LOS E	43.2	308.0	1.00	2.49	4.90	28.8
12	R2	All MCs	59	0.0	59	0.0	1.038	74.5	LOS F	40.5	294.8	1.00	2.48	4.89	28.5
Appro	ach		1565	3.3	1565	3.3	1.038	67.8	LOS E	43.2	308.0	1.00	2.50	4.91	28.8
All Vel	hicles		4055	3.0	4055	3.0	1.038	33.9	LOS C	43.2	308.0	0.81	1.40	2.43	38.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 16 August 2024 12:37:10 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM28_O1 [NEW_ANA_28_AM_O1_Mod_No Wyndella (Site Folder: Future Year 2028 wDev Modified (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	ack Of	Prop.	Eff.	Aver.	Aver.
שו		Class	FI [Total	IOWS	FI [Total]	ows H\/ 1	Sath	Delay	Service	Qu [\/eh	eue Dist 1	Que	Stop Rate	NO. Of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.474	35.2	LOS C	2.6	19.1	0.91	1.01	1.16	40.4
2	T1	All MCs	39	8.1	39	8.1	0.474	29.6	LOS C	2.6	19.1	0.91	1.01	1.16	40.6
3	R2	All MCs	71	10.4	71	10.4	0.474	44.3	LOS D	2.3	17.9	0.91	1.06	1.23	35.1
Appro	ach		153	8.3	153	8.3	0.474	38.0	LOS C	2.6	19.1	0.91	1.03	1.19	37.8
East:	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.278	4.5	LOS A	2.0	14.3	0.62	0.49	0.62	53.1
5	T1	All MCs	810	7.5	810	7.5	0.352	5.9	LOS A	3.5	26.0	0.69	0.48	0.69	52.5
6	R2	All MCs	218	1.4	218	1.4	0.352	10.6	LOS A	3.5	26.0	0.71	0.48	0.71	51.3
Appro	ach		1256	5.7	1256	5.7	0.352	6.5	LOS A	3.5	26.0	0.68	0.48	0.68	52.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	335	4.1	335	4.1	0.822	19.2	LOS B	6.4	46.0	0.92	1.18	1.67	45.1
8	T1	All MCs	34	3.1	34	3.1	0.822	18.8	LOS B	6.4	46.0	0.92	1.18	1.67	45.4
9	R2	All MCs	473	1.3	473	1.3	0.903	29.9	LOS C	9.7	68.4	0.95	1.37	2.17	40.4
Appro	ach		842	2.5	842	2.5	0.903	25.2	LOS B	9.7	68.4	0.93	1.29	1.95	42.3
West:	New	England I	Highwa	y (W)	1										
10	L2	All MCs	74	2.8	74	2.8	0.105	6.0	LOS A	0.4	3.1	0.46	0.56	0.46	53.8
11	T1	All MCs	1165	5.1	1165	5.1	0.555	5.1	LOS A	3.9	28.5	0.61	0.53	0.63	53.2
12	R2	All MCs	60	8.8	60	8.8	0.555	12.3	LOS A	3.9	28.5	0.61	0.56	0.64	51.9
Appro	ach		1299	5.1	1299	5.1	0.555	5.5	LOS A	3.9	28.5	0.60	0.53	0.62	53.2
All Ve	hicles		3550	4.8	3550	4.8	0.903	11.9	LOS A	9.7	68.4	0.72	0.71	0.98	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 11:43:09 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM28_O1 [NEW_ANA_28_PM_O1_Mod_No Wyndella (Site Folder: Future Year 2028 wDev Modified (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
D		Class	H Total	lows 山\/1	H Total J	OWS 山\/1	Satn	Delay	Service	Qu [Vob	eue	Que	Stop	No. of	Speed
			veh/h	· · v j %	veh/h	%	v/c	sec		veh	m		Tate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.533	23.5	LOS B	2.7	19.9	0.87	1.01	1.18	44.5
2	T1	All MCs	49	4.3	49	4.3	0.533	21.4	LOS B	2.7	19.9	0.87	1.01	1.18	44.8
3	R2	All MCs	306	1.0	306	1.0	0.802	32.9	LOS C	6.8	48.1	0.93	1.24	1.79	39.2
Appro	ach		447	2.1	447	2.1	0.802	29.7	LOS C	6.8	48.1	0.91	1.17	1.60	40.7
East:	New E	England H	lighway	′ (E)											
4	L2	All MCs	244	3.0	244	3.0	0.533	4.5	LOS A	3.8	27.1	0.51	0.45	0.51	53.6
5	T1	All MCs	997	3.2	997	3.2	0.675	5.4	LOS A	6.1	43.8	0.55	0.49	0.55	53.1
6	R2	All MCs	358	3.2	358	3.2	0.675	10.6	LOS A	6.1	43.8	0.58	0.51	0.58	51.5
Appro	ach		1599	3.2	1599	3.2	0.675	6.4	LOS A	6.1	43.8	0.55	0.49	0.55	52.8
North:	Anan	nbah Roa	d												
7	L2	All MCs	305	2.4	305	2.4	0.585	10.9	LOS A	3.7	26.6	0.86	0.97	1.13	50.2
8	T1	All MCs	55	5.8	55	5.8	0.585	11.2	LOS A	3.7	26.6	0.81	0.94	0.93	48.9
9	R2	All MCs	83	1.3	83	1.3	0.337	16.8	LOS B	1.5	11.0	0.79	0.93	0.86	47.7
Appro	ach		443	2.6	443	2.6	0.585	12.1	LOS A	3.7	26.6	0.84	0.96	1.05	49.5
West:	New	England I	lighwa	y (W))										
10	L2	All MCs	499	0.2	499	0.2	0.584	9.9	LOS A	4.9	35.6	0.80	0.82	0.98	51.6
11	T1	All MCs	1007	5.1	1007	5.1	0.584	8.0	LOS A	4.9	35.6	0.80	0.79	0.97	52.1
12	R2	All MCs	59	0.0	59	0.0	0.584	15.3	LOS B	4.6	33.2	0.80	0.81	0.99	51.0
Appro	ach		1565	3.3	1565	3.3	0.584	8.9	LOS A	4.9	35.6	0.80	0.80	0.97	51.9
All Ve	hicles		4055	3.0	4055	3.0	0.802	10.6	LOS A	6.8	48.1	0.72	0.73	0.88	50.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 11:44:03 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5AM28_O1 [NEW_ANA_28_AM_O1_Mod_50%_No Wyndella (Site Folder: Future Year 2028 wDev Modified_50% (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le M	ovement	t Perfo	rma	nce	_									
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
שו		Class	٦ Total آ	HV 1	اح Total آ	ows HV 1	Saur	Delay	Service	[Veh.	eue Dist 1	Que	Rate	Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			- ,	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.398	26.7	LOS B	2.0	15.0	0.87	0.97	1.04	43.6
2	T1	All MCs	39	8.1	39	8.1	0.398	23.1	LOS B	2.0	15.0	0.87	0.97	1.04	43.6
3	R2	All MCs	71	10.4	71	10.4	0.398	35.4	LOS C	1.9	14.6	0.88	1.02	1.10	38.2
Appro	ach		153	8.3	153	8.3	0.398	29.8	LOS C	2.0	15.0	0.88	0.99	1.07	40.9
East: I	New E	England H	lighway	(E)											
4	L2	All MCs	227	3.2	227	3.2	0.252	4.1	LOS A	1.7	12.1	0.53	0.44	0.53	53.6
5	T1	All MCs	810	7.5	810	7.5	0.319	5.1	LOS A	2.9	21.7	0.57	0.45	0.57	53.0
6	R2	All MCs	232	1.4	232	1.4	0.319	10.2	LOS A	2.9	21.7	0.59	0.46	0.59	51.8
Appro	ach		1269	5.6	1269	5.6	0.319	5.8	LOS A	2.9	21.7	0.56	0.45	0.56	52.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	456	3.0	456	3.0	0.945	31.1	LOS C	12.5	89.5	0.97	1.53	2.71	39.4
8	T1	All MCs	34	3.1	34	3.1	0.945	30.9	LOS C	12.5	89.5	0.97	1.53	2.71	39.6
9	R2	All MCs	352	1.8	352	1.8	0.781	23.3	LOS B	5.6	39.9	0.90	1.15	1.51	43.3
Appro	ach		842	2.5	842	2.5	0.945	27.9	LOS B	12.5	89.5	0.94	1.37	2.21	41.0
West:	New	England I	Highwa	y (W)	1										
10	L2	All MCs	61	3.5	61	3.5	0.087	6.1	LOS A	0.4	2.5	0.46	0.56	0.46	53.8
11	T1	All MCs	1165	5.1	1165	5.1	0.557	5.2	LOS A	3.9	28.6	0.61	0.54	0.64	53.2
12	R2	All MCs	60	8.8	60	8.8	0.557	12.5	LOS A	3.9	28.6	0.62	0.58	0.65	51.9
Appro	ach		1286	5.2	1286	5.2	0.557	5.6	LOS A	3.9	28.6	0.60	0.55	0.63	53.1
All Vel	nicles		3550	4.8	3550	4.8	0.945	12.0	LOS A	12.5	89.5	0.68	0.73	1.00	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:38:16 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 5PM28_O1 [NEW_ANA_28_PM_O1_Mod_50%_No Wyndella (Site Folder: Future Year 2028 wDev Modified_50% (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total	nand Iows HV 1	Ar Fl [Total]	rival lows HV]	Deg. Satn	Aver. Delay	Level of Service	95% E Qu [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.595	27.5	LOS B	3.2	23.1	0.90	1.05	1.30	42.4
2	T1	All MCs	49	4.3	49	4.3	0.595	25.9	LOS B	3.2	23.1	0.90	1.05	1.30	42.7
3	R2	All MCs	306	1.0	306	1.0	0.889	46.9	LOS D	9.3	65.5	0.96	1.42	2.36	34.4
Appro	ach		447	2.1	447	2.1	0.889	40.6	LOS C	9.3	65.5	0.95	1.30	2.03	36.5
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.569	4.5	LOS A	4.4	31.3	0.52	0.45	0.52	53.6
5	T1	All MCs	997	3.2	997	3.2	0.721	5.5	LOS A	7.3	52.1	0.57	0.49	0.57	52.8
6	R2	All MCs	491	2.4	491	2.4	0.721	10.6	LOS A	7.3	52.1	0.61	0.53	0.61	51.1
Appro	ach		1733	2.9	1733	2.9	0.721	6.8	LOS A	7.3	52.1	0.57	0.50	0.57	52.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	320	2.3	320	2.3	0.603	11.1	LOS A	3.9	28.0	0.87	0.98	1.15	50.0
8	T1	All MCs	55	5.8	55	5.8	0.603	11.5	LOS A	3.9	28.0	0.80	0.93	0.89	48.7
9	R2	All MCs	69	1.5	69	1.5	0.348	17.0	LOS B	1.6	11.4	0.80	0.93	0.88	47.9
Appro	ach		443	2.6	443	2.6	0.603	12.1	LOS A	3.9	28.0	0.85	0.97	1.08	49.5
West:	New	England H	lighwa	y (W)											
10	L2	All MCs	367	0.3	367	0.3	0.493	10.6	LOS A	3.4	24.0	0.79	0.81	0.94	51.4
11	T1	All MCs	1007	5.1	1007	5.1	0.638	10.3	LOS A	6.0	44.2	0.86	0.89	1.16	51.0
12	R2	All MCs	59	0.0	59	0.0	0.638	17.7	LOS B	5.5	40.1	0.86	0.91	1.18	49.4
Appro	ach		1433	3.6	1433	3.6	0.638	10.7	LOS A	6.0	44.2	0.85	0.87	1.10	51.0
All Ve	hicles		4056	3.0	4056	3.0	0.889	12.5	LOS A	9.3	65.5	0.74	0.77	0.98	49.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 2:38:50 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5AM38_F [NEW_ANA_38_AM_F (Site Folder: Future Year 2038)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 145 seconds (Site User-Given Phase Times)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	IOWS	lH [Total]	OWS	Satn	Delay	Service	Qu [\/eh	eue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Oycics	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.527	44.0	LOS D	4.9	36.2	0.99	0.77	0.99	30.7
2	T1	All MCs	39	8.1	39	8.1	*0.527	68.2	LOS E	4.9	36.2	0.99	0.77	0.99	31.5
3	R2	All MCs	71	10.4	71	10.4	0.493	77.0	LOS F	5.0	37.9	1.00	0.77	1.00	26.1
Appro	ach		153	8.3	153	8.3	0.527	65.4	LOS E	5.0	37.9	1.00	0.77	1.00	28.6
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	227	3.2	227	3.2	0.189	11.1	LOS A	3.1	22.3	0.23	0.61	0.23	51.2
5	T1	All MCs	1082	7.1	1082	7.1	0.551	23.9	LOS B	23.9	177.7	0.67	0.61	0.67	45.0
6	R2	All MCs	198	1.6	198	1.6	*0.868	86.7	LOS F	15.3	108.3	1.00	0.95	1.23	25.0
Appro	ach		1507	5.8	1507	5.8	0.868	30.2	LOS C	23.9	177.7	0.65	0.65	0.68	39.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	154	8.9	154	8.9	0.475	54.4	LOS D	11.5	86.1	0.92	0.80	0.92	30.3
8	T1	All MCs	34	3.1	34	3.1	0.475	68.8	LOS E	11.5	86.1	0.92	0.80	0.92	31.1
9	R2	All MCs	49	12.8	49	12.8	0.351	76.0	LOS F	3.4	26.7	0.98	0.75	0.98	26.2
Appro	ach		237	8.9	237	8.9	0.475	61.0	LOS E	11.5	86.1	0.93	0.79	0.93	29.4
West:	New	England H	lighwa	y (W)											
10	L2	All MCs	27	7.7	27	7.7	*0.960	40.7	LOS C	83.8	605.6	1.00	1.08	1.16	30.8
11	T1	All MCs	2011	3.7	2011	3.7	*0.960	66.1	LOS E	83.8	605.6	1.00	1.08	1.16	31.7
12	R2	All MCs	60	8.8	60	8.8	0.277	92.0	LOS F	3.9	29.5	0.95	0.76	0.95	27.6
Appro	ach		2099	3.9	2099	3.9	0.960	66.5	LOS E	83.8	605.6	1.00	1.07	1.16	28.7
All Ve	hicles		3995	5.1	3995	5.1	0.960	52.5	LOS D	83.8	605.6	0.86	0.89	0.96	32.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pe	destrian M	loveme	ent Perf	ormand	e:							
Mo	/ i	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	uth: Shipley	/ Drive										
P1	Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
Eas	st: New Eng	gland Hig	ghway (E	.)								

P2 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
North: Anamba	h Road										
P3 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
West: New Eng	land High	way (N	/)								
P4 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
All Pedestrians	0	211	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:16:07 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5PM38_F [NEW_ANA_38_PM_F (Site Folder: Future Year 2038)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 149 seconds (Site User-Given Phase Times)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	[] Totol	IOWS	- Totol	OWS	Satn	Delay	Service	Que L Voh		Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		veh	m		Nale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	*0.963	97.8	LOS F	19.8	142.1	1.00	1.13	1.43	23.1
2	T1	All MCs	49	4.3	49	4.3	*0.963	108.5	LOS F	19.8	142.1	1.00	1.13	1.43	23.5
3	R2	All MCs	306	1.0	306	1.0	0.963	114.8	LOS F	19.8	142.1	1.00	1.14	1.43	22.3
Appro	ach		447	2.1	447	2.1	0.963	110.6	LOS F	19.8	142.1	1.00	1.14	1.43	21.1
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.190	19.8	LOS B	2.5	18.0	0.15	0.59	0.15	52.0
5	T1	All MCs	1853	2.1	1853	2.1	*0.898	45.4	LOS D	63.6	453.2	0.93	0.89	0.98	39.5
6	R2	All MCs	159	7.3	159	7.3	0.559	83.3	LOS F	10.8	80.4	0.97	0.81	0.97	27.7
Appro	ach		2256	2.6	2256	2.6	0.898	45.3	LOS D	63.6	453.2	0.85	0.85	0.89	34.3
North:	Anan	nbah Roa	d												
7	L2	All MCs	283	2.6	283	2.6	0.881	72.7	LOS F	26.5	190.8	1.00	0.97	1.18	26.1
8	T1	All MCs	55	5.8	55	5.8	0.881	96.5	LOS F	26.5	190.8	1.00	0.97	1.18	26.6
9	R2	All MCs	32	3.3	32	3.3	0.432	86.2	LOS F	2.4	17.3	1.00	0.73	1.00	24.5
Appro	ach		369	3.1	369	3.1	0.881	77.3	LOS F	26.5	190.8	1.00	0.95	1.16	26.0
West:	New	England H	lighwa	y (W)											
10	L2	All MCs	34	3.1	34	3.1	*0.730	21.7	LOS B	39.0	284.2	0.84	0.79	0.84	37.5
11	T1	All MCs	1335	4.8	1335	4.8	0.730	40.9	LOS C	39.0	284.2	0.84	0.78	0.84	39.4
12	R2	All MCs	59	0.0	59	0.0	0.788	108.3	LOS F	4.7	32.8	1.00	0.86	1.25	23.8
Appro	ach		1428	4.6	1428	4.6	0.788	43.3	LOS D	39.0	284.2	0.85	0.78	0.86	35.1
All Ve	nicles		4501	3.2	4501	3.2	0.963	53.8	LOS D	63.6	453.2	0.88	0.87	0.96	31.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pede	strian N	loveme	ent Perf	ormand	e:							
Mov ID C	rossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service		BACK OF	Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
		ped/h	ped/h	sec		[Ped ped	Dist J m		Rate	sec	m	m/sec
South:	: Shipley	Drive										
P1 F	ull	50	53	68.8	LOS F	0.2	0.2	0.96	0.96	222.6	200.0	0.90
East: I	New Eng	gland Hig	ghway (E)								

P2 Full	50	53	68.8	LOS F	0.2	0.2	0.96	0.96	222.6	200.0	0.90
North: Anamba	h Road										
P3 Full	50	53	68.8	LOS F	0.2	0.2	0.96	0.96	222.6	200.0	0.90
West: New Eng	land High	way (N	/)								
P4 Full	50	53	68.8	LOS F	0.2	0.2	0.96	0.96	222.6	200.0	0.90
All Pedestrians	0	211	68.8	LOS F	0.2	0.2	0.96	0.96	222.6	200.0	0.90

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:16:08 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5AM38_F [NEW_ANA_38_AM_O1 (Site Folder: Future Year 2038 wDev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 145 seconds (Site User-Given Phase Times)

Vehic	le M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	 Total	lows µ\/1	- LetoT]	OWS	Satn	Delay	Service	Qu [\/eh	eue Diet 1	Que	Stop Rate	No. of	Speed
			veh/h	· · v] %	veh/h	%	v/c	sec		veh	m		Tate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.573	44.1	LOS D	4.9	36.5	1.00	0.77	1.00	30.6
2	T1	All MCs	39	8.1	39	8.1	*0.573	69.2	LOS E	4.9	36.5	1.00	0.77	1.00	31.4
3	R2	All MCs	71	10.4	71	10.4	0.538	78.4	LOS F	5.0	38.4	1.00	0.77	1.00	25.9
Appro	ach		153	8.3	153	8.3	0.573	66.4	LOS E	5.0	38.4	1.00	0.77	1.00	28.4
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	227	3.2	227	3.2	0.190	11.4	LOS A	3.2	23.3	0.24	0.61	0.24	51.0
5	T1	All MCs	1082	7.1	1082	7.1	0.551	23.9	LOS B	23.9	177.6	0.67	0.61	0.67	45.0
6	R2	All MCs	203	1.6	203	1.6	*0.892	89.5	LOS F	16.0	113.8	1.00	0.98	1.28	24.6
Appro	ach		1512	5.7	1512	5.7	0.892	30.8	LOS C	23.9	177.6	0.65	0.66	0.69	39.6
North	Anan	nbah Roa	d												
7	L2	All MCs	202	6.8	202	6.8	0.545	53.8	LOS D	14.5	107.3	0.92	0.82	0.92	30.5
8	T1	All MCs	34	3.1	34	3.1	0.545	68.4	LOS E	14.5	107.3	0.92	0.82	0.92	31.3
9	R2	All MCs	163	3.9	163	3.9	0.933	95.2	LOS F	13.6	98.0	1.00	1.03	1.40	23.1
Appro	ach		399	5.3	399	5.3	0.933	72.0	LOS F	14.5	107.3	0.95	0.90	1.12	27.1
West:	New	England I	Highway	y (W)											
10	L2	All MCs	40	5.3	40	5.3	*0.966	42.4	LOS C	86.1	622.1	1.00	1.10	1.17	30.2
11	T1	All MCs	2011	3.7	2011	3.7	*0.966	69.0	LOS E	86.1	622.1	1.00	1.10	1.18	31.0
12	R2	All MCs	60	8.8	60	8.8	0.277	92.2	LOS F	3.9	29.5	0.95	0.76	0.95	27.6
Appro	ach		2111	3.9	2111	3.9	0.966	69.1	LOS E	86.1	622.1	1.00	1.09	1.17	28.1
All Ve	hicles		4175	4.9	4175	4.9	0.966	55.4	LOS D	86.1	622.1	0.87	0.90	0.99	31.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pe	destrian M	loveme	ent Perf	ormand	e:							
Mo	/ i	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	uth: Shipley	/ Drive										
P1	Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
Eas	st: New Eng	gland Hig	ghway (E	.)								

P2 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
North: Anamba	h Road										
P3 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
West: New Eng	land High	way (N	/)								
P4 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
All Pedestrians	0	211	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:24:58 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_ lots_v0.4.sip9

Site: 5PM38_F [NEW_ANA_38_PM_O1 (Site Folder: Future Year 2038 wDev)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 147 seconds (Site User-Given Phase Times)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	[] [Total	lows 山い1	l Total I	OWS 山\/1	Satn	Delay	Service	Que [Vob	eue Dict 1	Que	Stop	No. of	Speed
			veh/h	· · · · j %	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	*0.989	108.9	LOS F	20.7	148.8	1.00	1.17	1.51	21.7
2	T1	All MCs	49	4.3	49	4.3	*0.989	117.9	LOS F	20.7	148.8	1.00	1.17	1.51	22.1
3	R2	All MCs	306	1.0	306	1.0	0.989	124.4	LOS F	20.7	148.8	1.00	1.18	1.51	21.0
Appro	ach		447	2.1	447	2.1	0.989	120.5	LOS F	20.7	148.8	1.00	1.18	1.51	20.0
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.189	17.1	LOS B	2.4	17.0	0.14	0.58	0.14	52.1
5	T1	All MCs	1853	2.1	1853	2.1	*0.865	33.1	LOS C	54.0	385.1	0.86	0.80	0.87	44.0
6	R2	All MCs	212	5.5	212	5.5	0.832	90.2	LOS F	16.1	117.6	1.00	0.92	1.16	25.7
Appro	ach		2309	2.5	2309	2.5	0.865	36.7	LOS C	54.0	385.1	0.80	0.79	0.82	37.3
North:	Anan	nbah Roa	d												
7	L2	All MCs	289	2.5	289	2.5	0.992	106.1	LOS F	32.7	234.8	1.00	1.13	1.45	21.1
8	T1	All MCs	55	5.8	55	5.8	0.992	127.4	LOS F	32.7	234.8	1.00	1.13	1.45	21.5
9	R2	All MCs	45	2.3	45	2.3	0.731	89.6	LOS F	3.6	25.5	1.00	0.83	1.21	24.0
Appro	ach		389	3.0	389	3.0	0.992	107.2	LOS F	32.7	234.8	1.00	1.09	1.42	21.5
West:	New	England H	Highway	y (W)											
10	L2	All MCs	158	0.7	158	0.7	* 0.757	22.1	LOS B	41.3	299.1	0.84	0.82	0.84	38.4
11	T1	All MCs	1335	4.8	1335	4.8	0.757	40.0	LOS C	41.3	299.1	0.84	0.80	0.84	40.4
12	R2	All MCs	59	0.0	59	0.0	0.933	117.4	LOS F	5.0	34.8	1.00	0.96	1.54	22.4
Appro	ach		1553	4.2	1553	4.2	0.933	41.1	LOS C	41.3	299.1	0.85	0.80	0.87	35.8
All Ve	nicles		4698	3.1	4698	3.1	0.992	52.0	LOS D	54.0	385.1	0.85	0.86	0.95	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pede	strian N	loveme	ent Perf	ormand	e:							
Mov ID C	crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service		BACK OF	Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
		ped/h	ped/h	sec		[Ped ped	Dist J m		Rate	sec	m	m/sec
South	: Shipley	Drive										
P1 F	ull	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
East:	New Eng	gland Hig	ghway (E	.)								

P2 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
North: Anamba	h Road										
P3 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
West: New Eng	gland High	way (N	/)								
P4 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
All Pedestrians	0	211	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:24:59 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_ lots_v0.4.sip9

Site: 5AM38_F [NEW_ANA_38_AM_O1_50% (Site Folder:

Future Year 2038 wDev_50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 145 seconds (Site User-Given Phase Times)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows 山い 1	- Total	OWS ⊔\/1	Satn	Delay	Service	Qu [\/ob	eue Dict 1	Que	Stop	No. of	Speed
			veh/h	пvј %	veh/h	⊓vj %	v/c	sec		veh	m m		Nale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.573	44.1	LOS D	4.9	36.5	1.00	0.77	1.00	30.6
2	T1	All MCs	39	8.1	39	8.1	*0.573	69.2	LOS E	4.9	36.5	1.00	0.77	1.00	31.4
3	R2	All MCs	71	10.4	71	10.4	0.538	78.4	LOS F	5.0	38.4	1.00	0.77	1.00	25.9
Appro	ach		153	8.3	153	8.3	0.573	66.4	LOS E	5.0	38.4	1.00	0.77	1.00	28.4
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	227	3.2	227	3.2	0.190	11.4	LOS A	3.2	23.3	0.24	0.61	0.24	51.0
5	T1	All MCs	1082	7.1	1082	7.1	0.552	23.9	LOS B	23.9	177.6	0.67	0.61	0.67	45.0
6	R2	All MCs	206	1.6	206	1.6	*0.905	91.4	LOS F	16.5	117.2	1.00	0.99	1.30	24.3
Appro	ach		1515	5.7	1515	5.7	0.905	31.2	LOS C	23.9	177.6	0.65	0.66	0.69	39.4
North:	Anan	nbah Roa	d												
7	L2	All MCs	234	6.8	234	6.8	0.612	54.5	LOS D	16.7	123.5	0.94	0.83	0.94	30.4
8	T1	All MCs	34	3.1	34	3.1	0.612	69.3	LOS E	16.7	123.5	0.94	0.83	0.94	31.2
9	R2	All MCs	131	3.9	131	3.9	0.748	79.0	LOS F	9.6	69.1	1.00	0.87	1.12	25.8
Appro	ach		398	5.5	398	5.5	0.748	63.8	LOS E	16.7	123.5	0.96	0.84	1.00	28.8
West:	New	England H	Highwa	y (W)											
10	L2	All MCs	36	5.3	36	5.3	*0.964	41.5	LOS C	85.3	616.4	1.00	1.09	1.17	30.4
11	T1	All MCs	2011	3.7	2011	3.7	*0.964	67.9	LOS E	85.3	616.4	1.00	1.09	1.17	31.2
12	R2	All MCs	60	8.8	60	8.8	0.277	92.1	LOS F	3.9	29.5	0.95	0.76	0.95	27.6
Appro	ach		2107	3.9	2107	3.9	0.964	68.2	LOS E	85.3	616.4	1.00	1.08	1.17	28.3
All Ve	hicles		4173	4.9	4173	4.9	0.964	54.3	LOS D	85.3	616.4	0.87	0.90	0.97	31.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pedes	strian N	lovem	ent Perf	ormand	e:							
Mov ID C	rossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service		BACK OF	Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
		ped/h	ped/h	sec		[Ped ped	Dist J m		Rate	sec	m	m/sec
South:	: Shipley	Drive										
P1 Fi	ull	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
East: N	New Eng	gland Hig	ghway (E	.)								

P2 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
North: Anamba	h Road										
P3 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
West: New Eng	land High	way (N	/)								
P4 Full	50	53	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91
All Pedestrians	0	211	66.8	LOS F	0.2	0.2	0.96	0.96	220.6	200.0	0.91

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:25:00 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_ lots_v0.4.sip9

Site: 5PM38_F [NEW_ANA_38_PM_O1_50% (Site Folder: Future Year 2038 wDev_50%)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 147 seconds (Site User-Given Phase Times)

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	[] [Total	lows 山\/1	l Total	OWS 山\/1	Satn	Delay	Service	Que [\/ob	EUE	Que	Stop	No. of	Speed
			veh/h	· · v j %	veh/h	%	v/c	sec		veh	m		Tale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	*0.989	108.9	LOS F	20.7	148.8	1.00	1.17	1.51	21.7
2	T1	All MCs	49	4.3	49	4.3	*0.989	118.0	LOS F	20.7	148.8	1.00	1.17	1.51	22.1
3	R2	All MCs	306	1.0	306	1.0	0.989	124.4	LOS F	20.7	148.8	1.00	1.18	1.51	21.0
Appro	ach		447	2.1	447	2.1	0.989	120.5	LOS F	20.7	148.8	1.00	1.18	1.51	20.0
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.189	17.4	LOS B	2.4	17.0	0.14	0.58	0.14	52.1
5	T1	All MCs	1853	2.1	1853	2.1	*0.874	35.0	LOS C	55.5	395.5	0.88	0.82	0.90	43.1
6	R2	All MCs	247	5.5	247	5.5	0.969	115.2	LOS F	22.2	162.8	1.00	1.07	1.43	21.9
Appro	ach		2344	2.6	2344	2.6	0.969	41.6	LOS C	55.5	395.5	0.81	0.82	0.87	35.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	293	2.5	293	2.5	0.999	110.1	LOS F	33.6	241.6	1.00	1.14	1.47	20.7
8	T1	All MCs	55	5.8	55	5.8	0.999	131.4	LOS F	33.6	241.6	1.00	1.14	1.47	21.0
9	R2	All MCs	41	2.3	41	2.3	0.661	88.6	LOS F	3.2	22.8	1.00	0.79	1.14	24.1
Appro	ach		388	3.0	388	3.0	0.999	110.8	LOS F	33.6	241.6	1.00	1.10	1.44	21.0
West:	New	England H	lighwa	y (W)	1										
10	L2	All MCs	123	0.7	123	0.7	*0.739	21.8	LOS B	39.8	288.7	0.83	0.80	0.83	38.5
11	T1	All MCs	1335	4.8	1335	4.8	0.739	39.0	LOS C	39.8	288.7	0.83	0.78	0.83	40.5
12	R2	All MCs	59	0.0	59	0.0	0.933	116.8	LOS F	5.0	34.8	1.00	0.96	1.54	22.4
Appro	ach		1517	4.3	1517	4.3	0.933	40.6	LOS C	39.8	288.7	0.84	0.79	0.86	36.0
All Vel	hicles		4697	3.1	4697	3.1	0.999	54.5	LOS D	55.5	395.5	0.85	0.87	0.98	31.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pe	destrian M	loveme	ent Perf	ormano	e:							
Mo	/ i	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	uth: Shipley	Drive										
P1	Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
Eas	st: New Eng	gland Hig	ghway (E	.)								

P2 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
North: Anamba	h Road										
P3 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
West: New Eng	gland High	way (N	/)								
P4 Full	50	53	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90
All Pedestrians	0	211	67.8	LOS F	0.2	0.2	0.96	0.96	221.6	200.0	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 26 July 2024 8:25:01 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Stage 1 (240 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_240_ lots_v0.4.sip9

Site: 5AM38_F [NEW_ANA_38_AM_O1_Mod_No Wyndella_Infra test (Site Folder: Future Year 2038 wDev Mod (No Wydnella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Phase Times)

Vehic	le M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows	H Total	ows u\/1	Satn	Delay	Service	Qu [\/ob	eue Dict 1	Que	Stop	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	*0.874	90.1	LOS F	6.3	46.8	1.00	0.96	1.38	24.5
2	T1	All MCs	39	8.1	39	8.1	0.874	81.3	LOS F	6.3	46.8	1.00	0.96	1.38	25.0
3	R2	All MCs	71	10.4	71	10.4	0.635	79.1	LOS F	5.0	38.2	1.00	0.81	1.07	25.8
Appro	ach		153	8.3	153	8.3	0.874	82.8	LOS F	6.3	46.8	1.00	0.89	1.24	25.2
East:	New E	England H	lighway	/ (E)											
4	L2	All MCs	227	3.2	227	3.2	0.170	8.4	LOS A	1.3	9.4	0.13	0.59	0.13	52.6
5	T1	All MCs	1082	7.1	1082	7.1	0.522	20.4	LOS B	22.8	169.1	0.66	0.59	0.66	45.6
6	R2	All MCs	218	1.4	218	1.4	*0.923	92.6	LOS F	8.7	61.4	1.00	1.01	1.45	23.5
Appro	ach		1527	5.7	1527	5.7	0.923	28.9	LOS C	22.8	169.1	0.63	0.65	0.69	40.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	335	4.1	335	4.1	0.664	41.8	LOS C	18.4	133.2	0.90	0.84	0.90	34.9
8	T1	All MCs	34	3.1	34	3.1	*0.916	79.4	LOS F	20.0	141.6	1.00	1.03	1.31	25.3
9	R2	All MCs	473	1.3	473	1.3	0.916	85.0	LOS F	20.0	141.6	1.00	1.03	1.31	24.8
Appro	ach		842	2.5	842	2.5	0.916	67.6	LOS E	20.0	141.6	0.96	0.95	1.14	28.1
West:	New	England I	Highwa	y (W))										
10	L2	All MCs	74	2.8	74	2.8	0.055	21.0	LOS B	1.3	9.2	0.27	0.64	0.27	49.4
11	T1	All MCs	2011	3.7	2011	3.7	* 0.950	64.9	LOS E	77.1	557.3	1.00	1.06	1.15	33.3
12	R2	All MCs	60	8.8	60	8.8	0.481	97.7	LOS F	4.1	31.1	1.00	0.76	1.00	26.1
Appro	ach		2146	3.8	2146	3.8	0.950	64.3	LOS E	77.1	557.3	0.97	1.03	1.12	29.2
All Ve	hicles		4668	4.3	4668	4.3	0.950	53.9	LOS D	77.1	557.3	0.86	0.89	0.99	31.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pec	destrian N	lovem	ent Perf	ormand	e							
Mov		Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	th: Shipley	/ Drive										
P1	Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92

East: New Eng	land High	way (E)									
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
North: Anamba	h Road										
P3 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
West: New Eng	land High	way (W	()								
P41 Stage 1	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
P42 Stage 2	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
All Pedestrians	0	263	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 11:33:30 AM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5PM38_F [NEW_ANA_38_PM_O1_Mod_No Wyndella_Infra test (Site Folder: Future Year 2038 wDev Mod (No Wydnella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Phase Times)

Vehic	cle M	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
טו		Class	FI Total	IOWS	IT LetaT]	OWS	Sath	Delay	Service	QUE [\/eh	eue Diet 1	Que	Stop Rate	INO. OT	Speed
			veh/h	· · · · j %	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.787	77.0	LOS F	15.4	110.7	1.00	0.91	1.11	27.8
2	T1	All MCs	49	4.3	49	4.3	*0.787	72.0	LOS F	15.4	110.7	1.00	0.91	1.11	28.5
3	R2	All MCs	306	1.0	306	1.0	0.787	77.0	LOS F	15.6	110.7	1.00	0.90	1.11	27.9
Appro	ach		447	2.1	447	2.1	0.787	76.4	LOS F	15.6	110.7	1.00	0.90	1.11	26.4
East:	New E	England H	lighway	' (E)											
4	L2	All MCs	244	3.0	244	3.0	0.190	21.8	LOS B	2.0	14.3	0.18	0.60	0.18	52.2
5	T1	All MCs	1853	2.1	1853	2.1	*0.929	56.1	LOS D	68.9	491.5	0.99	1.00	1.11	35.4
6	R2	All MCs	358	3.2	358	3.2	0.512	66.8	LOS E	11.1	79.6	0.95	0.81	0.95	29.6
Appro	ach		2455	2.4	2455	2.4	0.929	54.2	LOS D	68.9	491.5	0.90	0.93	0.99	31.7
North:	Anan	nbah Roa	d												
7	L2	All MCs	305	2.4	305	2.4	0.445	27.8	LOS B	12.5	89.5	0.73	0.78	0.73	40.3
8	T1	All MCs	55	5.8	55	5.8	*0.584	72.4	LOS F	4.9	35.9	1.00	0.78	1.03	27.3
9	R2	All MCs	83	3.3	83	3.3	0.584	78.1	LOS F	4.9	35.9	1.00	0.78	1.03	26.1
Appro	ach		443	3.0	443	3.0	0.584	42.8	LOS D	12.5	89.5	0.81	0.78	0.82	34.7
West:	New	England H	lighwa	y (W)	1										
10	L2	All MCs	499	3.1	499	3.1	0.663	42.7	LOS D	27.3	195.9	0.87	0.85	0.87	35.0
11	T1	All MCs	1335	4.8	1335	4.8	0.853	54.1	LOS D	43.1	314.3	0.97	0.92	1.02	35.5
12	R2	All MCs	59	0.0	59	0.0	*0.889	114.1	LOS F	4.6	32.2	1.00	0.93	1.46	23.7
Appro	ach		1893	4.2	1893	4.2	0.889	52.9	LOS D	43.1	314.3	0.94	0.90	0.99	32.0
All Ve	hicles		5239	3.1	5239	3.1	0.929	54.7	LOS D	68.9	491.5	0.92	0.91	0.99	31.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pec	destrian N	lovem	ent Perf	ormand	e							
Mo∖		Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	th: Shipley	Drive										
P1	Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92

East: New Engl	and High	way (E)									
P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
North: Anamba	h Road										
P3 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
West: New Eng	land High	way (W	()								
P41 Stage 1	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
P42 Stage 2	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
All Pedestrians	0	263	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 12:20:34 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5AM38_F [NEW_ANA_38_AM_O1_50%_No Wyndella (Site Folder: Future Year 2038 wDev_50% (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site User-Given Phase Times)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	[] [Total	lows 山い1	 Total	OWS ⊣\/1	Satn	Delay	Service	Que [\/ob	EUE	Que	Stop	No. of	Speed
			veh/h	· · · · j %	veh/h	%	v/c	sec		veh	m		Tale	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	43	4.9	43	4.9	0.789	83.2	LOS F	6.1	44.8	1.00	0.89	1.23	25.4
2	T1	All MCs	39	8.1	39	8.1	*0.789	77.8	LOS F	6.1	44.8	1.00	0.89	1.23	25.9
3	R2	All MCs	71	10.4	71	10.4	0.714	81.7	LOS F	5.1	39.1	1.00	0.84	1.15	25.4
Appro	ach		153	8.3	153	8.3	0.789	81.1	LOS F	6.1	44.8	1.00	0.87	1.19	25.5
East: New England Highway (E)															
4	L2	All MCs	227	3.2	227	3.2	0.170	8.1	LOS A	1.3	9.4	0.13	0.58	0.13	52.6
5	T1	All MCs	1082	7.1	1082	7.1	0.515	19.6	LOS B	22.3	165.6	0.65	0.58	0.65	46.0
6	R2	All MCs	232	1.4	232	1.4	*0.882	86.9	LOS F	8.9	62.8	1.00	0.97	1.35	24.4
Appro	ach		1541	5.6	1541	5.6	0.882	28.0	LOS B	22.3	165.6	0.62	0.64	0.68	40.9
North:	Anan	nbah Roa	d												
7	L2	All MCs	456	4.1	456	4.1	0.910	70.8	LOS F	31.8	230.7	1.00	1.04	1.21	28.4
8	T1	All MCs	34	3.1	34	3.1	*0.699	67.7	LOS E	12.9	92.2	1.00	0.85	1.04	28.6
9	R2	All MCs	352	1.8	352	1.8	0.699	70.7	LOS F	12.9	92.2	1.00	0.84	1.04	28.0
Appro	ach		842	3.1	842	3.1	0.910	70.6	LOS F	31.8	230.7	1.00	0.95	1.13	27.5
West:	New	England H	Highway	y (W)											
10	L2	All MCs	61	3.5	61	3.5	0.045	21.0	LOS B	1.0	7.5	0.27	0.64	0.27	49.4
11	T1	All MCs	2011	3.7	2011	3.7	*0.948	63.8	LOS E	76.6	553.0	1.00	1.05	1.14	33.6
12	R2	All MCs	60	8.8	60	8.8	0.481	97.6	LOS F	4.1	31.1	1.00	0.76	1.00	26.1
Appro	ach		2132	3.9	2132	3.9	0.948	63.5	LOS E	76.6	553.0	0.98	1.03	1.12	29.4
All Ve	nicles		4667	4.5	4667	4.5	0.948	53.6	LOS D	76.6	553.0	0.87	0.88	0.98	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pedestrian Movement Performance											
Mov ID Cross	Input ing Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	BACK OF	Prop. Que	Eff. Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		l Ped ped	Dist j m		Rate	sec	m	m/sec
South: Shi	pley Drive										
P1 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
East: New England Highway (E)											

P2 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
North: Anambah Road											
P3 Full	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
West: New England Highway (W)											
P41 Stage 1	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
P42 Stage 2	50	53	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92
All Pedestrians	0	263	64.3	LOS F	0.2	0.2	0.96	0.96	218.1	200.0	0.92

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 12:24:29 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

Site: 5PM38_F [NEW_ANA_38_PM_O1_50%_No Wyndella (Site Folder: Future Year 2038 wDev_50% (No Wyndella))]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New England Highway / Anambah Road / Shipley Drive

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 136 seconds (Site User-Given Phase Times)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows 山\/ 1	I Total	OWS 山\/1	Sath	Delay	Service	Qu [Vob	eue Dict 1	Que	Stop	NO. OT	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tate	Cycles	km/h
South	: Ship	ley Drive													
1	L2	All MCs	92	4.6	92	4.6	0.863	82.8	LOS F	16.1	115.5	1.00	0.98	1.23	26.6
2	T1	All MCs	49	4.3	49	4.3	*0.863	77.9	LOS F	16.1	115.5	1.00	0.98	1.23	27.2
3	R2	All MCs	306	1.0	306	1.0	0.863	82.7	LOS F	16.2	115.5	1.00	0.97	1.23	26.6
Appro	ach		447	2.1	447	2.1	0.863	82.2	LOS F	16.2	115.5	1.00	0.98	1.23	25.3
East: New England Highway (E)															
4	L2	All MCs	244	3.0	244	3.0	0.190	18.4	LOS B	2.0	14.3	0.19	0.60	0.19	52.2
5	T1	All MCs	1853	2.1	1853	2.1	0.876	36.4	LOS C	54.7	389.7	0.90	0.86	0.94	41.8
6	R2	All MCs	491	3.2	491	3.2	*0.799	73.3	LOS F	16.7	119.9	1.00	0.91	1.12	27.7
Appro	ach		2587	2.4	2587	2.4	0.876	41.7	LOS C	54.7	389.7	0.85	0.84	0.90	35.5
North:	Anan	nbah Roa	d												
7	L2	All MCs	320	2.4	320	2.4	0.550	38.2	LOS C	15.6	111.3	0.87	0.82	0.87	36.2
8	T1	All MCs	55	5.8	55	5.8	*0.753	76.5	LOS F	4.5	32.8	1.00	0.85	1.21	26.6
9	R2	All MCs	69	1.5	69	1.5	0.753	82.2	LOS F	4.5	32.8	1.00	0.85	1.22	25.3
Appro	ach		443	2.7	443	2.7	0.753	49.7	LOS D	15.6	111.3	0.90	0.83	0.96	32.6
West:	New	England H	lighwa	y (W)											
10	L2	All MCs	366	0.3	366	0.3	0.951	66.1	LOS E	66.5	477.0	1.00	1.08	1.19	29.5
11	T1	All MCs	1335	4.8	1335	4.8	* 0.951	72.5	LOS F	66.5	477.0	1.00	1.10	1.20	30.6
12	R2	All MCs	59	0.0	59	0.0	0.863	111.3	LOS F	4.4	31.0	1.00	0.91	1.41	24.3
Appro	ach		1760	3.7	1760	3.7	0.951	72.5	LOS F	66.5	477.0	1.00	1.09	1.20	27.4
All Ve	nicles		5238	2.9	5238	2.9	0.951	56.2	LOS D	66.5	477.0	0.92	0.94	1.04	31.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Pe	Pedestrian Movement Performance											
Mo	V	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop.	Eff.	Travel	Travel	Aver.
ID	Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed
						[Ped	Dist]		Rate			
		ped/h	ped/h	sec		ped	m			sec	m	m/sec
Sou	uth: Shipley	/ Drive										
P1	Full	50	53	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93
Eas	East: New England Highway (E)											

P2 Full	50	53	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93
North: Anambah Road											
P3 Full	50	53	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93
West: New England Highway (W)											
P41 Stage 1	50	53	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93
P42 Stage 2	50	53	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93
All Pedestrians	0	263	62.3	LOS F	0.2	0.2	0.96	0.96	216.1	200.0	0.93

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / FLOATING | Processed: Friday, 23 August 2024 12:22:02 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 4AM_X [ANA_ACC_AM_X (Site Folder: Access)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Anambah Road / Access Road Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI	lows	FI	lows	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			[IOtal veh/h	HV J	[IOtal	HV]	v/c	SAC		ر ven.	DIST J		Rate	Cycles	km/h
South	: Anar	nbah Roa	ad (S)	70	VCH/H	70	v/C	300	_	VCII		_	_	_	KI11/11
10	L2	All MCs	67	1.0	67	1.0	0.053	5.6	LOS A	0.0	0.0	0.00	0.40	0.00	54.2
11	T1	All MCs	32	1.0	32	1.0	0.053	0.0	LOS A	0.0	0.0	0.00	0.40	0.00	56.5
Appro	ach		99	1.0	99	1.0	0.053	3.8	NA	0.0	0.0	0.00	0.40	0.00	54.9
North: Anambah Road (N)															
5	T1	All MCs	32	1.0	32	1.0	0.019	0.0	LOS A	0.0	0.2	0.06	0.10	0.06	59.0
6	R2	All MCs	5	1.0	5	1.0	0.019	5.7	LOS A	0.0	0.2	0.06	0.10	0.06	52.1
Appro	ach		37	1.0	37	1.0	0.019	0.8	NA	0.0	0.2	0.06	0.10	0.06	57.9
West:	Acces	ss Road													
7	L2	All MCs	5	1.0	5	1.0	0.411	4.7	LOS A	1.4	9.7	0.16	0.55	0.16	48.8
9	R2	All MCs	605	1.0	605	1.0	0.411	4.8	LOS A	1.4	9.7	0.16	0.55	0.16	48.5
Appro	ach		611	1.0	611	1.0	0.411	4.8	LOS A	1.4	9.7	0.16	0.55	0.16	48.5
All Ve	hicles		746	1.0	746	1.0	0.411	4.5	NA	1.4	9.7	0.13	0.50	0.13	49.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Friday, 23 August 2024 4:08:38 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

V Site: 4AM_X [ANA_ACC_PM_X (Site Folder: Access)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

Anambah Road / Access Road Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI	lows	FI FI	ows	Satn	Delay	Service	Q		Que	Stop	No. of	Speed
			l Iolai veh/h	HV J	i iotai veh/h	HV] %	v/c	sec		į ven. veh	DISL J m		Rate	Cycles	km/h
South	: Anar	nbah Roa	ad (S)	/0	Volum	,0	110			Von					13111/11
10	L2	All MCs	665	1.0	665	1.0	0.377	5.7	LOS A	0.0	0.0	0.00	0.55	0.00	52.9
11	T1	All MCs	32	1.0	32	1.0	0.377	0.1	LOS A	0.0	0.0	0.00	0.55	0.00	55.0
Appro	ach		697	1.0	697	1.0	0.377	5.4	NA	0.0	0.0	0.00	0.55	0.00	53.0
North: Anambah Road (N)															
5	T1	All MCs	32	1.0	32	1.0	0.021	0.6	LOS A	0.1	0.4	0.20	0.23	0.20	58.4
6	R2	All MCs	5	1.0	5	1.0	0.021	7.8	LOS A	0.1	0.4	0.20	0.23	0.20	51.6
Appro	ach		37	1.0	37	1.0	0.021	1.6	NA	0.1	0.4	0.20	0.23	0.20	57.3
West:	Acces	ss Road													
7	L2	All MCs	5	1.0	5	1.0	0.060	4.6	LOS A	0.1	1.0	0.20	0.56	0.20	48.7
9	R2	All MCs	74	1.0	74	1.0	0.060	5.2	LOS A	0.1	1.0	0.20	0.56	0.20	48.4
Appro	ach		79	1.0	79	1.0	0.060	5.1	LOS A	0.1	1.0	0.20	0.56	0.20	48.5
All Ve	hicles		813	1.0	813	1.0	0.377	5.2	NA	0.1	1.0	0.03	0.54	0.03	52.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SCT CONSULTING PTY LTD | Licence: NETWORK / 1PC | Processed: Friday, 23 August 2024 4:08:38 PM Project: S:\Projects\SCT_00581_559 Anambah Road Gosforth DA\4. Tech Work\1. Modelling\Ultimate (900 Lots)\SCT_00581_559 Anambah Road Gosforth DA_SIDRA_900 lots_v0.6_sc 1.sip9

APPENDIX B TFNSW EMAIL CORRESPONDENCE

Shawn Cen

Development North <development.north@transport.nsw.gov.au></development.north@transport.nsw.gov.au>
Friday, 31 May 2024 1:34 PM
Shawn Cen
Tfnsw ExternalContact211
RE: 559 Anambah Road Gosforth NSW 2320 - consultation with TfNSW

Hi Shawn,

Thanks for reaching out to TfNSW regarding traffic assumptions for your future TIA.

TfNSW provides the following comments for you in red:

- 3% p.a. growth on New England Highway Agreed
- 300 lots per year in Lochinvar URA Seek confirmation from Council
- Site completion year of 2028 and sensitivity test of 2038 Agreed
- 70% west and 30% east traffic distribution A 50% / 50% sensitivity analysis is also requested as this site is located closer to Maitland.
- Adopt 0.71/0.78 veh/h traffic generation rate for dwellings Agreed

Please note that flood free access along Anambah Road and a possible concept DA is an issue that will need to be resolved with Council.

Apologies for the delayed response.

Regards,

Masa Kimura Development Services Case Officer Regional and Outer Metropolitan Development Services Transport for NSW

T 1300 207 783 M 0407 707 999 E masa.kimura@transport.nsw.gov.au

transport.nsw.gov.au

6 Stewart Avenue, Newcastle NSW 2302 Locked Bag 2030, Newcastle NSW 2302

Working days Monday to Friday, 8:00am - 3:30pm

Transport for NSW

Please consider the environment before printing this email.

OFFICIAL

From: Liz Smith <Liz.Smith@transport.nsw.gov.au>
Sent: Wednesday, May 22, 2024 12:15 PM
To: Shawn Cen <shawn.cen@sctconsulting.com.au>; Development North
<Development.North@transport.nsw.gov.au>

Thoughtful Transport Solutions

Suite 4.03, Level 4, 157 Walker Street, North Sydney NSW 2060 sctconsulting.com.au