

CONTAMINATION SITE INVESTIGATION REPORT

ADDRESS:	50, 134 & 146 Station Lane, LOCHINVAR NSW-2321
CLIENT:	Bathla Group
REPORT No:	NE526-Rev01
DATE	1 July 2021

GEOTESTA PTY LTD | ABN 91851620815 | 20/1 Talavera Road, Macquarie Park NSW 2113 Phone: 1300 852 216 | email: info@geotesta.com.au

Contents

1.	INTRODUCTION						
2.	PLANNING GUIDELINES						
3.	OBJECTIVE AND SCOPE						
4.	SITE	E DESC	CRIPTION	4			
	4.1	Site Details, Location and Topography					
	4.2	Site, Su	urrounding Area and Topography	4			
	4.3	Geolog	gical, Soil Landscapes and Drainage	4			
	4.4	Site Re	gional Meteorology and Hydrogeology	4			
	4.5	Acid S	ulphate Soils	6			
	4.6	Site Hi	story	6			
		4.6.1	Historical Background	6			
		4.6.2	Aerial Photograph Review	7			
		4.6.3	Site Walkover	7			
		4.6.4	NSW OEH Records	8			
		4.6.5	Historical Land Titles Search	8			
5.	РОТ	TENTIA	AL FOR CONTAMINATION	9			
	5.1	Areas	of Environmental Concern	9			
	5.2	Assess	ment of Preliminary Site Investigation and recomm	nendations 10			
6.	SAN	/IPLIN(G ANALYIS AND DATA QUALITY PLAN	N (SAQP)11			
	6.1	Data Q	Quality Objectives	11			
		6.1.1	State the Problem	11			
		6.1.2	Identify the Decision	12			
		6.1.3	Identify Inputs to Decision	12			
		6.1.4	Define the Study Boundaries	12			
		6.1.5	Develop a Decision Rule	13			
		6.1.6	Specify Acceptable Limit	13			
		6.1.7	Optimise the Design for Obtaining Data	13			
	6.2	6.2 Field Screening and Sampling Program					
		i iciu o					
		6.2.1	Data Quality Plan	14			
		6.2.1 6.2.2	Data Quality Plan Visual Inspection	14 14			
		6.2.1 6.2.2 6.2.3	Data Quality Plan Visual Inspection Soil Sampling Techniques	14 14 14			
		6.2.1 6.2.2 6.2.3 6.2.4	Data Quality Plan Visual Inspection Soil Sampling Techniques Rationale for Sampling Program and Locations	14 14 14 14			
		6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Data Quality Plan Visual Inspection Soil Sampling Techniques Rationale for Sampling Program and Locations Sampling Program	14 14 14 14 15			

	6.3	Sampling	g Quality control (QC) / Quality Assurance (QA)	15	
		6.3.1	Sampling Procedures	15	
		6.3.2	Analytical QA/QC Procedures	16	
	6.4	Analytic	al Program and Detailed Investigation Data Assessment	17	
		6.4.1	Analytical Program	17	
		6.4.2	Detailed Investigation Data Assessment	19	
		6.4.3	Rationale for the Selection of Detailed Investigation Criteria	19	
7.	SITE	ASSESS	SMENT CRITERIA	20	
	7.1	Heavy m	netals, PAH, PCB, OCP/OPP and asbestos	20	
	7.2	Total Rec Xylene (I	coverable Hydrocarbons (TRH) and Benzene Toluene Ethy	lbenzene 20	
	73	Limitatic	ons of the Assessment Criteria	20	
	74	Statistica	l Evaluation	22	
		otationed			
8.	RESU	JLTS		23	
	8.1	Field Ob	servations	23	
		8.1.1	Subsurface Conditions	23	
	8.2	Laborato	ry Analytical Results	23	
		8.2.1	Heavy Metals (HM)	23	
		8.2.2	Organochlorine Pesticides/Organophosphorus Pesticides (OCP/	(OPP) 25	
		8.2.3	Polycyclic Aromatic Hydrocarbons (PAH)	27	
		8.2.4	Total Recoverable Hydrocarbons (TRH) - 2013 NEPM Fractions	27	
		8.2.5	Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) - 2013 NEI	PM Fractions	
				28	
		8.2.6	Asbestos	29	
		8.2.7	Dam water results	30	
	8.3	Evaluatio	on Analytical Quality Assurance	30	
9.	DISC	CUSSION	N	32	
	9.1	Soil Cont	tamination Summary	32	
	9.2	Data Gap	2	32	
10.	CON	ICLUSIC	ONS AND RECOMMENDATIONS	33	
11.	REFERENCES				

Appendices

A Aerial Photographs

B Borehole Logs

C Lab Test Results

EXECUTIVE SUMMARY

Geotesta was engaged by Bathla Group to conduct a site contamination investigation (SCI) on the property known as 51, 134 & 146 Station Lane LOCHINVAR NSW-2321. The SCI include a review of current and historical activities on the site, an assessment of the potential risk of soil/groundwater contamination existing on the land, the fieldworks and lab analysis and assessment. It is understood that the site is proposed for low to medium density residential development.

In accordance with the Department of Urban Affairs and Planning and Environment Protection Authority Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy No. 55—Remediation of Land 1998, the site is considered to have a Low Risk of soil and groundwater contamination.

Based on the results of this investigation the following conclusions are drawn:

- Concentrations of Organochlorine Pesticides/Organophosphorus Pesticides, TRH, PAH and BTEX are below the site assessment criteria. No asbestos was detected in soil samples. Arsenic concentrations above the site assessment criteria were detected in BH101. Additional sampling during the data gap assessment will be required near BH101 to delineate the vertical and horizontal extent of identified Arsenic soil contamination. If the concentration of Arsenic still exceeds the site assessment criteria, a remedial action plan will be required to address the concentration exceedance.
- Additional sampling is required after demolition of the existing buildings and sheds to address the data gap due to limited access to the dwelling and sheds at the time of investigation.
- Based on the scope of works undertaken in this investigation, the site is considered suitable for the land use and proposed development provided that the limited hotspot is cleared of any Arsenic contamination.

1. INTRODUCTION

Geotesta was engaged by Bathla Group to investigate the contamination of the site referred to as 50, 134 & 146 Station Lane LOCHINVAR NSW-2321. The study including combined preliminary and detailed site investigations (SCI) was commissioned by Bathla Group.

The SCI include a review of current and historical activities on the site, an assessment of the potential risk of soil/groundwater contamination existing on the land, the fieldworks for soil sampling and lab analysis and assessment.

The site is a currently a mix of residential and farming area. Dwellings, sheds, open paddocks and dams are found on three sites. Open paddocks were observed on the properties 50, 134 & 146 Station Lane Lochinvar NSW, 2321. It is understood that the site is proposed for low to medium density residential development.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

2. PLANNING GUIDELINES

It is understood that the land is to be used for residential development. This Site Investigation was conducted in general accordance with the Department of Urban Affairs and Planning and Environment Protection Authority Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy No. 55—Remediation of Land 1998.

Land contamination is most often the result of past uses. It can arise from activities that took place on or adjacent to a site and be the result of improper chemical handling or disposal practices, or accidental spillages or leakages of chemicals during manufacturing or storage. Activities not directly related to the site may also cause contamination; for example, from diffuse sources such as polluted groundwater migrating under a site or dust settling out from industrial emissions.

When carrying out planning functions under the EPA Act, a planning authority must consider the possibility that a previous land use has caused contamination of the site as well as the potential risk to health or the environment from that contamination. Decisions must then be made as to whether the land should be remediated, or its use of the land restricted, in order to reduce the risk. Failure to consider the possibility of contamination at appropriate stages of the planning decision process may result in:

- inappropriate land use decisions
- increased risk to human health
- detrimental effects on the biophysical environment
- impacts on the safety of existing and new structures
- delay in realising developments
- substantial fall in the land value and the passing on of unanticipated development costs to other parties

When an authority carries out a planning function, the history of land use needs to be considered as an indicator of potential contamination. Where there is no reason to suspect contamination after acting substantially in accordance with these Guidelines, the proposal may be processed in the usual way. However, where there is an indication that the land is, or may be, contaminated, the appropriate procedures outlined in these Guidelines should be followed.

Essentially, the Guidelines recommend that re-zonings, development control plans and development applications (DAs) are backed up by information demonstrating that the land is suitable for the proposed use or can be made suitable, either by remediation or by the way the land is used.

3. OBJECTIVE AND SCOPE

The objective of this SCI report is to comply with the Department of Urban Affairs and Planning and Environment Protection Authority Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy No. 55—Remediation of Land 1998 and gain a better understanding of the environmental risks associated with the site for human health and/or the environment as a result of previous and current land use. The general objective to be adhered is recommending the suitability of the site for residential development in relation to the management of contamination.

The SCI was conducted in general accordance and consideration of the Planning Guidelines and the Australian Standard AS 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil - Part 1: Non-volatile and semi-volatile compounds, the Australian Standard AS 4482.2-1999 Guide to the sampling and investigation of potentially contaminated soil - Part 2: Volatile substances, the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 (amended 2013), and other relevant NSW guidelines and legislation.

The scope of work carried out to achieve this objective consisted of:

- Performing a desktop assessment of the available information on the site history from aerial photographs, historical titles search, Geological and hydrogeological review;
- Searching records on previous notices issued by OEH and Maitland City Council,
- Inspecting the site to identify the areas of environmental concerns;
- Undertaking soil samplings across the site;
- Planning a range of laboratory environmental tests;
- Preparing a report summarising above.

Activities undertaken to achieve the above objectives are reported and discussed in the following sections.

4. SITE DESCRIPTION

4.1 Site Details, Location and Topography

The site is located at 51, 134 & 146 Station Lane Lochinvar NSW, 2321 in the local government area of City of Maitland. The site under investigation is located on the west side of Station lane and approximately 180 km (by road) from Sydney CBD. Three sites in irregular rectangular shapes with an area of approximately 101 Hectares. All the structures in the subject site including dwellings and sheds remain at the time of this investigation. The site location is shown in Figure 1.

4.2 Site, Surrounding Area and Topography

The site is highly undulating with topographical features matching the drainage patterns of the area. Available topographical maps indicate that the site lies at an elevation of approximately 48 metres above sea level reference to Australian Height Datum (AHD) (http://en-au.topographic-map.com).

4.3 Geological, Soil Landscapes and Drainage

The Cessnock 1:250,000 Geological Series Sheet 9132 indicates that the underlying geology consist of Sandstone, siltstone, lithic feldspathic, shale, basalt flows of Lochinvar formation Dalwood group. conglomerate of the Permian Maitland Group.

4.4 Site Regional Meteorology and Hydrogeology

The following climate information from the Commonwealth Bureau of Meteorology website (http://www.bom.gov.au/) can be obtained:

- Mean Annual rainfall (monthly rainfall) of 821.3mm in Maitland Visitors Centre (Site Number: 061388) (3.30 km away)
- Mean Annual Temperature (Monthly mean maximum temperature) temperature of 24.5°C in Maitland Visitors Centre (Site Number: 061388) (3.30 km away)

Groundwater salinity is mapped>14000mg/l and therefore unsuitable for stock use. The direction of the regional groundwater flow is expected to follow the slight slope of the regional topography.

A search of Bureau of Meteorology – water information identified no existing groundwater well located within an approximate distance of 500 metre from the site.

Figure 1. Site Location and features

4.5 Acid Sulphate Soils

The Department for Infrastructure, Planning and Natural Resources (DIPNR) Acid Sulphate Soils Risk Mapping (1997) indicates that the Site is not expected to be underlain by acid sulphate soils.

4.6 Site History

4.6.1 Historical Background

The Wonnarua people are the traditional landowners of the Maitland area and their lands extend throughout the Hunter Valley. A dreamtime story from the Wonnarua explains how the hills and rivers in the Hunter Valley were created by a spirit called Baiame. Neighbouring nations to Wonnarua include Geawegal, Worimi, Awabakal, Gamilaroi, Wiradjuri, Darkinjung and Birpai. These nations would travel through the area and were often invited to participate in local ceremonies.

The European settlement of Maitland began with farmers in the early 1800s. The majority of Maitland, including its main avenue, High Street, grew without apparent planning giving the city its great charm. The original bullock track became fixed as the line of High Street with its meandering curves which are still evident today. At almost every turn within Maitland you come across an architectural delight with a myriad of historic buildings giving the city its unique character. Landmark buildings erected over 170 years ago stand alongside fine modern buildings, a harmonious mix of new and old. The area has long been an industrious area and since the 1820s Central Maitland has been home to industry, trade and commerce.

Its riverside location, stores and warehouses gave the settlers many a task to undertake within the frontier town. Maitland was home to a wide range of businesses, including flourmills, breweries, soap and candle making and salt stores. Iron workers, blacksmiths and saddlers also thrived at this time. During the 1850s a series of riverside merchants traded, most notably David Cohen & Co and Owen & Beckett, experiencing great success. Interspersed within the retail area of Central Maitland were a selection of services and outlets such as tailors, hairdressers, wig makers, confectioners, photographers and dressmakers who added to the sense of vitality and diversity within the area [https://www.mymaitland.com.au/about/maitlandshistory/].

4.6.2 Aerial Photograph Review

An aerial photograph search carried out by LotSearch was conducted on the site. The historical aerial photos were viewed with observations presented in Table 2. The LotSearch report (ref.:LS021373_EA) is presented in Appendix A with additional aerial Photographs in Appendix B.

Year	Site Observations		
1958	The site is covered with green grass and sparse trees. Dwellings		
1956	currently exist on the southern property.		
1063	A small dwelling has been constructed in the north-eastern part of the		
1905	site		
1971	No change from previous photograph		
1076	Farming activities have taken place in the southern part of the site. No		
1976	other major changes		
1984	No change from previous photograph		
1002	A dwelling and farm shed have been constructed in the central and		
1993	southern part of the site		
2004	A dwelling and accompanying sheds have been constructed in the		
2004	northern part of the site		
2010	No change from previous photograph		
2015	No change from previous photograph		
2021	No change from previous photograph		

4.6.3 Site Walkover

Results of the site walkover inspection carried out on 1 Aug 2019:

51 Station Lane:

- Large open paddock with a dam on the western side of the property
- One double storey and single storey dwelling
- sheds located nearby dwelling; Household refuse contained within the sheds

134 Station Lane:

- A single-story dwelling occupies the centre of the property.
- one large sheds in the southern side of the property containing household refuse, farming equipment, workshop equipment and multiple abandoned cars within and beside the sheds.
- Two large dams on the eastern and western side of the property.

- A historical quarry, as described by the current property owner, was noted in the centre of the site
- Unidentified fill material was noted in the central western part of the site

146 Station Lane:

- A single storey main dwelling occupies entrance of the property.
- One shed can be found on the southern side of the main dwelling. Household gardening equipment were found in the shed.
- Two large dams found on the western side of the property

4.6.4 NSW OEH Records

The site or nearby surrounding areas have no notices under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985). For the site or nearby surrounding areas no notices under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985) was found.

4.6.5 Historical Land Titles Search

A search for the Historical Land Titles was not conducted as a review of the historic site aerial photographs indicates the site has not been used for anything other than residential and agricultural purposes.

5. POTENTIAL FOR CONTAMINATION

5.1 Areas of Environmental Concern

Our assessment of site AECs and COPCs (Table 1) is made based on available site history, aerial photograph interpretation and site walkovers. A map showing locations of identified AECs is provided in Figure 2.

AEC ¹	Potential for Contamination	COPC	Contamination	
			Likelihood	
A – Dwellings	Pesticides and heavy metals may have been used underneath dwellings for pest control. Dwelling construction may include ACM and/or lead based paints.	HM, OCP/OPP and asbestos	Medium	
B – Paddocks	Areas of possible Paddocks may have introduced heavy metals or pesticides to the soil	HM, OCP/OPP	Medium	
C – Sheds/Garage	Heavy metals may have been used underneath sheds. Shed construction may include ACM and/or lead based paints.	HM, TRH, PAH, BTEX and, OCP/OPP, ASBESTOS	Medium-High	
	Sheds may currently (or have previously) stored fuel, oils, asbestos sheeting (PACM), pesticides and/or been treated with heavy metals and pesticides (pest control). Shed construction may include ACM and/or lead based paints.			
D – Stockpile	Contaminants from unknown contents of stockpiles and general refuse may have spilled or leaked onto underlying soil.	HM, TRH, BTEX, PAH and OCP/OPP and asbestos.	Medium-high	
E – Dams / Empty Dams	Contaminants may have washed into and accumulated in dams	MH and OCP/OPP	Low to medium	
F – Unknown Fill Materials	Unknown fill materials may contain sources of contaminants which may have leached into underlying soil	HM, TRH, PAH, BTEX and, OCP/OPP, ASBESTOS	Medium	

Table 2: Areas of Environmental	Concern and Contami	nants of Primarv Co	ncern (COPC)

5.2 Assessment of Preliminary Site Investigation and recommendations

The results of the site history and walkover inspection indicate that the site has been used for residential and agricultural purposes since at least 1958. In accordance with the Department of Urban Affairs and Planning and Environment Protection Authority Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy No. 55—Remediation of Land 1998, the site is considered to have the environmental concerns of:

- In the areas of possible dwellings/sheds, fibrous cement sheeting (containing asbestos) may have been used during construction and sheds may currently (or have previously) stored fuel, oils, asbestos sheeting, pesticides, zinc treated (galvanised) metals, and/or lead based paints.
- Contaminants from unknown contents of stockpiles and general refuse may have spilled or leaked onto underlying soil.
- Areas of possible cropping/grass may have introduced heavy metals or pesticides to the soil.
- Contaminants may have washed into and accumulated in dams.
- Fill from unknown sources may contain contaminants which may have spilled or leaked onto underlying soil.

To address identified AECs, intrusive soil/water sampling regime is recommended to determine what, if any, remediation is required to render the site fit for residential use. The soil sampling plan is to be developed in accordance with NSW EPA Sampling Design Guidelines (1995) and a risk-based assessment.

Assessment shall address each of the identified AECs and assess COPC identified for each AEC (Table 1). Results of the site testing shall be assessed against site acceptance criteria (SAC) with reference to ASC NEPM (1999, amended 2013).

6. SAMPLING ANALYIS AND DATA QUALITY PLAN (SAQP)

A SAQP has been developed to ensure that data collected for this SCI is representative and provides a robust basis for site assessment decisions. Preparation of the SAQP has been completed in general accordance with ASC NEPM (1999, amended 2013) methodology and includes:

- Data Quality Objectives,
- Field Screening and Sampling Program;
- Sampling QA/QC;
- Sample Handling, Preservation and Storage Procedures;
- Analytical Program and Detailed Investigation Data Assessment.

6.1 Data Quality Objectives

The National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013 amendment and Australian Standard (AS) 4482.1-2005 recommend that data quality objectives (DQOs) be implemented during the investigation of potentially contaminated sites. The DQO process described in AS 4482.1-2005 outlines seven (7) distinct steps to outline the project goals, decisions, constraints and an assessment of the project uncertainties and how to address these when they arise. They define the quality and quantity of data needed to support decisions relating to the environmental condition of a site. They also outline the defining criteria that a data collection design should meet, including when, where, how and how many samples to be collected. In this detailed site investigation study, the DQOs for the assessment of soil investigations are as:

6.1.1 State the Problem

Determine, from a contamination point of view, if the land is suitable to be developed for Residential land in accordance with the requirements of State Environmental Planning Policy No. 55 under the Environmental Planning and Assessment Act. 1979. This includes reviewing previous site investigations, historical searches (titles, land use of site and adjacent sites, and aerial photographs), identification of chemicals of concern, media they inhabit and possible migration pathways (to and from the site), potential exposures to human or/and environmental receptors, and concerns with the potential clean up and desired future land use of the property.

6.1.2 Identify the Decision

The decisions to be made on the contamination and the new environmental data required includes considering relevant site contamination criteria for each medium (fill, natural soil and groundwater). The decision was made that the concentrations for all soil chemicals of potential concern must be less than the site criteria identified for residual soils as Residential A - Garden/Accessible soil land use suitability.

Decisions are to be made based on the following questions:

- ✓ Do chemical concentrations in soil comply with the stated Site Acceptance Criteria (SAC)?
- ✓ Do residual soils or stockpiled materials (if applicable) pose an unacceptable risk to Human Health or the environment?

6.1.3 Identify Inputs to Decision

This step requires the identification of the environmental variables/characteristics that need measuring, identification of which media (fill, soil etc.) need to be collected, identification of the site criteria for each medium of concern and appropriate analytical testing. The inputs to the assessment of site soil quality will include:

- ✓ Existing site environmental data;
- ✓ Observations during field works
- ✓ Systematic Soil sampling and representative analysis results from the site
- ✓ Analytical Results;
- ✓ Assessment of analytical results against site suitable assessment criteria (SAC) including human health and ecological risk criteria.

6.1.4 Define the Study Boundaries

Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision. To identify the boundaries (both spatial and temporal) of the investigation and to identify any restrictions that may obstruct the assessment process. The study boundaries are as follows:

- ✓ Lateral Lateral boundary of the assessment is defined by the site boundary as indicated in Figure 1;
- Vertical Vertical boundary will be governed by the maximum depth reached during field works (1000mm);
- ✓ Temporal The dates of site inspection and sampling works.

6.1.5 Develop a Decision Rule

To define the parameter(s) of interest, specify the action level and provide a logical basis for choosing from alternative actions. The soils will not be considered suitable for its intended land use if soils do not comply with the criteria provided in NEPM 2013, Table 1A Column A–Residential with Garden Accessible soil.

The subject Site will be deemed unsuccessfully validated or containing contamination "hotspots" if the site assessment criteria are unfulfilled.

The decision rules for this investigation area are as follows:

- ✓ If the concentrations of chemicals in the soil data collected from the site do not exceed the SAC, then the site can be confirmed as suitable for the development.
- ✓ If the concentration of chemicals in the soil data collected from the site exceeds the SAC then a Remedial Action Plan will be required for that area or soil portion.
- ✓ If due to limit access the sampling is not done beneath the structures, then a data gap assessment will be required to validate the site.

The following publications have been reviewed with respect to the assessment criteria and sampling methodology of soils at the Site:

- NSW EPA Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites (2011);
- Schedule B1 Guideline on Investigation Levels for Soil and Groundwater from the National Environment Protection (Assessment of Site Contamination) Amended Measure 2013
- ✓ Standards Australia AS4482.1 2nd Edition: Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil – Part 1: Non-Volatile and Semi-Volatile Compounds, 2005;
- ✓ NSW EPA Contaminated Sites: Sampling Design Guidelines, 2005;
- ✓ NSW EPA Guidelines for the NSW Site Auditor Scheme, second edition 2006.
- National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013 amendment (NEPM 2013);
- ✓ WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestoscontaminated Sites in Western Australia.

6.1.6 Specify Acceptable Limit

Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence. Specific limits for this site will be adopted in accordance with the appropriate guidance from the NSW EPA, NEPC 2013, appropriate indicators of data quality (DQIs used to assess quality assurance/quality control) and standard procedures for field sampling and handling.

6.1.7 Optimise the Design for Obtaining Data

Identify a resource-effective sampling and analysis design for data collection that satisfy the DQOs. The Site Investigation testing program will aim to ensure that all the required data is collected to confirm the site suitability for the intended residential use. Proposed sampling

locations shall provide even coverage across identified AEC on the site beneath the sheds and structures. Sampling shall attempt to ensure that critical locations are assessed, sampled, and analysed for appropriate contaminants of concern. Soil sampling locations were set using a judgemental pattern across the site.

6.2 Field Screening and Sampling Program

6.2.1 Data Quality Plan

Investigations at the Site included a review of the preliminary site investigation prior to the commencement of work. The sampling regime for the investigation area of the Site was in accordance with the requirements as outlined in the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites and the NSW EPA Sampling Design Guidelines and NEPM 2013.

6.2.2 Visual Inspection

During the sampling works for this SCI report, a visual inspection was also conducted to ensure no asbestos (AF/FA)/ACM materials were visible. The inspections for asbestos were undertaken in accordance with NEPM 2013 in Section 4.1.1. Screening assessment for identifying asbestos was also carried out.

6.2.3 Soil Sampling Techniques

All techniques used for soil sampling, are based on methods specified by the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM, 2013).

Experienced and specialized personnel of Geotesta collected all the samples for delivery to NATA accredited laboratory of Eurofins MGT.

Soil samples for chemical analysis were collected in accordance with the NSW Sample Design Guidelines and in accordance with the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 2013 amendment (NEPM 2013).

6.2.4 Rationale for Sampling Program and Locations

The justification of the sampling point regime for the assessment was based on the investigator's knowledge, operational requirements, experience and history of the Site (Judgement Sampling Pattern). All historical investigations and anecdotal evidence supported the sampling approach adopted and provided for samples to be collected in an unbiased manner. All the AECs including PAH, BTEX, TRH, heavy metals, OCP/OPP and asbestos concentration have been targeted.

6.2.5 Sampling Program

Initial fieldwork for this investigation was carried out on 1 Aug 2019 and included excavation of twenty-nine (29) boreholes. Nine (9) Boreholes were advanced by track mounted Pixy 41T drilling rig to a maximum depth of 3.5m (or refusal) below the existing ground surface. The remaining boreholes were advanced by hand auger to a depth of maximum 300m. The sampling locations are shown in Figure 3. An additional twenty-seven (27) boreholes were conducted on 10th June 2021 by hand auger to a maximum depth of 0.3m with the locations shown in Figure 4. Environmental soil samples were collected from the surface and at lower depths. In addition to soil samples, two dam water samples were also taken for this assessment. Standard procedures were used for sampling and soil sampling methodology was completed to meet data quality objectives.

6.2.6 Soil Logging

Boreholes were logged by an experienced environmental/geotechnical engineer in accordance with Standard procedures. The borehole logs are attached to this report.

6.3 Sampling Quality control (QC) / Quality Assurance (QA)

6.3.1 Sampling Procedures

General soil sampling procedures included wearing of plastic disposable gloves when handling sampling equipment and soil and changed between collections of samples. All sampling equipment was clean prior to commencement of sampling. Equipment for soil sampling included a stainless-steel bowl, stainless steel trowel and knife. All equipment was decontaminated between sampling. The following measures have been utilized during the sampling to achieve the sampling quality controls.

6.3.1.1 Sample Containers

Soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected.

6.3.1.2 Sample Tracking and Identification

All samples were identified with a unique sample number and all sampling details were included on the sample label and were reproduced on the field sample log and chain of custody records.

6.3.1.3 Decontamination

All equipment used in the sampling program, which includes a steel shovel and a hand auger was decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination;
- Cleaning in a solution of Decon-90TM;
- Rinsing in clean demineralised water then wiping with clean lint free cloths.

6.3.1.4 Sample Transport

All samples were packed in ice from the time of collection and were transported under chain of custody from the Site to NATA registered laboratory identified as Eurofins MGT Services in Lane Cove. Collected samples were placed into an ice chilled cooler-box. During the project, the laboratory reported that all the samples arrived intact, with appropriate preservation medium and were analysed within their relative holding times for the respective analytes.

6.3.2 Analytical QA/QC Procedures

Quality control is achieved by utilising NATA accredited laboratories, using standard methods supported by internal duplicates, the checking of high, abnormal or otherwise anomalous results against background and other chemical results for the sample concerned.

Quality assurance is achieved by confirming field or anticipated results based upon the comparison of field observations with laboratory results. One duplicate sample (D1) was taken for one-day sampling. D1 was duplicate sample of parent sample S7. Internal blank, spike and duplicate samples were also taken to assure the quality of analyses.

For the 10th of June 2021 investigation, one duplicate sample (D1*) was taken for one-day sampling. D1 was duplicate sample of parent sample Di9*. Internal blank, spike and duplicate samples were also taken to assure the quality of analyses.

In addition, the laboratory undertakes additional duplicate analysis as part of their internal quality assurance program. Chain of Custody documentations were used to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to hand-over to the laboratory.

6.4 Analytical Program and Detailed Investigation Data Assessment

6.4.1 Analytical Program

Samples were to be analysed to provide information for the characterisation of the most likely contaminated soils. This allowed the assessment of soils against the Site Acceptance Criteria. All analyses were to be carried out by NATA certified laboratory Eurofins MGT in accordance with Chain of Custody (COC) instructions supplied by Geotesta. The samples were checked for PAH, TRH, heavy metals, OCP/OPP and asbestos concentrations. Summary of the soil laboratory analyses is presented in Table 2. The details of samples' types and depths are provided in Table 3.

СОС	Number of samples analysed
Heavy Metals (M8) ¹	27
Suite B14	25
TRH	18
РАН	16
BTEX	17
Asbestos	7
Aggressivity	9

Table 3: Summary of soil/water laboratory program

Notes: ¹Heavy metals: Arsenic, cadmium, Chromium, copper, lead, Mercury, Nickel, Zinc

Sample ID (BH)	Sample Type	HM ¹	Suite B14	TRH	РАН	BTEX	Asbestos
S1	Silty Clay	x	x				x
S2	Silty Clay			x			x
S3	Silty Clay	x				х	x
S4	Silty Clay				x		х
S5	Silty Clay	x	x	x			
S6	Silty Clay					х	х
S7	Silty Clay	x			x		
S8	Silty Clay		x	x			
BH101	Silty Clay	x					
BH102	Silty Clay				x		
BH103	Silty Clay		x				
BH104	Silty Clay	x		x		х	
BH105	Silty Clay						
BH106	Silty Clay		х				

Table 4: Samples Depth and Requested Lab Tests

BH107	Silty Clay					x	x
COM1	Silty Clay	x			x		
COM2	Silty Clay			x			
COM3	Silty Clay	x	x			х	
COM4	Silty Clay				x		
COM5	Silty Clay	x		x			
COM6	Silty Clay		x			х	
COM7	Silty Clay			x			
COM8	Silty Clay	x					
COM9	Silty Clay		x		x		
COM10	Silty Clay			x			
COM11	Silty Clay	x				х	
COM12	Silty Clay		x		х		
COM13	Silty Clay			x			
COM14	Silty Clay	x	x			х	x
W1	Dam Water	x					
W2	Dam Water	x					
D1 (BH7)	Soil	x					
Di1*	Topsoil	x	x	x	x	х	
Di2*	Topsoil	x	x	x	x	х	
Di3*	Topsoil	x	x	x	x	х	
Di4*	Fill	x	x	x	x	х	
Di5*	Fill	x	x	x	x	х	
Di6*	Fill	x	x	x	х	х	
Di7*	Fill	x	x	x	х	х	
Di8*	Fill	x	x	x	х	х	
Di9*	Fill	x	x	x	х	х	
COM1*	Topsoil	x	x				
COM2*	Topsoil	x	x				
COM3*	Fill	x	x				
COM4*	Topsoil	x	x				
COM5*	Topsoil	x	x				
COM6*	Topsoil	x	x				
FB1*	Water	x					
D1*	Soil	x					

¹HM: Heavy metal

²OCP: Organochloride pesticides

²OPP: Organophosphate pesticides

³R17: Total Recoverable Hydrocarbons - 1999 NEPM Fractions: Volatile Organics

Total Recoverable Hydrocarbons - 2013 NEPM Fractions

Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides

Polychlorinated Biphenyls (PCB), Spectated Phenols, Total Recoverable Hydrocarbons - 2013 NEPM Fractions, Chromium (hexavalent), Cyanide (total) and Fluoride

Heavy Metals such as arsenic, copper, lead, etc., Total Recoverable Hydrocarbons - 1999 NEPM Fractions, TRH: Total recoverable hydrocarbons

PAH: Polycyclic aromatic hydrocarbons BTEX: Benzene, toluene, ethyl benzene, xylene **Note * -** Sample taken from 10th June 2021 investigation.

6.4.2 Detailed Investigation Data Assessment

Based on the proposed development plans being residential, Health Investigation levels (HIL) of Residential A with soil access (ASC NEPM 1999, amended 2013) have been adopted as the SAC for this investigation.

For petroleum hydrocarbons, Health screening levels (HSL) for low density residential for clay (ASC NEPM 1999, amended 2013) have been adopted as the SAC for this investigation.

For all other analytes, the most appropriate assessment criteria therefore are taken to be the Residential-A HILs stated in Table 1A of NEPM 2013 Guidelines and relate directly to the measured chemical concentrations from each sample. The NEPM 2013 health screening level criteria (HSLs) for asbestos in soils was adopted for the Site. For the purposes of this detailed investigation, bulk samples were collected from the site soils. Asbestos sampling and visual inspections were undertaken to ensure that no detections of asbestos. Therefore, in addition to soil samples tested for asbestos, the 'presence/absence' of asbestos in soil material has been adopted as the SAC.

6.4.3 Rationale for the Selection of Detailed Investigation Criteria

The criteria selected have been chosen in accordance with current Australian and NSW-OEH guidelines. Australian Guidelines have been used in preference to international guidelines where available. These criteria are the most current and widely accepted guidelines in use at present in Australia and have generally been developed using a risk-based approach. Therefore, the chosen guidelines provide a satisfactory framework for the Site Assessment and they are considered appropriate.

7. SITE ASSESSMENT CRITERIA

The respective soil Site Assessment Criteria (SAC) for the project is provided in Tables 4, 5, and 6 below. The National Environmental Protection Measures Health Based Investigation Levels (2013) is used to determine the SAC.

7.1 Heavy metals, PAH, PCB, OCP/OPP and asbestos

Table 4 presents HILs for heavy metals, PAH, PCB, pesticides (OCP/OPP) and asbestos. It is obtained from Table 1A(1) in NEPM (2013) for Residential A.

Analytes	HILs-Residential A ¹	Source
Arsenic	100	NEPM 2013
Cadmium	20	
Chromium (VI)	100	
Copper	7000	
Lead	300	
Mercury (inorganic)	200	
Nickel	400	
Zinc	8000	
Total PAHs	300	
Benzo(a)PyreneTEQ	3	
РСВ	1	
Pesticides: (Aldrin/DielDrin),	7	
Chlordane	50	
DDT+DDE+DDD	260	
Asbestos:		
Bonded ACM ² ,	0.01%	
Friable Asbestos ³ (FA), Asbestos Fines ⁴ (AF),	0.001%	
Surface Asbestos (0.1m)	No Visible	

Table 5: Site Assessment Criteria for Soils (mg/kg)

1- Criteria adopted for residential areas of the Site

2- Bonded ACM (bonded Asbestos) - asbestos-containing-material which is in sound condition and where the asbestos is bound in a matrix such as cement or resin (e.g. asbestos fencing and vinyl tiles). Bonded ACM refers to, in this instance, material that cannot pass a 7 mm x 7 mm sieve.

3- Fibrous Asbestos - friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This material is in a degraded condition such that it can be broken or crumbled by hand pressure.

4- Asbestos Fines - AF includes free fibres, small fibre bundles and also small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

7.2 Total Recoverable Hydrocarbons (TRH) and Benzene Toluene Ethylbenzene Xylene (BTEX)

The NEPM (2013) provides Health Screening Levels (HSLs), Ecological Screening Levels (ESLs) and Management Limits (MLs) for TRH fractions in soil based on concerns regarding ecological impacts, inhalation of vapours and direct contact with contaminant sources. The

Fraction Number (i.e. hydrocarbon compound range) is identified and compared against the prescribed HSL, ESL and ML values. HSLs, ESLs and MLs take into consideration the followings:

- ✓ Carbon number range, indicated by a Fraction Number (F1, F2, F3 or F4);
- ✓ Type of soil (sand, silt or clay);
- ✓ Depth to the source of contamination;
- ✓ Intended land-use

For this Site, the intended land use is HSL A – Residential with garden/accessible soil and the soil type was clay within a depth range of 0-1.0 m, 1.0 - < 2.0 m and 2.0 - < 4.0 m. The criteria are summarised in Tables 5 and 6 below. They are obtained from Table 1A(3) (HSL A & HSL B), Table 1B(6) (fine soils) and Table 1B(7) (fine soils) in NEPM (2013).

Table 6: NEPM 2013 BTEX and TRH Criteria – HSL Criteria for 0-1m, 1-<2m and 2-<4m

Analytes	HSL-A(Clay)	HSL-A (Clay)	HSL-A (Clay)
	0-1.0m	1-<2.0m	2-<4.0m
Benzene	0.7	0.9	1
Toluene	460	NL	NL
Ethylbenzene	NL	NL	NL
Xylene	110	250	NL
F1: C6-C10	50	75	120
F2:C10-C16	270	NL	NL
F3: C16-C34	N/A	N/A	N/A
F4: C34-C40	N/A	N/A	N/A

NL = Not Limiting (i.e. the soil vapour concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario).

N/A = Not applicable as F3 and F4 are non-volatile and hence are not of concern for vapour intrusion.

*'Fine' refers to the soil texture grading as per NEPM 1999.

1 NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 0-1.0m

2 NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 1-<2.0m

3 NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 2-<4.0m

Table 7: NEPM 2013 BTEX and TRH Criteria, ESL and ML Criteria for 0-1m, 1-<2m and 2-<4m

Analytes	NEPM 2013 Amendment TRH	NEPM 2013 Amendment TRH
	Criteria (mg/kg dry wt.)	Criteria (mg/kg dry wt.)
	ESL	ML
	(Fine*)	(Fine*)
Benzene	65	
Toluene	105	
Ethylbenzene	125	
Xylene	45	
F1: C6-C10	180	800
F2:C10-C16	120	1000
F3: C16-C34	1300	3500
F4: C34-C40	5600	10000

'Fine' refers to the soil texture grading as per NEPM 1999.

1 NEPM 2013 Amendment Table 1B(6) – ESLs for TPH fractions, BTEX and benzo(a)pyrene in soil. 2 NEPM 2013 Amendment Table 1B(7) – Management Limits for TPH fractions F1-F4 in soil.

7.3 Limitations of the Assessment Criteria

All criteria have limitations. Not all chemical analytes are covered by each set of guidelines, requiring some criteria to be sourced from elsewhere. This is particularly relevant to the Dutch guidelines, which provide a guideline for assessment for some analytes not covered by the Australian guidelines.

7.4 Statistical Evaluation

Samples results from each identified material were tabulated and grouped individually as distinct profiles to be assessed. To achieve compliance with the site adopted criteria, assessment of concentrations for each analyte across the site is performed. Where a sample result is beyond the HIL, non-compliant locations are defined as a hotspot. Hotspots are defined as localised areas where contaminant concentration is higher than in surrounding areas.

8. RESULTS

8.1 Field Observations

The Subject Site 51, 134 & 146 Station Lane LOCHINVAR NSW-2321 at the time of this investigation. The site is currently a mix of residential and farming area. Dwellings, sheds, open paddocks and dams are found on the site. Open paddocks with unknown stockpiles are found on the two sites.

8.1.1 Subsurface Conditions

A summary of sub-surface soil conditions encountered in the site is presented below:

8.1.1.1 Fill/TopSoil

Based on the fieldwork results an approximately 0.00m - 0.10m thick fill/topsoil layer made of Silty CLAY was observed in boreholes.

8.1.1.2 Silty CLAY

The material below the fill/topsoil was mostly very stiff to hard Silty CLAY. They were found at depth of investigation 0.10m - 2.00m.

8.1.1.3 Bedrock

Bedrock (Sandstone V) was encountered in nine boreholes at depth of 2.50m – 4.50m.

8.1.1.4 Groundwater

The groundwater was not encountered by the maximum investigation depth of 4.50m.

8.2 Laboratory Analytical Results

Selected soil samples analysed for contamination concerns of Heavy metals, Organochlorine Pesticides (OCP), Organophosphate pesticides (OPP), Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethyl Benzene and Xylene (BTEX), Polycyclic Aromatic Hydrocarbon (PAH) and Asbestos. Water samples were analysed for heavy metal and OCP/OPP. These contaminants are commonly encountered on residential sites. Summary of Analytical Results are presented in Sections 8.2.1 to 8.2.5 and Tables 7 to 11. The lab test results are presented in Appendix C.

8.2.1 Heavy Metals (HM)

A total of twenty-seven (27) soil samples were analysed for a range of heavy metals consisting of As, Cd, Cr, Cu, Pb, Hg, Ni and Zn. The results of the lab tests for the heavy

metal components are presented in Table 7. The statistical analysis of the heavy metal detections including, minimum, maximum and average along with the adopted SAC is shown in Table 8.

	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)# (Total)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
S1	69	< 0.4	120	33	8.2	< 0.1	51	29
S3	3.6	< 0.4	7.4	5.9	12	< 0.1	6.1	18
S5	10	< 0.4	130	28	9.8	< 0.1	59	47
S7	3.8	< 0.4	80	18	6.6	< 0.1	36	16
BH101	290	< 0.4	130	29	< 5	0.8	140	76
BH104	< 2	< 0.4	130	35	5	< 0.1	98	31
COM1	13	< 0.4	96	52	13	< 0.1	44	32
COM3	5.1	< 0.4	120	36	8.8	< 0.1	57	25
COM5	7.1	< 0.4	170	52	7.8	< 0.1	100	41
COM8	29	< 0.4	97	40	7.2	< 0.1	69	21
COM11	9.2	< 0.4	22	7.6	14	< 0.1	9.4	30
COM14	6.5	< 0.4	110	44	19	< 0.1	58	71
D1	6.3	< 0.4	100	24	9.6	< 0.1	50	22
Di1*	3.8	< 0.4	88	24	5.4	< 0.1	53	25
Di2*	4.3	< 0.4	84	26	7.2	< 0.1	51	38
Di3*	3.8	< 0.4	75	22	< 5	< 0.1	50	31
Di4*	3.1	< 0.4	47	18	13	< 0.1	26	45
Di5*	4.1	< 0.4	56	19	15	< 0.1	24	69
Di6*	45	3.2	84	220	40	< 0.1	58	3800
Di7*	5.2	< 0.4	22	14	17	< 0.1	13	230
Di8*	4.4	< 0.4	33	8.9	8.1	< 0.1	9.8	16
Di9*	3.6	< 0.4	11	8.1	15	< 0.1	8.1	33
COM1*	3.7	< 0.4	91 (<5) ¹	33	17	< 0.1	47	50
COM2*	17	< 0.4	52	25	9.8	< 0.1	29	25
COM3*	2.6	< 0.4	37	14	9.2	< 0.1	24	35

Table 8: Heavy Metal Detections in soil samples (mg/kg)

COM4*	5.3	< 0.4	60	14	8.7	< 0.1	18	18
COM5*	7.3	< 0.4	70	22	< 5	< 0.1	32	63
COM6*	26	< 0.4	71	42	17	< 0.1	36	140

Note * - Sample taken from 10th June 2021 investigation. # - Chromium is total chromium and includes trivalent and hexavalent chromium. 1 – Hexavalent Chromium.

	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Samples	27	27	27	27	27	27	27	27
Minimum	2.6	-	7.4	5.9	5	-	6.1	16
Maximum	290	3.2	170	220	40	0.8	140	3800
Average	21.92	-	78.34	32.66	12.14	-	44.87	181.32
NEPM 2013	100	20	100	6000	300	40	400	7400
No. of HIL		_	_			_		_
Exceedance	1	0	0	0	0	0	0	0

Table 9: Statistical analysis of Heavy Metal Detections in Soil samples (mg/kg)

As can be observed from Table 8, Arsenic concentration in Sample BH101 and Chromium concentration in samples S1, S5, BH101, BH104, COM3, COM5 and COM14 exceed the adopted Site Assessment Criteria. The potential sources of Arsenic exceedance in BH101 is likely from pesticides and fertilizers. BH101 is located next to a shed which might have been used for the pesticide/fertilizer storage. The criterion is for hexavalent chromium and the analysis was conducted for total chromium, which includes trivalent and hexavalent chromium. Additional testing was conducted on sample COM1* for hexavalent chromium to assess the potential of contamination. As can be observed, the concentration of Hexavalent Chromium is below (<5 mg/kg) the Site Assessment Criteria. Therefore, it can be assumed that the concentrations of hexavalent chromium in other samples will reflect that of COM1*. The potential sources of Chromium exceedance are likely from the road dusts and wood preservatives and paints.

8.2.2 Organochlorine Pesticides/Organophosphorus Pesticides (OCP/OPP)

A total of twenty-five (25) soil samples and one water sample were analysed for a range of organochlorine and Organophosphorus pesticides. Table 10 shows the OCP/OPP detections.

	4.4'-DDD	4.4'-DDE	4.4'-DDT	Aldrin	Chlordanes	Dieldrin
S1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
S5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
S8	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05
BH103	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
BH106	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM14	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di1*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di2*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di3*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di4*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di5*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di6*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di7*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di8*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
Di9*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM1*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM2*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM3*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM4*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM5*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
COM6*	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05
NEPM 2013 HIL	240	240	240	6	50	6

Table 10: OCP/OPP (Pesticides) Detections in soil samples (mg/kg)

Note * - Sample taken from 10th June 2021 investigation.

All the concentrations of OCP/OPP were found to be below the adopted Site Assessment Criteria. Because of very small values of the OCP/OPP detections, no statistical analysis is required.

8.2.3 Polycyclic Aromatic Hydrocarbons (PAH)

A total of sixteen (16) samples were analysed for a range of PAH. Total PAH detections are shown in Table 11.

	Total PAH	Benzo(a)PyreneTE
S4	<0.5	1 2
		1.2
S7	<0.5	1.2
BH102	<0.5	1.2
COM1	<0.5	1.2
COM4	<0.5	1.2
COM9	<0.5	1.2
COM12	<0.5	1.2
Di1*	<0.5	1.2
Di2*	<0.5	1.2
Di3*	<0.5	1.2
Di4*	<0.5	1.2
Di5*	<0.5	1.2
Di6*	<0.5	1.2
Di7*	<0.5	1.2
Di8*	<0.5	1.2
Di9*	<0.5	1.2
NEPM 2013	300	3
No. of NEPM Exceedance	0	0

Table 11: Total PAH Detections in soil samples (mg/kg)

Note * - Sample taken from 10th June 2021 investigation.

As can be seen, all the concentrations of total PAH were found to be below the adopted Site Assessment Criteria.

8.2.4 Total Recoverable Hydrocarbons (TRH) - 2013 NEPM Fractions

A total of Eighteen (9) samples were analysed for TRH. TRH detections are presented in Table 12.

	F1: C6-C10	F2: C10-C16	F3: C16-C34	F4: C34-C40
S2	<20	<50	<100	<100
S5	<20	<50	<100	<100
S8	<20	<50	<100	<100
BH104	<20	<50	<100	<100
COM2	<20	<50	<100	<100
COM5	<20	<50	<100	<100
COM7	<20	<50	<100	<100
COM10	<20	<50	<100	<100
COM13	<20	<50	<100	<100
Di1*	<20	<50	<100	<100
Di2*	<20	<50	<100	<100
Di3*	<20	<50	<100	<100
Di4*	<20	<50	<100	<100
Di5*	<20	<50	140	<100
Di6*	<20	<50	<100	<100
Di7*	<20	<50	230	<100
Di8*	<20	<50	<100	<100
Di9*	<20	<50	310	<100
HSL	50	280	NL	NL
ESL	180	120	1300	5600
ML	800	1000	3500	10000
No. of				
HSL/ESL/ML				
Exceedance	0	0	0	0

Table 12: Total TRH Detections in soil samples (mg/kg)

Note * - Sample taken from 10th June 2021 investigation.

All samples analysed, are found to have concentrations of TRH below the adopted Site Criteria (HSL, ESL and ML).

8.2.5 Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) - 2013 NEPM Fractions

A total of Seventeen (17) samples were analysed for BTEX. BTEX detections are presented in Table 13.

	Benzene	Toluene	Ethylbenzene	Xylene
S3	< 0.1	< 0.1	< 0.1	< 0.3
S6	< 0.1	< 0.1	< 0.1	< 0.3
BH104	< 0.1	< 0.1	< 0.1	< 0.3
BH107	< 0.1	< 0.1	< 0.1	< 0.3
COM3	< 0.1	< 0.1	< 0.1	< 0.3
COM6	< 0.1	< 0.1	< 0.1	< 0.3
COM11	< 0.1	< 0.1	< 0.1	< 0.3
COM14	< 0.1	< 0.1	< 0.1	< 0.3
Di1*	< 0.1	< 0.1	< 0.1	< 0.3
Di2*	< 0.1	< 0.1	< 0.1	< 0.3
Di3*	< 0.1	< 0.1	< 0.1	< 0.3
Di4*	< 0.1	< 0.1	< 0.1	< 0.3
Di5*	< 0.1	< 0.1	< 0.1	< 0.3
Di6*	0.3	< 0.1	< 0.1	< 0.3
Di7*	< 0.1	< 0.1	< 0.1	< 0.3
Di8*	< 0.1	< 0.1	< 0.1	< 0.3
Di9*	< 0.1	< 0.1	< 0.1	< 0.3
HSL	0.7	480	NL	110
ESL	65	105	125	45
No. of HSL/ESL				
Exceedance	0	0	0	0

Table 13: Total BTEX Detections in soil samples (mg/kg)

Note * - Sample taken from 10th June 2021 investigation.

All samples analysed, are found to have concentrations of BTEX below the adopted Site Criteria (HSL, ESL and ML).

8.2.6 Asbestos

All sample locations were visually assessed for the presence of visible asbestos within surface soils. Following the visual inspection all the samples were taken for laboratory asbestos analyses. Screening assessment for asbestos carried out in the location of samples S1, S2, S3, S4, S6, BH107, COM14. No asbestos found in the soils passed/retained from/on Sieve 7mm*7mm.

Seven samples (S1, S2, S3, S4, S6, BH107, COM14) were tested for Asbestos. The samples did not contain any asbestos. Organic fibres were detected from all samples.

8.2.7 Dam water results

Two dam water samples (W1 and W2) were taken and sent to lab for analysis. The lab results are shown in Table 14 and 15.

	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
W1	0.01	< 0.0002	0.054	0.025	0.01	< 0.0001	0.047	0.04
W2	0.008	< 0.0002	0.048	0.017	0.004	< 0.0001	0.035	0.028
GILs 2013	24	0.2	1	1.4	3.4	0.06	11	8
No of GILs exceedance	0	0	0	0	0	0	0	0

Table 14: Heavy Metal Detections in dam water samples (mg/lit)

All the concentrations of heavy metals were found to be below the adopted Site Assessment Criteria (GILs) and limit of reporting (LOR). One dam water sample (W2) was tested for OP/OPP and the results is shown in Table 15.

Table 15: OCP/OPP Detections in dam water samples (mg/lit)

	4.4'-DDD	4.4'-DDE	4.4'-DDT	Aldrin	Chlordanes	Dieldrin
W2	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.0001

All the concentrations of OCP/OPP were found to be below the adopted Site Assessment Criteria (GILs) and limit of reporting (LOR).

8.3 Evaluation Analytical Quality Assurance

The laboratory quality control measures are assessed based on a duplicate sample which was collected during the field works.

The Relative Percentage Difference (RPD) values between parent sample S7 and Di9*, and the duplicate samples D1 and D1* were calculated to assess the results. A zero RPD means perfect agreement of results between the primary and duplicate sample whilst an RPD above 200% indicates total disagreement in results.

For D1 heavy metals, a maximum RPD value of 49.50% was calculated for Arsenic. For Chromium, Copper, Lead, Nickel and Zinc, RPD values were calculated to be 22.22%, 28.57%, 45.45%, 38.88% and 37.5%, respectively. RPD values for Cadmium and Mercury could not be calculated because the results were below laboratory detection limits.

For D1* heavy metals, a maximum RPD value of 21.54% was calculated for Arsenic. For Chromium, Copper, Lead, Nickel and Zinc, RPD values were calculated to be 21.10%, 17.45%, 14.28%, 17.45% and 9.52%, respectively. RPD values for Cadmium and Mercury could not be calculated because the results were below laboratory detection limits.

The internal laboratory QA/QC results which are presented in the laboratory certificates are considered acceptable based on the duplicate and control samples analysed. The overall results suggest that the laboratory analysis carried out is reliable for this assessment.
9. DISCUSSION

9.1 Soil Contamination Summary

A summary of the lab result is presented as the following:

- Concentration of all soil and dam water heavy metal analytes were below the Site Assessment Criteria except for Arsenic concentration in Sample BH101. As a large number of locations were tested for arsenic and only one location was identified with Arsenic exceeding the site assessment criteria, this is the opinion of Geotesta that the arsenic contamination is not across the site and most likely a single location contamination.
- Chromium concentrations in samples S1, S5, BH101, BH104, COM3, COM5 and COM14. The criterion is for hexavalent chromium and the analysis was conducted for total chromium, which includes trivalent and hexavalent chromium. Hexavalent chromium rarely exists naturally and is unstable in the natural environment and is produced by industrial process, such as electro platting, tanneries, stainless steel product, textile manufacturing. Additional testing of COM1* was conducted for hexavalent chromium and was below the SAC. Therefore, it can be assumed that the concentrations of hexavalent chromium in other samples will reflect that of COM1* and as such are all considered to be below the adopted Site Assessment Criteria.
- Concentrations of Organochlorine Pesticides/Organophosphorus Pesticides (OCP/OPP) of soil and dam water samples were below the Site Assessment Criteria.
- Concentrations of PAH, TRH and BTEX analytes were below the Site Assessment Criteria.
- No asbestos detected, and only Organic fibres were detected in all the samples.

9.2 Data Gap

Due to limited access to the dwelling and the shed/garage at the time of this investigation, a data gap assessment of subsurface soils below the existing dwelling and shed/garage remains which needs to be carried out after demolition. Additional sampling to identify vertical and horizontal extent of identified Arsenic soil contamination at BH101 needs to be conducted. The same Site Assessment Criteria considered in this investigation to be used for the data gap assessment.

10. CONCLUSIONS AND RECOMMENDATIONS

A contamination site investigation of 51, 134 & 146 Station Lane LOCHINVAR NSW-2321 was undertaken by Geotesta to investigate the likelihood of the presence of contamination on the site. The investigations include a review of site history, a site inspection and soil sampling and analysis program. Soil sampling was performed at 58 borehole locations. Two dam water samples were also taken. The results of the site inspection and sampling indicate that the site to be predominantly by topsoils overlying silty clay overlying silty sand overlying sandstone. Selected soil samples were analysed for a range of potential contaminants consisting of Heavy metals - Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Nickel (Ni) and Zinc (Zn), Organochlorine Pesticides (OCP)/ Organophosphorus Pesticides (OPP), Total recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAH), Benzene, Toluene, Ethyl Benzene and Xylene BTEX and Asbestos. Based on the assessment undertaken, the following conclusions and recommendations can be made:

- Concentrations of Organochlorine Pesticides/Organophosphorus Pesticides, TRH, PAH and BTEX are below the site assessment criteria. No asbestos was detected in soil samples. Arsenic concentrations above the site assessment criteria were detected in BH101. Additional sampling during the data gap assessment will be required near BH101 to delineate the vertical and horizontal extent of identified Arsenic soil contamination. If the concentration of Arsenic still exceeds the site assessment criteria, a remedial action plan will be required to address the concentration exceedance.
- Additional sampling is required after demolition of the existing buildings and sheds to address the data gap due to limited access to the dwelling and sheds at the time of investigation.
- Based on the scope of works undertaken in this investigation, the site is considered suitable for the land use and proposed development provided that the limited hotspot is cleared of any Arsenic contamination.

For and on behalf of

GEOTESTA PTY LTD

Dr. Mohammad Hossein Bazyar

BEng MEng PhD MIEAust Senior Consultant

11. REFERENCES

NSW Department of Mineral Resources, (1991) Penrith 1:100,000 Geological Sheet 9030.

Bureau of Meteorology (2017), <u>www.bom.gov.au</u>.

EPA NSW, http://www.epa.nsw.gov.au/prclmapp/aboutregister.aspx.

NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM, 1999 amended 2013).

NSW Department of Environment & Heritage (eSPADE, NSW soil and land information), www.environment.nsw.gov.au.

NSW EPA (2014), Waste Classification Guidelines, Part 1: Classifying waste.

NSW EPA (2011) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites.

Standards Australia (2005) AS4482.1 2nd Edition: Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil – Part 1: Non-Volatile and Semi-Volatile Compounds.

NSW EPA (1995), Sampling Design Guidelines.

NSW DEC (2006), 2nd Ed. Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.

WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestoscontaminated Sites in Western Australia.

State Environmental Planning Policy No 55 (1979), Environmental Planning and Assessment Act 1979.

Standards Australia, 2005. Guide to the sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile compounds. AS 4482.1

Information about this report

The report contains the results of a geotechnical investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

Test Hole Logging

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information.

Groundwater

Unless otherwise indicated, the water levels presented on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeability (i.e. depending on response time of the measuring instrument). Further, variations of this level could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate instrumentation techniques and monitoring programmes.

Interpretation of Results

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data. Generalized, idealized or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

Change in Conditions

Local variations or anomalies in the generalized ground conditions do occur in the natural environment, particularly between discrete test hole locations. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural forces.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GEOTESTA for appropriate assessment and comment.

Geotechnical Verification

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system or to conduct monitoring as a result of this natural variability. Allowance for verification by geotechnical personnel accordingly should be recognized and programmed during construction.

Reproduction of Reports

Where it is desired to reproduce, the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions should include at least all of the relevant test hole and test data, together with the appropriate standard description sheets and remarks made in the written report of a factual or descriptive nature. Reports are the subject of copyright and shall not be reproduced either totally or in part without the express permission of Geotesta.

A	В	С	D 🔲	E 🔲	F 🔲
Dwelling	Paddocks	Sheds/Garage	Stockpile	Dams/Empty Dams	Unknown Fill

Figure 2: Areas of Environmental Concerns

Figure 3: Soil Samples Location (19/09/2019)

NE526

NE526

Figure 4: Soil Samples Location (10/06/2021)

Appendix A Aerial Photographs

Aerial Photo April 2021

Aerial Photo 2019

Aerial Photo 2017

Aerial Photo 2014

Aerial Photo 2010

Aerial Photo 2007

Aerial Photo 2004

Appendix B Borehole Logs

NE526	
-------	--

•

S1 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	Very stiff	Groundwater not encountered

S2 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	Very stiff	Groundwater not encountered

S3 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

NE52	6

S4	Log
-----------	-----

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Silty Clay light brown	Moist	stiff	Groundwater not encountered

S5 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

S6 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

NE5	26
	-0

S7 Log	g
--------	---

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

COM1 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

COM2 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

NE526

COM3 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

COM4 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Moist	stiff	Groundwater not encountered

COM5 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

NE526

COM6 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

COM7 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt light brown	Dry – Moist	stiff	Groundwater not encountered

COM8 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt dark brown	Dry – Moist	stiff	Groundwater not encountered

.

NE526

COM9 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

COM10 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt brown	Moist	stiff	Groundwater not encountered

COM11 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt dark brown	Dry – Moist	stiff	Groundwater not encountered

NE526

COM12 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt dark brown	Dry – Moist	stiff	Groundwater not encountered

COM13 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.2	CL	Clay with silt dark brown	Dry – Moist	stiff	Groundwater not encountered

COM14 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.1		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.3	CL	Clay with silt brown	Dry – Moist	stiff	Groundwater not encountered

NE526

BH 101 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.5	CL	Clay with silt dark brown	Moist	Very stiff	
0.5-1.0	SM	Silty SAND		Very dense	Groundwater not encountered

BH102 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.5	CL	Clay with silt dark brown	Moist	Very stiff	
0.5-1.0	SM	Silty SAND	Moist	Very dense	Groundwater not encountered

BH103 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.4	CL	Clay with silt dark brown	Moist	Very stiff	
0.4-1.0	CL	Silty clay, dark brown	Moist	Very stiff	Groundwater not encountered

.

NE526

BH104 Log

Depth	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
(m)					
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.4	CL	Clay with silt dark brown	Moist	Very stiff	
0.4-1.0	CL	Silty clay, brown	Moist	Very stiff	Groundwater not encountered

BH105 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.5	CL	Clay with silt dark brown	Moist	Very stiff	
0.5-1.0	CL	Silty clay, dark brown	Moist	Hard	Groundwater not encountered

BH106 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.4	CL	Clay with silt dark brown	Moist	Very stiff	
0.4-1.5	CL	Silty clay, dark brown	Moist	Very stiff	Groundwater not encountered

.

NE526

BH107 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover
0.1-0.6	CL	Clay with silt dark brown	Moist	stiff	
0.6-3.0	CL	Silty clay, dark brown	Moist	Very stiff	Groundwater not encountered

Di1 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.2		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

Di2 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.3		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

NE52	6

Di3 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.3		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

Di4 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.2		Fill: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

Di5 Log

Depth	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
(m)	Symbol		Wolsture	Consistency/Density	Tield Notes
0.00-0.15		Fill: Sandstone gravel	Dry		

Di6 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.1		Fill: Sandstone gravel	Dry – Moist		

NE52	6

Di7 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.2		Fill: Silty CLAY with sandstone gravel	Dry		

Di8 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.2		Fill: Silty CLAY with sandstone gravel	Dry – Moist		

Di9 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.15		Fill: Silty CLAY with sandstone gravel	Dry – Moist		

COM1 Log

Depth	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
(m)	Symbol	Matchai Description	Woisture	Consistency/Density	Field Notes
0.00-0.15		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

COM2 Log

			MZ LUg		
Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.3		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

COM3 Log

Depth	Symbol	Material Description	Moisturo	Consistancy/Donsity	Field Notes
(m)	Symbol		Woisture	Consistency/Density	Field Notes
0.00-0.2		Fill: Silty CLAY with gravel, brown	Dry – Moist		Grass cover

COM4 Log

Depth	oth Symbol Material Description		Moisture	Consistency/Density	Field Notes	
(m)	,					
0.00-0.25		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist			

COM5 Log

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.00-0.2		Topsoil: Silty CLAY with grass roots, brown	Dry – Moist		Grass cover

NE526

NE526

-0

COM6 Log

Depth (m)	Symbol Material Description		Moisture	Consistency/Density	Field Notes
0.00-0.2		Fill: Silty CLAY with gravel, brown	Dry – Moist		Grass cover

Appendix C Lab Test Results

Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

- Mohammad Hossein Bazyar

Report
Project name
Project ID
Received Date

669346-S 51 134 146 STATION LANE LOCHINVAR NE526 Aug 02, 2019

Client Sample ID			e 4	00		A 4
			51	52 Seil	53 Coll	54
			501	5011	501	501
Eurofins Sample No.			S19-Au03332	S19-Au03333	S19-Au03334	S19-Au03335
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions	1				
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	94	-
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Polycyclic Aromatic Hydrocarbons	-					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			S1	S2	S3	S4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03332	S19-Au03333	S19-Au03334	S19-Au03335
Date Sampled			Aug 02 2019	Aug 02 2019	Aug 02 2019	Aug 02 2019
Test/Poference		Linit	Aug 02, 2010	Aug 01, 2010	Aug 02, 2010	Aug 02, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5					0.5
	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
	0.5	mg/kg	-	-	-	< 0.5
Naphthalana	0.5	mg/kg	-	-	-	< 0.5
Phononthrono	0.5	mg/kg	-	-	-	< 0.5
Pyropo	0.5	mg/kg	-	-	-	< 0.5
	0.5	mg/kg	-	-	-	< 0.5
	1	111g/kg	_			116
n-Ternhenyl-d14 (surr.)	1	/0 %				129
Organochlorine Pesticides	I	70				120
Chlordanes - Total	0.1	ma/ka	< 0.1	_	_	_
	0.05	mg/kg	< 0.05			-
4.4-DDE	0.05	mg/kg	< 0.05	_		-
4.4-DDL	0.05	mg/kg	< 0.05	_		-
a-BHC	0.05	mg/kg	< 0.05	_	_	_
Aldrin	0.05	mg/kg	< 0.05	_	_	_
h-BHC	0.05	ma/ka	< 0.05	_	_	_
d-BHC	0.05	ma/ka	< 0.05	_	_	_
Dieldrin	0.05	ma/ka	< 0.05	_	_	_
Endosulfan I	0.05	ma/ka	< 0.05	-	-	-
Endosulfan II	0.05	ma/ka	< 0.05	-	-	-
Endosulfan sulphate	0.05	ma/ka	< 0.05	-	-	-
Endrin	0.05	ma/ka	< 0.05	-	-	-
Endrin aldehyde	0.05	ma/ka	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.2	mg/kg	< 0.2	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	-
Dibutylchlorendate (surr.)	1	%	95	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	90	-	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Bolstar	0.2	mg/kg	< 0.2	-	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	-
Coumaphos	2	mg/kg	< 2	-	-	-
Demeton-S	0.2	mg/kg	< 0.2	-	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-	-

Client Sample ID			S1	S2	S3	S4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03332	S19-Au03333	S19-Au03334	S19-Au03335
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides		0				
Dimethoate	0.2	ma/ka	< 0.2	-	-	-
Disulfoton	0.2	ma/ka	< 0.2	_	-	-
EPN	0.2	ma/ka	< 0.2	-	-	-
Ethion	0.2	ma/ka	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	-	-
Monocrotophos	2	mg/kg	< 2	-	-	-
Naled	0.2	mg/kg	< 0.2	-	-	-
Omethoate	2	mg/kg	< 2	-	-	-
Phorate	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-	-
Terbufos	0.2	mg/kg	< 0.2	-	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Tokuthion	0.2	mg/kg	< 0.2	-	-	-
Trichloronate	0.2	mg/kg	< 0.2	-	-	-
Triphenylphosphate (surr.)	1	%	100	-	-	-
		-				
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	-	-	-	170
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	5.1
Sulphate (as SO4)	10	mg/kg	-	-	-	< 10
% Moisture	1	%	21	25	8.1	5.0
Heavy Metals						
Arsenic	2	mg/kg	69	-	3.6	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	120	-	7.4	-
Copper	5	mg/kg	33	-	5.9	-
Lead	5	mg/kg	8.2	-	12	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	51	-	6.1	-
Zinc	5	mg/kg	29	-	18	-

Client Sample ID			S5	S6	S7	S8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03336	S19-Au03337	S19-Au03338	S19-Au03339
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit				
TRH C6-C9	20	ma/ka	< 20	-	-	< 20
TRH C10-C14	20	ma/ka	< 20	-	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	-	59
TRH C29-C36	50	mg/kg	< 50	-	-	55
TRH C10-C36 (Total)	50	mg/kg	< 50	-	-	114
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	88	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	-	< 100
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
	0.5	mg/kg	-	-	< 0.5	-
	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
	0.5	mg/kg	-	-	< 0.5	-
Prienanthrene	0.5	mg/kg	-	-	< 0.5	-
	0.5	mg/kg	-	-	< 0.5	-
	0.5	0/ NG	-	-	< 0.0	-
P Terphonyl d14 (curr.)	1	70 0/	-	-	94	-
		70	-	-	105	-

Client Sample ID			S5	S6	S7	S8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03336	S19-Au03337	S19-Au03338	S19-Au03339
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Linit		,		
Organochlorine Pesticides	LOIX	Onit				
Chlordanes - Total	0.1	ma/ka	< 0.1	_	_	< 0.1
	0.1	mg/kg	< 0.05	-		< 0.05
4.4-DDE	0.05	mg/kg	< 0.05	_		< 0.05
4.4'-DDT	0.05	ma/ka	< 0.05	_	_	< 0.05
a-BHC	0.05	ma/ka	< 0.05	_	_	< 0.05
Aldrin	0.05	ma/ka	< 0.05	-	-	< 0.05
b-BHC	0.05	ma/ka	< 0.05	-	-	< 0.05
d-BHC	0.05	ma/ka	< 0.05	-	-	< 0.05
Dieldrin	0.05	ma/ka	< 0.05	-	-	< 0.05
Endosulfan I	0.05	ma/ka	< 0.05	-	-	< 0.05
Endosulfan II	0.05	ma/ka	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	ma/ka	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	ma/ka	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	-	-	< 0.2
Toxaphene	1	mg/kg	< 1	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-	-	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-	-	< 0.2
Dibutylchlorendate (surr.)	1	%	90	-	-	105
Tetrachloro-m-xylene (surr.)	1	%	87	-	-	102
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Bolstar	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Coumaphos	2	mg/kg	< 2	-	-	< 2
Demeton-S	0.2	mg/kg	< 0.2	-	-	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	-	< 0.2
Diazinon	0.2	mg/kg	< 0.2	-	-	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	-	-	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	-	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	-	-	< 0.2
EPN	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethion	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
	0.2	mg/kg	< 0.2	-	-	< 0.2
Fensultothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenthion	0.2	mg/kg	< 0.2	-	-	< 0.2
	0.2	mg/kg	< 0.2	-	-	< 0.2
werpnos	0.2	mg/kg	< 0.2	-	-	< 0.2

Client Sample ID			S5	S 6	S7	S8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03336	S19-Au03337	S19-Au03338	S19-Au03339
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Monocrotophos	2	mg/kg	< 2	-	-	< 2
Naled	0.2	mg/kg	< 0.2	-	-	< 0.2
Omethoate	2	mg/kg	< 2	-	-	< 2
Phorate	0.2	mg/kg	< 0.2	-	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	-	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	-	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	-	-	< 0.2
Triphenylphosphate (surr.)	1	%	123	-	-	117
% Moisture	1	%	24	23	23	25
Heavy Metals						
Arsenic	2	mg/kg	10.0	-	3.8	-
Cadmium	0.4	mg/kg	< 0.4	-	< 0.4	-
Chromium	5	mg/kg	130	-	80	-
Copper	5	mg/kg	28	-	18	-
Lead	5	mg/kg	9.8	-	6.6	-
Mercury	0.1	mg/kg	< 0.1	-	< 0.1	-
Nickel	5	mg/kg	59	-	36	-
Zinc	5	mg/kg	47	-	16	-

Client Sample ID Sample Matrix			BH101 Soil	BH102 Soil	BH103 Soil	BH104 Soil
Eurofins Sample No.			S19-Au03340	S19-Au03341	S19-Au03342	S19-Au03343
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	-	-	< 50
BTEX						
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	_	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	104

Client Sample ID			BH101	BH102	BH103	BH104
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03340	S19-Au03341	S19-Au03342	S19-Au03343
Date Sampled			Aug 02, 2019		Aug 02, 2019	Aug 02, 2019
Tast/Deference		1.1	Aug 02, 2019	Aug 02, 2019	Aug 02, 2013	Aug 02, 2013
Test/Reference LOR Unit						
Negkikelege Nº2						0.5
	0.5	mg/kg	-	-	-	< 0.5
	20	mg/kg	-	-	-	< 20
	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2)	100	mg/kg	-	-	-	< 50
TRH >C10-C34	100	mg/kg	-	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
RH >C10-C40 (Iolal)	100	під/кд	-	-	-	< 100
	0.5			0.5		
Benzo(a)pyrene TEQ (lower bound)	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound)	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound)	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluoranthene ^{No}	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluorantnene	0.5	mg/kg	-	< 0.5	-	-
Chrysene Ditese (a b) as the second	0.5	mg/kg	-	< 0.5	-	-
	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
	0.5	mg/kg	-	< 0.5	-	-
Naphtholone	0.5	mg/kg	-	< 0.5	-	-
Depenterence	0.5	mg/kg	-	< 0.5	-	-
Purene	0.5	mg/kg	-	< 0.5	-	-
	0.5	mg/kg	-	< 0.5	-	-
2 Eluorobiohonyl (surr.)	0.5	0/.	-	< 0.5	-	-
p Torphopyl d14 (surr.)	1	/0 0/.	-	110	-	-
Organochlorine Pesticides	I	/0	-	110	-	-
Chlandanaa, Tatal	0.1	mallea			.01	
	0.1	mg/kg	-	-	< 0.1	-
4.4-DDD	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	ma/ka	-	-	< 0.05	-
Endrin aldehyde	0.05	ma/ka	-		< 0.05	-
	0.05	ma/ka	-	-	< 0.05	-
a-BHC (Lindane)	0.05	ma/ka	-		< 0.05	-
Heptachlor	0.05	ma/ka	-	-	< 0.05	-
			1	1		1

Sample Matrix Fund Solid	Client Sample ID			BH101	BH102	BH103	BH104
Eurofins Sample No. S19-Au03340 Aug 02, 2019 S19-Au03341 Aug 02, 2019 S19-Au03341 Aug 02, 2019 S19-Au03342 Aug 02, 2019 S19-Au03342	Sample Matrix			Soil	Soil	Soil	Soil
Date Sampled Aug 02.2019	Eurofins Sample No.			S19-Au03340	S19-Au03341	S19-Au03342	S19-Au03343
Data Society Dig Society <thdig society<="" th=""> <thdig society<="" th=""></thdig></thdig>	Date Sampled			Aug 02 2019	Aug 02 2019	Aug 02 2019	Aug 02 2019
Lask setting Low Oth Oth Heptachior poxide 0.05 mg/kg - < < 0.05	Test/Poference		Linit	Aug 02, 2010	Aug 02, 2010	Aug 02, 2010	Aug 02, 2010
Organosciencies Organy - < < Hexachiorobenzene 0.05 mg/kg - <	Organochlorine Besticides	LOR	Unit				
Impactation spokada 0.03 ImpAg - < < < < < < <	Hantashlar anavida	0.05	malka			< 0.05	
Instantionalization Obd Img/kg - < < < < < < < < < < < < < < < < < <		0.05	mg/kg	-	-	< 0.05	-
memory international marks 0.2 mg/kg - <	Mothovychlor	0.05	mg/kg	-	-	< 0.05	-
Independence Imp/g	Texaphono	0.2	mg/kg	-	-	< 0.2	-
Addit and Defaultin (10ah) 0.03 mg/kg - -	Addrin and Dioldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DD1 + DD2 + D		0.05	mg/kg	-	-	< 0.05	-
Vice EPA INRG 621 Other Of (total) 0.1 mg/kg - <th<< td=""><td></td><td>0.05</td><td>mg/kg</td><td>-</td><td>-</td><td>< 0.05</td><td>-</td></th<<>		0.05	mg/kg	-	-	< 0.05	-
Vic ErrAWNS dc (sur.) 0.1 mg/q -	Vic EPA IWRG 621 OCF (Total)	0.1	mg/kg	-	-	< 0.2	-
Doublementary lend (sur.) 1 1/2 - 00 - Azinphos-metylen (sur.) 1 % - - 84 - Azinphos-methyl 0.2 mg/kg - - <0.2	Dibutylebloropdate (surr.)	1	0/.	-	-	< 0.2 86	-
Total automonity parts (start) 1 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 <th1< th=""> 1 <th1< th=""> <th1< th=""> 1 <th1< <="" td=""><td>Tetrachloro-m-xylene (surr.)</td><td>1</td><td>/0 0/_</td><td>_</td><td></td><td>84</td><td>-</td></th1<></th1<></th1<></th1<>	Tetrachloro-m-xylene (surr.)	1	/0 0/_	_		84	-
Organyophological - <	Organonhosnhorus Pesticides	I	70	_	_	04	_
Additions 0.2 mg/kg - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - < - < - < - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 <td></td> <td>0.2</td> <td>ma/ka</td> <td></td> <td></td> <td>- 0.2</td> <td></td>		0.2	ma/ka			- 0.2	
Dotsail 0.2 mg/sg - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - < 0.2 - - - 0.2 - - 0.2 - - 0.2 - - - 0.2 - - - - - - - - - - - - - - -	Azimphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Chilon Minipros 0.2 mg/kg - <	Bolstal	0.2	mg/kg	-	-	< 0.2	-
Ondorprints 0.2 mg/kg -	Chlorpurifoo	0.2	mg/kg	-	-	< 0.2	-
Child prints-methyl 0.2 mg/kg - - < 0.2 - Demeton-S 0.2 mg/kg - - < 0.2	Chlorpyrilos	0.2	mg/kg	-	-	< 0.2	-
Countraphilos 2 Ingrig - - < 2 - Demeton-S 0.2 mg/kg - - < 0.2	Courseshee	0.2	mg/kg	-	-	< 0.2	-
Definition 0.2 Ing/kg - - < 0.2 - Diazinon 0.2 mg/kg - - < 0.2	Courriaphos	2	mg/kg	-	-	< 2	-
Definition 0.2 Ing/kg - - <td>Demeton O</td> <td>0.2</td> <td>mg/kg</td> <td>-</td> <td>-</td> <td>< 0.2</td> <td>-</td>	Demeton O	0.2	mg/kg	-	-	< 0.2	-
Diazhori 0.2 mg/kg - - < 0.2	Diazinan	0.2	mg/kg	-	-	< 0.2	-
Didnitivos 0.2 mg/kg - - < 0.2	Diazinon	0.2	mg/kg	-	-	< 0.2	-
Difference 0.2 mg/kg - - <td>Dictionvos</td> <td>0.2</td> <td>mg/kg</td> <td>-</td> <td>-</td> <td>< 0.2</td> <td>-</td>	Dictionvos	0.2	mg/kg	-	-	< 0.2	-
Distribution 0.2 Ing/kg - - < 0.2	Dimetroate	0.2	mg/kg	-	-	< 0.2	-
Erv 0.2 mg/kg -	EDN	0.2	mg/kg	-	-	< 0.2	-
Ethon 0.2 mg/kg - - < 0.2	Ethion	0.2	mg/kg	-	-	< 0.2	-
Entropop 0.2 mg/kg - - < 0.2	Etheorem	0.2	mg/kg	-	-	< 0.2	-
Entry parathon 0.2 mg/kg - - < 0.2	Ethopiop Ethyl parathian	0.2	mg/kg	-	-	< 0.2	-
Termidulul 0.2 mg/kg - < 0.2	Equitrothion	0.2	mg/kg	-	-	< 0.2	-
Tensinoution 0.2 mg/kg - - < 0.2	Fendulfothion	0.2	mg/kg	-	-	< 0.2	-
Terminon 0.2 mg/kg - < 0.2	Ferthion	0.2	mg/kg			< 0.2	-
Marathon 0.2 mg/kg - - < 0.2	Malathian	0.2	mg/kg	-	-	< 0.2	-
Metry Ios 0.2 Ing/kg - < 0.2 - Methyl parathion 0.2 mg/kg - - < 0.2	Merobos	0.2	mg/kg			< 0.2	-
Meening paramon 0.2 mg/kg - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 - < 0.2 -	Methyl parathion	0.2	mg/kg			< 0.2	
Memiphos 0.2 mg/kg - <t< td=""><td>Mevinnhos</td><td>0.2</td><td>mg/kg</td><td></td><td></td><td>< 0.2</td><td></td></t<>	Mevinnhos	0.2	mg/kg			< 0.2	
Nonocloophos 2 mg/kg - < 2 - Naled 0.2 mg/kg - - < 0.2	Monocratophos	2	mg/kg		_	< 0.2	_
Nated 0.2 mg/kg - < 0.2 - < 0.2 - Omethoate 2 mg/kg - - < 2	Naled	0.2	mg/kg			<0.2	
Officition 2 mg/kg - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - < 2 - - 2 - <	Omethoate	2	mg/kg		_	< 0.2	
Piriniphos-methyl 0.2 mg/kg - < 0.2 - Pyrazophos 0.2 mg/kg - - < 0.2	Phorate	0.2	mg/kg		_	< 0.2	_
Pyrazophos 0.2 mg/kg - < 0.2 - Ronnel 0.2 mg/kg - - < 0.2	Piriminhos-methyl	0.2	mg/kg		_	< 0.2	
Ronnel 0.2 mg/kg - < 0.2 - Terbufos 0.2 mg/kg - - < 0.2	Pyrazonhos	0.2	ma/ka	-		~ 0.2	
Terbufos 0.2 mg/kg - < 0.2 - Terbufos 0.2 mg/kg - - < 0.2	Poppel	0.2	mg/kg		_	< 0.2	
Tetrachlorvinphos 0.2 mg/kg - < 0.2 - Tokuthion 0.2 mg/kg - - < 0.2	Terbufos	0.2	ma/ka	-	-	< 0.2	-
Tokutoino migrico 0.2 mg/kg - < 0.2 - Tokuthion 0.2 mg/kg - - < 0.2	Tetrachlorvinnhos	0.2	ma/ka	-	-	< 0.2	-
Orizontation Orizontation<	Tokuthion	0.2	ma/ka	-	-	< 0.2	-
	Trichloronate	0.2	ma/ka	-	_	< 0.2	_
I ripnenvipnosphate (surr.) 1 % - 101 -	Triphenylphosphate (surr.)	1	%	-	-	101	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH101 Soil S19-Au03340 Aug 02, 2019	BH102 Soil S19-Au03341 Aug 02, 2019	BH103 Soil S19-Au03342 Aug 02, 2019	BH104 Soil S19-Au03343 Aug 02, 2019
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	250	420	220	300
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	8.0	7.2	5.0	7.6
Sulphate (as SO4)	10	mg/kg	< 10	250	130	31
% Moisture	1	%	11	21	13	26
Heavy Metals						
Arsenic	2	mg/kg	290	-	-	< 2
Cadmium	0.4	mg/kg	< 0.4	-	-	< 0.4
Chromium	5	mg/kg	130	-	-	130
Copper	5	mg/kg	29	-	-	35
Lead	5	mg/kg	< 5	-	-	5.0
Mercury	0.1	mg/kg	0.8	-	-	< 0.1
Nickel	5	mg/kg	140	-	-	98
Zinc	5	mg/kg	76	-	-	31

Client Sample ID			BH105	BH106	BH107	COM1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03344	S19-Au03345	S19-Au03346	S19-Au03347
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	105	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			BH105	BH106	BH107	COM1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No			S19-Au03344	S19-Au03345	S19-Au03346	S19-Au03347
Date Sampled			Aug 02 2019	Aug 02 2019	Aug 02 2019	Aug 02 2019
		l lait	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2013
Polyovelia Aromatia Hydrosorbona	LUK	Unit				
		0/				
Z-Fluorobipnenyi (surr.)	1	%	-	-	-	114
p-Terphenyl-d14 (surr.)	1	%	-	-	-	108
Organochiorine Pesticides	0.4			0.1		
	0.1	mg/kg	-	< 0.1	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	-
Heptachior	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
Nethewebler	0.05	mg/kg	-	< 0.05	-	-
Texephone	0.2	mg/kg	-	< 0.2	-	-
Addrin and Dialdrin (Tatal)*	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylebloropdate (surr.)	1	0/.	-	112	-	-
Totrachloro m vylopo (surr.)	1	/0 0/.	-	107	-	-
Organonhosphorus Posticidos	I	/0	-	107	-	-
	0.0	mallea		.0.2		
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Chlorfonvinnhon	0.2	mg/kg	-	< 0.2	-	-
Chlorpurifoo	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrilos	0.2	mg/kg	-	< 0.2	-	-
Courseshee	0.2	mg/kg	-	< 0.2	-	-
Couldapilos	2	mg/kg	-	< 2	-	-
Demeton O	0.2	mg/kg	-	< 0.2	-	-
Diazinon	0.2	mg/kg	-	< 0.2	-	-
Diazinon	0.2	mg/kg	-	< 0.2	-	-
Dimethoate	0.2	mg/kg	-	~ 0.2	-	-
	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg	-	~ 0.2	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	~ 0.2	-	-
Ethyl parathion	0.2	ma/ka	-	< 0.2	-	
Fenitrothion	0.2	ma/ka	-	~ 0.2	-	
Fensulfothion	0.2	ma/ka	-	< 0.2	-	_
					1	1

Client Sample ID			BH105	BH106	BH107	COM1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03344	S19-Au03345	S19-Au03346	S19-Au03347
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Malathion	0.2	mg/kg	-	< 0.2	-	-
Merphos	0.2	mg/kg	-	< 0.2	-	-
Methyl parathion	0.2	mg/kg	-	< 0.2	-	-
Mevinphos	0.2	mg/kg	-	< 0.2	-	-
Monocrotophos	2	mg/kg	-	< 2	-	-
Naled	0.2	mg/kg	-	< 0.2	-	-
Omethoate	2	mg/kg	-	< 2	-	-
Phorate	0.2	mg/kg	-	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Pyrazophos	0.2	mg/kg	-	< 0.2	-	-
Ronnel	0.2	mg/kg	-	< 0.2	-	-
Terbufos	0.2	mg/kg	-	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	-	< 0.2	-	-
Tokuthion	0.2	mg/kg	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	-	113	-	-
		-				
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	530	110	390	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.9	6.9	7.9	-
Sulphate (as SO4)	10	mg/kg	50	< 10	< 10	-
% Moisture	1	%	16	25	15	23
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	13
Cadmium	0.4	mg/kg	-	-	-	< 0.4
Chromium	5	mg/kg	-	-	-	96
Copper	5	mg/kg	-	-	-	52
Lead	5	mg/kg	-	-	-	13
Mercury	0.1	mg/kg	-	-	-	< 0.1
Nickel	5	mg/kg	-	-	-	44
Zinc	5	mg/kg	-	-	-	32

Client Sample ID			COM2	COM3	COM4	COM5
			5011	5011	5011	5011
Eurofins Sample No.			S19-Au03348	S19-Au03349	S19-Au03350	S19-Au03351
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	-	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	-	< 50
TRH C29-C36	50	mg/kg	< 50	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	-	-	< 50
втех						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-

Client Sample ID			COM2	СОМЗ	COM4	COM5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03348	S19-Au03349	S19-Au03350	S19-Au03351
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
BTEX	2011	Onit				
o-Xvlene	0.1	ma/ka	_	< 0.1	_	_
Xylenes - Total	0.1	mg/kg	_	< 0.1	_	_
4-Bromofluorobenzene (surr.)	1	%	_	110	_	_
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	70				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	-	< 100
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	71	-
p-Terphenyl-d14 (surr.)	1	%	-	-	79	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	-
a-BHC	0.05	mg/kg	-	< 0.05	-	-
Aldrin	0.05	mg/kg	-	< 0.05	-	-
b-BHC	0.05	mg/kg	-	< 0.05	-	-
d-BHC	0.05	mg/kg	-	< 0.05	-	-
Dieldrin	0.05	mg/kg	-	< 0.05	-	-
Endosulfan I	0.05	mg/kg	-	< 0.05	-	-
Endosulfan II	0.05	mg/kg	-	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	-
Endrin	0.05	mg/kg	-	< 0.05	-	-

Client Sample ID			COM2	СОМЗ	COM4	COM5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03348	S19-Au03349	S19-Au03350	S19-Au03351
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOP	Lloit	, Lug 01, 1010	, tug 01, 1010	, tug 01, 1010	, lug 02, 2010
Organochlorine Pesticides	LOK	Unit				
	0.05	ma/ka	_	< 0.05	_	
Endrin kotono	0.05	mg/kg	-	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg		< 0.05		_
Hentachlor	0.05	ma/ka	_	< 0.05	_	_
Heptachlor epoxide	0.05	ma/ka	_	< 0.05	_	_
Hexachlorobenzene	0.05	ma/ka	_	< 0.05	-	-
Methoxychlor	0.2	ma/ka	_	< 0.2	-	-
Toxaphene	1	ma/ka	-	<1	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.2	-	-
Dibutylchlorendate (surr.)	1	%	-	INT	-	-
Tetrachloro-m-xylene (surr.)	1	%	-	INT	-	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	< 0.2	-	-
Bolstar	0.2	mg/kg	-	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	-	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	-	< 0.2	-	-
Coumaphos	2	mg/kg	-	< 2	-	-
Demeton-S	0.2	mg/kg	-	< 0.2	-	-
Demeton-O	0.2	mg/kg	-	< 0.2	-	-
Diazinon	0.2	mg/kg	-	< 0.2	-	-
Dichlorvos	0.2	mg/kg	-	< 0.2	-	-
Dimethoate	0.2	mg/kg	-	< 0.2	-	-
Disulfoton	0.2	mg/kg	-	< 0.2	-	-
EPN	0.2	mg/kg	-	< 0.2	-	-
Ethion	0.2	mg/kg	-	< 0.2	-	-
Ethoprop	0.2	mg/kg	-	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	-	< 0.2	-	-
Fenitrothion	0.2	mg/kg	-	< 0.2	-	-
Fensulfothion	0.2	mg/kg	-	< 0.2	-	-
Fenthion	0.2	mg/kg	-	< 0.2	-	-
Marathion	0.2	mg/kg	-	< 0.2	-	-
Method porchion	0.2	mg/kg	-	< 0.2	-	-
Meringhan	0.2	mg/kg	-	< 0.2	-	-
Menocratophos	0.2	mg/kg	-	< 0.2	-	-
Naled	0.2	mg/kg	_	<02		
	2	mg/kg		< 0.2		_
Phorate	0.2	ma/ka		< 0.2	_	_
Pirimiphos-methyl	0.2	ma/ka	-	< 0.2	-	_
Pyrazophos	0.2	ma/ka	-	< 0.2	-	_
Ronnel	0.2	ma/ka	-	< 0.2	-	_
Terbufos	0.2	ma/ka	-	< 0.2	-	-
Tetrachlorvinphos	0.2	ma/ka	-	< 0.2	-	-
Tokuthion	0.2	mg/ka	-	< 0.2	-	-
Trichloronate	0.2	mg/kg	-	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	_	94	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			COM2 Soil S19-Au03348 Aug 02, 2019	COM3 Soil S19-Au03349 Aug 02, 2019	COM4 Soil S19-Au03350 Aug 02, 2019	COM5 Soil S19-Au03351 Aug 02, 2019
Test/Reference	LOR	Unit				
Conductivity (1:5 aqueous extract at 25°C as rec.)	5	uS/cm	-	-	48	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	5.7	-
Sulphate (as SO4)	10	mg/kg	-	-	11	-
% Moisture	1	%	26	27	22	23
Heavy Metals						
Arsenic	2	mg/kg	-	5.1	-	7.1
Cadmium	0.4	mg/kg	-	< 0.4	-	< 0.4
Chromium	5	mg/kg	-	120	-	170
Copper	5	mg/kg	-	36	-	52
Lead	5	mg/kg	-	8.8	-	7.8
Mercury	0.1	mg/kg	-	< 0.1	-	< 0.1
Nickel	5	mg/kg	-	57	-	100
Zinc	5	mg/kg	-	25	-	41

Client Sample ID			COM6	COM7	COM8	СОМ9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03352	S19-Au03353	S19-Au03354	S19-Au03355
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	-
втех						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	64	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			COM6	COM7	COM8	СОМ9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03352	S19-Au03353	S19-Au03354	S19-Au03355
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
	LOR	Unit	,	,	, ,	,
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Anthracene	0.5	ma/ka	_	_	<u> </u>	< 0.5
Benz(a)anthracene	0.5	ma/ka	-	-	-	< 0.5
Benzo(a)pyrene	0.5	ma/ka	-	-	-	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	108
p-Terphenyl-d14 (surr.)	1	%	-	-	-	110
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.2	mg/kg	< 0.2	-	-	< 0.2
	1	mg/kg	< 1	-	-	< 1
Aldrin and Dieldrin (Total)^	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.05	mg/kg	< 0.05	-	-	< 0.05
	0.1	mg/kg	< 0.2	-	-	< 0.2
Dibutuloblerondete (ourr.)	0.1	о/кд	< 0.2	-	-	< 0.2
	1	<u>%</u>	137	-	-	122
renachioro-m-xyiene (sufr.)	1	%	130	-	-	129

Client Sample ID			COM6	COM7	COM8	СОМ9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03352	S19-Au03353	S19-Au03354	S19-Au03355
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
		Linit	,	, · · · · · · · · · · · · · · · · ·	,,	
Organophosphorus Pesticides	LOIN	Onit				
Azinphos-methyl	0.2	ma/ka	< 0.2	_	_	< 0.2
Bolstar	0.2	mg/kg	< 0.2			< 0.2
Chlorfenvinnhos	0.2	mg/kg	< 0.2			< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2			< 0.2
Chlorpyrifos-methyl	0.2	ma/ka	< 0.2	_	_	< 0.2
Coumanhos	2	ma/ka	< 0.2	_	_	< 0:2
Demeton-S	0.2	mg/kg	< 0.2	_	_	< 0.2
Demeton-Q	0.2	ma/ka	< 0.2	_	_	< 0.2
Diazinon	0.2	mg/kg	< 0.2	_	_	< 0.2
Dichloryos	0.2	ma/ka	< 0.2	_	_	< 0.2
Dimethoate	0.2	ma/ka	< 0.2	_	_	< 0.2
Disulfoton	0.2	ma/ka	< 0.2	-	-	< 0.2
FPN	0.2	ma/ka	< 0.2	-	-	< 0.2
Ethion	0.2	ma/ka	< 0.2	-	-	< 0.2
Ethoprop	0.2	ma/ka	< 0.2	-	-	< 0.2
Ethyl parathion	0.2	ma/ka	< 0.2	-	-	< 0.2
Fenitrothion	0.2	ma/ka	< 0.2	-	-	< 0.2
Fensulfothion	0.2	ma/ka	< 0.2	-	-	< 0.2
Fenthion	0.2	ma/ka	< 0.2	-	-	< 0.2
Malathion	0.2	ma/ka	< 0.2	-	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Monocrotophos	2	mg/kg	< 2	-	-	< 2
Naled	0.2	mg/kg	< 0.2	-	-	< 0.2
Omethoate	2	mg/kg	< 2	-	-	< 2
Phorate	0.2	mg/kg	< 0.2	-	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	-	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	-	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	-	-	< 0.2
Triphenylphosphate (surr.)	1	%	107	-	-	107
% Moisture	1	%	19	21	25	22
Heavy Metals						
Arsenic	2	mg/ka	-	-	29	-
Cadmium	0.4	mg/kg	-	-	< 0.4	-
Chromium	5	mg/kg	-	-	97	-
Copper	5	mg/kg	-	-	40	-
Lead	5	mg/kg	-	-	7.2	-
Mercury	0.1	mg/kg	-	-	< 0.1	-
Nickel	5	mg/kg	-	_	69	_
Zinc	5	mg/kg	-	-	21	-

Client Sample ID			COM10	COM11	COM12	COM13	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S19-Au03356	S19-Au03357	S19-Au03358	S19-Au03359	
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	
	LOR	Unit	,	,	3 ,	,	
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit					
TRH C6-C9	20	ma/ka	< 20	_	_	< 20	
TRH C10-C14	20	ma/ka	< 20	-	_	< 20	
TRH C15-C28	50	ma/ka	< 50	-	-	< 50	
TRH C29-C36	50	mg/kg	< 50	-	-	< 50	
TRH C10-C36 (Total)	50	mg/kg	< 50	-	-	< 50	
BTEX							
Benzene	0.1	mg/kg	-	< 0.1	-	-	
Toluene	0.1	mg/kg	-	< 0.1	-	-	
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-	
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-	
o-Xylene	0.1	mg/kg	-	< 0.1	-	-	
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-	
4-Bromofluorobenzene (surr.)	1	%	-	97	-	-	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	< 0.5	
TRH C6-C10	20	mg/kg	< 20	-	-	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	< 20	
TRH >C10-C16	50	mg/kg	< 50	-	-	< 50	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	< 50	
TRH >C16-C34	100	mg/kg	< 100	-	-	< 100	
TRH >C34-C40	100	mg/kg	< 100	-	-	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	< 100	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-	
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-	
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-	
Anthracene	0.5	mg/kg	-	-	< 0.5	-	
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-	
	0.5	mg/kg	-	-	< 0.5	-	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-	
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-	
Benzo(k)filuorantnene	0.5	mg/kg	-	-	< 0.5	-	
Chrysene Diteory(a b)anthrooppe	0.5	mg/kg	-	-	< 0.5	-	
	0.5	mg/kg	-	-	< 0.5	-	
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-	
	0.5	mg/kg	-	-	< 0.5	-	
Naphthalana	0.5	mg/kg	-	-	< 0.5	-	
Departhrene	0.5	mg/kg	-	-	< 0.5	-	
	0.5	mg/kg	-	-	< 0.5	-	
	0.5	mg/kg	_		< 0.5	-	
2-Fluorobiphenyl (surr.)	1	 %	_		115	_	
p-Terphenyl-d14 (surr.)	1	%	-	-	116	_	
		,,,		1			

Client Sample ID			COM10	COM11	COM12	COM13
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03356	S19-Au03357	S19-Au03358	S19-Au03359
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Organochlorine Pesticides	Lon	Onit				
Chlordanes - Total	0.1	ma/ka	_	_	< 0.1	_
	0.05	ma/ka	_	_	< 0.05	_
4 4'-DDF	0.05	ma/ka	_	_	< 0.05	_
4.4'-DDT	0.05	ma/ka	-	-	< 0.05	-
a-BHC	0.05	ma/ka	_	-	< 0.05	-
Aldrin	0.05	ma/ka	_	-	< 0.05	-
b-BHC	0.05	ma/ka	_	-	< 0.05	-
d-BHC	0.05	ma/ka	-	-	< 0.05	-
Dieldrin	0.05	ma/ka	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	ma/ka	-	-	< 0.05	-
Endrin	0.05	ma/ka	-	-	< 0.05	-
Endrin aldehyde	0.05	ma/ka	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.2	mg/kg	-	-	< 0.2	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.2	-
Dibutylchlorendate (surr.)	1	%	-	-	128	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	128	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Bolstar	0.2	mg/kg	-	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	-	< 0.2	-
Coumaphos	2	mg/kg	-	-	< 2	-
Demeton-S	0.2	mg/kg	-	-	< 0.2	-
Demeton-O	0.2	mg/kg	-	-	< 0.2	-
Diazinon	0.2	mg/kg	-	-	< 0.2	-
Dichlorvos	0.2	mg/kg	-	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	-	< 0.2	-
EPN	0.2	mg/kg	-	-	< 0.2	-
Ethion	0.2	mg/kg	-	-	< 0.2	-
Ethoprop	0.2	mg/kg	-	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	-
Fenitrothion	0.2	mg/kg	-	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	-	< 0.2	-
Fenthion	0.2	mg/kg	-	-	< 0.2	-
Malathion	0.2	mg/kg	-	-	< 0.2	-
Merphos	0.2	mg/kg	-	-	< 0.2	-

Client Sample ID			COM10	COM11	COM12	COM13
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S19-Au03356	S19-Au03357	S19-Au03358	S19-Au03359
Date Sampled			Aug 02, 2019	Aug 02, 2019	Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	-	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	-	< 0.2	-
Monocrotophos	2	mg/kg	-	-	< 2	-
Naled	0.2	mg/kg	-	-	< 0.2	-
Omethoate	2	mg/kg	-	-	< 2	-
Phorate	0.2	mg/kg	-	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	-	< 0.2	-
Ronnel	0.2	mg/kg	-	-	< 0.2	-
Terbufos	0.2	mg/kg	-	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	-	< 0.2	-
Trichloronate	0.2	mg/kg	-	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	-	111	-
% Moisture	1	%	21	9.9	19	24
Heavy Metals						
Arsenic	2	mg/kg	-	9.2	-	-
Cadmium	0.4	mg/kg	-	< 0.4	-	-
Chromium	5	mg/kg	-	22	-	-
Copper	5	mg/kg	-	7.6	-	-
Lead	5	mg/kg	-	14	-	-
Mercury	0.1	mg/kg	-	< 0.1	-	-
Nickel	5	mg/kg	-	9.4	-	-
Zinc	5	mg/kg	-	30	-	-

Client Sample ID			COM14	D1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S19-Au03360	S19-Au03361
Date Sampled			Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.1	mg/kg	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	67	-
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-

Client Sample ID			COM14	D1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S19-Au03360	S19-Au03361
Date Sampled			Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit		
Organochlorine Pesticides	2011	Offic		
Dieldrin	0.05	ma/ka	< 0.05	_
Endosulfan I	0.05	ma/ka	< 0.05	_
Endosulfan II	0.05	ma/ka	< 0.05	-
Endosulfan sulphate	0.05	ma/ka	< 0.05	-
Endrin	0.05	ma/ka	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	-
Toxaphene	1	mg/kg	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	-
Dibutylchlorendate (surr.)	1	%	113	-
Tetrachloro-m-xylene (surr.)	1	%	120	-
Organophosphorus Pesticides				
Azinphos-methyl	0.2	mg/kg	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-
Coumaphos	2	mg/kg	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-
EPN	0.2	mg/kg	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	-
	0.2	mg/kg	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	-
	0.2	mg/kg	< 0.2	-
Marathion	0.2	mg/kg	< 0.2	-
Methyd parathian	0.2	mg/kg	< 0.2	-
Meyinghas	0.2	mg/kg	< 0.2	-
Monocrotophos	0.2	mg/kg	< 0.2	-
Naled	<u> </u>	mg/kg	<2	-
Omethoate	0.2	mg/kg	< 0.2	-
Phorate	<u> </u>	mg/kg	<02	-
Piriminhos-methyl	0.2	mg/kg	~ 0.2	
Pyrazophos	0.2	ma/ka	< 0.2	
- Jiazopiloo	0.2	ing/ng	× 0.2	-

	2			
Client Sample ID			COM14	D1
Sample Matrix			Soil	Soil
Eurofins Sample No.			S19-Au03360	S19-Au03361
Date Sampled			Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Ronnel	0.2	mg/kg	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-
Triphenylphosphate (surr.)	1	%	131	-
% Moisture	1	%	20	22
Heavy Metals				
Arsenic	2	mg/kg	6.5	6.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	110	100
Copper	5	mg/kg	44	24
Lead	5	mg/kg	19	9.6
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	58	50
Zinc	5	mg/kg	71	22

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 07, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	Aug 07, 2019	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Aug 07, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Sulphate (as SO4)	Sydney	Aug 07, 2019	28 Days
- Method: E045 Anions by Ion Chromatography			
Metals M8	Sydney	Aug 07, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Aug 07, 2019	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
% Moisture	Sydney	Aug 02, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad Pro	ompany Name: Idress: oject Name: oject ID:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113 51 134 146 \$ NE526	y Ltd (NSW) alavera Rd Park STATION LAN	NE LOCHINVAR			Or Re Ph Fa	der N eport ione: x:	lo.: #:	60 13	69346 30085	5 2 216	6			Rece Due: Prior Cont	ived: ity: act Name üns Analy	: /tical S	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar
		Sa	mple Detail			Asbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons		<u></u>	<u>,</u>	g
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271					<u> </u>										
Sydi	hey Laboratory	- NATA Site # 1	8217			X	X	X		X	X	Х	X	X	X				
Pert	h Laboratory - N	V - NATA Site # 237	736																
Exte	rnal Laboratory	,																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	S1	Aug 02, 2019		Soil	S19-Au03332	Х					Х		X	Х					
2	S2	Aug 02, 2019		Soil	S19-Au03333	Х			<u> </u>					X	х				
3	S3	Aug 02, 2019		Soil	S19-Au03334	Х			\vdash		Х	Х		X					
4	S4	Aug 02, 2019		Soil	S19-Au03335	Х	X	Х	X	X				X					
5	S5	Aug 02, 2019		Soil	S19-Au03336				—		Х		X	X	Х				
6	S6	Aug 02, 2019		Soil	S19-Au03337	X			—			Х		X					
/	5/	Aug 02, 2019		50II	519-Au03338	-			+	X	X				×				
8	50	Aug 02, 2019		Soll	S19-AU03339			- V			×			X	X				
9	BH101	Aug 02, 2019		5011	519-AU03340		X	X	X		X			X					

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ao	Company Name:Geotesta Pty Ltd (NSW)Address:Unit 20, 1 Talavera RdMacquarie ParkNSW 2113				Or Re Ph Fa	der N port : ione: x:	lo.: #:	60 13	69346 30085	; 2 216	3			Rece Due: Prior Conta	ived: ity: act Name	ə:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar		
Pr Pr	oject Name: oject ID:	51 134 146 S NE526	STATION LAN	E LOCHINVAR												Eurof	ins Anal	vtical S	Services Manager : Asim Khan
						Þ	20	σ	(0)	п	7	ш	m	2	_			,	
		Sa	Imple Detail			sbestos - AS4964	conductivity (1:5 aqueous extract at 25°C as sc.)	H (1:5 Aqueous extract at 25°C as rec.)	ulphate (as SO4)	olycyclic Aromatic Hydrocarbons	letals M8	TEX	urofins mgt Suite B14	loisture Set	otal Recoverable Hydrocarbons				
Mell	oourne Laborato	ry - NATA Site	# 1254 & 142	/1		v		v	v	v	×	v		v	v				
Sya	hano Laboratory -		0217			^	<u> </u>		^	^	^	^		^	^				
Pert	h Laboratory - N	ATA Site # 237	736																
10	BH102	Aug 02, 2019		Soil	S19-Au03341		X	x	х	х				х					
11	BH103	Aug 02, 2019		Soil	S19-Au03342		Х	х	Х				х	Х					
12	BH104	Aug 02, 2019		Soil	S19-Au03343		Х	Х	Х		Х	Х		Х	Х				
13	BH105	Aug 02, 2019		Soil	S19-Au03344		Х	Х	Х					Х					
14	BH106	Aug 02, 2019		Soil	S19-Au03345		Х	х	х				х	Х					
15	BH107	Aug 02, 2019		Soil	S19-Au03346	Х	Х	Х	Х			Х		Х					
16	COM1	Aug 02, 2019		Soil	S19-Au03347					Х	Х			Х					
17	COM2	Aug 02, 2019		Soil	S19-Au03348									Х	Х				
18	COM3	Aug 02, 2019		Soil	S19-Au03349						Х	Х	Х	Х					
19	COM4	Aug 02, 2019		Soil	S19-Au03350		Х	Х	Х	Х				Х					
20	COM5	Aug 02, 2019		Soil	S19-Au03351		 				Х			Х	Х				
21	COM6	Aug 02, 2019		Soil	S19-Au03352							Х	Х	Х					

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad	Company Name:Geotesta Pty Ltd (NSW)Address:Unit 20, 1 Talavera Rd Macquarie Park NSW 2113				Or Re Ph Fa	der N port i one: x:	o.: #:	60 13	69346 30085) 52 216	6			Received: Due: Priority: Contact Nam	ne:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar	
Pro Pro	oject Name: oject ID:	51 134 146 STATI NE526	ON LANE LOCHINVA	R											Eurofins Ana	alvtical	Services Manager : Asim Khan
						3.0	73	(0)	-		_	_	_			aly tiou	
		Sample	Detail		sbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as ec.)	H (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	olycyclic Aromatic Hydrocarbons	Aetals M8	STEX	urofins mgt Suite B14	/oisture Set	otal Recoverable Hydrocarbons			
Melk	oourne Laborato	ory - NATA Site # 125	4 & 14271														
Sydi	ney Laboratory	- NATA Site # 18217	-		X	X	X	Х	X	X	X	X	X	X			
Bris	bane Laboratory	y - NATA Site # 20/94	1														
22		Aug 02 2019	Soil	S19-Au03353									x	x			
23		Aug 02, 2019	Soil	S19-Au03354						x			X				
24	COM9	Aug 02, 2019	Soil	S19-Au03355					х			X	X				
25	COM10	Aug 02, 2019	Soil	S19-Au03356									Х	Х			
26	COM11	Aug 02, 2019	Soil	S19-Au03357						Х	Х		Х				
27	COM12	Aug 02, 2019	Soil	S19-Au03358					Х			X	Х				
28	COM13	Aug 02, 2019	Soil	S19-Au03359									Х	Х			
29	COM14	Aug 02, 2019	Soil	S19-Au03360	Х					Х	Х	Х	Х				
30	D1	Aug 02, 2019	Soil	S19-Au03361						Х			Х				
31	W1	Aug 02, 2019	Water	S19-Au03362						х							
32	W2	Aug 02, 2019	Water	S19-Au03363						Х		Х					
Test	Counts				7	9	9	9	7	15	8	11	30	9			

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank			1 1	1		
BTEX	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank			I I			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank				1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank				1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
а-ВНС	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Organophosphorus Pesticides						
Azinphos-methyl	mg/kg	< 0.2		0.2	Pass	
Bolstar	mg/kg	< 0.2		0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2		0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2		0.2	Pass	
Coumaphos	mg/kg	< 2		2	Pass	
Demeton-S	mg/kg	< 0.2		0.2	Pass	
Demeton-O	mg/kg	< 0.2		0.2	Pass	
Diazinon	mg/kg	< 0.2		0.2	Pass	
Dichlorvos	mg/kg	< 0.2		0.2	Pass	
Dimethoate	mg/kg	< 0.2		0.2	Pass	
Disulfoton	mg/kg	< 0.2		0.2	Pass	
EPN	mg/kg	< 0.2		0.2	Pass	
Ethion	mg/kg	< 0.2		0.2	Pass	
Ethoprop	mg/kg	< 0.2		0.2	Pass	
Ethyl parathion	mg/kg	< 0.2		0.2	Pass	
Fenitrothion	mg/kg	< 0.2		0.2	Pass	
Fensulfothion	mg/kg	< 0.2		0.2	Pass	
Fenthion	mg/kg	< 0.2		0.2	Pass	
Malathion	mg/kg	< 0.2		0.2	Pass	
Merphos	mg/kg	< 0.2		0.2	Pass	
Methyl parathion	mg/kg	< 0.2		0.2	Pass	
Mevinphos	mg/kg	< 0.2		0.2	Pass	
Monocrotophos	mg/kg	< 2		2	Pass	
Naled	mg/kg	< 0.2		0.2	Pass	
Omethoate	mg/kg	< 2		2	Pass	
Phorate	mg/kg	< 0.2		0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2		0.2	Pass	
Pyrazophos	mg/kg	< 0.2		0.2	Pass	ļ
Ronnel	mg/kg	< 0.2		0.2	Pass	
Terbufos	mg/kg	< 0.2		0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2		0.2	Pass	
Tokuthion	mg/kg	< 0.2		0.2	Pass	
Trichloronate	mg/kg	< 0.2		0.2	Pass	
Method Blank						
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 5		5	Pass	
Sulphate (as SO4)	mg/kg	< 10		10	Pass	
Method Blank		1				
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery			•			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	97		70-130	Pass	
TRH C10-C14	%	79		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	92		70-130	Pass	
Toluene	%	113		70-130	Pass	
Ethylbenzene	%	113		70-130	Pass	
m&p-Xylenes	%	112		70-130	Pass	
o-Xylene	%	107		70-130	Pass	
Xylenes - Total	%	110		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	95		70-130	Pass	
TRH C6-C10	%	92		70-130	Pass	
TRH >C10-C16	%	77		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons	-					
Acenaphthene	%	121		70-130	Pass	
Acenaphthylene	%	125		70-130	Pass	
Anthracene	%	104		70-130	Pass	
Benz(a)anthracene	%	124		70-130	Pass	
Benzo(a)pyrene	%	118		70-130	Pass	
Benzo(b&j)fluoranthene	%	130		70-130	Pass	
Benzo(g.h.i)perylene	%	114		70-130	Pass	
Benzo(k)fluoranthene	%	110		70-130	Pass	
Chrysene	%	117		70-130	Pass	
Dibenz(a.h)anthracene	%	114		70-130	Pass	
Fluoranthene	%	124		70-130	Pass	
Fluorene	%	115		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	115		70-130	Pass	
Naphthalene	%	120		70-130	Pass	
Phenanthrene	%	107		70-130	Pass	
Pyrene	%	126		70-130	Pass	
LCS - % Recovery		1	r	T		
Organochlorine Pesticides	1					
Chlordanes - Total	%	110		70-130	Pass	
4.4'-DDD	%	121		70-130	Pass	
4.4'-DDE	%	126		70-130	Pass	
4.4'-DDT	%	126		70-130	Pass	
a-BHC	%	112		70-130	Pass	
Aldrin	%	126		70-130	Pass	
b-BHC	%	127		70-130	Pass	
d-BHC	%	126		70-130	Pass	
Dieldrin	%	125		70-130	Pass	
Endosulfan I	%	126		70-130	Pass	
Endosulfan II	%	125		70-130	Pass	
Endosulfan sulphate	%	121		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin			%	126		70-130	Pass	
Endrin aldehyde			%	112		70-130	Pass	
Endrin ketone			%	128		70-130	Pass	
g-BHC (Lindane)			%	125		70-130	Pass	
Heptachlor			%	125		70-130	Pass	
Heptachlor epoxide			%	125		70-130	Pass	
Methoxychlor			%	125		70-130	Pass	
LCS - % Recovery					· ·			
Organophosphorus Pesticides								
Diazinon			%	109		70-130	Pass	
Dimethoate			%	105		70-130	Pass	
Ethion			%	116		70-130	Pass	
Fenitrothion			%	101		70-130	Pass	
Methyl parathion			%	103		70-130	Pass	
Mevinphos			%	98		70-130	Pass	
LCS - % Recovery			,,,			10.00	1 400	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	100		70-130	Pass	
Sulphate (as SO4)	20 0 40 100.)		%	112		70-130	Pass	
I CS - % Recovery			70			10 100	1 400	
Heavy Metals								
Arsenic			%	111		70-130	Pass	
Cadmium			%	110		70-130	Pass	
Chromium			%	112		70-130	Pass	
Copper			%	111		70-130	Pass	
Lead			%	113		70-130	Pass	
Mercury			%	92		70-130	Pass	
Nickol		70 %	109		70-130	Pass		
		/0	100		10100	1 400		
Zinc			%	107		70-130	Pass	
Zinc		QA	%	107		70-130	Pass Pass	Qualifying
Zinc Test	Lab Sample ID	QA Source	% Units	107 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides	Lab Sample ID	QA Source	% Units	107 Result 1 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total	Lab Sample ID	QA Source	% Units %	107 Result 1 Result 1 121		70-130 Acceptance Limits 70-130 70-130	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	Lab Sample ID S19-Au01400 S19-Au02468	QA Source NCP NCP	% Units % %	107 Result 1 Result 1 121 124		70-130 Acceptance Limits 70-130 70-130	Pass Pass Limits Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au01400	QA Source NCP NCP NCP	% Units % %	107 Result 1 Result 1 121 124 122		70-130 Acceptance Limits 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au01400 S19-Au02468	QA Source NCP NCP NCP NCP	% Units % % %	107 Result 1 Result 1 121 124 122 101		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au01400 S19-Au02468 S19-Au02468	QA Source NCP NCP NCP NCP NCP	% Units % % % %	107 Result 1 Result 1 121 124 122 101 106		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468	QA Source NCP NCP NCP NCP NCP NCP	% Units % % % % %	107 Result 1 Result 1 121 124 122 101 106 107		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468	QA Source NCP NCP NCP NCP NCP NCP NCP	% Units % % % % %	107 Result 1 121 124 122 101 106 107 111		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % %	107 Result 1 121 124 122 101 106 107 111 119		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % %	107 Result 1 121 124 122 101 106 107 111 119 123		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % %	107 Result 1 121 124 122 101 106 107 111 119 123 124		70-130 Acceptance Limits 70-130	Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101		70-130 Acceptance Limits 70-130	Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77 111	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au02468	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77 111 102	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400	QA Source	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77 111 102 123	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au02468	QA Source	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77 111 102 123 101	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor Methoxychlor Spike - % Recovery	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au02468 S19-Au02468	QA Source	% Units %	107 Result 1 121 124 122 101 106 107 111 119 123 124 119 121 105 101 77 111 102 123 101		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor Heptachlor Spike - % Recovery Organophosphorus Pesticides	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468	QA Source	% Units %	107 Result 1 121 124 122 101 106 107 111 109 123 124 119 121 105 101 77 111 102 123 101 Result 1	Image: section of the section of t	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor Heptachlor Spike - % Recovery Organophosphorus Pesticides Diazinon	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au02468	QA Source	% Units %	107 Result 1 121 124 122 101 106 107 111 109 123 124 119 123 124 119 121 105 101 77 111 102 123 101 77 111 102 123 101 77 111 102 123 101 77 111 102 123 101 105 101 101	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Spike - % Recovery Organophosphorus Pesticides Diazinon Dimethoate	Lab Sample ID S19-Au01400 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au02468 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au01400 S19-Au02468	QA Source NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units %	107 Result 1 121 124 122 101 106 107 111 109 123 124 119 123 124 119 121 105 101 77 111 102 123 101 77 111 102 123 101 77 111 102 123 101 77 111 102 123 101 105 101 111 105 101 101	Image: Constraint of the sector of	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fenitrothion	S19-Au08769	NCP	%	105	70-130	Pass	
Methyl parathion	S19-Au08769	NCP	%	111	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S19-Au03308	NCP	%	82	70-130	Pass	
TRH C10-C14	S19-Au00781	NCP	%	85	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
Naphthalene	S19-Au03308	NCP	%	91	70-130	Pass	
TRH C6-C10	S19-Au03308	NCP	%	80	70-130	Pass	
TRH >C10-C16	S19-Au00781	NCP	%	83	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	S19-Au03308	NCP	%	93	70-130	Pass	
Toluene	S19-Au03308	NCP	%	94	70-130	Pass	
Ethylbenzene	S19-Au03308	NCP	%	91	70-130	Pass	
m&p-Xylenes	S19-Au03308	NCP	%	86	70-130	Pass	
o-Xylene	S19-Au03308	NCP	%	88	70-130	Pass	
Xylenes - Total	S19-Au03308	NCP	%	87	70-130	Pass	
Spike - % Recovery						•	
Polycyclic Aromatic Hydrocarbons	5			Result 1			
Acenaphthene	S19-Au05720	NCP	%	126	70-130	Pass	
Acenaphthylene	S19-Au01695	NCP	%	106	70-130	Pass	
Anthracene	S19-Au05720	NCP	%	129	70-130	Pass	
Benz(a)anthracene	S19-Au01695	NCP	%	105	70-130	Pass	
Benzo(a)pyrene	S19-Au05720	NCP	%	126	70-130	Pass	
Benzo(b&j)fluoranthene	S19-Au05720	NCP	%	127	70-130	Pass	
Benzo(g.h.i)perylene	S19-Au05720	NCP	%	129	70-130	Pass	
Benzo(k)fluoranthene	S19-Au01695	NCP	%	129	70-130	Pass	
Chrysene	S19-Au05720	NCP	%	128	70-130	Pass	
Dibenz(a.h)anthracene	S19-Au01695	NCP	%	125	70-130	Pass	
Fluoranthene	S19-Au01695	NCP	%	106	70-130	Pass	
Fluorene	S19-Au01695	NCP	%	105	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Au01695	NCP	%	111	70-130	Pass	
Naphthalene	S19-Au01695	NCP	%	104	70-130	Pass	
Phenanthrene	S19-Au05720	NCP	%	128	70-130	Pass	
Pyrene	S19-Au01695	NCP	%	105	70-130	Pass	
Spike - % Recovery				-			
				Result 1			
Sulphate (as SO4)	S19-Au07147	NCP	%	99	70-130	Pass	
Spike - % Recovery				-		-	
Heavy Metals				Result 1			
Arsenic	S19-Au03360	CP	%	92	70-130	Pass	
Cadmium	S19-Au03360	CP	%	101	70-130	Pass	
Chromium	S19-Au03360	CP	%	84	70-130	Pass	
Copper	S19-Au03360	CP	%	90	70-130	Pass	
Lead	S19-Au03360	CP	%	98	70-130	Pass	
Mercury	S19-Au03360	CP	%	90	70-130	Pass	
Nickel	S19-Au03360	CP	%	91	70-130	Pass	
Zinc	S19-Au03360	CP	%	81	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1			T	1	
Organochlorine Pesticides	1			Result 1	Result 2	RPD			
Chlordanes - Total	S19-Au03240	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-ВНС	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S19-Au03240	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S19-Au03240	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S19-Au03240	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate							-		
Organophosphorus Pesticides		_		Result 1	Result 2	RPD			
Azinphos-methyl	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S19-Au11053	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S19-Au11053	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S19-Au11053	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S19-Au11053	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S19-Au11053	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S19-Au11053	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S19-Au11053	NCP	ma/ka	< 2	< 2	<1	30%	Pass	
Naled	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S19-Au11053	NCP	ma/ka	< 2	< 2	<1	30%	Pass	
Phorate	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Piriminhos-methyl	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
1 310200100			iiig/itg	<u> </u>	<u> ∖ 0.∠</u>	~ 1	0070	1 433	J

Duplicate				_	_		_		
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Ronnel	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S19-Au11053	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Au03332	CP	%	21	21	4.0	30%	Pass	
Duplicate					1			i	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Au02742	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Au05759	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Au05759	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Au05759	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate					1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	1	Result 1	Result 2	RPD			
Naphthalene	S19-Au02742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Au02742	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S19-Au05759	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S19-Au05759	NCP	mg/kg	< 100	< 100	<1	30%	Pass	ļ
TRH >C34-C40	S19-Au05759	NCP	mg/kg	< 100	< 100	<1	30%	Pass	ļ
Duplicate					1				
BTEX	1		1	Result 1	Result 2	RPD			
Benzene	S19-Au02742	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Au02742	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Au02742	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Au02742	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Au02742	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Au02742	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate					I			1	
Polycyclic Aromatic Hydrocarbons	5	1	1	Result 1	Result 2	RPD			
Acenaphthene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.n.i)perviene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(K)fluorantnene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	N19-AU08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.n)anthracene	N19-AU08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	N19-Au06677	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalana	N19-Au08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene Dhapanthrana	N19-AU08877	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenantmene	N19-AU06677	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	N19-A000077	INCE	під/ку	< 0.5	< 0.5	<1	30%	F 855	
				Result 1	Result 2	RDD			
Conductivity (1:5 aqueous extract				INCOUL I	INCOUL Z	NED			
at 25°C as rec.)	S19-Au03335	CP	uS/cm	170	170	1.0	30%	Pass	
pH (1:5 Aqueous extract at 25°C as	040 4:00005	0.5	al 110-20		F 4	Dest	2004		
	S19-AU03335			5.1	5.1	Pass	30%	Pass	
Sulphale (as SO4)	519-AUU/14/		під/кд	1100	1100	3.0	30%	rass	1

Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S19-Au03342	CP	%	13	12	12	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S19-Au03357	CP	mg/kg	9.2	7.6	19	30%	Pass	
Cadmium	S19-Au03357	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Au03357	CP	mg/kg	22	21	7.0	30%	Pass	
Copper	S19-Au03357	CP	mg/kg	7.6	7.5	1.0	30%	Pass	
Lead	S19-Au03357	CP	mg/kg	14	13	6.0	30%	Pass	
Mercury	S19-Au03357	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S19-Au03357	CP	mg/kg	9.4	9.1	3.0	30%	Pass	
Zinc	S19-Au03357	CP	mg/kg	30	29	5.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Asim Khan	Analytical Services Manager
Gabriele Cordero	Senior Analyst-Metal (NSW)
Andrew Sullivan	Senior Analyst-Organic (NSW)
Gabriele Cordero	Senior Analyst-Inorganic (NSW)
Nibha Vaidya	Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	- Mohammad Hossein Bazyar
Report	669346-AID
Project Name	51 134 146 STATION LANE LOCHINVAR
Project ID	NE526
Received Date	Aug 02, 2019
Date Reported	Aug 09, 2019
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. <i>NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.</i>
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	51 134 146 STATION LANE LOCHINVAR
Project ID	NE526
Date Sampled	Aug 02, 2019
Report	669346-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
S1	19-Au03332	Aug 02, 2019	Approximate Sample 73g Sample consisted of: Brown coarse-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
S2	19-Au03333	Aug 02, 2019	Approximate Sample 70g Sample consisted of: Dark brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
S3	19-Au03334	Aug 02, 2019	Approximate Sample 70g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
S4	19-Au03335	Aug 02, 2019	Approximate Sample 79g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
S6	19-Au03337	Aug 02, 2019	Approximate Sample 80g Sample consisted of: Dark brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
BH107	19-Au03346	Aug 02, 2019	Approximate Sample 84g Sample consisted of: Brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
COM14	19-Au03360	Aug 02, 2019	Approximate Sample 60g Sample consisted of: Dark brown coarse-grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedHolding TimeSydneyAug 02, 2019Indefinite

Environment Testing ABN - 50 005 085 521 Mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane

 1/21 Smallwood Place

 Murarrie QLD 4172

 Phone : +61 7 3902 4600

 NATA # 1261 Site # 20794

Co Ad Pro	Company Name: Geotesta Pty Ltd (NSW) Address: Unit 20, 1 Talavera Rd Macquarie Park NSW 2113 Project Name: 51 134 146 STATION LANE LOCHINVAR							der N port : none: ix:	lo.: #:	6 1	69346 30085	3 52 216	3				Rece Due: Priori Conta	ived: ity: act Nam	e:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein B	Bazyar
	Ject ID.	NL320															Eurof	ins Ana	lytical	Services Manager : Asin	n Khan
Sample Detail						Asbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons						
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142 9217	271		v	v		v	v	v	v	v	v	v	-					
Bris	bane Laborator	v - NATA Site # 1	20794			~								~		-					
Pert	h Laboratory - N	NATA Site # 237	36																		
Exte	rnal Laboratory	1																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	S1	Aug 02, 2019		Soil	S19-Au03332	х					х		х	х							
2	S2	Aug 02, 2019		Soil	S19-Au03333	Х								Х	Х	-					
3	S3	Aug 02, 2019		Soil	S19-Au03334	Х					Х	Х		Х		-					
4	S4	Aug 02, 2019		Soil	S19-Au03335	Х	X	X	Х	X				Х		-					
5	S5	Aug 02, 2019		Soil	S19-Au03336						X		X	X	X						
6	50	Aug 02, 2019		Soil	S19-Au03337	X				v		X		X		-					
8	5/	Aug 02, 2019		Soil	S19-AU03338				<u> </u>	<u> </u>	×		×	X	x	{					
9	BH101	Aug 02, 2019		Soil	S19-Au03340		х	X	х		X			X		1					

Environment Testing ABN - 50 005 085 521 Mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 I

 1/21 Smallwood Place
 2

 Murarrie QLD 4172
 1

 Phone : +61 7 3902 4600
 1

 NATA # 1261 Site # 20794
 1

Co Ao Pr Pr	Sompany Name: Geotesta Pty Ltd (NSW) udress: Unit 20, 1 Talavera Rd Macquarie Park Macquarie Park NSW 2113 Project Name: 51 134 146 STATION LANE LOCHINVAR						Or Re Ph Fa	der N port i one: x:	lo.: #:	6) 13	69346 30085) 52 216	6				Received: Due: Priority: Contact Name:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Ba	azyar
	oject ib.	NL020															Eurofins Analyt	tical Services Manager : Asim	Khan
	Sample Detail							pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons				
Mel	bourne Laborato	ry - NATA Site #	1254 & 14271			X	×	X			V	X	X	X	×	-			
Sya	hey Laboratory	• NATA Site # 18	217			×	×	×	×	<u> </u>	×	~	^	×	×	-			
Per	th Laboratory - N	ATA Site # 2373	6																
10	BH102	Aug 02, 2019	Soi	I S19-Au03	341		х	х	х	х				х					
11	BH103	Aug 02, 2019	So	I S19-Au03	342		Х	Х	Х				Х	Х					
12	BH104	Aug 02, 2019	Soi	I S19-Au03	343		х	Х	х		х	х		Х	х				
13	BH105	Aug 02, 2019	So	I S19-Au03	344		Х	Х	Х					Х		-			
14	BH106	Aug 02, 2019	So	I S19-Au03	345		X	Х	Х	<u> </u>	<u> </u>		Х	Х		-			
15	BH107	Aug 02, 2019	So	I S19-Au03	346	Х	Х	X	Х			Х		Х		-			
16	COM1	Aug 02, 2019	So	I S19-Au03	347					X	X			X		-			
17		Aug 02, 2019	So	I S19-Au03	348									X	X	-			
18		Aug 02, 2019	So	I S19-Au03	349				V		X	X	×	X		-			
19		Aug 02, 2019	So	1 S19-Au03	350		X	X	X		v			X	v	{			
20		Aug 02, 2019	50		352							×	×	×	<u> </u>	-			
21		Aug 02, 2019	50	1 519-AU03	352							^	^	^	I	J			

Environment Testing ABN - 50 005 085 521 Mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 I

 1/21 Smallwood Place
 2

 Murarrie QLD 4172
 2

 Phone : +61 7 3902 4600
 1

 NATA # 1261 Site # 20794
 1

Co Ad	mpany Name: dress:	ime: Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113						Order No.: 669346 Phone: 1300852 216 Fax: Comparison							Received: Due: Priority: Contact Name:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar
Pro Pro	oject Name: oject ID:	51 134 146 STATION LA NE526	NE LOCHINVAF	R											Furofins Analytica	l Services Manager · Asim Khan
						_										Services Manager . Asim Khan
Sample Detail						Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons		
Melb	ourne Laborato	ry - NATA Site # 1254 & 14	1271		X	X		×		×	X	X	×	N/		
Sydr	ey Laboratory -	• NATA Site # 18217			X	X	X	X	X	X	X	X	X	X		
Bort	bane Laboratory	/ - NATA Site # 20794														
22		Aug 02 2019	Soil	S19-Au03353									x	x		
23	COM8	Aug 02, 2019	Soil	S19-Au03354						x			x	~		
24	COM9	Aug 02, 2019	Soil	S19-Au03355					x			х	X			
25	COM10	Aug 02, 2019	Soil	S19-Au03356									х	х		
26	COM11	Aug 02, 2019	Soil	S19-Au03357						Х	Х		Х			
27	COM12	Aug 02, 2019	Soil	S19-Au03358					х			х	Х			
28	COM13	Aug 02, 2019	Soil	S19-Au03359									х	Х		
29	COM14	Aug 02, 2019	Soil	S19-Au03360	Х					Х	Х	х	х			
30	D1	Aug 02, 2019	Soil	S19-Au03361						Х			Х			
31	W1	Aug 02, 2019	Water	S19-Au03362						Х						
32	W2	Aug 02, 2019	Water	S19-Au03363						Х		Х				
Test	Counts				7	9	9	9	7	15	8	11	30	9		

Internal Quality Control Review and Glossary

General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 5. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight b	pasis	grams per kilogram							
Filter loading:		fibres/100 graticule areas							
Reported Concentration:		fibres/mL							
Flowrate:		L/min							
Terms									
Dry	Sample is dried by heating prior to analysis								
LOR	Limit of Reporting								
COC	Chain of Custody								
SRA	Sample Receipt Advice								
ISO	International Standards Organisation								
AS	Australian Standards								
WA DOH	Reference document for the NEPM. Government of Western Austr Sites in Western Australia (2009), including supporting document F	alia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)							
NEPM	National Environment Protection (Assessment of Site Contamination	on) Measure, 2013 (as amended)							
ACM	Asbestos Containing Materials. Asbestos contained within a non-a: NEPM, ACM is generally restricted to those materials that do not p	sbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the ass a 7mm x 7mm sieve.							
AF	Asbestos Fines. Asbestos containing materials, including friable, w equivalent to "non-bonded / friable".	eathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as							
FA	Fibrous Asbestos. Asbestos containing materials in a friable and/or materials that do not pass a 7mm x 7mm sieve.	severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those							
Friable	Asbestos-containing materials of any size that may be broken or cr outside of the laboratory's remit to assess degree of friability.	umbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is							
Trace Analysis	Analytical procedure used to detect the presence of respirable fibre	as in the matrix.							

Comments

The samples received were not collected in an approved asbestos bag and was therefore sub-sampled from the 250mL glass jar. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Asbestos Counter/Identifier:

Karthik Surisetty

Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu

Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to bis production at surfaces as received.
n n n n n n n n n n n n n n n n n n n
0
- 0
ш
Ř
-
~
0
Ē
ഗ
- 55
느
0
~
-
- 🕶
\sim
22.
- 0
- T. C. P.

	Contractor	March (count lar			time.	NES26	- Hangelo	Ĩ		1000		(COURSECTION OF	0004 14/20 40	Checkwoologan		0019/00 EZ	of Thimsburg	ant on
	company	meanan		Projec	ect me t Name	51, 134, 146	Station L.	ne Lochin	var		Project ma Report Fo	nager rmat		æ	elinquished by			
	Address	20/1 Talavera Rd, Macqua	irle Park, 2113	("paya			-											
	Contact Name	Dr. Mohammad Hossein E	łazyar	al kiji na "keto F										ង	nail for Results			
	Phone N ²	452454418		, μοφός asea di sisλi	(83)	Þ			8		Ą	etert			Cont	ainers	Turn Around	Requirements
Moto Moto <th< td=""><td>pecial Direction ^ourchase Order</td><td></td><td></td><td>RΠA distupet ons and one of a</td><td>нөвчу Ме</td><td>t 8 etiu 2</td><td>нят</td><td>HA4</td><td>atesdeA.</td><td>EC, pH</td><td>ivisenggA</td><td>dins '≎∃ '4d</td><td></td><td>olisalo</td><td>- Plastic - Plastic Thet Glass</td><td>nLvial nber Glass ar</td><td>1 Day"</td><td>/ []?Day* []6Day</td></th<>	pecial Direction ^o urchase Order			RΠ A distupet ons and one of a	нөвчу Ме	t 8 etiu 2	нят	HA4	atesdeA.	EC, pH	ivisenggA	dins '≎∃ '4d		olisalo	- Plastic - Plastic Thet Glass	nLvial nber Glass ar	1 Day"	/ []?Day* []6Day
	Quote ID Ne	Client Samula ID	The	2 14+ 140/1)										171	tmoðs tmðst va Jmoos	n0 2 nA.Jm2Sf 11	Dither ("Sactarges
1 1		S	2/08/19	8	×	×			×							чю	DG Hazaro	l Warning
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		82	2/08/19	Soil			×	-	×									
		ß	2/08/19	Soil	×			×	×									
		S4	2/08/19	Soil				×	×			×						
Interpretation Interpreadow Interpretation Interpre		SS	2/08/19	Sell	×	×	×											
Interpret in the set of the set		S6	2/08/19	Soil				×	×									
8 101		S7	2/08/19	Soil	×			×										
(61) (62) (7)<		S8	2/08/19	Soll		×	×											
Derice Deric No		BH101	2/08/19	Soil	×							×						
Bit (0) <		BH102	2/08/19	Soil				×				×						
$ \begin{array}{ $		BH103	2/08/19	Soil		×						×						
$ \begin{array}{ $		BH104	2/08/19	Sol	×		×	×				×						
Delta Sub N<	~	BH105	2/08/19	Soil					_			×						
Bit (C) Bit C X <thx< td=""><td></td><td>BH106</td><td>2/06/19</td><td>Soil</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td></thx<>		BH106	2/06/19	Soil		×						×						
		BH107	2/08/19	Soi			-	×	×			×						
COLC 200 52 X </td <td></td> <td>COM1</td> <td>2/08/19</td> <td>Soil</td> <td>×</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		COM1	2/08/19	Soil	×			×			_							
Cold 200 </td <td></td> <td>COM2</td> <td>2/08/19</td> <td>Soil</td> <td></td> <td></td> <td>×</td> <td></td>		COM2	2/08/19	Soil			×											
Olds Each N<		COM3	2/08/19	Soil	×	×		×										
C066 269 581 X<		COM4	2/08/19	Soil				×				×						
CON5 2879 Sa X<	~	COM5	2/08/19	Soil	×		×											
OUT 2801 58 X </td <td></td> <td>COM6</td> <td>2/08/19</td> <td>Soil</td> <td></td> <td>×</td> <td>-</td> <td>×</td> <td></td>		COM6	2/08/19	Soil		×	-	×										
C016 2016 <th< td=""><td></td><td>COM7</td><td>2/08/19</td><td>Soil</td><td></td><td></td><td>×</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></th<>		COM7	2/08/19	Soil			×	-	-						1			
COMB 2081b Sal X		COMB	2/08/19	Soil	×													
COM0 20013		COM9	2/08/19	Soil		×	~	×										
C0N1 20019 Sol X		COM10	2/08/19	Soil			×											
CON12 20016 Sul X <th< td=""><td></td><td>COM11</td><td>2/08/19</td><td>Sail</td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		COM11	2/08/19	Sail	×			×										
COM13 20019 Sol X <th< td=""><td></td><td>COM12</td><td>2/08/19</td><td>Soil</td><td></td><td>×</td><td>~</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		COM12	2/08/19	Soil		×	~	×										
COM14 200/19 Soil X <		COM13	2/08/19	Soil		8	×							-	-			
D1 200413 Sol X I		COM14	2/08/19	Soi	×	×		×	×									
W1 206/19 WTER X X W2 206/19 WATER X X W2 206/19 WATER X X W2 206/19 WATER X X 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101		5	2/08/19	Soil	×													
W2 206/19 WATER X <thx< th=""> X <thx< th=""> X X X</thx<></thx<>		W1	2/08/19	WATER	×													
Total Counts 13 14 9 7 8 7 9 Neuron VI Counte (#) Hand Jebeal Neme Signature Signature Date 24 1 Time		W2	2/08/19	WATER	×	×												
Average Market Counter (# 2010) - Hand, Proval Mane Signature Signature Bignature Date 2. 1 Time 3. 72, Mit Prestature Mit Mit			Total Coun	its	15	÷	6	60	~			5						
	meanuu ur Shiopanat	Courtier (# Received By		Hand Defiver	Real Provide P	VE 1 MEL 1 1	ER I ADL	Name NEW I DA	, so	ature	P	Signature	Date	1519	Date	1	Time	the Art

Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113

NATA Accredit Accreditation N Site Number 18

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

- Mohammad Hossein Bazyar

Report Project name Project ID Received Date 669346-W 51 134 146 STATION LANE LOCHINVAR NE526 Aug 02, 2019

Client Sample ID			W1	W2
Sample Matrix			Water	Water
Eurofins Sample No.			S19-Au03362	S19-Au03363
Date Sampled			Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit		
Organochlorine Pesticides	LOIN	Onit		
Chlordanes - Total	0.001	ma/l	_	< 0.001
4.4'-DDD	0.0001	ma/l	_	< 0.0001
4.4'-DDF	0.0001	ma/l	_	< 0.0001
4.4'-DDT	0.0001	ma/L	_	< 0.0001
a-BHC	0.0001	mg/L	_	< 0.0001
Aldrin	0.0001	mg/L	_	< 0.0001
b-BHC	0.0001	ma/L	-	< 0.0001
d-BHC	0.0001	ma/L	-	< 0.0001
Dieldrin	0.0001	ma/L	-	< 0.0001
Endosulfan I	0.0001	mg/L	-	< 0.0001
Endosulfan II	0.0001	mg/L	-	< 0.0001
Endosulfan sulphate	0.0001	mg/L	-	< 0.0001
Endrin	0.0001	mg/L	-	< 0.0001
Endrin aldehyde	0.0001	mg/L	-	< 0.0001
Endrin ketone	0.0001	mg/L	-	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	-	< 0.0001
Heptachlor	0.0001	mg/L	-	< 0.0001
Heptachlor epoxide	0.0001	mg/L	-	< 0.0001
Hexachlorobenzene	0.0001	mg/L	-	< 0.0001
Methoxychlor	0.0001	mg/L	-	< 0.0001
Toxaphene	0.01	mg/L	-	< 0.01
Aldrin and Dieldrin (Total)*	0.0001	mg/L	-	< 0.0001
DDT + DDE + DDD (Total)*	0.0001	mg/L	-	< 0.0001
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	-	< 0.001
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	-	< 0.001
Dibutylchlorendate (surr.)	1	%	-	149
Tetrachloro-m-xylene (surr.)	1	%	-	88
Organophosphorus Pesticides				
Azinphos-methyl	0.002	mg/L	-	< 0.002
Bolstar	0.002	mg/L	-	< 0.002
Chlorfenvinphos	0.002	mg/L	-	< 0.002
Chlorpyrifos	0.02	mg/L	-	< 0.02
Chlorpyrifos-methyl	0.002	mg/L	-	< 0.002
Coumaphos	0.02	mg/L	-	< 0.02
Demeton-S	0.02	mg/L	-	< 0.02

Client Sample ID			W1	W2
Sample Matrix			Water	Water
Eurofins Sample No.			S19-Au03362	S19-Au03363
Date Sampled			Aug 02, 2019	Aug 02, 2019
Test/Reference	LOR	Unit		
Organophosphorus Pesticides				
Demeton-O	0.002	mg/L	-	< 0.002
Diazinon	0.002	mg/L	-	< 0.002
Dichlorvos	0.002	mg/L	-	< 0.002
Dimethoate	0.002	mg/L	-	< 0.002
Disulfoton	0.002	mg/L	-	< 0.002
EPN	0.002	mg/L	-	< 0.002
Ethion	0.002	mg/L	-	< 0.002
Ethoprop	0.002	mg/L	-	< 0.002
Ethyl parathion	0.002	mg/L	-	< 0.002
Fenitrothion	0.002	mg/L	-	< 0.002
Fensulfothion	0.002	mg/L	-	< 0.002
Fenthion	0.002	mg/L	-	< 0.002
Malathion	0.002	mg/L	-	< 0.002
Merphos	0.002	mg/L	-	< 0.002
Methyl parathion	0.002	mg/L	-	< 0.002
Mevinphos	0.002	mg/L	-	< 0.002
Monocrotophos	0.002	mg/L	-	< 0.002
Naled	0.002	mg/L	-	< 0.002
Omethoate	0.002	mg/L	-	< 0.002
Phorate	0.002	mg/L	-	< 0.002
Pirimiphos-methyl	0.02	mg/L	-	< 0.02
Pyrazophos	0.002	mg/L	-	< 0.002
Ronnel	0.002	mg/L	-	< 0.002
Terbufos	0.002	mg/L	-	< 0.002
Tetrachlorvinphos	0.002	mg/L	-	< 0.002
Tokuthion	0.002	mg/L	-	< 0.002
Trichloronate	0.002	mg/L	-	< 0.002
Triphenylphosphate (surr.)	1	%	-	99
Heavy Metals				
Arsenic	0.001	mg/L	0.010	0.008
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.054	0.048
Copper	0.001	mg/L	0.025	0.017
Lead	0.001	mg/L	0.010	0.004
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.047	0.035
Zinc	0.005	mg/L	0.040	0.028

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Sydney	Aug 02, 2019	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Aug 02, 2019	7 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8	Sydney	Aug 05, 2019	180 Days
Methody I TM MET 2010 Metals in Waters, Sails & Cadiments by ICB MS			

Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217
 Brisbane
 P

 1/21 Smallwood Place
 2,

 Murarrie QLD 4172
 K

 Phone: +61 7 3902 4600
 P

 NATA # 1261 Site # 20794
 N

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Co Ad Pr	mpany Name: dress: piect Name:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113 51 134 146 \$	/ Ltd (NSW) Ilavera Rd ark STATION LAN	NE LOCHINVAR			Or Re Ph Fa	der N port # one: x:	lo.: #:	60 13	69346 30085	6 52 216	6			Received: Due: Priority: Contact Name:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar
Pr	oject ID:	NE526														Eurofins Analytic	al Services Manager : Asim Kha
		Sa	mple Detail			Asbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons		
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		v	×			V	v	v		V	V		
Sya	hane Laboratory	- NATA Site # 1	<u>8217</u> 20794			^	<u> </u>	<u>⊢</u> ^	\uparrow		^	^			^		
Pert	h Laboratory - N	ATA Site # 237	<u>267.04</u> /36														
Exte	rnal Laboratory	,							1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	S1	Aug 02, 2019		Soil	S19-Au03332	х					Х		Х	х			
2	S2	Aug 02, 2019		Soil	S19-Au03333	Х								х	х		
3	S3	Aug 02, 2019		Soil	S19-Au03334	Х		<u> </u>	—		Х	Х		Х			
4	S4	Aug 02, 2019		Soil	S19-Au03335	Х	X	X	X	X				X			
5	S5	Aug 02, 2019		Soil	S19-Au03336			<u> </u>	—		Х		X	X	X		
6	S6	Aug 02, 2019		Soil	S19-Au03337	X		├──	─			X		X			
/	5/	Aug 02, 2019		50II Soil	S19-Au03338			<u> </u>	┼──	X	X						
0	30 ВН101	Aug 02, 2019		Soil	S19-Au03340		×	×	× ×		×		<u> </u>	×	<u> </u>		
9		Mug 02, 2019		301	1319-Au03340		^			I	^	I	1				

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Co Ao Pr	ompany Name: ddress: roject Name:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113 51 134 146 \$	y Ltd (NSW) alavera Rd Park STATION LAN	E LOCHINVAR			Or Re Ph Fa	der N port : ione: x:	lo.: #:	60 13	69346 30085	6 52 216	6			Recei Due: Priori Conta	ved: ty: act Name	:	Aug 2, 2019 3:32 PM Aug 9, 2019 5 Day - Mohammad Hossein Bazyar
Pr	oject ID:	NE526														Eurof	ins Analy	tical S	ervices Manager : Asim Khan
		Sa	mple Detail			Asbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons				
	pourne Laborato	NATA Site	# 1254 & 142	<i>[</i> 1		v		v	v	v	v	v	v	v	v				
Bris	bane Laboratory	· NATA Sile # 1	20794			<u>^</u>			^	^	^	^		^	^				
Per	th Laboratory - N	ATA Site # 237	736																
10	BH102	Aug 02, 2019		Soil	S19-Au03341		х	х	х	х				х					
11	BH103	Aug 02, 2019		Soil	S19-Au03342		Х	Х	Х				Х	Х					
12	BH104	Aug 02, 2019		Soil	S19-Au03343		Х	Х	Х		Х	Х		Х	Х				
13	BH105	Aug 02, 2019		Soil	S19-Au03344		Х	Х	х					х					
14	BH106	Aug 02, 2019		Soil	S19-Au03345		Х	Х	Х				Х	х					
15	BH107	Aug 02, 2019		Soil	S19-Au03346	Х	Х	Х	Х			Х		Х					
16	COM1	Aug 02, 2019		Soil	S19-Au03347					Х	Х			Х					
17	COM2	Aug 02, 2019		Soil	S19-Au03348									Х	Х				
18	COM3	Aug 02, 2019		Soil	S19-Au03349						Х	Х	X	Х					
19	COM4	Aug 02, 2019		Soil	S19-Au03350		X	X	X	X				X					
20	COM5	Aug 02, 2019		Soil	S19-Au03351						Х			X	X				
21	COM6	Aug 02, 2019		Soil	S19-Au03352							Х	Х	Х					

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736

Co Ao	ompany Name: ddress:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113	r Ltd (NSW) Ilavera Rd ark			Or Re Ph Fa	der N eport : ione: ix:	o.: #:	60 13	69346 30085	2 216	6			Received: Due: Priority: Contact Name	Au Au 5 [: - N	ıg 2, 2019 3:32 PM ıg 9, 2019 Day Aohammad Hossein Bazyar
Pr Pr	oject Name: oject ID:	51 134 146 S NE526	STATION LANE LO	CHINVAR											Eurofins Analy	rtical Serv	vices Manager : Asim Khan
		Sa	mple Detail		Asbestos - AS4964	Conductivity (1:5 aqueous extract at 25°C as rec.)	pH (1:5 Aqueous extract at 25°C as rec.)	Sulphate (as SO4)	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Eurofins mgt Suite B14	Moisture Set	Total Recoverable Hydrocarbons			
Sud		NATA Site # 1	# 1254 & 14271		v	v	v	v	v	Y	v	v	v	v			
Brie	hane Laboratory	- NATA Site # 1	20794							~	~						
Pert	h Laboratory - N	ATA Site # 237	<u></u> /36														
22	COM7	Aug 02, 2019	Soil	S19-Au03353									х	х			
23	COM8	Aug 02, 2019	Soil	S19-Au03354						х			х				
24	COM9	Aug 02, 2019	Soil	S19-Au03355					х			X	х				
25	COM10	Aug 02, 2019	Soil	S19-Au03356									Х	Х			
26	COM11	Aug 02, 2019	Soil	S19-Au03357						Х	Х		Х				
27	COM12	Aug 02, 2019	Soil	S19-Au03358					Х			Х	х				
28	COM13	Aug 02, 2019	Soil	S19-Au03359									х	х			
29	COM14	Aug 02, 2019	Soil	S19-Au03360	Х					Х	Х	х	х				
30	D1	Aug 02, 2019	Soil	S19-Au03361						х			х				
31	W1	Aug 02, 2019	Wate	r S19-Au03362						Х							
32	W2	Aug 02, 2019	Wate	r S19-Au03363						Х		х					
Test	t Counts				7	9	9	9	7	15	8	11	30	9			

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1				
Organochlorine Pesticides						
Chlordanes - Total	mg/L	< 0.001		0.001	Pass	
4.4'-DDD	mg/L	< 0.0001		0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001		0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001		0.0001	Pass	
a-BHC	mg/L	< 0.0001		0.0001	Pass	
Aldrin	mg/L	< 0.0001		0.0001	Pass	
b-BHC	mg/L	< 0.0001		0.0001	Pass	
d-BHC	mg/L	< 0.0001		0.0001	Pass	
Dieldrin	mg/L	< 0.0001		0.0001	Pass	
Endosulfan I	mg/L	< 0.0001		0.0001	Pass	
Endosulfan II	mg/L	< 0.0001		0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001		0.0001	Pass	
Endrin	mg/L	< 0.0001		0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001		0.0001	Pass	
Endrin ketone	mg/L	< 0.0001		0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001		0.0001	Pass	
Heptachlor	mg/L	< 0.0001		0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001		0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001		0.0001	Pass	
Methoxychlor	mg/L	< 0.0001		0.0001	Pass	
Toxaphene	mg/L	< 0.01		0.01	Pass	
Method Blank						
Organophosphorus Pesticides						
Azinphos-methyl	mg/L	< 0.002		0.002	Pass	
Bolstar	mg/L	< 0.002		0.002	Pass	
Chlorfenvinphos	mg/L	< 0.002		0.002	Pass	
Chlorpyrifos	mg/L	< 0.02		0.02	Pass	
Chlorpyrifos-methyl	mg/L	< 0.002		0.002	Pass	
Coumaphos	mg/L	< 0.02		0.02	Pass	
Demeton-S	mg/L	< 0.02		0.02	Pass	
Demeton-O	mg/L	< 0.002		0.002	Pass	
Diazinon	mg/L	< 0.002		0.002	Pass	
Dichlorvos	ma/L	< 0.002		0.002	Pass	
Dimethoate	ma/L	< 0.002		0.002	Pass	
Disulfoton	ma/L	< 0.002		0.002	Pass	
EPN	ma/L	< 0.002		0.002	Pass	
Ethion	ma/L	< 0.002		0.002	Pass	
Ethoprop	ma/L	< 0.002		0.002	Pass	
Ethyl parathion	ma/L	< 0.002		0.002	Pass	
Fenitrothion	ma/L	< 0.002		0.002	Pass	
Fensulfothion	ma/L	< 0.002		0.002	Pass	
Fenthion	ma/l	< 0.002		0.002	Pass	
Malathion	ma/l	< 0.002		0.002	Pass	
Merphos	ma/L	< 0.002		0.002	Pass	
Methyl parathion	ma/L	< 0.002		0.002	Pass	
Mevinphos	ma/L	< 0.002		0.002	Pass	
Monocrotophos	ma/l	< 0.002		0.002	Pass	
Naled	ma/l	< 0.002		0.002	Pass	
Omethoate	ma/l	< 0.002		0.002	Pass	
Phorate	ma/l	< 0.002		0.002	Pass	
	····					

Primphosmethy1mgl< 0.02	Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Pyracophosmpd< 0.002PassRonnelmgL< 0.002	Pirimiphos-methyl	mg/L	< 0.02		0.02	Pass	
Ronempd< 0.002No.002PassTetachlorvinptosmgl< 0.002	Pyrazophos	mg/L	< 0.002		0.002	Pass	
Tethodosmgl, value< 0.0020.002PassTetachlorvinphosmgl, value< 0.002	Ronnel	mg/L	< 0.002		0.002	Pass	
Tether Tokutnionmg/L< 0.0020.002PassTokutnionmg/L< 0.002	Terbufos	mg/L	< 0.002		0.002	Pass	
Tokeloronatemg/L< 0.002<0.002PassTrichloronate0.0020.002PassMethod Blank0.0010.001PassHasy Metalsng/L< 0.001	Tetrachlorvinphos	mg/L	< 0.002		0.002	Pass	
Trichloronatemgl.< 0.002PasePercentMethod Blank <td>Tokuthion</td> <td>mg/L</td> <td>< 0.002</td> <td></td> <td>0.002</td> <td>Pass</td> <td></td>	Tokuthion	mg/L	< 0.002		0.002	Pass	
Metacy MetalsImage and any and any	Trichloronate	mg/L	< 0.002		0.002	Pass	
Heavy MetaismgL </td <td>Method Blank</td> <td></td> <td>1</td> <td></td> <td>.</td> <td>-</td> <td></td>	Method Blank		1		.	-	
Arsenic mg/L < 0.001 0.001 Pass Cadmium mg/L < 0.0001	Heavy Metals						
Cadpermg/L< 0.00020.0002PassCoppermg/L< 0.001	Arsenic	mg/L	< 0.001		0.001	Pass	
Copper mg/L < 0.001 Pass Lead mg/L < 0.001	Cadmium	mg/L	< 0.0002		0.0002	Pass	
lead mg/L < 0.001 Pass Mercury mg/L < 0.001	Copper	mg/L	< 0.001		0.001	Pass	
Mercurymg/L< 0.0010.0001PassNickelmg/L< 0.001	Lead	mg/L	< 0.001		0.001	Pass	
Nickelmg/L< 0.001< 0.001PassZincmg/L< 0.005	Mercury	mg/L	< 0.0001		0.0001	Pass	
Zincmg/L<0.005PassLCS - % Recovery <t< td=""><td>Nickel</td><td>mg/L</td><td>< 0.001</td><td></td><td>0.001</td><td>Pass</td><td></td></t<>	Nickel	mg/L	< 0.001		0.001	Pass	
Use of the set of th	Zinc	mg/L	< 0.005		0.005	Pass	
Organchlorine PesticidesImage of the second sec	LCS - % Recovery		1	1 1	-		
4.4'-DDD % 89 70-130 Pass 4.4'-DDT % 97 70-130 Pass a-BHC % 92 70-130 Pass Aldrin % 94 70-130 Pass b-BHC % 94 70-130 Pass b-BHC % 94 70-130 Pass d-BHC % 96 70-130 Pass d-BHC % 96 70-130 Pass d-BHC % 96 70-130 Pass d-BHC % 97 70-130 Pass idebtrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin ketone % 96 70-130 Pass endrin ketone % 97 70-130 Pass Heptachlor epoxide % 89 70-130	Organochlorine Pesticides						
4.4·DDE % 97 70-130 Pass 4.4·DDT % 92 70-130 Pass a-BHC % 94 70-130 Pass b-BHC % 94 70-130 Pass b-BHC % 96 70-130 Pass b-BHC % 96 70-130 Pass b-BHC % 96 70-130 Pass b-BHC % 97 70-130 Pass b-BhC % 98 70-130 Pass b-Bdufan % 97 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin Aldehyde % 89 70-130 Pass Endrin Iketone % 91 70-130 Pass Heptachlor poxide % 97 70-130 Pass </td <td>4.4'-DDD</td> <td>%</td> <td>89</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	4.4'-DDD	%	89		70-130	Pass	
4.4-DDT % 92 70-130 Pass a-BHC % 94 70-130 Pass Aldrin % 94 70-130 Pass Aldrin % 96 70-130 Pass b-BHC % 96 70-130 Pass d-BHC % 96 70-130 Pass d-BHC % 98 70-130 Pass Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin % 96 70-130 Pass Endrin aldehyde % 96 70-130 Pass Endrin ketone % 89 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor epoxide % 97 70-130 Pass Heptachlor poxide % 97 70-130 Pass LCS - % Recovery 70-130 Pass <td>4.4'-DDE</td> <td>%</td> <td>97</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	4.4'-DDE	%	97		70-130	Pass	
a-BHC % 94 70-130 Pass Aldrin % 94 70-130 Pass b-BHC % 96 70-130 Pass b-BHC % 96 70-130 Pass b-BHC % 98 70-130 Pass Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin aldehyde % 96 70-130 Pass Endrin ketone % 96 70-130 Pass g-BHC (Lindane) % 89 70-130 Pass Heptachlor epoxide % 96 70-130 Pass Heptachlor poxide % 89 70-130 Pass Heptachlor poxide % 89 70-1	4.4'-DDT	%	92		70-130	Pass	
Aldrin % 94 70-130 Pass b-BHC % 100 70-130 Pass d-BHC % 100 70-130 Pass Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan II % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin % 96 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin aldehyde % 89 70-130 Pass g-BHC (Lindane) % 89 70-130 Pass g-BHC poxide % 96 70-130 Pass Heptachlor epoxide % 97 70-130 Pass Heptachlor spoxide % 97 70-130 Pass Hextachlo	a-BHC	%	94		70-130	Pass	
b-BHC % 96 70-130 Pass d-BHC % 100 70-130 Pass Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan II % 97 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin aldehyde % 96 70-130 Pass Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 89 70-130 Pass Heptachlor spoxide % 91 70-130 Pass Heptachlor spoxide % 96 70-130 Pass Heptachlor spoxide % 97 70-130 Pass Methoxychlor % 97 70-130 Pass Idexachlorobenzene % 84 70-130 Pass <	Aldrin	%	94		70-130	Pass	
d-BHC % 100 70-130 Pass Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Endosulfan II % 93 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin % 96 70-130 Pass Endrin ketone % 89 70-130 Pass G-BHC (Lindane) % 96 70-130 Pass Heptachlor spoxide % 97 70-130 Pass Heptachlor spoxide % 96 70-130 Pass Heptachlor spoxide % 96 70-130 Pass Heptachlor spoxide % 97 70-130 Pass Methoxychlor % 97 70-130 Pass Dizonon % 84 70-130 Pass	b-BHC	%	96		70-130	Pass	
Dieldrin % 98 70-130 Pass Endosulfan I % 97 70-130 Pass Image: Second	d-BHC	%	100		70-130	Pass	
Endosulfan I % 97 70-130 Pass Endosulfan II % 93 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin % 103 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin ketone % 89 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 96 70-130 Pass Heptachlor epoxide % 96 70-130 Pass Heptachlor poxide % 89 70-130 Pass Hexachlorobenzene % 84 70-130 Pass LCS - & Recovery 70-130 Pass 100 Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Et	Dieldrin	%	98		70-130	Pass	
Endosulfan II % 93 70-130 Pass Endosulfan sulphate % 96 70-130 Pass Endrin % 103 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin ldehyde % 89 70-130 Pass Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 96 70-130 Pass Heptachlor epoxide % 96 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery 70-130 Pass 101 Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Ethion	Endosulfan I	%	97		70-130	Pass	
Endosulfan sulphate % 96 70-130 Pass Endrin % 103 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 89 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Hexachlorobenzene % 89 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 84 70-130 Pass Fenitrothion % 101 70-130 Pass <td< td=""><td>Endosulfan II</td><td>%</td><td>93</td><td></td><td>70-130</td><td>Pass</td><td></td></td<>	Endosulfan II	%	93		70-130	Pass	
Endrin % 103 70-130 Pass Endrin aldehyde % 89 70-130 Pass Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 96 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Hexachlorobenzene % 89 70-130 Pass Methoxychlor % 97 70-130 Pass LCS - % Recovery % 84 70-130 Pass Diazinon % 90 70-130 Pass Diazinon % 777 70-130 Pass Ethion % 84 70-130 Pass Fenitrothion % 101 70-130 Pass Methyl parathion % 103 70-130 Pass Fenitrothion % 103 70-130 Pass	Endosulfan sulphate	%	96		70-130	Pass	
Endrin aldehyde % 89 70-130 Pass Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 96 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 84 70-130 Pass Ethion % 84 70-130 Pass Fenitrothion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass	Endrin	%	103		70-130	Pass	
Endrin ketone % 91 70-130 Pass g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 89 70-130 Pass Heptachlor epoxide % 89 70-130 Pass Heptachlor epoxide % 97 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Diazinon % 777 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 777 70-130 Pass Fenitrothion % 101 70-130 Pass Hethyl parathion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass	Endrin aldehyde	%	89		70-130	Pass	
g-BHC (Lindane) % 96 70-130 Pass Heptachlor % 89 70-130 Pass Heptachlor epoxide % 97 70-130 Pass Heptachlor opoxide % 97 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Organophosphorus Pesticides % 90 70-130 Pass Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 84 70-130 Pass Fenitrothion % 101 70-130 Pass Methyl parathion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass	Endrin ketone	%	91		70-130	Pass	
Heptachlor % 89 70-130 Pass Heptachlor epoxide % 97 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Organophosphorus Pesticides % 90 70-130 Pass <td>g-BHC (Lindane)</td> <td>%</td> <td>96</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	g-BHC (Lindane)	%	96		70-130	Pass	
Heptachlor epoxide % 97 70-130 Pass Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery % 90 70-130 Pass Organophosphorus Pesticides % 77 70-130 Pass Diazinon % 77 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 84 70-130 Pass Fenitrothion % 101 70-130 Pass Methyl parathion % 103 70-130 Pass	Heptachlor	%	89		70-130	Pass	
Hexachlorobenzene % 84 70-130 Pass Methoxychlor % 90 70-130 Pass LCS - % Recovery Organophosphorus Pesticides	Heptachlor epoxide	%	97		70-130	Pass	
Methoxychlor%9070-130PassLCS - % Recovery </td <td>Hexachlorobenzene</td> <td>%</td> <td>84</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Hexachlorobenzene	%	84		70-130	Pass	
CCS - % RecoveryOrganophosphorus Pesticides </td <td>Methoxychlor</td> <td>%</td> <td>90</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Methoxychlor	%	90		70-130	Pass	
Organophosphorus Pesticides%77%70-130PassDiazinon%8470-130PassDimethoate%8470-130PassEthion%10170-130PassFenitrothion%10370-130PassMethyl parathion%10570-130PassMevinphos%8170-130Pass	LCS - % Recovery		1	I I I			
Dialition % 77 6 70-130 Pass Dimethoate % 84 70-130 Pass Ethion % 101 70-130 Pass Fenitrothion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass	Digginophosphorus Pesticides	0/	77		70.120	Deee	
Dimension % 84 70-130 Pass Ethion % 101 70-130 Pass Fenitrothion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass Mevinphos % 81 70-130 Pass	Diazinon	%	04		70-130	Pass	
Ethion % 101 70-130 Pass Fenitrothion % 103 70-130 Pass Methyl parathion % 105 70-130 Pass Mevinphos % 81 70-130 Pass	Dimetricate	% 0/	04		70-130	Pass	
Perintornion%10570-130PassMethyl parathion%10570-130PassMevinphos%8170-130Pass	Eurion	-70	101		70-130	Pass	
Metry parametry parametry 78 103 70-130 Pass Mevinphos % 81 70-130 Pass	Methyl parathion	- 70 0/	105		70-130	Pass	
		/0 0/.	91		70-130	Pass	
LCS - % Pocovory		/0	01		70-130	газэ	
Heavy Metals	Heavy Metals		[[
Arsenic % 00 70.130 Page	Arsenic	%	۵۹		70-130	Pase	
Cadmium % 95 70-130 Page	Cadmium	%	95		70-130	Page	
Copper % 97 70-130 Page	Copper	%	97		70-130	Pass	
Lead % 100 70.130 Page	Lead	%	100		70-130	Pass	
Mercury % 102 70-130 Page	Mercury	%	102		70-130	Pass	
Nickel % 98 70-130 Pass	Nickel	%	98		70-130	Pass	
Zinc % 94 70-130 Pass	Zinc	%	94		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals	_			Result 1					
Arsenic	S19-Au03363	CP	%	99			70-130	Pass	
Cadmium	S19-Au03363	CP	%	95			70-130	Pass	
Chromium	S19-Au03363	CP	%	100			70-130	Pass	
Copper	S19-Au03363	CP	%	99			70-130	Pass	
Lead	S19-Au03363	CP	%	101			70-130	Pass	
Mercury	S19-Au03363	CP	%	108			70-130	Pass	
Nickel	S19-Au03363	CP	%	99			70-130	Pass	
Zinc	S19-Au03363	CP	%	95			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Test Duplicate	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Test Duplicate Heavy Metals	Lab Sample ID	QA Source	Units	Result 1 Result 1	Result 2	RPD	Acceptance Limits	Pass Limits	Qualifying Code
Test Duplicate Heavy Metals Arsenic	Lab Sample ID S19-Au03321	QA Source	Units mg/L	Result 1 Result 1 0.002	Result 2 0.002	RPD 13	Acceptance Limits	Pass Limits Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium	Lab Sample ID S19-Au03321 S19-Au03321	QA Source	Units mg/L mg/L	Result 1 Result 1 0.002 < 0.0002	Result 2 0.002 < 0.0002	RPD 13 <1	Acceptance Limits 30% 30%	Pass Limits Pass Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium Chromium	Lab Sample ID S19-Au03321 S19-Au03321 S19-Au03321	QA Source	Units mg/L mg/L mg/L	Result 1 Result 1 0.002 < 0.0002 0.002	Result 2 0.002 < 0.0002 0.002	RPD 13 <1 1.0	Acceptance Limits 30% 30% 30%	Pass Limits Pass Pass Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium Chromium Copper	Lab Sample ID S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321	QA Source NCP NCP NCP NCP	Units mg/L mg/L mg/L mg/L	Result 1 Result 1 0.002 < 0.0002 0.002 < 0.001	Result 2 0.002 < 0.0002 0.002 < 0.001	RPD 13 <1 1.0 <1	Acceptance Limits 30% 30% 30% 30%	Pass Limits Pass Pass Pass Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium Chromium Copper Lead	Lab Sample ID S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321	QA Source NCP NCP NCP NCP NCP	Units mg/L mg/L mg/L mg/L	Result 1 Result 1 0.002 < 0.0002 < 0.001 < 0.001	Result 2 0.002 < 0.0002 < 0.001 < 0.001	RPD 13 <1 1.0 <1 <1	Acceptance Limits 30% 30% 30% 30% 30%	Pass Limits Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury	Lab Sample ID S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321	QA Source	Units mg/L mg/L mg/L mg/L mg/L	Result 1 Result 1 0.002 < 0.002 < 0.001 < 0.001 < 0.001	Result 2 0.002 < 0.0002 < 0.001 < 0.001 < 0.0001	RPD 13 <1 1.0 <1 <1 <1 <1	Acceptance Limits 30% 30% 30% 30% 30% 30%	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Test Duplicate Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel	Lab Sample ID S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321 S19-Au03321	QA Source	Units mg/L mg/L mg/L mg/L mg/L mg/L	Result 1 Result 1 0.002 < 0.002 < 0.001 < 0.001 < 0.001 0.001	Result 2 0.002 < 0.0002 < 0.001 < 0.001 < 0.001 0.001	RPD 13 <1 1.0 <1 <1 <1 <1 <1 <1 <1	Acceptance Limits 30% 30% 30% 30% 30% 30% 30%	Pass Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Asim Khan Gabriele Cordero Andrew Sullivan Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

From: Mohammad Hossein Bazyar <mb@geotesta.com.au>
Sent: Tuesday, 29 June 2021 11:48 AM
To: Asim Khan <AsimKhan@eurofins.com>
Cc: Alex Gibson (GEOTESTA) <ag@geotesta.com.au>
Subject: RE: Eurofins Test Results, Invoice - Report 802311 : Site 51134146 STATION LANE LOCHINVAR (NE966)

EXTERNAL EMAIL*

Hi dear Asim,

Can you please arrange Hexavalent Chromium test on sample COM1 for this job. Please go ahead with one day turnaround time and send me the results by tomorrow noon.

Kind Regards

Dr. Mohammad Hossein Bazyar

BEng MEng PhD MIEAust CPEng NER Senior Geotechnical Engineer

GEOTESTA PTY LTD

Geotechnical Engineers – Soil & Rock Testing – NATA accredited laboratory Geotechnical Instrumentation – Environmental Assessment Soil Contamination Testing

T 1300 852216 M 0452 454 418

E mb@geotesta.com.au | www.geotesta.com.au

This email is confidential and may also be privileged. If you are not the intended recipient, please notify GEOTESTA immediately and delete this message from your system without first printing or copying it. Any personal data in this email (including any attachments) must be handled in accordance with all applicable data protection laws.

Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

- Mohammad Hossein Bazyar

Report
Project name
Project ID
Received Date

802311-W 51134146 STATION LANE LOCHINVAR NE966 Jun 10, 2021

Client Sample ID Sample Matrix			FB1 Water
Eurofins Sample No.			S21-Jn23377
Date Sampled			Jun 10, 2021
Test/Reference	LOR	Unit	
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.001
Copper	0.001	mg/L	< 0.001
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	< 0.001
Zinc	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Metals M8	Sydney	Jun 16, 2021	180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

	eurofi	ns			Australia								New Zealand	
~ ••	curon	Env	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	S U 175 1() La P	ydney nit F3, E 6 Mars F ane Cov hone : +	Building Road e West 61 2 99	F NSW 2 900 840	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 5	50 005 085 521 web:	www.eurofins.com.au	i email: EnviroSale	es@eurofins.com	Site # 1254 & 14271	N	ATA # 1	261 Sit	e # 182	7	Site # 23736	NATA # 1261 Site # 25079		
Co Ad	mpany Name: dress:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113	y Ltd (NSW) alavera Rd Park				Oi Re Pl Fa	der N eport none: ix:	lo.: #:	802311 1300852 216		Received: Due: Priority: Contact Name:	Jun 10, 2021 4:20 Jun 16, 2021 3 Day - Mohammad Hoss	PM ein Bazyar
Pro Pro	oject Name: oject ID:	51134146 S NE966	TATION LANE	E LOCHINVAF	२							Eurofins Analytica	I Services Manager :	Asim Khan
		Sa	Imple Detail			Metals M8	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10					
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271										
Syd	ney Laboratory	- NATA Site # 1	8217			Х	X	Х	X					
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 23	/36											
Exto	red Laboratory	- NATA Site #	25079											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	DI1	Jun 10, 2021		Soil	S21-Jn23362			Х	Х					
2	DI2	Jun 10, 2021		Soil	S21-Jn23363			Х	Х					
3	DI3	Jun 10, 2021		Soil	S21-Jn23364			Х	Х					
4	DI4	Jun 10, 2021		Soil	S21-Jn23365			Х	х					
5	DI5	Jun 10, 2021		Soil	S21-Jn23366			Х	х					
6	DI6	Jun 10, 2021		Soil	S21-Jn23367			х	Х					
7	DI7	Jun 10, 2021		Soil	S21-Jn23368			х	Х					
8	DI8	Jun 10, 2021		Soil	S21-Jn23369			Х	Х					
9	DI9	Jun 10, 2021		Soil	S21-Jn23370			Х	Х					

🧶 eurofi				Australia								New Zealand	
	E			Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Sito # 1264 8 14071	S 175 1 0 L P	ydney Init F3, I 6 Mars ane Cov hone : -	Building Road ve West +61 2 99	F NSW 2 900 840	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 0 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 767 Phone : 0800 856 450 IANZ # 1290
ABIN: 50 005 085 521 Web: W	ww.euronns.co	m.au email: EnviroSales@	geuronns.com	Sile # 1254 & 14271	IN	IATA #	1201 51	le # 182	17	Sile # 23730	NATA # 1261 Sile # 25079		
Company Name: Address:	Geotesta Unit 20, 1 Macquari NSW 211	i Pty Ltd (NSW) I Talavera Rd ie Park I3				O Ri Pi Fa	rder I eport hone: ax:	No.: #:	802311 1300852 216		Received: Due: Priority: Contact Name:	Jun 10, 2021 4:20 Jun 16, 2021 3 Day - Mohammad Hoss	PM sein Bazyar
Project Name: Project ID:	5113414 NE966	6 STATION LANE L	LOCHINVAI	R							Eurofins Analytica	I Services Manager :	: Asim Khan
		Sample Detail			Metals M8	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10					
Melbourne Laborato	ry - NATA S	Site # 1254 & 1427	1										
Sydney Laboratory -	NATA Site	# 18217			X	X	Х	X					
Brisbane Laboratory	- NATA Sit	te # 20794						<u> </u>					
Perth Laboratory - N	ATA Site #	23736											
Mayfield Laboratory	- NATA Site	e # 25079						<u> </u>					
External Laboratory								 					
10 COM1	Jun 10, 202	21 S	Soil	S21-Jn23371	X	X	X						
11 COM2	Jun 10, 202	21 S	Soil	S21-Jn23372	X	X	X	 					
12 COM3	Jun 10, 202	21 S	Soil	S21-Jn23373	X	X	X						
13 COM4	Jun 10, 202	21 S	Soil	S21-Jn23374	X	X	X	 					
14 COM5	Jun 10, 202	21 S	Soil	S21-Jn23375	X	X	X						
15 COM6	Jun 10, 202	21 S	Soil	S21-Jn23376	X	X	X	<u> </u>					
16 FB1	Jun 10, 202	21 V	Vater	S21-Jn23377	X			<u> </u>					
17 D1	Jun 10, 202	21 S	Soil	S21-Jn23378	Х		Х						
Test Counts					8	6	16	9					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			11						
Heavy Metals									
Arsenic	mg/L	< 0.001			0.001	Pass			
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Mercury			mg/L	< 0.0001			0.0001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	103			80-120	Pass	
Cadmium			%	104			80-120	Pass	
Copper			%	103			80-120	Pass	
Lead			%	108			80-120	Pass	
Mercury			%	105			80-120	Pass	
Nickel	Nickel						80-120	Pass	
Zinc			%	107			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	S21-Jn23377	CP	%	99			75-125	Pass	
Cadmium	S21-Jn23377	CP	%	103			75-125	Pass	
Chromium	S21-Jn23377	CP	%	103			75-125	Pass	
Copper	S21-Jn23377	CP	%	102			75-125	Pass	
Lead	S21-Jn23377	CP	%	108			75-125	Pass	
Mercury	S21-Jn23377	CP	%	107			75-125	Pass	
Nickel	S21-Jn23377	CP	%	102			75-125	Pass	
Zinc	S21-Jn23377	CP	%	105			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1	1		I		
Heavy Metals	-			Result 1	Result 2	RPD			
Arsenic	S21-Jn28576	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S21-Jn28576	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-Jn23377	CP	mg/L	0.001	< 0.001	20	30%	Pass	
Copper	S21-Jn28576	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S21-Jn28576	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-Jn28576	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-Jn28576	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S21-Jn28576	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Asim Khan John Nguyen Analytical Services Manager Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geotesta Pty Ltd (NSW) Unit 20, 1 Talavera Rd Macquarie Park NSW 2113

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

- Mohammad Hossein Bazyar

Report
Project name
Project ID
Received Date

802311-S 51134146 STATION LANE LOCHINVAR NE966 Jun 10, 2021

Client Sample ID			DI1	DI2	DI3	DI4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23362	S21-Jn23363	S21-Jn23364	S21-Jn23365
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	78	64	84	110
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			DI1	DI2	DI3	DI4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23362	S21-Jn23363	S21-Jn23364	S21-Jn23365
Date Sampled			lup 10, 2021	lup 10, 2021	lup 10, 2021	lup 10, 2021
Tast/Deference		1.1	5011 10, 2021	5011 10, 2021	5011 10, 2021	5011 10, 2021
Pelvevelie Aremetie Hudroserhane						
	0.5		0.5	0.5	0.5	0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Prienanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
1 Otal PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	73	78	70	67
p-Terphenyl-d14 (surr.)	1	%	61	71	12	79
Organochionne Pesticides	0.4		0.4	0.4	0.4	0.4
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldebyde	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	85	106	109	124
Tetrachloro-m-xylene (surr.)	1	%	75	83	83	92
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			DI1	DI2	DI3	DI4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23362	S21-Jn23363	S21-Jn23364	S21-Jn23365
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	66	86	90	102
Heavy Metals						
Arsenic	2	mg/kg	3.8	4.3	3.8	3.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	88	84	75	47
Copper	5	mg/kg	24	26	22	18
Lead	5	mg/kg	5.4	7.2	< 5	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	53	51	50	26
Zinc	5	mg/kg	25	38	31	45
% Moisture	1	%	24	25	26	22

Client Sample ID			DI5	DI6	DI7	DI8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23366	S21-Jn23367	S21-Jn23368	S21-Jn23369
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	21	< 20
TRH C15-C28	50	mg/kg	65	< 50	110	51
TRH C29-C36	50	mg/kg	100	< 50	150	< 50
TRH C10-C36 (Total)	50	mg/kg	165	< 50	281	51
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			DI5	DI6	DI7	DI8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23366	S21-Jn23367	S21-Jn23368	S21-Jn23369
			lup 10, 2021	lup 10, 2021	lup 10, 2021	lup 10, 2021
		1.1	Juli 10, 2021	Juli 10, 2021	Juli 10, 2021	Juli 10, 2021
	20	mg/kg	< 20	< 20	< 20	< 20
	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	140	< 100	230	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
	100	тід/кд	140	< 100	230	< 100
	<u> </u>					
Benzene	0.1	mg/kg	< 0.1	0.3	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
A Dreme fluench en reme (euro)	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromonuorobenzene (surr.)	1	%	120	62	90	109
	0.5		0.5	0.5	0.5	0.5
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) ^	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphtnylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a ki)perdene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluorenthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysono	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dihonz(a h)anthracana	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	<u>%</u>	80	69	77	80
p-Terphenyl-d14 (surr.)	1	%	77	55	71	76
Organochlorine Pesticides						
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			DI5	DI6	DI7	DI8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23366	S21-Jn23367	S21-Jn23368	S21-Jn23369
Date Sampled			Jun 10. 2021	Jun 10. 2021	Jun 10. 2021	Jun 10. 2021
	LOR	Unit				
Organochlorine Pesticides	LOIN	Onit				
	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldebyde	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	82	83	99	122
Tetrachloro-m-xylene (surr.)	1	%	93	78	85	88
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Menoprotophoo	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Notocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Ometheate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Phorato	2	mg/kg	< 2	< 2	< 2	<2
Piriminhos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazonhos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	ma/ka	~ 0.2	< 0.2	~ 0.2	< 0.2
Terbufos	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
	0.2	ing/ng	× 0.2	< 0.Z	< 0.Z	× 0.2

Client Sample ID Sample Matrix			DI5 Soil	DI6 Soil	DI7 Soil	DI8 Soil
Eurofins Sample No.			S21-Jn23366	S21-Jn23367	S21-Jn23368	S21-Jn23369
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	90	68	85	103
Heavy Metals						
Arsenic	2	mg/kg	4.1	45	5.2	4.4
Cadmium	0.4	mg/kg	< 0.4	3.2	< 0.4	< 0.4
Chromium	5	mg/kg	56	84	22	33
Copper	5	mg/kg	19	220	14	8.9
Lead	5	mg/kg	15	40	17	8.1
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	24	58	13	9.8
Zinc	5	mg/kg	69	3800	230	16
% Moisture	1	%	27	37	12	18

Client Sample ID			DI9	COM1	COM2	СОМЗ
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23370	S21-Jn23371	S21-Jn23372	S21-Jn23373
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	52	-	-	-
TRH C15-C28	50	mg/kg	170	-	-	-
TRH C29-C36	50	mg/kg	220	-	-	-
TRH C10-C36 (Total)	50	mg/kg	442	-	-	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	310	-	-	-
TRH >C34-C40	100	mg/kg	120	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	430	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	73	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-

Client Sample ID			DI9	COM1	COM2	СОМЗ
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23370	S21-Jn23371	S21-Jn23372	S21-Jn23373
Date Sampled			Jun 10. 2021	Jun 10. 2021	Jun 10. 2021	Jun 10. 2021
		Linit				
Polycyclic Aromatic Hydrocarbons	LOIN	Onit				
Acenanhthylene	0.5	ma/ka	< 0.5	_	_	_
Anthracene	0.5	ma/ka	< 0.5	_	_	_
Benz(a)anthracene	0.5	ma/ka	< 0.5	-	-	-
Benzo(a)pyrene	0.5	ma/ka	< 0.5	-	-	-
Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	< 0.5	-	-	-
Benzo(a,h,i)pervlene	0.5	ma/ka	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	ma/ka	< 0.5	-	-	-
Chrysene	0.5	ma/ka	< 0.5	-	-	-
Dibenz(a,h)anthracene	0.5	ma/ka	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	< 0.5	-	-	-
Naphthalene	0.5	ma/ka	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	84	-	-	-
p-Terphenyl-d14 (surr.)	1	%	77	-	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dibutylchlorendate (surr.)	1	%	103	102	127	106
Tetrachloro-m-xylene (surr.)	1	%	92	78	92	86

Client Sample ID			DI9	COM1	COM2	СОМЗ
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23370	S21-Jn23371	S21-Jn23372	S21-Jn23373
Date Sampled			Jun 10. 2021	Jun 10. 2021	Jun 10. 2021	Jun 10. 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	Lon	Offic				
Azinphos-methyl	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	ma/ka	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	100	88	102	93
Heavy Metals						
Arsenic	2	mg/kg	3.6	3.7	17	2.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	91	52	37
Copper	5	mg/kg	8.1	33	25	14
	5	mg/kg	15	17	9.8	9.2
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	5	mg/kg	8.1	47	29	24
	5	mg/kg	33	50	25	35
% Moisture	1	%	18	29	29	29

Client Sample ID			COM4	COM5	COM6	D1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23374	S21-Jn23375	S21-Jn23376	S21-Jn23378
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit	, i	, i	, i	
Organochlorine Pesticides		<u>e</u>				
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	-
4.4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05	-
4.4'-DDE	0.05	ma/ka	< 0.05	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Toxaphene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2	< 0.2	< 0.2	-
Dibutylchlorendate (surr.)	1	%	113	78	91	-
Tetrachloro-m-xylene (surr.)	1	%	88	85	88	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Coumaphos	2	mg/kg	<2	<2	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Dictionvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
EDN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ethion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Ethoprop	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Ethyl parathion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Fenitrothion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Fensulfothion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Fenthion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Malathion	0.2	ma/ka	< 0.2	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
				•	•	

Client Sample ID			COM4	COM5	СОМ6	D1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Jn23374	S21-Jn23375	S21-Jn23376	S21-Jn23378
Date Sampled			Jun 10, 2021	Jun 10, 2021	Jun 10, 2021	Jun 10, 2021
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Monocrotophos	2	mg/kg	< 2	< 2	< 2	-
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Omethoate	2	mg/kg	< 2	< 2	< 2	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	95	80	96	-
Heavy Metals						
Arsenic	2	mg/kg	5.3	7.3	26	2.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	60	70	71	8.9
Copper	5	mg/kg	14	22	42	6.8
Lead	5	mg/kg	8.7	< 5	17	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	18	32	36	6.8
Zinc	5	mg/kg	18	63	140	30
% Moisture	1	%	23	24	30	25

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Jun 11, 2021	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Metals M8	Sydney	Jun 11, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 10, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

🔅 eurofi	ns			Australia								New Zealand	
e curon	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	5 U 175 1() La P	ydney nit F3, E 6 Mars F ane Cov hone : +	Suilding Road e West 61 2 99	F NSW 2	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web:	www.eurofins.com.au	email: EnviroSale	es@eurofins.com	Site # 1254 & 14271	N	ATA # 1	261 Sit	e # 182	17	Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	Geotesta Pty Unit 20, 1 Ta Macquarie P NSW 2113	/ Ltd (NSW) alavera Rd Park				Oi Re Pl Fa	der N eport none: ix:	lo.: #:	802311 1300852 216		Received: Due: Priority: Contact Name:	Jun 10, 2021 4:20 Jun 16, 2021 3 Day - Mohammad Hoss	PM ein Bazyar
Project Name: Project ID:	51134146 S ⁻ NE966	TATION LANE	E LOCHINVAI	2							Eurofins Analytica	Il Services Manager :	Asim Khan
	Sa	mple Detail			Metals M8	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10					
Melbourne Laborato	ory - NATA Site	# 1254 & 142	271										
Sydney Laboratory	- NATA Site # 1	8217			X	X	X	X					
Brisbane Laboratory	y - NATA Site #	20794											
Perth Laboratory - N		25070											
External Laboratory	- NATA Sile #	25079											
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1 DI1	Jun 10, 2021		Soil	S21-Jn23362			Х	Х					
2 DI2	Jun 10, 2021		Soil	S21-Jn23363			Х	Х					
3 DI3	Jun 10, 2021		Soil	S21-Jn23364			Х	Х					
4 DI4	Jun 10, 2021		Soil	S21-Jn23365			Х	Х					
5 DI5	Jun 10, 2021		Soil	S21-Jn23366			Х	Х					
6 DI6	Jun 10, 2021		Soil	S21-Jn23367			Х	Х					
7 DI7	Jun 10, 2021		Soil	S21-Jn23368			Х	Х					
8 DI8	Jun 10, 2021		Soil	S21-Jn23369			Х	Х					
9 DI9	Jun 10, 2021		Soil	S21-Jn23370			Х	Х					

🥵 eurofi	ns		Australia								New Zealand	
ç, curon	En	vironment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	8 U 175 1 D La P	ydney Init F3, E 6 Mars I ane Cov Phone : 4	Building Road /e West -61 2 99	F NSW 2 900 840	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 066 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web:	www.eurofins.com.	au email: EnviroSales@eurofins.com	Site # 1254 & 14271	N	IATA # ′	1261 Sit	e # 182	17	Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	Geotesta F Unit 20, 1 ⁻ Macquarie NSW 2113	Pty Ltd (NSW) Falavera Rd Park			O Re Pl Fa	rder M eport hone: ax:	No.: #:	802311 1300852 216		Received: Due: Priority: Contact Name:	Jun 10, 2021 4:20 Jun 16, 2021 3 Day - Mohammad Hoss	PM sein Bazyar
Project Name: Project ID:	51134146 NE966	STATION LANE LOCHINVA	٨R							Eurofins Analytica	Il Services Manager :	: Asim Khan
	S	Sample Detail		Metals M8	Suite B14: OCP/OPP	Moisture Set	Eurofins Suite B10					
Melbourne Laborato	ory - NATA Sit	e # 1254 & 14271										
Sydney Laboratory	- NATA Site #	18217		X	X	Х	X					
Brisbane Laborator	y - NATA Site	# 20794										
Perth Laboratory - N	IATA Site # 2	3736										
Mayfield Laboratory	- NATA Site	# 25079										
External Laboratory												
10 COM1	Jun 10, 2021	Soil	S21-Jn23371	Х	X	X						
11 COM2	Jun 10, 2021	Soil	S21-Jn23372	X	X	X						
12 COM3	Jun 10, 2021	Soil	S21-Jn23373	X	X	X						
13 COM4	Jun 10, 2021	Soil	S21-Jn23374	X	X	X						
14 COM5	Jun 10, 2021	Soil	S21-Jn23375	X	X	X						
15 COM6	Jun 10, 2021	Soil	S21-Jn23376	X	X	X						
16 FB1	Jun 10, 2021	Water	S21-Jn23377	X								
17 D1	Jun 10, 2021	Soil	S21-Jn23378	Х		X						
Test Counts				8	6	16	9					

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Total Recoverable Hydrocarbons						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1				
втех						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank		1				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1	1	1		
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Organophosphorus Pesticides	-				
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	ļ
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank			1		
Heavy Metals				_	
Arsenic	mg/kg	< 2	2	Pass	
	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 5	5	Pass	
ZINC	mg/kg	< 5	5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery			I I	1		
Total Recoverable Hydrocarbons						
TRH C6-C9	%	87		70-130	Pass	
TRH C10-C14	%	98		70-130	Pass	
Naphthalene	%	114		70-130	Pass	
TRH C6-C10	%	86		70-130	Pass	
TRH >C10-C16	%	99		70-130	Pass	
LCS - % Recovery			1	T	1	
BTEX						
Benzene	%	88		70-130	Pass	
Toluene	%	87		70-130	Pass	
Ethylbenzene	%	87		70-130	Pass	
m&p-Xylenes	%	89		70-130	Pass	
o-Xylene	%	89		70-130	Pass	
Xylenes - Total*	%	89		70-130	Pass	
LCS - % Recovery			1	I	1	
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	114		70-130	Pass	
Acenaphthylene	%	110		70-130	Pass	
Anthracene	%	120		70-130	Pass	
Benz(a)anthracene	%	120		70-130	Pass	
Benzo(a)pyrene	%	114		70-130	Pass	
Benzo(b&j)fluoranthene	%	108		70-130	Pass	
Benzo(g.h.i)perylene	%	82		70-130	Pass	
Benzo(k)fluoranthene	%	119		70-130	Pass	
Chrysene	%	121		70-130	Pass	
Dibenz(a.h)anthracene	%	75		70-130	Pass	
Fluoranthene	%	119		70-130	Pass	
Fluorene	%	113		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	123		70-130	Pass	
Naphthalene	%	109		70-130	Pass	
Phenanthrene	%	116		70-130	Pass	
Pyrene	%	120		70-130	Pass	
LCS - % Recovery			1 1	1	r	
Organochlorine Pesticides	1					
Chlordanes - Total	%	98		70-130	Pass	
4.4'-DDD	%	92		70-130	Pass	
4.4'-DDE	%	106		70-130	Pass	
4.4'-DDT	%	85		70-130	Pass	
a-BHC	%	95		70-130	Pass	
Aldrin	%	106		70-130	Pass	
b-BHC	%	96		70-130	Pass	
d-BHC	%	92		70-130	Pass	
Dieldrin	%	97		70-130	Pass	
Endosulfan I	%	93		70-130	Pass	
Endosulfan II	%	90		70-130	Pass	
Endosulfan sulphate	%	89		70-130	Pass	
Endrin	%	86		70-130	Pass	ļ
Endrin aldehyde	%	94		70-130	Pass	
Endrin ketone	%	92		70-130	Pass	ļ
g-BHC (Lindane)	%	101		70-130	Pass	
Heptachlor	%	85		70-130	Pass	
Heptachlor epoxide	%	99		70-130	Pass	
Hexachlorobenzene	%	98		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Methoxychlor			%	76		70-130	Pass	
LCS - % Recovery								
Organophosphorus Pesticides								
Diazinon			%	118		70-130	Pass	
Dimethoate			%	81		70-130	Pass	
Ethion			%	89		70-130	Pass	
Fenitrothion			%	97		70-130	Pass	
Methyl parathion			%	97		70-130	Pass	
Mevinphos			%	86		70-130	Pass	
LCS - % Recovery							-	
Heavy Metals								
Arsenic			%	101		80-120	Pass	
Cadmium			%	103		80-120	Pass	
Chromium			%	104		80-120	Pass	
Copper			%	102		80-120	Pass	
Lead			%	104		80-120	Pass	
Mercury			%	103		80-120	Pass	
Nickel			%	105		80-120	Pass	
Zinc			%	101		80-120	Pass	
Test	I ab Sample ID	QA	Units	Result 1		Acceptance	Pass	Qualifying
		Source				Limits	Limits	Code
Spike - % Recovery				D 14				
Total Recoverable Hydrocarbons			<i></i>	Result 1				
TRH C10-C14	S21-Jn20756	NCP	%	84		70-130	Pass	
TRH >C10-C16	S21-Jn20756	NCP	%	87		70-130	Pass	
Spike - % Recovery				D 144		1		
Polycyclic Aromatic Hydrocarbons		NOD	0/	Result 1		70.400		
Acenaphthene	S21-Jn20770	NCP	%	78		70-130	Pass	
Acenaphthylene	S21-Jn20770	NCP	%	/5		70-130	Pass	
Anthracene	S21-Jn20770	NCP	%	84		70-130	Pass	
Benz(a)anthracene	S21-Jn20770	NCP	%	88		70-130	Pass	
Benzo(a)pyrene	S21-Jn20770	NCP	%	89		70-130	Pass	
Benzo(b&j)fluoranthene	S21-Jn20770	NCP	%	91		70-130	Pass	
Benzo(g.h.i)perylene	S21-Jn20770	NCP	%	87		70-130	Pass	
Benzo(k)fluoranthene	S21-Jn20770	NCP	%	87		70-130	Pass	
Chrysene	S21-Jn20770	NCP	%	93		70-130	Pass	
Dibenz(a.h)anthracene	S21-Jn20770	NCP	%	88		70-130	Pass	
	S21-Jn20770	NCP	%	97		70-130	Pass	
Fluorene	S21-Jn20770	NCP	%	78		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-Jn20770	NCP	%	84		70-130	Pass	
Naphthalene	S21-Jn20770	NCP	%	76		70-130	Pass	
Phenanthrene	S21-Jn20770	NCP	%	84		70-130	Pass	
Pyrene	S21-Jn20770	NCP	%	100		70-130	Pass	
Spike - % Recovery				- · ·		1	[
Organochlorine Pesticides				Result 1			_	
Chlordanes - Total	S21-Jn20770	NCP	%	76		70-130	Pass	
4.4'-DDD	S21-Jn20770	NCP	%	88		70-130	Pass	
4.4'-DDE	S21-Jn20770	NCP	%	80		70-130	Pass	
4.4'-DDT	S21-Jn20770	NCP	%	73		70-130	Pass	
а-ВНС	S21-Jn20770	NCP	%	79		70-130	Pass	
Aldrin	S21-Jn20770	NCP	%	87		70-130	Pass	
b-BHC	S21-Jn20770	NCP	%	74		70-130	Pass	
d-BHC	S21-Jn20770	NCP	%	82		70-130	Pass	
Dieldrin	S21-Jn20770	NCP	%	77		70-130	Pass	
Endosulfan I	S21-Jn20770	NCP	%	88		70-130	Pass	

Endosulfan II S21-Jn20770 NCP % 84 70-130 Pass Endosulfan suphate S21-Jn20770 NCP % 71 70-130 Pass Endrin S21-Jn20770 NCP % 86 70-130 Pass Endrin ketone S21-Jn20770 NCP % 79 70-130 Pass gBHC (Lindane) S21-Jn20770 NCP % 76 70-130 Pass Heptachlor S21-Jn20770 NCP % 76 70-130 Pass Heptachlor epoxide S21-Jn20770 NCP % 74 70-130 Pass Spike - % Recovery To-130 Pass 70-130 Pass 70-130 Pass Dimethoate S21-Jn20770 NCP % 74 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Mewinphos S21-Jn20770 NCP % 91 70-130 Pass
Endosulfan sulphate S21-Jn2070 NCP % 71 70 70-130 Pass Endrin S21-Jn20770 NCP % 86 70-130 Pass Endrin kotone S21-Jn20770 NCP % 80 70-130 Pass Endrin kotone S21-Jn20770 NCP % 80 70-130 Pass Heptachlor epoxide S21-Jn20770 NCP % 76 70-130 Pass Spike - % Recovery S21-Jn20770 NCP % 82 70-130 Pass Organophosphorus Pesticides Edition S21-Jn20770 NCP % 82 70-130 Pass Diazinon S21-Jn20770 NCP % 112 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Methyl parathion S21-Jn2338 CP % 81 70-
Endrin S21-Ja2070 NCP % 86 70-130 Pass Endrin ketone S21-Ja20770 NCP % 79 70-130 Pass Bell (Lindane) S21-Ja20770 NCP % 80 70-130 Pass Heptachlor S21-Ja20770 NCP % 76 70-130 Pass Heptachlor spoxide S21-Ja20770 NCP % 76 70-130 Pass Spike - % Recovery VCP % 82 70-130 Pass Dimethoate S21-Ja20770 NCP % 12 70-130 Pass Ethion S21-Ja20770 NCP % 112 70-130 Pass Ethion S21-Ja20770 NCP % 98 70-130 Pass Mevinphos S21-Ja20770 NCP % 91 70-130 Pass Spike - & Recovery Total Recoverable Hydrocarbons Result 1 70-130 Pass TRH C6-C9 S21-Ja2368
Indivision \$21-h20770 NCP % 79 79 70-130 Pass g-BHC (Lindane) \$21-h20770 NCP % 80 70-130 Pass Heptachlor opoxide \$21-h20770 NCP % 76 70-130 Pass Heytachlor opoxide \$21-h20770 NCP % 76 70-130 Pass Edisca % Recovery 70-130 Pass 70-130 Pass Diazinon \$21-h20770 NCP % 112 70-130 Pass Ethion \$21-h20770 NCP % 98 70-130 Pass Ethion \$21-h20770 NCP % 98 70-130 Pass Methy parathion \$21-h20770 NCP % 97 70-130 Pass Spite -% Recovery 70-130 Pass 70-130 Pass Teat Recoverable Hydrocarbons \$21-h2070 NCP % 94 70-130 Pass
g-BHC (Lindane) 521-Jn20770 NCP % 80 70-130 Pass Heptachlor epoxide S21-Jn20770 NCP % 76 70-130 Pass Heytachlor epoxide S21-Jn20770 NCP % 82 70-130 Pass Greenew S21-Jn20770 NCP % 82 70-130 Pass Spike - % Recovery Organophosphorus Pesticides result 1 70-130 Pass Diardinon S21-Jn20770 NCP % 74 70-130 Pass Ethion S21-Jn20770 NCP % 74 70-130 Pass Fenitrothion S21-Jn20770 NCP % 98 70-130 Pass Mewinphos S21-Jn20770 NCP % 91 70-130 Pass Spike - % Recovery 70-130 Pass 70-130 Pass TRH C6-C0 S21-Jn2368 CP % 81 70-130 Pass Naphthalene
Heptachlor S21-Jn20770 NCP % 79 79 70-130 Pass Heptachlor opoxide S21-Jn20770 NCP % 76 70-130 Pass Spike - % Recovery V 82 70-130 Pass Organohosphorus Pesticides - Result 1 70-130 Pass Diazinon S21-Jn20770 NCP % 112 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Methy parathion S21-Jn20770 NCP % 97 70-130 Pass Methy parathion S21-Jn20770 NCP % 97 70-130 Pass Total Recovery Total Recovery Total Recovery 70-130 Pass Total Recovery S21-Jn2388 CP % 81 70-130 Pass Total Recovery
Heptachlor epoxide S21-Jn20770 NCP % 76 76 70-130 Pass Hexachlorobenzene S21-Jn20770 NCP % 82 70-130 Pass Organophosphorus Pesticides Result 1 70-130 Pass 70-130 Diazinon S21-Jn20770 NCP % 112 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Splice -% Recovery 70-130 Pass Pass TRH C6-C9 S21-Jn2368 CP % 81 70-130 Pass Splice -% Recovery Fass Fass Fass TRH C6-C10
Hexachlorobenzene S21-Jn20770 NCP % 82 Toliso Pass Spike - % Recovery Result I Result I Image: Spike - % Recovery Result I Image: Spike - % Recovery Result I Image: Spike - % Recovery Pass Image: Spike - % Recovery Pass<
Spike - % Recovery Result 1 Image: Control of the second
Organophosphorus Pesticides Result 1 Re
Diazinon S21-Jn20770 NCP % 112 70-130 Pass Dimethoate S21-Jn20770 NCP % 74 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Methyl parathion S21-Jn20770 NCP % 98 70-130 Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Spike -% Recovery S21-Jn20770 NCP % 91 70-130 Pass TRH C6-C9 S21-Jn20368 CP % 81 70-130 Pass Spike -% Recovery Result 1 No Pass No TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Spike -% Recovery To-130 Pass No TRH C6-C10 S21-Jn23368 CP % 84 70-130 Pass Ioluene S21-Jn23368
Dimethoate S21-Jn20770 NCP % 74 70-130 Pass Ethion S21-Jn20770 NCP % 98 70-130 Pass Fenitrothion S21-Jn20770 NCP % 98 70-130 Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Spike-// Recovery Total Recoverable Hydrocarbons rotal Recoverable Hydrocarbons 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Spike - Kecovery S21-Jn23368 CP % 94 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 94 70-130 Pass Spike - Kecovery 70-130 Pass 70-130 Pass TRH C6-C10 S21-Jn23368 CP % 84 70-130 Pass Spike - Kecovery S21-Jn23368 CP % 81 70-130 Pass <td< td=""></td<>
Ethion S21-Jn20770 NCP % 98 70-130 Pass Fenitrothion S21-Jn20770 NCP % 91 70-130 Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Mewinphos S21-Jn20770 NCP % 97 70-130 Pass Spike - % Recovery 70-130 Pass 70-130 Pass Spike - % Recovery Result 1 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass TRH C6-C10 S21-Jn23368 CP % 94 70-130 Pass Spike - % Recovery 70-130 Pass Spike - % Recovery Result 1 70-130 Pass Toluene S21-Jn2368 CP % 84 70-130 Pass Toluene S21-Jn2368 CP % 80
Fenitrothion S21-Jn20770 NCP % 98 (70-130) Pass Methyl parathion S21-Jn20770 NCP % 91 70-130 Pass Metnyhos S21-Jn20770 NCP % 91 70-130 Pass Spike -% Recovery S21-Jn23368 CP % 81 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Spike -% Recovery S21-Jn23368 CP % 94 70-130 Pass TRH C6-C10 S21-Jn23368 CP % 94 70-130 Pass Spike -% Recovery Total and the set set set set set set set set set se
Methyl parathion S21-Jn2070 NCP % 91 70-130 Pass Mevinphos S21-Jn20770 NCP % 97 70-130 Pass Spike -% Recovery V Result 1 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Naphtalene S21-Jn23368 CP % 94 70-130 Pass Spike -% Recovery S21-Jn23368 CP % 94 70-130 Pass Spike -% Recovery S21-Jn23368 CP % 84 70-130 Pass Benzene S21-Jn23368 CP % 84 70-130 Pass Toluene S21-Jn23368 CP % 81 70-130 Pass e-xylenes S21-Jn23368 CP % 80 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass o-Xylenes S21-Jn23370 </td
Metriphos S21-Jn20770 NCP % 97 70-130 Pass Spike -% Recovery Total Recoverable Hydrocarbons Result 1 Result 1 70-130 Pass TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Naphthalene S21-Jn23368 CP % 94 70-130 Pass Spike -% Recovery S21-Jn23368 CP % 72 70-130 Pass Spike -% Recovery Result 1 Result 1 70-130 Pass 1 Benzene S21-Jn23368 CP % 84 70-130 Pass Ethylbenzene S21-Jn23368 CP % 84 70-130 Pass Ethylbenzene S21-Jn23368 CP % 81 70-130 Pass m&p-Xylenes S21-Jn23368 CP % 80 70-130 Pass Sylke -% Recovery Feasy Result 1 70-130 Pass 1 Arsenic S2
Spike -% Recovery Result 1 Image: Spike -% Recovery Result 1 Image: Spike -% Spike -% Spike -% Recovery Result 1 Total Recovery Spike -% Recovery Result 1 Image: Spike -% Recovery Result 1 Total Pass Total Pass Spike -% Recovery Result 1 Image: Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recovery Spike -% Recove
Total Recoverable Hydrocarbons Result 1 Result 1 <th< td=""></th<>
TRH C6-C9 S21-Jn23368 CP % 81 70-130 Pass Naphthalene S21-Jn23368 CP % 94 70-130 Pass TRH C6-C10 S21-Jn23368 CP % 72 70-130 Pass Spike -% Recovery 70-130 Pass 70-130 Pass Spike -% Recovery 70-130 Pass Pass Pass Pass <td< td=""></td<>
Naphthalene S21-Jn23368 CP % 94 70-130 Pass TRH C6-C10 S21-Jn23368 CP % 72 70-130 Pass Spike - % Recovery E Result 1 Pass Pass BTEX Result 1 Benzene S21-Jn23368 CP % 84 70-130 Pass Ethylbenzene S21-Jn23368 CP % 81 70-130 Pass m&p-Xylenes S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass Sylee - % Recovery Yeas 70-130 Pass Yeas Heavy Metals Yeas Yeas Yeas Yeas Yeas Yeas Cadmium S21-Jn23370 CP % 106
TRH C6-C10 S21-Jn23368 CP % 72 70-130 Pass Spike - % Recovery Result 1 Result 1 Result 1 Image: Constraint of the constra
Spike - % Recovery BTEX Result 1 C C Benzene \$21-Jn23368 CP % 84 70-130 Pass Toluene \$21-Jn23368 CP % 81 70-130 Pass Ethylbenzene \$21-Jn23368 CP % 81 70-130 Pass Ethylbenzene \$21-Jn23368 CP % 81 70-130 Pass m&p-Xylenes \$21-Jn23368 CP % 80 70-130 Pass o-Xylene \$21-Jn23368 CP % 80 70-130 Pass ylenes - Total* \$21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery Kesult 1 Total Pass C Heavy Metals Result 1 Kesult
BTEX Result 1 Image: Marcine Sector
Benzene S21-Jn23368 CP % 84 70-130 Pass Toluene S21-Jn23368 CP % 81 70-130 Pass Ethylbenzene S21-Jn23368 CP % 76 70-130 Pass m&p-Xylenes S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass ylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery S21-Jn23368 CP % 80 70-130 Pass Heavy Metals S21-Jn23368 CP % 80 70-130 Pass Arsenic S21-Jn23370 CP % 103 75-125 Pass Cadmium S21-Jn23370 CP % 106 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn2
Toluene S21-Jn23368 CP % 81 70-130 Pass Ethylbenzene S21-Jn23368 CP % 76 70-130 Pass m&p-Xylenes S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass xylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery S21-Jn23368 CP % 80 70-130 Pass Heavy Metals S21-Jn23368 CP % 80 70-130 Pass Arsenic S21-Jn23370 CP % 103 75-125 Pass Cadmium S21-Jn23370 CP % 106 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-J
Ethylbenzene S21-Jn23368 CP % 76 70-130 Pass m&p-Xylenes S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass Xylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery S21-Jn23368 CP % 80 70-130 Pass Heavy Metals S21-Jn23370 CP % 80 75-125 Pass Cadmium S21-Jn23370 CP % 103 75-125 Pass Chromium S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 105 75-125 Pass Mercury S21-Jn23370 CP % 110 75-125 Pass Nickel S21
m&p-Xylenes S21-Jn23368 CP % 81 70-130 Pass o-Xylene S21-Jn23368 CP % 80 70-130 Pass Xylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery S21-Jn23368 CP % 80 70-130 Pass Heavy Metals Result 1 M M M M Arsenic S21-Jn23370 CP % 103 75-125 Pass Cadmium S21-Jn23370 CP % 106 75-125 Pass Chromium S21-Jn23370 CP % 105 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 111 75-125 Pass Nickel S21-Jn23370 CP
o-Xylene S21-Jn23368 CP % 80 70-130 Pass Xylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery Resolt 1 Result 1 Image: Comparison of the system of the syst
Xylenes - Total* S21-Jn23368 CP % 80 70-130 Pass Spike - % Recovery Result 1 Result 1 Model
Spike - % Recovery Heavy Metals Result 1 Image: Colspan="5">Colspan="5">Result 1 Arsenic \$21-Jn23370 CP % 103 75-125 Pass Cadmium \$21-Jn23370 CP % 106 75-125 Pass Chromium \$21-Jn23370 CP % 105 75-125 Pass Copper \$21-Jn23370 CP % 105 75-125 Pass Lead \$21-Jn23370 CP % 105 75-125 Pass Mercury \$21-Jn23370 CP % 110 75-125 Pass Nickel \$21-Jn23370 CP % 111 75-125 Pass Zinc \$21-Jn23370 CP % 106 75-125 Pass Zinc \$21-Jn23370 CP % 106 75-125 Pass Spike - % Recovery S21-Jn23370 CP % 112 75-125 Pass
Heavy Metals Result 1 Result 1 <thresult 1<="" th=""> Result 1</thresult>
Arsenic S21-Jn23370 CP % 103 75-125 Pass Cadmium S21-Jn23370 CP % 106 75-125 Pass Chromium S21-Jn23370 CP % 105 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 110 75-125 Pass Nickel S21-Jn23370 CP % 111 75-125 Pass Zinc S21-Jn23370 CP % 106 75-125 Pass Spike - % Recovery S21-Jn23370 CP % 112 75-125 Pass
Cadmium S21-Jn23370 CP % 106 75-125 Pass Chromium S21-Jn23370 CP % 105 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 110 75-125 Pass Nickel S21-Jn23370 CP % 111 75-125 Pass Zinc S21-Jn23370 CP % 116 75-125 Pass Spike - % Recovery S21-Jn23370 CP % 112 75-125 Pass
Chromium S21-Jn23370 CP % 105 75-125 Pass Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 111 75-125 Pass Nickel S21-Jn23370 CP % 106 75-125 Pass Zinc S21-Jn23370 CP % 112 75-125 Pass
Copper S21-Jn23370 CP % 105 75-125 Pass Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 111 75-125 Pass Nickel S21-Jn23370 CP % 106 75-125 Pass Zinc S21-Jn23370 CP % 112 75-125 Pass
Lead S21-Jn23370 CP % 110 75-125 Pass Mercury S21-Jn23370 CP % 111 75-125 Pass Nickel S21-Jn23370 CP % 106 75-125 Pass Zinc S21-Jn23370 CP % 106 75-125 Pass Spike - % Recovery Secovery Secovery Secovery Secovery Secovery
Nickel S21-Jn23370 CP % 111 75-125 Pass Zinc S21-Jn23370 CP % 106 75-125 Pass Spike - % Recovery Spike - % Recovery Spike - % Spik
Nickei S21-Jh23370 CP % 106 75-125 Pass Zinc S21-Jh23370 CP % 112 75-125 Pass Spike - % Recovery Spike - % Rec
Spike - % Recovery
Organochlaring Basticidas
Endrin aldehvide S21- In23322 NICP % 103 70-130 Pass
Methoxychlor S21-In17552 NCP % 118 70-130 Pass
Test Lab Sample ID QA Units Result 1 Acceptance Pass Qualifying
Durelisate
Duplicate
TRH C10-C14 S21-bit23233 INCF IIIg/Kg < 20 < 20 < 1 30% Pass
TRH C15-C28 S21-bit23362 CP mg/kg < 20 < 1 30% Pass
TRH C20-C36 S21-bit23362 CP mg/kg < 50 < 1 30% FdSS
Nanhthalene S21-bn25052 OF Ilig/kg < 30 < 1 30% Fass
Traphiliaione 321-0123233 Troi Trigrid <0.3 <1 30% FdSS TRH C6-C10 \$21-1025259 NICP mg/kg >20 >1 30% Page
TRH SC10-C16 S21-In23362 CP mg/kg < 50 < 1 30% Page
TRH 5C16-C34 S21-Jn23362 CP mg/kg < 100 < 1 30% Page
TRH >C34-C40 S21-Jn23362 CP mg/kg < 100 < 1 30% Pass

Duplicate				_			_		
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Jn25259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Jn25259	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Jn25259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xvlenes	S21-Jn25259	NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
o-Xvlene	S21-Jn25259	NCP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-Jn25259	NCP	ma/ka	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	0110110100			1 0.0	1 010	••		1 400	
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S21In20823	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-In20823	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Jn20823	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-In20823	NCP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-In20823	NCP	ma/ka	< 0.0	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S21-In20823	NCP	ma/ka	< 0.0	< 0.0	<1	30%	Pass	
Benzo(g h i)pervlene	S21-Jh20823	NCP	mg/kg	< 0.5	< 0.5	~1	30%	Dass	
Benzo(k)fluoranthene	S21-J120823	NCP	ma/ka	< 0.5	< 0.5	~1	30%	Dass	
Chrysono	S21-J120823		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S21-J120623		mg/kg	< 0.5	< 0.5	<1	30%	Pass Dass	
Dibenz(a.n)antinacene	S21-J120823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-J120823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S21-Jh20823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Jh20823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Jh20823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Jn20823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Jn20823	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Decilit	Desult 0	DDD			
Organochiorine Pesticides	001 1=00000	NOD		Result 1	Result 2	RPD	2001	Dees	
	S21-Jh20823	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4-DDD	S21-Jh20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DD1	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
а-внс	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-Jn20823	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	ļ
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S21-Jn20823	NCP	mg/kg	< 2	< 2	<1	30%	Pass	L

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Demeton-S	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S21-Jn20823	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S21-Jn20823	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S21-Jn20823	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate							•		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Jn23367	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Jn23367	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Jn23367	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Jn23367	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-Jn23367	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Jn23367	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Jn23369	CP	mg/kg	4.4	< 2	100	30%	Fail	Q15
Cadmium	S21-Jn23369	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Jn23369	CP	mg/kg	33	8.1	120	30%	Fail	Q15
Copper	S21-Jn23369	CP	mg/kg	8.9	< 5	100	30%	Fail	Q15
Lead	S21-Jn23369	CP	mg/kg	8.1	< 5	120	30%	Fail	Q15
Mercury	S21-Jn23369	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Jn23369	CP	mg/kg	9.8	< 5	110	30%	Fail	Q15
Zinc	S21-Jn23369	CP	mg/kg	16	6.2	89	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Jn23370	CP	mg/kg	52	59	14	30%	Pass	
TRH C15-C28	S21-Jn23370	CP	mg/kg	170	190	11	30%	Pass	
TRH C29-C36	S21-Jn23370	CP	mg/kg	220	240	8.0	30%	Pass	
TRH >C10-C16	S21-Jn23370	CP	mg/kg	< 50	56	16	30%	Pass	
TRH >C16-C34	S21-Jn23370	CP	mg/kg	310	340	9.0	30%	Pass	
TRH >C34-C40	S21-Jn23370	CP	mg/kg	120	140	14	30%	Pass	

Duplicate								_	
				Result 1	Result 2	RPD			
% Moisture	S21-Jn23376	CP	%	30	28	9.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Asim Khan Andrew Sullivan John Nguyen Roopesh Rangarajan

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Metal (NSW)

Senior Analyst-Volatile (NSW)

Senior Analyst-Organic (NSW)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	CHAII	N OF CUS	TODY RECORD)	Unit F3 Bk 02 9900 84	aboratory I.F. 16 Mars F 100 Enviros	Rd, Lane Cov SampleNSW(e West, NSM @eurofins.co	¥ 2066	Brisbane Unit 1, 21 07 3902 46	Elaborator Smallwood P 600 Enviro	ny 1., Muramie, SampleQLD	QLD 4172 @eurofins.co	m	Perth La Unit 2, 91 08 9251 9	boratory Leach Highway, Kewo 500 EnviroSampleW	lale, WA 6105 IA@eurofins.co	n		Melbourn 2 Kingston 03 8564 50	ne Laboratory Town Close, Oakleigh 100 EnviroSampleVI	r. VIC 3166 C@eurofins.com	
Company	/ (Geotesta		Pro	ojectNe	NE966					Project	Manager											
Address	:	20/1 Talavera R	td, Macquarie Park, 211	Proje	ect Name	51,134,1	46 Statior	ı Lane, Lo	ochinvar		Repor	t Format					Relinqu	lished by	-	_:			
Contact Na	me I	Dr. Mohammad	Hossein Bazyar	al or Filler	8												Email fe	or Results					
Phone N	2 4	452454418		pedir "Tor													100	Coni	ainers	2	Turn Arou	nd Requirements	
15115				talysis ed please	10	etals	314	-	-	×	tos	.8	ate				TP		ME	-	Overnight ((9am)*	
Special Direc	tion			Ar are reques	Suite	Heavy N	Suite F	TRI	PA	BTE	Asbes	ph, B	Sulph				Ę,	tic Slass	Glass	-	🔲 1 Day*	🖸 2 Day*	
Purchase O	rder			here metals													L Plastic ImL Plas	imL Plas Amber	OmLvial Amber	問	🔲 3 Day*	🛃 5 Day	
Quote ID I	N≏			(Note V													52 1	125 200mL	4 125mL		D Other (* Surcharges ar) apply
N9	CI	ient Sample ID	Date	Matrix													199			Other (Samplı DG Ha	e Comments / zard Warning	
		Di1	10/06/21	Soil	X					×											- E mar		
		Di2	10/06/21	Soil	X												11						
		DI3	10/06/21	Soil	X												4						
3		Di4	10/06/21	Soil	X								-										
		Di5	10/06/21	Soil	X												2			1	di ti		
17		Di6	10/06/21	Soil	X	-				x		1									1/3/3		
		Di7	10/06/21	Soil	X													1.4	143		and the second		
1		Di8	10/06/21	Soil	X					-											1		
		Di9	10/06/21	Soil	X				_									1			Sec. 11		
		COM1	10/06/21	Soil		x	x								-					12	184.1		
		COM2	10/06/21	Soil		X	X														1.2		
		COM3	10/06/21	Sol		×	× ×	_						-							128 0		
		COMA	10/05/21	Soil		×	×	-						_									
27		COM5	10/06/21	Soil		×	Ŷ	-			-		1										
2		COME	10/02/21	Soil		v				-		-									1000		
		COMO	10/00/21	Suit	-		^		_	-		-					-		-11				
		FB1	10/06/21	Water		X	2.0.1	_		-			-								74		
1	-	D1	10/06/21	Soil	-	X		_		-	-			-		_			PAR				2
Mathed	.t 🗖	2 3 1	Total C	Counts	9	8	6			2													
Shipmer	nt	Courier (#)	Hand Deli	vered	Postal	Na	une					Sign	ature				Date		20	Time		4
Laboratory	Use Only	Received By	Jeremy		D BNE	MEL P	ER (ADL	INEW [C	Sigr	nature	CX	26-mail	9		Date	<u>101 61 2</u>	<u>-</u>	lime	<u>4</u>		M Temperature	10,36	
		Received By			D BNE	MEL P	er i adl	NEW 1	Sigr	nature					Date	_!_!_	- 11 - 1	lime		:	Report No	802311	ł.

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention:

- Mohammad Hossein Bazyar

Report Project name Project ID Received Date 806519-S ADDITIONAL - 51134146 STATION LANE LOCHINVAR NE966 Jun 29, 2021

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			COM1 Soil S21-Jn58167 Jun 10, 2021
Test/Reference	LOR	Unit	
Chromium (hexavalent)	1	mg/kg	< 5
% Moisture	1	%	18

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium (hexavalent)	Sydney	Jun 29, 2021	28 Days
- Method: In-house method E057.2			
% Moisture	Sydney	Jun 29, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	nc			Australia							New Zealand	
ABN: 50	0 005 085 521 web: \	Testing les@eurofins.com	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	S U 175 1) L P N	Sydney Jnit F3, Bu 6 Mars R ane Cove Phone : +6 NATA # 12	uilding F oad West NSW 2066 51 2 9900 8400 261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261 Site # 23736	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: - t64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76: Phone : 0800 856 450 IANZ # 1290		
Cor Ado	npany Name: Iress:	Geotesta F Unit 6, 20/2 Seven Hills NSW 2147	Pty Ltd (NSW) 22 Foundry Roa	ad			Ore Re Ph Fa:	der No.: port #: one: x:	806519 1300852 216		Received: Due: Priority: Contact Name:	Jun 29, 2021 11:48 Jun 30, 2021 1 Day - Mohammad Hoss	AM ein Bazyar
Pro Pro	ject Name: ject ID:	ADDITION NE966	AL - 51134146	STATION LAN	E LOCHINVAR						Eurofins Analytica	l Services Manager :	Asim Khan
		s	Sample Detail			Chromium (hexavalent)	Moisture Set						
Melbo	ourne Laborato	ory - NATA Sit	e # 1254										
Sydn	ey Laboratory	- NATA Site #	18217			X	X						
Brisb	ane Laboratory	V - NATA Site	# 20/94				+						
Mayfi	eld Laboratory	- NATA Site	# 25079				+						
Exter	nal Laboratory	NATA OILE	. 20013										
No	Sample ID	Sample Date	e Sampling Time	Matrix	LAB ID								
1	COM1	Jun 10, 2021		Soil	S21-Jn58167	Х	x						
Test	Counts					1	1						

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
сос	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.3
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Chromium (hexavalent)			mg/kg	< 1			1	Pass	
LCS - % Recovery									
Chromium (hexavalent)			%	84			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Chromium (hexavalent)	S21-Jn46771	NCP	%	91			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	S21-Jn46770	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
% Moisture	S21-Jn58183	NCP	%	15	12	17	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised by:

Asim Khan Charl Du Preez Analytical Services Manager Senior Analyst-Inorganic (NSW)

Glenn Jackson General Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.