

E.J. Aird and R. Hvirf

Phase 1 & 2 Contamination Assessment

Proposed Residential Subdivision Winders Lane, Lochinvar NSW

27 June 2017

Experience comes to life when it is powered by expertise

This page has been left intentionally blank

Phase 1 & 2 Contamination Assessment

Prepared for E.J. Aird and R. Hvirf

Prepared by
Coffey Services Australia Pty Ltd
19 Warabrook Boulevard
Warabrook NSW 2304 Australia
t: +61 2 4016 2300 f: +61 2 4016 2380

ABN: 55 139 460 521

Project Director	Laurie Fox Senior Consultant
Project Manager	Damien Hendrickx Senior Environmental Scientist

27 June 2017

NTLEN202989-R01rev1

Quality information

Revision history

Revision	Description	Date	Author	Reviewer
Original	Original document	21/04/2017	Sean Blackford / Damien Hendrickx	Laurie Fox
Revision 1	Revised based on PCB comments	27/06/2017	Sean Blackford / Damien Hendrickx	Laurie Fox

Distribution

Report Status	No. of copies	Format	Distributed to	Date
Final	1	PDF	Pulver Cooper & Blackley Pty Ltd	27/06/2017

Coffey Services Australia Pty Ltd ABN: 55 139 460 521

Executive summary

Pulver Cooper & Blackley Pty Ltd (PCB), on behalf of E.J. Aird and R. Hvirf, is preparing a development application (DA) for a residential subdivision at Lochinvar, NSW. The proposed subdivision is located off Winders Lane and will occupy the following lots:

- Lot 2 DP 718712;
- Lot 32 DP 1132263;
- Lot 310 DP 1034974; and
- Lot 311 DP 1135580.

For the purposes of this assessment, the "site" is defined as the area occupied by the four lots. The area of the site is approximately 130 hectares.

Coffey previously carried out a Phase 1 & 2 Contamination Assessment (CA) of Lot 32 in 2015, for a previous DA submission. As the site has been reconfigured to include Lots 2, 310 and 311 (which have not been previously assessed), PCB requested Coffey to carry out a Phase 1 & 2 CA for the new site configuration (the area covered by the 'Masterplan') in order to support the DA. This included supplementing the findings of Coffey's (2015) CA.

The objectives of the CA were to:

- Assess the current site conditions on Lot 32, including changes (such as new areas of concern) since Coffey's (2015) CA;
- Identify potentially contaminating activities that are currently being performed on Lots 2, 310 and 311, and that may have been performed on these lots in the past;
- Assess Areas of Environmental Concern (AEC's) and Chemicals of Concern (COC's) for the site, and develop a Conceptual Site Model (CSM);
- Provide an assessment of potential soil, sediment and surface water contamination at the site;
- Assess the suitability of the site for the proposed residential subdivision (from a contamination perspective); and
- Provide recommendations for remediation and/or management, as required.

In order to achieve the above objectives, the following scope of works was undertaken:

- A desktop study and historical review of past activities at the site with the potential to cause contamination, including:
 - A review of the Coffey (2015) CA;
 - A review of historical ownership of the site Lots 2, 310 and 311;
 - A review of aerial photography from the past 50 years;
 - A review of the Section 149 Planning Certificate for the site Lots 2, 310 and 311; and
 - A review of NSW Environmental Protection Authority (EPA) notices under the Contaminated Land Management Act (1997);
- An assessment of the site topography, geology and hydrogeology including site drainage and regional groundwater usage through a search of registered groundwater bores;
- A site walkover of the site to help identify AECs and potential COCs, and changes to Lot 32 since Coffey's (2015) CA;
- A sampling programme, targeting the AECs identified, including:
 - Surface soil sampling; and

- Collection of surface water samples from ponds;
- Laboratory analysis of selected soil samples for the COCs identified; and
- Preparation of this Phase 1 & 2 CA report.

The Coffey (2015) CA and this current CA has identified a number AECs. These relate to the residential houses and garden beds on Lot 2, Lot 310 and Lot 311, the ponds on Lot 32, Lot 310 and Lot 311, former cropping/cultivated areas on Lot 32, drainage lines on Lot 311, an oil-stained area on Lot 310 and a stockpile on Lot 32.

The risk of contamination inferred at these AECs was low. The site walkover identified that the only change on Lot 32, since 2015 was a fill stockpile, approximately 15m³ in volume, located near the boundary of Lot 311. The farm waste inside the shed was still present.

The laboratory results indicated that concentrations of contaminants were recorded below the adopted investigation levels, with the exception of TRH (C16-C34) in sample SS20 (which exceeded the adopted ESL). The 95% UCL calculations for TRH (C16-C34) showed that the arithmetic average concentration across the site was below the ESL.

Concentrations of some heavy metals were recorded above the adopted investigation levels in the surface water samples analysed. The low concentrations of heavy metals are probably indicative of the impact from past herbicide use, and/or background levels.

Based on the site history review, field observations and laboratory results, the potential for soil and/or surface water contamination to be present at the site, at levels requiring additional investigations, remediation and/or management, is considered to be low. The site (Lots 2, 32, 310 and 311) in its current configuration, is suitable for the proposed residential development provided the recommendations contained in this report and the recommendations provided in the Coffey (2015) CA are implemented

The recommendations for the site are therefore:

- The farm waste inside the shed Lot 32 is removed and the surface soils inside the shed observed.
 If evidence of potential contamination is identified (such as stained or odorous soils), an environmental consultant should be contacted to collect additional surface soil samples.
- A Construction Environmental Management Plan (CEMP) is implemented, prior to earthworks commencing, in order to appropriately manage the on-site and off-site disposal of soil, sediment and water.

Whilst the soils and sediments are suitable for re-use on site, should they be disposed off-site, then they would need to be classified according to the NSW EPA (2014) *Waste Classification Guidelines*. Additionally, management of the disposal and/or re-use of the pond water disposal may need to be managed during re-development.

This report must be read in conjunction with the attached sheet entitled "Important Information about your Coffey Environmental Report"

Coffey Services Australia Pty Ltd ABN: 55 139 460 521

Table of contents

1.	Introd	duction	1
	1.1.	General	1
	1.2.	Objectives	2
	1.3.	Scope of works	2
2.	Site o	description	3
	2.1.	Site location and identification	3
	2.2.	Site topography and drainage	3
		2.2.1. Lot 32	3
		2.2.2. Lot 2, Lot 310 and Lot 311	4
	2.3.	Regional geology and soils	4
	2.4.	Hydrogeology	4
	2.5.	Acid sulfate soils	5
3.	Site h	history review	6
	3.1.	Review of previous assessments	6
		3.1.1. Review of Coffey (2015) contamination assessment	6
		3.1.2. Barker Hale Pty Ltd (2007) preliminary contamination site investigation ar capability assessment	
	3.2.	Historical titles search	8
		3.2.1. Lot 2	8
		3.2.2. Lot 32	9
		3.2.3. Lot 310	11
		3.2.4. Lot 311	13
		3.2.5. Overview	14
	3.3.	Aerial photograph review	14
		3.3.1. Lot 2	14
		3.3.2. Lot 32	16
		3.3.3. Lot 310	17
		3.3.4. Lot 311	18
	3.4.	Site observations	18
	3.5.	Interview	20
	3.6.	Section 149 planning certificate	20
	3.7.	NSW EPA records	20
	3.8.	Summary of site history	21
	3.9.	Gaps in the site history	21
4.	Inves	stigation levels	22
	4.1.	Soil and sediment health and ecological levels	22

	4.2.	Surface	e water investigation levels	23
		4.2.1.	Potential beneficial uses	23
		4.2.2.	Protection of aquatic ecosystems	23
5.	Field	and lab	oratory programme	25
	5.1.	Sampli	ng plan rationale	25
	5.2.	Sampli	ing methodology	25
	5.3.	Labora	itory analysis	26
6.	Quali	ty assur	ance / quality control	27
	6.1.	Field q	uality assurance / quality control	27
		6.1.1.	Holding times	27
		6.1.2.	Relative percentage differences	27
		6.1.3.	Rinsates	27
	6.2.	Labora	tory quality assurance / quality control	28
	6.3.	Summa	ary	28
7.	Resu	Its of inv	vestigation	29
	7.1.	Subsur	rface and stockpile soil conditions	29
	7.2.	PID res	sults	29
	7.3.	Surface	e water quality	30
	7.4.	Labora	tory results	30
		7.4.1.	Soil and sediment	30
		7.4.2.	Surface water	30
8.	Conc	eptual s	ite model	31
	8.1.	Areas	and chemicals of environmental concern	31
	8.2.	Affecte	ed media, receptors and exposure risks	32
9.	Conc	lusion a	nd recommendations	34
10.	Limita	ations		35
11.	Refer	ences		36

Important Information about your Coffey Environmental Report

Tables

Table LR1 - Soil Analytical Results

Table LR2 - Surface Water Results

Table LR3 - Soil QA/QC Results

Table LR4 - Surface Water QA/QC Results

Table LR5 – Equipment Rinsate and Trip Blank Results

Figures

Figure 1 – Site Location Plan

Figure 2 - Site Features Plan

Figure 3 – Sample Locations

Appendices

Appendix A - Groundwater Bore Search

Appendix B - Historical Titles Search

Appendix C – Aerial Photographs

Appendix D - Site Photographs

Appendix E – Section 149 Planning Certificates

Appendix F - NSW EPA Records

Appendix G – Data Validation Reports

Appendix H – Laboratory Reports and Chain of Custody Documentation

Coffey Services Australia Pty Ltd ABN: 55 139 460 521

Abbreviations

ACM	Asbestos Containing Material			
AEC	Area of Environmental Concern			
AHD	Australian Height Datum			
ALS	Australian Laboratory Service			
ANZECC	Australian and New Zealand Environmental Conservation Council			
C6-C36	Hydrocarbon chainlength fraction			
bgs	below ground surface			
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes			
CA	Contamination Assessment			
CEC	Cation Exchange Capacity			
сос	Chemical of Concern			
CRC CARE	Corporate Research Centre for Contamination Assessment and Remediation of the Environment			
СЅМ	Conceptual Site Model			
EC	Electrical Conductivity			
EIL	Ecological Investigation Level			
ESL	Ecological Screening Level			
Eurofins	Eurofins Environment Testing Australia Pty Ltd, trading as Eurofins MGT			
HIL	Health-based Investigation Level			
HSL	Health Screening Level			
ID	Identification			
LOR	Limit of Reporting			
μg/L	micrograms per litre			
mg/kg	milligrams per kilogram			
NATA	National Association of Testing Authorities			
NEPC	National Environmental Protection Council			
NEPM	National Environment Protection (Assessment of Site Contamination) Measure			
NSW EPA	Environmental Protection Authority of New South Wales			
NSW OEH	Office of Environment and Heritage of New South Wales			
ОСР	Organochlorine Pesticide			
ОРР	Organophosphorus Pesticide			
ppm	parts per million			

QA	Quality Assurance
QC	Quality Control
RPD	Relative Percent Difference
SOP	Standard Operating Procedures
ss	Surface Soil Sample
sw	Surface Water Sample
TEQ	Toxicity Equivalent Quotient
TRH	Total Recoverable Hydrocarbon

1. Introduction

1.1. General

Pulver Cooper & Blackley Pty Ltd (PCB), on behalf of E.J. Aird and R. Hvirf, is preparing a development application (DA) for a residential subdivision at Lochinvar, NSW. The proposed subdivision is located off Winders Lane and will occupy the following lots:

- Lot 2 DP 718712;
- Lot 32 DP 1132263;
- Lot 310 DP 1034974; and
- Lot 311 DP 1135580.

For the purposes of this assessment, the "site" is defined as the area occupied by the four lots. The area of the site is approximately 130 hectares. The site location is shown on Figure 1.

The proposed development will involve the creation of approximately 1,100 lots with associated roadways and infrastructure (such as stormwater drainage). Discussions between PCB and Maitland City Council (Council) have indicated that the DA will be a staged process, with approval requested for the overall 'Masterplan' and operational consent issued for Stage 1 of the subdivision (Stage 1 is located adjacent to the New England Highway near Aird's of Lochinvar).

Coffey previously carried out a Phase 1 & 2 Contamination Assessment (CA) of Lot 32 in 2015 (Reference ENAUWARA04581AA-R01 dated 4 February 2015), for a previous DA submission. The CA included a desktop study and site history review, a site walkover, surface soil and water sampling, laboratory analysis and reporting. Coffey concluded that the potential for contamination to be present on Lot 32 was low, and Lot 32 was suitable for the proposed residential subdivision provided the following recommendations were carried out:

- The farm waste inside the shed on Lot 32 was removed and the surface soils inside the shed observed for potential contamination; and
- A Construction Environmental Management Plan (CEMP) was implemented, prior to earthworks, in order to manage the on-site and off-site disposal of soil, sediment and water.

As the proposed development has now been reconfigured to include Lots 2, 310 and 311 (which have not been previously assessed), PCB requested Coffey to carry out a Phase 1 & 2 CA for the new development configuration (the area covered by the 'Masterplan') in order to support the DA. This included supplementing the findings of Coffey's (2015) CA.

This report was prepared in accordance with the relevant sections of the following documents:

- NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM); and
- NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

This report must be read in conjunction with the attached sheet entitled "Important Information about your Coffey Environmental Report".

1.2. Objectives

The objectives of the CA were to:

- Assess the current site conditions on Lot 32, including changes (such as new areas of concern) since Coffey's (2015) CA;
- Identify potentially contaminating activities that are currently being performed on Lots 2, 310 and 311, and that may have been performed on these lots in the past;
- Assess Areas of Environmental Concern (AEC's) and Chemicals of Concern (COC's) for the site, and develop a Conceptual Site Model (CSM);
- Provide an assessment of potential soil, sediment and surface water contamination at the site;
- Assess the suitability of the site for the proposed residential subdivision (from a contamination perspective); and
- Provide recommendations for remediation and/or management, as required.

1.3. Scope of works

In order to achieve the above objectives, the following scope of works was undertaken:

- A desktop study and historical review of past activities at the site with the potential to cause contamination, including:
 - A review of the Coffey (2015) CA;
 - A review of historical ownership of the site Lots 2, 310 and 311;
 - A review of aerial photography from the past 50 years;
 - A review of the Section 149 Planning Certificate for the site Lots 2, 310 and 311; and
 - A review of NSW Environmental Protection Authority (EPA) notices under the Contaminated Land Management Act (1997);
- An assessment of the site topography, geology and hydrogeology including site drainage and regional groundwater usage through a search of registered groundwater bores;
- A site walkover of the site to help identify AECs and potential COCs, and changes to Lot 32 since Coffey's (2015) CA;
- A sampling programme, targeting the AECs identified, including:
 - Surface soil sampling; and
 - Collection of surface water samples from ponds;
- Laboratory analysis of selected soil samples for the COCs identified; and
- Preparation of this Phase 1 & 2 CA report.

2. Site description

2.1. Site location and identification

General site information is provided below in Table 1.

Table 1 - Summary of site details

Site Location	The site is located off Winders Lane, Lochinvar NSW. The site location is shown on Figure 1 and the site layout is shown on Figure 2.
Approximate Site Area	130 hectares.
Title Identification Details	The site occupies: Lot 2 DP 718712; Lot 32 DP 1132263; Lot 310 DP 1034974; and Lot 311 DP 1135580. The site is located within the Parish of Gosforth and the County of Northumberland.
Current Land Zoning	Under the Maitland City Council Local Environmental Plan 2011, the site is zoned as R1 – General residential and RU2 – Rural landscape.
Previous Landuse	Historical and anecdotal evidence indicates that the site was formerly used for cattle grazing, rural residential and localised commercial activity (possibly orchards or market gardens).
Current Landuse	Rural-residential land use including grazing land.
Proposed Landuse	Residential subdivision including approximately 1,100 lots with associated roadways and infrastructure (such as stormwater drainage, sewer etc).
Adjoining Site Uses	 Semi –rural residential properties to the east and west; Winders Lane to the east; New England Highway, followed by semi-rural residential properties to the north; and Grazing farmland and dams to the south.
Site Coordinates	The site is located approximately at 32°42'33"S, 151°27'44"E.

2.2. Site topography and drainage

2.2.1. Lot 32

Topographical and site drainage information for Lot 32 is included in Coffey's (2015) CA.

Reference to the 1:25,000 Topographic Map for Maitland (http://maps.six.nsw.gov.au/) indicates that Lot 32 is situated in an area of low undulating hills, at an elevation of 50m to 60m AHD.

During the site walkover carried out in 2015, the site surface was observed to be well grassed and, generally rising towards the south-eastern corner of the site. Three dams were observed to collect water from a number of water catchments on the lot.

Surface water was expected to infiltrate into site soils, or drain towards the dams on the lot. Stormwater that drains from the site was anticipated to flow to the north-west towards Lochinvar

Creek, located approximately 1.5km north-west of the lot, and eventually to the Hunter River, located approximately 3.8km north-west of the lot.

2.2.2. Lot 2, Lot 310 and Lot 311

Reference to the 1:25,000 Topographic Map for Maitland (http://maps.six.nsw.gov.au/) indicates that the Lots 2, 310 and 311 are situated in an area of low undulating hills, at an elevation of 40m to 60m AHD.

During the site walkover, the ground surface of Lots 2, 310 and 311 was observed to be well grassed and, generally slopes down to the east and west. Two ponds collect water from a number of water catchments on site

Surface water would be expected to infiltrate into site soils, or drain towards the ponds on-site. Stormwater that drains from the site is anticipated to flow to the north-west towards Lochinvar Creek, located approximately 1.5km north-west of the site, and eventually to the Hunter River, located approximately 3.8km north-west of the site.

2.3. Regional geology and soils

Based on the 1:100,000 scale Newcastle Geology map, the site is judged to be underlain by deposits of the Lochinvar Formation comprising of basalt, siltstone and sandstone. These deposits are in turn underlain by bedrock belonging to the Gyarran Volcanics of the Dalwood Group of Early Permian age.

The Newcastle 1:100,000 Soil Landscape Map indicates that the site is situated in an area of undulating low hills. Soils include moderately deep poorly drained podzols and structured loams. These soils are characterised by a high water erosion hazard, foundation hazard, mass localised movement, seasonal waterlogging and high acidity.

2.4. Hydrogeology

Groundwater beneath the site is anticipated to be present in semi-confined or confined aquifers at depths greater than 10m below ground surface (bgs). Regional groundwater flow direction is expected to be to the north or north-west towards Lochinvar Creek, located approximately 1.5km to the north-west of the site and discharge to the Hunter River located approximately 3.8km north-west of the site.

A search of the NSW Office of Water for registered groundwater bores located within a 1 km radius of the site was undertaken. The search revealed that there are four bores registered within this radius. The details of the registered bores with information available are summarised below in Table 2. A copy of the groundwater bore search is provided in Appendix A.

Table 2 - Summary of groundwater bore data

Bore ID	Status	Purpose	Approximate Distance From Site	Standing Water Level (m bgs)
GW071829	Supply Obtained	Town Water Supply	50m north	Not recorded
GW072724	Not recorded	Stock, Domestic, Farming	50m north	Not recorded
GW200934	Active / Supply Obtained	Domestic	430m south	12.00
GW201356	Active	Monitoring Bore	900m south	Not recorded

2.5. Acid sulfate soils

Reference to the ASS Risk Map for Greta indicates that the site is located in an area where there is no known occurrence of ASS.

3. Site history review

A site history review was undertaken for the site as part of this CA, and included:

- A review of the Coffey (2015) CA and other previous assessments;
- A review of historical ownership for Lots 2, 310 and 311;
- A review of aerial photography from the past 50 to 60 years;
- A site walkover to help identify current and previous activities carried out on the site, to help identify AECs and COCs and to identify surrounding land uses, including changes to Lot 32 from the Coffey (2015) CA;
- Interviews with people familiar with the site history;
- A review of Section 149 Planning Certificates for lots 2, 310 and 311 obtained from Maitland City Council; and
- A review of NSW EPA notices applying to the site and nearby properties.

The information provided from the above reviews is summarised in the sections below.

3.1. Review of previous assessments

3.1.1. Review of Coffey (2015) contamination assessment

Coffey was commissioned by PCB to carry out a Phase 1 and 2 CA for Lot 32 in 2015 (Reference ENAUWARA04581AA-R01 dated 4 February 2015). PCB requested the CA, in order to support a DA for the proposed residential subdivision, to be lodged with Maitland City Council. Lot 2 was also initially included in the CA, but was later removed from the proposed residential subdivision layout and was therefore not assessed at the time.

The objectives of the assessment were to identify potentially contaminating activities that were being performed on Lot 32, and that may have been performed in the past, develop a preliminary CSM for Lot 32, and provide a preliminary assessment of soil, sediment and surface water at Lot 32.

In order to meet the objectives, for Lot 32, Coffey undertook a site history desktop study, a site walkover, collection of surface soil, sediment and surface water samples, and laboratory analysis of the collected samples for a number of potential chemicals of concern, including heavy metals, hydrocarbons, herbicides and pesticides.

The site history review showed that the majority of Lot 32 has been used for cattle grazing with two areas used for cropping about 40 years ago. At the time herbicides were used to control weeds but this practice ceased in the early 1970s.

Anecdotal evidence suggested that no chemicals were mixed on site and thus impact from herbicide use on the cropping areas would not contain hot spots. A broad grid was considered appropriate over the main cropping area to assess average concentrations and 95% upper confidence level, if needed.

The concentrations of chemicals of concern in soil and sediment were below the adopted residential investigation levels. Some heavy metal impact was noted in the surface soil and pond sediments probably from the historic use of herbicides. This was evident by the consistency in the concentrations of copper, chromium and zinc, both in the surface soils and the pond sediments. The heavy metal concentrations, though elevated, were below the adopted human health and ecological criteria.

Based on the site history review, field observations and laboratory results, the potential for soil and/or surface water contamination to be present at the site, at levels requiring additional investigations, remediation and/or management, was considered to be low. Coffey therefore concluded that Lot 32, in its current configuration, was suitable for the proposed residential development provided the following recommendations were implemented:

- The farm waste inside the shed was removed and the surface soils inside the shed observed. If evidence of potential contamination was identified (such as stained or odorous soils), an environmental consultant should be contacted to collect additional surface soil samples.
- A CEMP was implemented, prior to earthworks commencing, in order to appropriately manage the on-site and off-site disposal of soil, sediment and water.

3.1.2. Barker Hale Pty Ltd (2007) preliminary contamination site investigation and urban capability assessment

A Preliminary Contamination Site Investigation and Urban Capability Assessment was prepared by Barker Hale (Aust) Pty Ltd (BH) in 2007 (Reference Report 70092 dated 7 February 2007 – BH (2007)). Coffey has carried out a review of this investigation as part of our site history review.

The investigation carried out by BH (2007) is summarised below:

- The BH 2007 assessment was completed for a property about 90ha in area and included Lots 18 and 19 FP976397, Lot 1 DP567712, Lots 1 and 3 DP718712 and Part Lot 311 DP1034974. Part of the BH (2007) study area is situated on the site assessed in this CA.
- The preliminary contamination investigation carried out by BH included soil sampling from 10 test pits. A site plan showing the locations of the test pits was attached to the BH report.
- Samples were analysed for total recoverable hydrocarbons, benzene, toluene, ethylbenzene and total xylenes, heavy metals, pesticides, pH and electrical conductivity.
- The results were compared to investigation levels derived from the following sources:
 - NEPC (1999) National Environmental Protection Measure Schedule B(1): Investigation Levels for Soil and Groundwater;
 - NSW EPA (1994) Guidelines for Assessing Service Station Sites; and
 - NSW EPA (2005) Guidelines for Assessing Orchards and Former Market Gardens.

Coffey notes that these publications have since been superseded by the NEPC (1999) *National Environmental Protection Measure (NEPM)* – Assessment of Contamination 2013 Amendment (ASC NEPM 2013).

- The laboratory results indicated that concentrations of total recoverable hydrocarbons (C15-C28 Fraction) exceeded the investigation level adopted by BH in test pit TP1 at approximately 0.5m depth. Based on an anticipated subsurface clay profile, this result also exceeds the respective Health Screening level (HSL) in the 2013 NEPM for residential land use. This test pit was located outside the boundaries of the site assessed during Coffey's current assessment.
- Concentrations of other contaminants were recorded below the investigation levels adopted by BH.

Coffey notes that the preliminary site contamination assessment carried out by BH was not carried out in accordance with the NEPM (2013) or the NSW EPA (1997 and 2011) *Guidelines for Consultants Reporting on Contaminated Sites*. There was no historical titles search, historical aerial photo search, search of EPA website, or discussion of geology, hydrogeology or sensitive receptors. As a result there was no conceptual site model (CSM) nor an indication of the likely areas of environmental

concern. The intrusive investigation was carried out on an area outside the current subdivision layout and as such the laboratory results are of limited value.

3.2. Historical titles search

Historical titles searches were carried out for Lots 2, 310 and 311 as part of this CA. The historical titles information for Lot 32 is provided in Coffey's (2015) CA, and has been reproduced here.

3.2.1. Lot 2

A search of historical titles for Lot 2 DP 718712 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the lot was obtained dating back to 1917. The results of the search are included in Appendix B and presented below in Table 3.

Table 3 – Summary of historical titles for Lot 2 DP 718712 (1917 – 2017)

Conveyance Book Details	Date	Proprietor	Inferred Land Use
Allotment 26 of the Windermere Estate and other lands – Conv book 1102 No 980	1917 - 1929	Annie Winder, (spinster) Ellie Winder, (spinster) Ethel Winder, (spinster) Hugh Wallace Winder, (farmer)	Private
Allotment 26 of the Windermere estate and other lands – Conv book 1573 No 89	1929 - 1950	Ellen Winder , (estate) Annie Winder, (estate) Hugh Wallace Winder, (farmer/executor)	Private
Allotment 26 of the Windermere estate and other lands – Conv book 2117 No 217 & 218	1950- 1950	Hugh Wallace Winder, (estate) Mary Isobel Sinclair, (executrix) Ethel Florence Emily Winder, (spinster/executrix)	Private
	1950- 1954	Violet Emily Moore, (married) Madge Ruth Ernest, (widow) David William Winder, (farmer) Ethel Florence Emily Winder, (spinster)	Private
Allotment 26 of Windermere Estate and other lands – Conv book 2452 No 206	1954- 1958	Kate Aldridge Bruhn, (wife of minister of religion/executrix)	Private

Conveyance Book Details	Date	Proprietor	Inferred Land Use
		Violet Emily Moore, (married)	
		Madge Ruth Ernest, (widow)	
		Ethel Florence Winder, (estate)	
		David William Winder, (estate)	
	1958 - 1966	Kate Aldridge Bruhn, (wife of minister of religion)	Private
Allotment 26 of Windermere Estate and other lands – Conv book 2809 No 356	1966- 1969	Alexander William Benton, (farming contactor)	Private
		Neta Eileen Benton, (wife)	
Allotment 26 of Windermere Estate and other lands – Conv book 2954 No 9	1969- 1985	Edwin James Aird, (manufacturer)	Private
		Ellie Aird (wife)	
Lot 2 DP 718712	1985- 2003	Edwin James Aird, (manufacturer)	Private
		Ellie Aird (wife)	
Lot 2 DP 718712	2003- 2015	Edwin James Aird, (manufacturer)	Private
Lot 2 DP 718712	2015- 2015	Edwin James Aird,	Private
		Merran Power,	
Lot 2 DP 718712	2015- todate	Edwin James Aird	Private
		Carol Ann Aird	

3.2.2. Lot 32

A search of historical titles for Lot 32 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the lot was obtained dating back to prior to 1882. The results of the search are included in Appendix B and presented below in Table 4.

Table 4 – Summary of historical titles for Lot 32 DP 1132263 (1882 – 2015)

Conveyance Book Details	Date	Proprietor	Inferred Land Use
Part of Lots 20, 21 & 26 of the Windermere Estate and other lands – Conv Bk 1102	1882 – 1917	Charles Simpson, (executor) Thomas Winder, (estate)	Private
No 980	1917 – 1929	Annie Winder, (spinster)	Private
		Author Villaci, (Spirister)	
		Ellen Winder, (spinster)	
		Ethel Winder, (spinster)	
		Hugh Wallace Winder, (farmer)	
Part of Lots 20, 21 & 26 of the Windermere Estate and other lands – Conv Bk 2117	1929 – 1950	Ethel Florence Emily Winder, (spinster /executrix)	Private
No 217		Annie Winder, (estate)	
		Mary Isobel Sinclair, (executrix)	
		Ellen Winder, (estate)	
		Hugh Wallace Winder, (estate)	
	1950 – 1954	Violet Emily Moore, (married woman)	Private
		Madge Ruth Ernst, (widow)	
		Mary Isobel Sinclair, (executrix)	
		Ellen Winder, (estate)	
		Ethel Florence Emily Winder, (spinster)	
		David William Winder, (farmer)	
(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands – Conv Bk 2117	1954 – 1958	Kate Aldridge Bruhn, (wife of minister of religion / executrix)	Private
No 217)		Ethel Florence Winder, (estate)	
		David William Winder, (estate)	

		Violet Emily Moore, (married woman) Madge Ruth Ernst, (widow)	
	1966 – 1969	Alexander William Benton, farming contractor Neta Eileen Benton	Private
Lots 20, 21 & 26 of Windermere Estate of Portion 68 Parish Gosforth – Conv Bk 2452 No 206	1969 - 1976	Edwin James Aird, (manufacturer) Ellie Aird	Private
Lot 1 DP 556685 – CTVol 13952 Fol 48	1976 -1985	Airds Pty Limited	Commercial
Lot 3 DP 718712	1985 - 2009	Edwin James Aird,(retired) Ellie Aird Airds Pty Limited	Private and Commercial
Lot 32 DP 1132263	2009 – to date	Edwin James Aird	Private

3.2.3. Lot 310

A search of historical titles for Lot 310 DP 1034974 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the lot was obtained dating back to 1915. The results of the search are included in Appendix B and presented below in Table 5.

Table 5 – Summary of historical titles for Lot 310 DP 1034974 (1915 – 2017)

Conveyance Book Details	Dates	Proprietor	Inferred Land Use
Lots 22, 24, 28 & 29 of the Windermere Estate – Area 166 Acres 1 Rood 15 Perches - CTVol 2608 Fol 169	1915- 1916	Ernest Winder, (farmer)	Private
Allotment 23 of Melville Estate – Area 24 Acres 3 Roods 33 Perches and other land – Conv Bk 1167 No. 348	1916- 1937	George Knife, (farmer)	Private
Allotment 27 Melville Estate – Area 49 Acres 1 Rood 16 Perches and other land – Conv Bk 1123 No. 795 Lot 23 & Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33 Perches and other land – Conv Bk 1765 No's 628 & 629	1919- 1936	James Morris (pensioner) William Morris (retired farmer) Thomas Morris (retired farmer)	Private

Conveyance Book Details	Dates	Proprietor	Inferred Land
			Use
		Ethel Eleanor Badcock (wife)	
		George Badcock (Miner)	
		Joseph Morris (checkweighman)	
		William James Morris (wagon packer)	
	1919- 1936	John Thomas Keys (Hotelier)	Private
	1936 – 1938	Patrick Joseph Mcmahon (Farmer)	Private
	1937- 1937	George Joseph Knife, (farmer)	Private
	1937- 1963	Christian Knife, (farmer)	Private
Lot 2 DP 503317 - CTVol 9452 Fol 110	1963- 1974	Christian Knife (farmer)	Private
Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33 Perches and other land – Conv Bk 1820	1974- 1981	Jones Nominees Pty Limited	Commercial
No. 974 Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres	1981- 1982	Alumax of Australia Pty Limited	Commercial
3 Roods 33 Perches and other land – Conv Bk 3157 No. 687	1982- 1984	Abturka Pty Limited	Commercial
Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33 Perches and other land – Conv Bk 3443	1984- 1985	Julie Hvirf, (wife)	Private
No. 42		Richard Karl Hvirf, (fitter)	
Lot 23 & Part Lot 27 DP 976397 – Conv Bk 3501 No.311			
Lot 23 & Part Lot 27 DP 976397 - Conv Bk 3584 No.592			
Lot 3 DP 717107	1985- 1988	Julie Hvirf	Private
		Richard Karl Hvirf	
Lot 31 DP 776491	1988- 2001	Julie Hvirf Richard Karl Hvirf	Private
	2001- 2001	Richard Karl Hvirf	Private
Lot 310 DP 1034974	2001- to date	Richard Karl Hvirf	Private

3.2.4. Lot 311

A search of historical titles for Lot 311 DP 1135580 was undertaken by Advanced Legal Searchers Pty Ltd. A list of past registered proprietors for the lot was obtained dating back to 1883. The results of the search are included in Appendix B and presented below in Table 6.

Table 6 – Summary of historical titles for Lot 311 DP 1135580 (1883 – 2017)

Conveyance Book Details	Dates	Proprietor	Inferred Land Use
Lots 22 to 27 of Melville Estate and other Lands _ Ackn Bk 1397 No 651	1883 – 1925	Francis Heagney, (farmer/executor)	Private
		Patrick Heagney, (farmer/executor)	
		Michael Connolly, (farmer/executor)	
		Patrick Markham, (estate)	
	1925 – 1925	Francis Heagney, (farmer/executor)	Private
		Patrick Heagney, (estate)	
Lots 22 to 27 of Melville Estate and other lands – Conv Bk 1400 No 627	1925 - 1980	Francis Bertrand Heagney, (farmer)	Private
Lots 22 to 27 of Melville Estate and other lands – Conv Bk 3478 No 430	1980 – 1981	Francis Joseph Heagney, (company secretary/executor)	Private
		Francis Bertrand Heagney, (estate)	
	1981 - 1982	Alumax of Australia Pty Limited	Commercial
Lots 25 & 30 of Melville Estate and other lands – Conv Bk 3501 No 311	1982 – 1983	Abturka Pty Limited	Commercial
Lots 25 & 30 of Melville Estate and other lands – Conv Bk 3560 No 683 &	1983 - 1987	Edwin James Aird (junior company director)	Commercial
Lot 2 DP 746278	1987 - 2001	Edwin James Aird Junior	Private
Lot 311 DP 1034974	2001- 2002	Richard Karl Hvirf	Private
		Edwin James Aird Junior	
	2002 - 2009	Edwin James Aird Junior	Private
Lot 311 DP 1132263	2009 - 2009	Edwin James Aird Junior	Private

Conveyance Book Details	Dates	Proprietor	Inferred Land Use
Lot 311 DP 1135580	2009 – to date	Edwin James Aird Junior	Private

3.2.5. Overview

The historical titles search indicated that Lots 2, 310 and 311 were owned by private landholders until 1985. From 1985 to 2009, the three lots were partially owned by Airds Pty Ltd. From 2009, the three lots have been owned by the current landholder.

3.3. Aerial photograph review

Aerial photographs for Lots 2, 310 and 311 were purchased from the Department of Land and Property Information and assessed by a Coffey Environmental Scientist. The results of the aerial photograph review are summarised in the sections below. The aerial photographs are presented in Appendix C.

Aerial photography information for Lot 32 was provided in the Coffey (2015) CA, and has also been included in the photographs provided in Appendix C for reporting purposes.

3.3.1. Lot 2

The aerial photograph review for Lot 2 is provided below in Table 7.

Table 7 – Aerial photograph review (Lot 2 DP 718712)

Year	Site	Surrounding Land
1963	Lot 2 appears to be open grassland with very few trees scattered across the site.	To the north of Lot 2 appears to be a pond/dam followed by the New England Highway.
		Directly east and west are a small number of semi-rural properties and vacant grasslands.
		Vacant grasslands are located to the south of the site.
1975	Lot 2 appears to have been developed. Two small structures now appear on Lot 2. An unpaved access road has been constructed from the New England Hwy to the Western side of the structure. A perimeter fence is observed to surround one of the structures at the location.	An unpaved access road has been constructed to Lot 2 also allowing access to a recently constructed structure West of the site (currently Aird's of Lochinvar).
		Semi-rural residential properties have been added along the New England Highway, north-west of the site.
1984	Lot 2 appears unchanged since the 1975 aerial.	The pond/dam north of Lot 2 has been developed, doubling in size.
		The construction of a new pond/dam is visible directly east of Lot 2.
		The access road to the structure west of Lot 2 (Aird's of Lochinvar) appears to have been paved since the time of the last photograph.
1994	The structure on the western side of Lot 2 appears to have been developed. An extension of the original structure is evident.	A paved carpark has been added to the north side of Airds at Lochinvar.
	The remainder of Lot 2 appears similar to the 1984 aerial.	A large rural-residential property has been added south of Lot 2. Opposite the unpaved access road from the east.
		The remainder of the surrounding areas remain similar to the 1984 photograph.
2004	Lot 2 appears unchanged since the 1994 aerial.	The surrounding areas remain similar to the 1994 photograph.
2016	Lot 2 appears unchanged since the 2004 aerial.	The surrounding areas remain similar to the 2004 aerial photograph.

3.3.2. Lot 32

The aerial photograph review for Lot 32 is provided below in Table 8.

Table 8 – Aerial photograph review (Lot 32 DP 1132263)

Year	Site	Surrounding Land
1958	The site appears to be vacant grassland with a very few trees scattered across the site.	To the north appears to be an unsealed section of the New England Highway followed by grass fields.
	Two dams are present onsite.	Directly east and west are a small number of semi-rural properties and vacant grasslands.
		Grasslands and two ponds are located to the south.
1965	The site appears to have had crops added in two sections in the central and northern areas of the site. The remainder of the site has remained grassland.	Surrounding areas of the site remain largely unchanged from the previous photograph.
1976	An access road appears to have been constructed to provide access to Winders Road and the New England Highway for commercial	Residential properties appear to have been added along Winders Road
	and residential properties. A shed has been constructed in the central	The New England Highway appears to have been sealed.
	eastern portion of the site.	A number of residential developments appear to have been added to the west.
		The All Saints College has been constructed along with two sporting fields in the town of Lochinvar.
1987	A residential building has been added in the centre of the site along with an extension of the dirt road to the house.	A paved carpark has been added to the north side of Airds at Lochinvar.
	A swimming pool appears to have been added to the property located in the centre of the site.	Three residential properties have been added to the north of the site.
		A sporting field has been added to the west.
		The remainder of the surrounding areas remain similar to the 1976 photograph.
1996	A small shed has been added to the property located in the centre of the site.	Similar to 1987.
	The remainder of the site appears similar to the 1987 aerial.	
2006	The remainder of the site appears similar to the 1996 aerial.	Similar to 1996 with the exception of two extra houses constructed on Winders Lane.
		Extensions have been made to the existing Airds at Lochinvar building.

3.3.3. Lot 310

The aerial photograph review for Lot 310 is provided below in Table 9.

Table 9 - Aerial photograph review (Lot 310 DP 1034974)

Year	Site	Surrounding Land
1963	Lot 310 appears to be mainly open grassland with very few trees scattered across the site.	To the north of Lot 310 appears to be a small number of semi-rural properties followed by the New England Highway.
	There is a small residential dwelling located in the north-eastern corner of the lot with a number of outbuildings present surrounding the site. An unpaved access road is visible from Station Lane to the west.	Vacant grasslands and are located directly to the east, west and south of the site.
1975	Lot 310 appears unchanged since the 1963 aerial.	A large dam has been constructed directly north of Lot 310, opposite the residential property on site.
		A number of semi-rural residential properties have been added along the New England Highway, to the north-east.
1984	The small dwelling located in the north eastern corner of Lot 310 is no longer visible. The structure and surrounding outbuildings have been demolished since the 1975 aerial.	The surrounding areas remain similar to the 1975 photograph.
1994	Lot 310 has been developed since the 1984 aerial. There is a rural residential property with two smaller outbuildings visible in the centre of the Lot.	The addition of a number of semi-rural residential properties is observed South west of the site, adjacent Station Lane.
	The addition of an unpaved access road connecting to the residential property is observed.	The remainder of the surrounding areas remain similar to the 1984 photograph.
	A small pond/dam is observed west of Lot 310, adjacent Station Lane.	
	The remainder of Lot 310 appears similar to the 1984 aerial.	
2004	Lot 310 appears unchanged since the 1994 aerial.	The surrounding areas remain similar to the 1994 photograph.
2016	Lot 310 appears unchanged since the 2004 aerial.	The surrounding areas remain similar to the 1994 aerial.

3.3.4. Lot 311

The aerial photograph review for Lot 311 is provided below in Table 10.

Table 10 – Aerial photograph review (Lot 311 DP 1135580)

Year	Site	Surrounding Land
1963	Lot 311 appears to be mainly open grassland with very few trees scattered across the lot.	To the north of Lot 311 appears to be a small number of semi-rural properties followed by the New England Highway.
	There is a small dam/pond visible in the north-eastern section of the lot.	Vacant grasslands and are located directly to the east and south of Lot 311.
	There is a drainage line running in a north to south direction on the Western side of the lot.	There is a small rural property with evidence of cropping activity adjacent west of Lot 311. Further west an unpaved road (Station Lane is visible).
1975	Lot 311 appears unchanged since the 1963 aerial.	Three semi-rural properties have been constructed east of Lot 311 adjacent to Winders Lane
1984	Lot 311 appears unchanged since the 1975 aerial.	The surrounding areas remain similar to the 1975 photograph.
1994	Lot 311 appears unchanged since the 1984 aerial.	The addition of a number of semi-rural residential properties is observed directly west of Lot 311, adjacent to Station Lane. The remainder of the surrounding areas remain similar to the 1984 photograph.
2004	Lot 311 appears unchanged since the 1994 aerial.	The surrounding areas remain similar to the 1994 photograph.
2016	Lot 311 appears unchanged since the 2004 aerial.	The surrounding areas remain similar to the 1994 aerial.

3.4. Site observations

A Coffey Environmental Scientist visited the site on 20 March 2017. Site features observed during the visit are shown on Figure 2. Site photographs were taken during the visit, and are shown in Appendix D.

The site walkover focused on Lots 2, 310 and 311, though also included Lot 32 to identify changes since the Coffey (2015) CA.

The observations noted during the site walkover are summarised below:

- The majority of the site was observed to be open grassland, used for cattle grazing. Six cows
 were noticed in the dam on Lot 310 at the time of assessment.
- The site surface surrounding the building on Lot 310 included grassed areas, paved areas, unpaved driveway, and garden beds surrounding the property structure.
- One large residential property made of brick was observed in the centre of Lot 310 with two more structures constructed of sheet metal adjacent south of the residence. One of these structures

appeared for vehicle storage whilst the larger structure appeared to be used for farming equipment and animal storage purposes.

- A small wooden framed stockyard was observed in southern corner adjacent to the farm shed on Lot 310.
- The site surface surrounding the building on Lot 310 included grassed areas, paved areas, an unpaved driveway, and garden beds surrounding the property structure.
- Two underground tanks and two above ground water tanks were observed at the property on Lot 310. These tanks were observed to be water and septic tanks. The top of both underground tanks were exposed and visible from ground level during the time of the walkover, both tanks were made of solid concrete and both appeared to be in good condition. Two above ground metal water tanks were also noticed in the southern section of the property, both of these tanks were in an average condition, though no sign of seepage was noticed.
- The site surface surrounding Lot 2 included was mainly grassed areas with small garden beds surrounding the perimeter of the building structure. A concrete paved car port at the western entrance to the property was observed to have minor oil staining on the floor.
- A wooden framed stockyard was located towards the eastern boundary of Lot 2. The
 accompanying shed for the stockyard, appeared to be used as storage for scape metal and
 timber.
- Two above ground and one below ground storage tanks were observed surrounding the property on Lot 2. These tanks were observed to be water and septic tanks. The above ground tank was located on the eastern side of the property. This storage tank constructed from concrete appeared to be in poor to average condition at the time of the walkover, with signs of seepage visible. A second above ground storage tank was observed on the southern perimeter of the property on Lot 2. This tank is made from sheet metal and appeared to be in good condition. The underground storage tank was visible from the surface due to the top of the tank being exposed, this tank was constructed with concrete and appeared to be in good condition.
- Lot 311 appeared to be mainly open grassland with a tree line noticeable on the southern perimeter boundary
- A fill stockpile of sandy clay material, approximate volume of 15m³ was noticed on Lot 32 adjacent
 west of Lot 311 boundary line. No anthropogenic material was observed on the surface of the
 stockpile. Judging by the lack of vegetation on the fill mound it is assumed that this has been
 recently placed on the lot;
- Two abandoned motor vehicles surrounded by scrap metal and wood waste observed in the south-west corner of Lot 311.
- Dried and bleached animal bones and disused petroleum 205L drums were observed along the fence line in the south eastern corner of Lot 310.
- The dam/pond observed on Lot 311 was observed to be almost empty. The dam on Lot 310 was observed to be close to full capacity with livestock in it at the time of the site visit. The water in this dam on Lot 310 appeared to be cloudy/turbid.

Lot 32 was observed to be in a similar condition to 2015, with the exception of the small soil stockpile (approximately 15m³ in volume) noted near the boundary of Lot 311.

3.5. Interview

An interview was held with Mr Jim Aird, the current owner of the site, during the current site walkover. Mr Aird has been associated with the site since the late 1960's and is familiar with the site history.

The interview revealed the following information:

- The site has been used for residential purposes and cattle grazing. Approximately 6 cows currently exist on Lot 310;
- There has been no history of fill being imported onto site or any historical fuel storage or chemical spills;
- Mr Aird stated that there has been no widespread application of pesticides on the Lots 2, 310 and 311 since the late 1960's. Cropping of corn was historically evident throughout the 1970's on the Northern sections of Lot 310 & 311; and
- Mr Aird stated that prior to his family's acquisition of the land the late 1960's the land was known to be used for grape/vine growing purposes.

3.6. Section 149 planning certificate

The Section 149 Certificates for Lots 2, 310 and 311 were obtained from Maitland City Council. A copy of the certificate is provided in Appendix E. Table 11 (below) summarises the information contained within the certificates.

Table 11 – Information from Section 149 planning certificates

Lot Number	Zoning	Critical Habitats	Conservation Areas	Hazard Risk Restrictions	Mine Subsidence Issues	Flooding Issues	Site Contamination Notices
Lot 2 DP 718712	Zone R1 General Residential	None	None	None, on the basis the lot is in an area of no know ASS	None	None	None
Lot 310 DP 1034974	Zone R1 General Residential	None	None	None, on the basis the lot is in an area of no know ASS	None	None	None
Lot 311 DP 1135580	Zone R1 General Residential	None	None	None, on the basis the lot is in an area of no know ASS	None	None	None

3.7. NSW EPA records

A search of the NSW EPA database revealed that two properties within the Maitland City Council area are registered as having current and/or former notices. A copy of the search is provided in Appendix F. These are summarised below:

- Former gasworks, Corner of Melbourne Street & Brisbane Streets (two former notices); and
- Maitland gasworks, Charles Street, (two current notices).

These properties are not located within close proximity to the site.

3.8. Summary of site history

The information obtained from the site history review has been summarised below:

- The site (Lots 2, 32, 310 and 311) has been owned by a number of private landholders since 1882. Airds Pty Ltd also partially owned the site from 1985 to 2009. The current landholder has owned the site since 2009:
- The majority of the site has remained open grassland used predominantly for cattle grazing over the last 50 to 60 years. From a review of aerial photography, it appears that the majority of changes to the site over this period has been residential developments and the growing of crops;
- The last cropping event was carried out in 1973 on Lot 32. Corn was cropped during this event.
 Discussions with the current site owner indicate that a pre-emergent herbicide was used on the corn crops prior to 1973;
- The site is now used for rural residential purposes. Approximately 6 cows also exist on the site;
- A preliminary contamination investigation was carried out by BH in 2007. Concentrations of total
 recoverable hydrocarbons were detected above adopted investigation levels in one test pit, which
 was located outside the boundaries of the site being assessed by Coffey. Concentrations of
 contaminants were recorded below the adopted investigation levels in the test pits excavated
 within the current site boundaries.
- A Phase 1 & 2 Contamination Assessment was carried out by Coffey in 2015 on Lot 32 finding concentrations of some heavy metals were recorded above the adopted investigation levels in some surface water samples analysed, and elevated heavy metals in some surface soil samples analysed (though not exceeding adopted investigation levels). The low concentrations of heavy metals were indicative of the impact of past herbicide application at the site. This is evidence by the consistency observed in the concentrations of copper, chromium and zinc, both in the surface soils and the dam sediments.

3.9. Gaps in the site history

The gaps in the site history identified in the review are as follows:

- The history of cropping carried out on the site prior to the late 1960's is not fully known;
- Other activities carried out on the site prior to the late 1960's are not fully known; and
- The quantity and type of herbicide or pesticide application is unknown.

4. Investigation levels

4.1. Soil and sediment health and ecological levels

The health and ecological investigation levels for soil, presented in the following references, are generally used in NSW when selecting investigation levels for chemical contaminants in soil:

- National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra; and
- Friebel and Nadebaum (2011); CRC Care Technical Report No. 10 Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater.

ASC NEPM (2013) provides health and ecological investigation and screening levels for different exposure scenarios based on proposed land use. Friebel and Nadebaum (2011) provide the rationale for the selection of appropriate health screening levels (HSLs) and ecological screening levels (ESLs) for petroleum hydrocarbon compounds.

Health and ecological investigation and screening levels are applicable to the first stage (Tier 1) of site assessment and are used to assist in the iterative development of a Conceptual Site Model (CSM). They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) are applicable for assessing human health risk via relevant exposure pathways. HILs were developed for a broad range of metals and organic substances. These are generic to all soil types and apply generally to a depth of 3m below the soil surface for residential sites.

Ecological Investigation Levels (EILs) are associated with selected metals and organic compounds and have been developed for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of soil, which corresponds to the root zone and habitation zone of many species. The EILs depend on specific soil physiochemical properties and ambient background concentrations. In the absence of ambient background concentration data, a generic Added Contaminant Limit (ACL) has been adopted for the EILs.

The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact with soil and groundwater. These HSLs depend on specific soil physicochemical properties, building configurations, land use scenarios and the depth that groundwater is encountered.

The ESLs have been developed for selected petroleum compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. The ESLs broadly apply to coarse and fine-grained soils under various land use scenarios and are applicable to the top 1m of soil.

As the proposed development is a residential subdivision, the relevant criteria for this site is low density residential. The soil investigation levels are presented in Table LR1.

4.2. Surface water investigation levels

The applicable guidelines for assessing water quality are:

- ANZECC (2000) Australian and New Zealand Guidelines on Fresh and Marine Water Quality; and
- National Environmental Protection Council (NEPC) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (NEPM, 2013).

ANZECC (2000) provides surface water investigation levels for a broad range of contaminants. It is noted that ANZECC (2000) does not provide investigation levels for TRH. The investigation levels are based on:

 ANZECC (2000) trigger values to assess the risk of surface water contamination impacting aquatic ecosystems.

In order to assess which of the above criteria are applicable for the site, the potential beneficial uses of surface water must be assessed.

4.2.1. Potential beneficial uses

For assessing surface water quality, it is first necessary to assess the beneficial uses of surface water for the site and down gradient of the investigation area being assessed. Potential beneficial uses are considered to include:

 Aquatic ecosystems - discharge to surface water bodies with the nearest water body being Lochinvar Creek located about 1.5km to the north-west. Lochinvar Creek sustains a freshwater ecosystem.

Extraction of the surface water around the site for drinking water, stock watering or irrigation use is considered unlikely, due to the likely low quality of groundwater in the area for drinking purposes, and the volume of water in the ponds compared to the total site area.

Given the above, the potential beneficial use of surface water is considered to be sustaining aquatic ecosystems in Lochinvar Creek.

4.2.2. Protection of aquatic ecosystems

The trigger values for freshwater species presented in the ANZECC (2000) (and NEPM, 2013) are considered applicable for the protection of aquatic ecosystems of the receiving waters.

ANZECC (2000) advocates a site-specific approach to developing guideline trigger values based on such factors as local biological affects data, the current level of disturbance of the ecosystem, etc. The guidelines present 'low risk guideline trigger values' which are defined as concentrations of key performance parameters below which there is a low risk that adverse biological effects will occur. It is important to note that these are not threshold values at which an environmental problem is likely to occur if exceeded. Rather, if the trigger values are exceeded, then further action is required which may include either, further site-specific investigations to assess whether or not there is an actual problem, or the implementation of management / remedial actions.

Low risk trigger values are provided for the protection of 80-99% of species in fresh waters (presented in Table 3.4.1 of ANZECC (2000) and Table 1C of NEPM (2013)), with the trigger value depending on the health of the receiving waters.

It is considered that the fresh water trigger values are applicable for investigating chemical concentrations in surface water at the investigation area, as the potential receiving body (Lochinvar Creek) is a freshwater body.

NEPM (2013) has adopted the trigger values for the protection of 95% of aquatic ecosystems, except where contaminants are potentially bio-accumulative in which case the trigger values for protection of 99% of species are used.

ANZECC (2000) states that there is currently insufficient data to derive a high reliability trigger value for TRH.

The investigation levels for surface water are included in Table LR2.

5. Field and laboratory programme

5.1. Sampling plan rationale

The sampling plan was devised in order to assess the AECs identified on Lots 2, 310 and 311, as well as additional AECs identified on Lot 32.

It is noted that the NSW EPA (1995) Sampling Design Guidelines indicates that, for sites with an area greater than five hectares, those sites should be subdivided with each subdivided area assessed individually. Based on the site history there are few contaminating activities that have been carried out in the past and the site has predominantly used for cattle grazing with rural residential dwellings and sheds.

The use of systematic sampling in accordance with the NSW EPA (1995) Sampling Design Guidelines for site characterisation is not considered warranted. Judgemental sampling, targeting known areas of environmental concern, is considered appropriate.

Table 12 (below) summarises the sampling plan for this assessment.

Table 12 - Sampling plan

Lot	AEC	Media Sampled	Sampling Locations
Lot 2	House and garden beds	Soil	SS12 to SS16
Lot 310	House and garden beds	Soil	SS17 to SS21
	Oil-stained area	Soil	SS24 and SS25
	Pond	Surface Water	POND5-SW5
Lot 311	Drainage Lines	Sediment	SS22 and SS23
	Pond	Surface Water	POND4-SW4
Lot 32	Stockpile (additional AEC identified in 2017)	Soil	SP1
	Former cropping/cultivated areas (AEC identified in 2015)	Soil	SS1 to SS11 (sampled in Coffey's 2015 CA)
	Ponds	Surface Water	POND1-SW1 to POND3-SW3

Surface soil sampling was considered appropriate for the CA given the top down mode of contamination. Surface water sampling was considered appropriate to assess contamination in the ponds.

The sampling locations are shown on Figure 3. The sample locations from Coffey's (2015) CA are also shown on Figure 3.

5.2. Sampling methodology

Sampling for this CA was undertaken by a Coffey Environmental Scientist on 20 March 2017. Sampling consisted of the following:

- Surface soil samples (SS12 to SS25) were collected using a stainless steel shovel.
- Surface water samples (POND 4-SW4 and POND 5-SW5) were collected by hand from edge of the ponds.

The samples collected in the Coffey (2015) CA were also collected using the procedures outlined above.

A hand held water quality meter was used to obtain water quality readings from the two ponds, such as pH, electrical conductivity, redox potential and dissolved oxygen. A clean pair of disposable nitrile gloves was worn when collecting each sample. The sampling equipment for the surface soil sampling was decontaminated between samples by rinsing with phosphate-free detergent and potable water.

The soil samples were placed into 250mL laboratory supplied glass jars. The surface water samples were placed in appropriately-preserved laboratory supplied sample bottles.

Each sample was placed directly into an ice-chilled esky and remained chilled during transportation to the laboratory.

5.3. Laboratory analysis

The samples were analysed for potential COCs considered applicable to the AECs sampled.

The samples were dispatched to the NATA-accredited Eurofins MGT laboratory in Oakleigh, VIC, for analysis. The samples were dispatched to the laboratory under chain of custody conditions.

The surface soil and sediment samples were analysed for the following:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) 14 soil samples;
- Polycyclic Aromatic Hydrocarbons (PAH) 12 soil samples;
- Organochlorine Pesticides (OCP) 9 soil samples;
- Organophosphorus Pesticides (OPP) 9 soil samples;
- Phenoxy Acid Herbicides 9 soil samples;
- Total Recoverable Hydrocarbons (TRH) 8 soil samples; and
- Benzene, Toluene, Ethylbenzene, Xylene (BTEX) 8 soil samples.

In addition, to obtain ESLs for the assessment, one soil sample (SS20) was also analysed for pH, cation exchange capacity and clay content.

The two surface water samples were analysed for the following:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- Organochlorine Pesticides (OCP);
- Organophosphorus Pesticides (OPP); and
- Phenoxy Acid Herbicides.

6. Quality assurance / quality control

Sampling activities were undertaken in accordance with Coffey's Standard Operating Procedures (SOPs), which are based on industry accepted practice. The assessment of field and laboratory quality assurance / quality control (QA / QC) procedures is provided below. A data validation report is presented in Appendix G.

The samples were dispatched to the NATA-accredited Eurofins MGT laboratory in Oakleigh VIC. Copies of the Chain of Custody documentation are included in Appendix H. The Chain of Custody for Coffey's (2015) CA is also included in Appendix H.

6.1. Field quality assurance / quality control

6.1.1. Holding times

Samples were analysed by the laboratory within the recommended holding times.

6.1.2. Relative percentage differences

In order to assess field QA / QC procedures, the following QC samples were collected and analysed:

- One duplicate sample (QC6) for primary sample SS20; and
- One duplicate sample (QC7) and one triplicate sample (QC8) of SS14.

Table LR3 presents the relative percentage differences (RPDs) between the primary sample and the duplicate/triplicate samples analysed. The RPDs calculated for the QA / QC sampling for the Coffey (2015) CA are also included in Tables LR2 and LR3. The data assessment for the 2015 samples was included in Coffey's (2015) CA report.

A review of the Coffey QA / QC results for this CA indicates that RPDs were within the acceptable range of 30% with the exception of some heavy metals. This is inferred to be due to either sample heterogeneity or the low concentrations of contaminants recorded in the individual samples analysed.

6.1.3. Rinsates

In order to assess field decontamination procedures, the following equipment rinsate sample was collected:

Sample QC9.

The rinsate results are presented in Table LR5, and showed concentrations of contaminants below the detection limits. The results of the equipment rinsate sample collected in Coffey's (2015) CA are also included in Table LR5, and were addressed in Coffey's (2015) CA report.

6.2. Laboratory quality assurance / quality control

The laboratory internal QA / QC reports for this CA indicated that the appropriate laboratory QA / QC procedures and rates were undertaken for contamination studies, and that:

- Laboratory blank samples were free of contamination;
- Matrix spike recoveries were within the laboratory control limits except for lead in one sample.
 Eurofins MGT noted that an acceptable recovery was obtained for the laboratory control sample which indicated sample matrix interference;
- Surrogates and laboratory control samples were within the laboratories acceptable ranges; and
- Laboratory duplicate RPDs were recorded within the control limits.

The laboratory internal QA / QC assessment for Coffey's (2015) CA was included in Coffey's (2015) CA report.

6.3. Summary

Based on the assessment presented above, it is considered that the field and laboratory methods for soil are appropriate and that the data obtained is usable and considered to be representative of the concentrations at the sampling points at the time of sampling.

7. Results of investigation

7.1. Subsurface and stockpile soil conditions

The subsurface conditions observed in the surface soil samples and stockpile SP1 is summarised below in Table 13.

Table 13 - Summary of subsurface and stockpile conditions

Sample ID	Soil Description
SS12	Sandy clay, pale to dark brown, fine to coarse grained
SS13	Sandy clay, pale to dark brown, fine to medium grained
SS14	Sandy clay, pale to dark brown, fine to medium grained
SS15	Sandy clay, pale to dark brown, fine to coarse grained
SS16	Sandy clay, pale to dark brown, fine to coarse grained
SS17	Silty sand, pale brown to brown, fine grained
SS18	Silty sand, pale brown to brown, fine grained
SS19	Silty sand, brown and black, fine grained
SS20	Sandy loam, dark brown and black, fine grained
SS21	Clay, brown
SS22	Silty sand, brown and black, fine grained
SS23	Silty sand, brown and black, fine grained
SS24	Silty sand, brown and black, fine grained
SS25	Silty sand, brown and black, fine grained
SP1	Fill: Sandy, fine to medium grained, pale to dark brown

Soil samples SS1 to SS11 were observed by Coffey in 2015 to comprise residual clay, low plasticity, brown in colour.

Some minor oil staining was observed on the ground surface at the location of samples SS24 and SS25.

No odours were observed during the soil sampling. No potential asbestos containing materials (ACM) were observed during the site walkover or sampling.

7.2. PID results

The soil samples collected in the Coffey (2015) CA were screened with a Photoionisation Detector (PID) to assess the potential for volatile compounds to be present in the samples.

The PID results ranged from 0.0ppm (in a number of samples) to 0.3ppm (in sample SS9).

As the results of the Coffey (2015) CA indicated a low potential for volatile contamination to be present, PID screening was not considered to be required for the 2017 sampling event.

7.3. Surface water quality

The surface water quality results obtained from the two ponds sampled in 2017 are provided in Table 14 below.

Table 14 - Surface water quality results

Sample ID	Dissolved Oxygen (mg/L)	Electrical Conductivity (µS/cm)	pН	Redox Potential (mV)	Temperature (ºC)	Observations
POND4- SW4	4.58	237.0	8.01	-95.6	26.3	Brown, no odour
POND5- SW5	4.64	310.9	8.74	-99.5	27.1	Slightly cloudy, no odour

7.4. Laboratory results

7.4.1. Soil and sediment

The soil analytical results are summarised in Table LR1. The results from Coffey's (2015) CA are also included. The laboratory analytical reports are included in Appendix H, along with the reports from Coffey's (2015) CA.

The laboratory results indicated concentrations below the adopted criteria with the exception of:

TRH (C16-C34), exceeding the ESL (1,300 mg/kg) in sample SS20 with a concentration of 1,400 mg/kg.

The 95% upper confidence limit (UCL) for TRH (C16-C34) was calculated. For samples with results below the laboratory limit of reporting (LOR), half the LOR was adopted. The 95% UCL was calculated to be **1,066 mg/kg**, below the adopted ESL of 1,300 mg/kg. The 95% UCL calculations are provided after Table LR1.

7.4.2. Surface water

The surface water analytical results are summarised in Table LR2. The results from Coffey's (2015) CA are also included. The laboratory analytical reports are included in Appendix H, along with the reports from Coffey's (2015) CA.

The laboratory results indicated the following:

- Concentrations of chromium and copper were recorded above the adopted investigation levels in samples POND1-SW1, POND2-SW2 and POND3-SW3;
- Concentrations of nickel and zinc were recorded above the adopted investigation levels in samples POND2-SW2 and POND3-SW3;
- Concentrations of copper, nickel and zinc were recorded above the adopted ILs in both POND4-SW4 and POND5-SW5;
- Lead was recorded above the adopted IL in POND4-SW4; and
- The remaining COCs were recorded below the adopted ILs in both POND4-SW4 and POND5-SW5.

8. Conceptual site model

Based on the findings of this CA, the CSM is discussed in the sections below. For completeness, the CSM also includes Lot 32.

8.1. Areas and chemicals of environmental concern

Table 15 (below) shows the AECs and associated COCs identified, updated based on the findings of the CA (and the Coffey 2015 CA).

Table 15 - Areas and chemicals of environmental concern

AEC	Potentially Contaminating Activity	COCs	Likelihood of Contamination*	Comments
House and garden beds of Lot 2	Presence of fill of unknown quality and potential use of pesticides and herbicides in garden beds	Heavy metals, TRH, BTEX, PAH, OCP, OPP, phenoxy acid herbicides	Low	Results of the 2017 CA indicated that soil contamination was unlikely to be present around the house or in garden beds
House and garden bed of Lot 310	Presence of fill of unknown quality and potential use of pesticides and herbicides in garden beds	Heavy metals, TRH, BTEX, PAH, OCP, OPP, phenoxy acid herbicides	Low	Results of the 2017 CA indicated that soil contamination was unlikely to be present around the house or in garden beds
Oil-stained area, south- eastern corner of Lot 310	Minor surface coil staining due to leakage/spillage of drums	Heavy metals, TRH, BTEX, PAH	Low	Results of the 2017 CA indicated that soil contamination was unlikely to be present in this area
Ponds on Lot 32, Lot 310 and Lot 311	Potentially contaminated surface water in ponds due to runoff from other areas on site	Heavy metals, OCP, OPP, phenoxy acid herbicides	Low	Results of the 2017 CA indicated that surface water contamination was unlikely to be present in the ponds The results of the Coffey (2015) CA indicated that surface water contamination was unlikely to be present in the ponds
Drainage lines on Lot 311	Potentially contaminated sediments due to drainage of contaminated surface water	Heavy metals, OCP, OPP, phenoxy acid herbicides	Low	on Lot 32 Results of the 2017 CA indicated that sediment contamination was unlikely to be present in the drainage lines
Stockpile on Lot 32	Potentially contaminated soil in stockpile	Heavy metals, TRH, BTEX, PAH, OCP, OPP	Low	Results of the 2017 CA indicated that contamination was unlikely to be present in the stockpile

AEC	Potentially Contaminating Activity	COCs	Likelihood of Contamination*	Comments
Former cropping and cultivated areas of Lot 32	Former use of herbicides and pesticides	Heavy metals, OCP, OPP phenoxy herbicides	Low	The results of the Coffey (2015) CA indicated that soil contamination was unlikely to be present in these areas of Lot 32

NOTES:

* = It is important to note that this is not an assessment of the financial risk associated with the AEC in the event contamination is detected, but a qualitative assessment of the probability of contamination being detected at the potential AEC.

Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc; BTEX - Benzene, Toluene, Ethylbenzene and Xylenes; TRH - Total Recoverable Hydrocarbons; PAH - Polycyclic Aromatic Hydrocarbons; OCP – organochlorine pesticides; OPPs – organophosphorous pesticides

8.2. Affected media, receptors and exposure risks

Table 16 summarises the affected media, potential receptors to contamination, and potential and complete exposure pathways.

Table 16 - Summary of potentially affected media, receptors and exposure pathways

Consideration	Information	Comment
Potentially affected media on-site	Soil and surface water	Based on the results of the 2017 CA and the Coffey (2015) CA, soil and surface water at the site was unlikely to be contaminated
Potential transport mechanisms and exposure pathways	Leaching of soil contaminants to surface water Direct dermal contact with contaminated soil and/or surface water Ingestion of contaminated soil and/or surface water Surface water discharge to Lochinvar Creek	Based on the results of the 2017 CA and the Coffey (2015) CA, exposure potential to contamination was anticipated to be low
Potential receptors of contamination	Site occupants & construction/maintenance workers Potential exposure via dermal contact with soil and surface water, and ingestion of soil and surface water. Contact with groundwater is considered unlikely, taking into account the anticipated depth to groundwater (>10m), and that groundwater is not currently extracted on site for beneficial use.	Based on the results of the 2017 CA and the Coffey (2015) CA, contamination of potential receptors was anticipated to be low
	Surface water Contaminants could leach from soils into surface water that may accumulate in the sediments and ponds on site. This is considered a potential risk as surface water is likely to drain towards the ponds.	
	Groundwater Contaminants could leach from soils into groundwater. This is considered a lower risk due to the anticipated depth of groundwater (>10m).	

Consideration	Information	Comment
	Lochinvar Creek Lochinvar Creek is the nearest surface water body (sensitive receptor) to the site, and it is considered that groundwater could discharge to Lochinvar Creek during periods of high rainfall. Given Lochinvar Creek is 1.5km distant, and the low risk of groundwater to be contaminated as a result of site conditions, the risk of site contamination reaching Lochinvar Creek is low.	

Table 17 summarises the potential and complete exposure pathways, based on the results of this CA and the Coffey (2015) CA.

Table 17 - Potential and complete exposure pathways

Receptor	Exposure Pathway	Comment
Site occupants and construction/maintenance workers	Complete	The results of this 2017 CA and the Coffey (2015) CA indicated there was a low potential for future site occupants and construction/maintenance workers to be adversely affected by contamination.
Soil	Complete	The results of this 2017 CA and the Coffey (2015) CA indicated there was a low potential for soil to be contaminated.
Groundwater	Incomplete	Groundwater was anticipated to be at depths greater than 5m bgs. Considering the top down mode of contamination and the expected clay subsoil (20-40% silts and clays), a complete exposure pathway was not expected to exist.
Surface Water and sediments	Potentially complete	The results of the 2017 CA and the Coffey (2015) indicated that surface water was unlikely to be contaminated due to runoff from the site.

9. Conclusion and recommendations

The Coffey (2015) CA and this current CA has identified a number AECs. These relate to the residential houses and garden beds on Lot 2, Lot 310 and Lot 311, the ponds on Lot 32, Lot 310 and Lot 311, former cropping/cultivated areas on Lot 32, drainage lines on Lot 311, an oil-stained area on Lot 310 and a stockpile on Lot 32.

The risk of contamination inferred at these AECs was low. The site walkover identified that the only change on Lot 32, since 2015 was a fill stockpile, approximately 15m³ in volume, located near the boundary of Lot 311. The farm waste inside the shed was still present.

The laboratory results indicated that concentrations of contaminants were recorded below the adopted investigation levels, with the exception of TRH (C16-C34) in sample SS20 (which exceeded the adopted ESL). The 95% UCL calculations for TRH (C16-C34) showed that the arithmetic average concentration across the site was below the ESL.

Concentrations of some heavy metals were recorded above the adopted investigation levels in the surface water samples analysed. The low concentrations of heavy metals are probably indicative of the impact from past herbicide use, and/or background levels.

Based on the site history review, field observations and laboratory results, the potential for soil and/or surface water contamination to be present at the site, at levels requiring additional investigations, remediation and/or management, is considered to be low. The site (Lots 2, 32, 310 and 311) in its current configuration, is suitable for the proposed residential development provided the recommendations contained in this report and the recommendations provided in the Coffey (2015) CA are implemented

The recommendations for the site are therefore:

- The farm waste inside the shed Lot 32 is removed and the surface soils inside the shed observed. If evidence of potential contamination is identified (such as stained or odorous soils), an environmental consultant should be contacted to collect additional surface soil samples.
- A Construction Environmental Management Plan (CEMP) is implemented, prior to earthworks commencing, in order to appropriately manage the on-site and off-site disposal of soil, sediment and water.

Whilst the soils and sediments are suitable for re-use on site, should they be disposed off-site, then they would need to be classified according to the NSW EPA (2014) *Waste Classification Guidelines*. Additionally, management of the disposal and/or re-use of the pond water disposal may need to be managed during re-development.

This report must be read in conjunction with the attached sheet entitled "Important Information about your Coffey Environmental Report"

10. Limitations

The findings within this report are the result of discrete/specific sampling practices used in accordance with normal practices and standards. To the best of our knowledge they represent a reasonable interpretation of the general conditions of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

The investigations undertaken were limited by the nature of this assessment, and are considered to provide an assessment of the likely contamination conditions at the locations sampled.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey's understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Pulver Cooper & Blackley Pty Ltd, on behalf of E.J. Aird and R. Hvirf, with the objectives of assessing the current site conditions on Lot 32, including changes (such as new areas of concern) since Coffey's (2015) CA, identifying potentially contaminating activities that are currently being performed on Lots 2, 310 and 311, and that may have been performed on these lots in the past, assessing AEC's and COC's for the site, and developing a CSM, providing an assessment of potential soil, sediment and surface water contamination at the site, assessing the suitability of the site for the proposed residential subdivision (from a contamination perspective), and providing recommendations for remediation and/or management, as required. No warranty, expressed or implied, is made as to the information and professional advice included in this report. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation.

This report does not cover hazardous building materials issues. Information within the report should not be used for geotechnical investigation purposes.

11. References

Advanced Legal Searchers Pty Ltd (2015) Historical Titles Search for Winders Lane, Lochinvar.

ANZECC/ARMCANZ (2000). Australian Water Quality Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, October 2000.

Barker Hale (Aust) Pty Ltd (2007) Preliminary Contaminated Site Investigation and Urban Capability Assessment, Reference 70092 dated 7 February 2007.

Coffey Environments Australia Pty Ltd (2015) Phase 1 and 2 Contamination Assessment, Proposed Residential Subdivision, Winders Lane, Lochinvar NSW, Reference ENAUWARA04581AA-R01 dated 4 February 2015.

Department of Land and Property Information (2017) Aerial Photography for Lochinvar (1963, 1975, 1984, 1994, 2004).

Department of Land and Water Conservation (1995) Newcastle 1:100,000 Soil Landscape Map, Reference 9232.

Friebel & Nadebaum (2011) Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater (technical paper No.10) Guidelines, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE).

Geological Survey of NSW (1966) 1:100,000 Newcastle Geological Series Sheet SH56-2, 1st Edition.

NEPC (2013) *National Environmental Protection (Assessment of Site Contamination)* Measure 1999, as amended in 2013, National Environment Protection Council.

NSW Natural Resource Atlas (2017) Groundwater Bore Search – Lochinvar, accessed from http://www.nratlas.nsw.gov.au

NSW EPA (2017) Register of Contaminated Sites: Maitland Local Government Area, accessed from http://www.environment.nsw.gov.au/prcImapp/searchregister.aspx

NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

Soil Conservation Service of NSW (1995) 1:25,000 Greta Acid Sulfate Soils Risk Map, Edition 1.

Topographic map for Maitland (http://imagery.maps.nsw.gov.au/), accessed on 27 March 2017.

Important information about your Coffey Environmental Report

Introduction

This report has been prepared by Coffey for you, as Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice.

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be reviewed and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Coffey prepared the report and has familiarity with the site, Coffey is well placed to provide such assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and

Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

Tables

Part									POND 3 SED3		S1 SS						SS7			SS10														SS24
14				HSL-A/B 0m	EIL/ESL A/B ³	NEPM 2013	te 14/01/2015	14/01/2015	14/01/2015	20/03/2017 14	4/01/2015 14	/01/2015	4/01/2015	14/01/2015	14/01/2015	14/01/2015	14/01/2015	14/01/2015	4/01/2015	4/01/2015	14/01/2015	0/03/2017 2	0/03/2017 2	0/03/2017 2	0/03/2017 20	/03/2017 2	0/03/2017	20/03/2017 2	0/03/2017 20	/03/2017 2	0/03/2017 2	0/03/2017 2)/03/2017 2	D/03/2017
The section of the se				to <1.0m			al .																											
Part	Heavy Metal		mg/kg 2		100*	100	5.2	2.7	2.9	2.5	3.8	3.5	3.1	3.4	2.2	3	3	2.8	2.3	2.5	2.2	2	3.2	<2	<2	6	3.1	2.5	<2	4.9	2.4	2.7	11	<2
Martin			mg/kg 0.4			100			78	110	82	66	78	77				97						93	43			29	17			120	80	78
Property										6.9	<5	<5	<5											23	10	14			6.7 7	<5		13	16	
Property of the content of the con			mg/kg 0.1		420*																						<0.1 37							<0.1
Property of the content of the con	OCP	Zinc 4,4-DDE	mg/kg 5		1200*	7400																	120		87			35	48					23
March Marc		a-BHC	mg/kg 0.05					< 0.05															-		-			-	-			< 0.05	<0.05	-
Property		b-BHC Chlordane	mg/kg 0.05			50																	-		-			-	-					-
Part			mg/kg 0.05																				-		-			-	-					
Part		DDT Dieldrin	mg/kg 0.05		180		<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	-	< 0.05	< 0.05	-	-	<0.05	<0.05	< 0.05	<0.05	
Part			mg/kg 0.05				<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	< 0.05	-	< 0.05	< 0.05	-	-	<0.05	<0.05	< 0.05	<0.05	
Martin			mg/kg 0.05			10																	-		-			-	-					
March Marc			mg/kg 0.05				<0.05		< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05			< 0.05	< 0.05	<0.05	<0.05	<0.05	-	<0.05	-	< 0.05	< 0.05	-	-	< 0.05	<0.05	< 0.05	< 0.05	
Marchard			mg/kg 0.05			6			< 0.05	< 0.05					< 0.05			< 0.05	<0.05				-		-	<0.05	<0.05	-	-	<0.05	<0.05	< 0.05	< 0.05	
Professor Prof			mg/kg 0.05			10																	-		-			-	-					
Property			mg/kg 0.05																				-		-			-	-					
March Marc	OPP	Azinophos methyl	mg/kg 0.2 mg/kg 0.2							<0.2												<0.2	-	<0.2	-	<0.2	<0.2	-	-	<2	<0.2	<0.2	<0.2	
Markeners		Chlorfenvinphos	mg/kg 0.2			160		-	-	<0.2	-	-		-	-	-	-	-	-	-	-	<0.2	-	<0.2	-	<0.2	<0.2	-	-	<2	<0.2	<0.2	<0.2	
March Marc		Chlorpyrifos-methyl	mg/kg 0.2					-	-		-	-	-	-	-	-	-	-	-	-	-		-		-			-	-			<0.2	<0.2	
March Marc		Demeton-O	mg/kg 0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<0.2	<0.2	-	-	<2	<0.2	<0.2	<0.2	
Marke Mark			mg/kg 0.2							<0.2													-		-			-	-		<0.2			
Part			mg/kg 0.2				<0.2	-	<0.2		<0.2	<0.2	<0.2	<0.2	-	-	-	<0.2	<0.2	-	-		-		-			-	-					-
March Marc		EPN Ethion	mg/kg 0.2				<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-		-			-	-					
Mary			mg/kg 0.2						<0.2	<0.2									<0.2			<0.2	-	<0.2	-			-	-		<0.2	<0.2	<0.2	
Marke Mark			mg/kg 0.2				<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<0.2		-	-		<0.2	<0.2		
Part			mg/kg 0.2				-	-	<0.2		-	-	<0.2	-	-	-	-	-	-	-	-		-		-			-	-					
Part			mg/kg 0.2																				-		-			-	-					
Part 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			mg/kg 2				<0.5	<0.5	-	<2	-	-		-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<2	-	<2	-	<2		-	-		<2	<2	<2	
Fig. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Omethoate	mg/kg 2				-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	<2	-	<2	<2	-	-		<2	<2	<2	
Professional Control of the contro			mg/kg 0.2 mg/kg 0.2				<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-		-			-	-			< 0.2	<0.2	
Fig. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			mg/kg 0.2				<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-		-			-	-					-
Principle Prin			mg/kg 0.2				<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		-		-	<0.2	<0.2	-	-			<0.2		
Page 1979 May 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			mg/kg 0.2				<0.2	-	-		-	<0.2	<0.2	-	-	-	-	-	-	-	-		-		-			-	-			<0.2	<0.2	-
March Marc	Organic		mg/kg 0.5			600	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-		-			-	-					-
Part						900		-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-		-	<0.5	-			-	-					
Part		4,6-Dinitro-2-methylphenol					-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	< 0.5	-	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	< 0.5	-
Here designes person and plays of the plays							-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-
Merger (PA) 83 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		2-Methyl-4-chlorophenoxy acetic acid	mg/kg 0.5				-	-	-	<0.5	-	-	•	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	-
Fig. 4 minus		Mecoprop	mg/kg 0.5				-	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	<0.5	-	<0.5	<0.5	-	-	<0.5	<0.5			
Calculation Part 19	TPH	F2-NAPHTHALENE	mg/kg 50	5 280	170		-	-	-	<50	<50	<50	-	-	<50	<50	<50	-	<50	<50	<50	<50	-	<50	-	<50	<50	-	-	<50	<50	-		<50
File		C6-C10 less BTEX (F1)	mg/kg 20	50	120		-	-	-	<20	<20	<20	-	-	<20	<20	<40	-	<20	<20	<20	<20	-	<20	-	<20	<20	-	-	<20	<20	-	Ė	<20
Circ		C16-C34	mg/kg 100		1300		-	-	-	<100	<100	<100	-	-	<100	<100	180	-	<100	220	<100	<100	-	<100	-	590	170	-	-	1400	<100	-		<100
C3 - C3		C6 - C10	mg/kg 20				-	-	-	<20	<20	<20	-	-	<20	<20	<40	-	<20	<20	<20	<20	-	<20	-	<20	<20	-	-	<20	<20	-	Ė	<20
Clo. Cis [sun of tatal] myNg So		C15 - C28	mg/kg 50					-	-	<50	<50	<50	-	-	<50	<50	68	-	<50	110	<50	<50	-	<50	-	320	51		-	1200	<50	-		<50
According to be complying According to be complying to be	ран	C10 - C36 (Sum of total)	mg/kg 50						-	<50	<50	<50	-	-	<50	<50	240	1	81	270	54	<50		<50	-05	660	181	- 05		1668	<50	-		<50
Remode morphing 15	CAU	Acenaphthylene	mg/kg 0.5					-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		<0.5
Remolphymer EQ (lower bound) * Mo/Ko 0.5		Benzo(a)anthracene	mg/kg 0.5		0.7			-		<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-		<0.5
Second playment Fig (upper bound)		Benzo(a)pyrene TEQ (lower bound) *	MG/KG 0.5		J.,7				-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
Bencil/ Fluoranthene mg/kg 0.5		Benzo(a)pyrene TEQ (upper bound) *	MG/KG 0.5						-	1.2	1.2	1.2	-	-	1.2	1.2	1.2	-	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	-	-	1.2
Bengib-jillounthere mg/kg 05		Benzo(k)fluoranthene	mg/kg 0.5						-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
Fluorenee mg/kg 05 05 05 05 05 05 05 05		Benzo[b+j]fluoranthene	mg/kg 0.5						-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
Independ() 1.24-cultypree merly a 0.5 0.		Fluoranthene	mg/kg 0.5				-	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
Phenathhene mg/kg 0.5		Indeno(1,2,3-c,d)pyrene	mg/kg 0.5	5	10			-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
Total PAHs mg/kg 0.5 m		Phenanthrene	mg/kg 0.5		20			-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	< 0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BTEX	Total PAHs	mg/kg 0.5	0.7	65	300	-	-	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5		< 0.5		<0.5	<0.5			<0.5	<0.5	-	-	<0.5
Xylene (m & p) mg/kg 02		Ethylbenzene	mg/kg 0.1		125		-	-	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.2	-	<0.1	<0.1	<0.1	<0.1	-	< 0.1	-	<0.1	<0.1	-	-	<0.1	<0.1	-		<0.1
Xylene Total mg/kg 0.3 110 45		Xylene (m & p)	mg/kg 0.2		203				-	<0.2	<0.2	<0.2	-	-	<0.2	<0.2	<0.4	-	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<0.2	<0.2		-	<0.2	<0.2	-	-	<0.2
	Notes:			110	45			-	-				-	-				-					-		-			-	-			-	-	

Notes: Result

sult Concentration exceeds adopted health screening level, vapour intrusion (Residential) - clay 0-1m

Result Concentration exceeds adopted EIL and ESL criteria

Concentration exceeds adopted human health critier

¹ NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) - Table 1A(1): Health Investigation Levels

* Ell determined using pH of 7.8 and CEC of 47meg/100ml
* Ell determined using pH of 7.8 and CEC of 47meg/100ml

	General UCL Statistics	for Full Da	uta Sels	
User Selected Options				
From File	WorkSheet.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
umber of Bootstrap Operations	2000			
	į			
0				
·•		General	Statistics	
Numb	er of Valid Observations	16	Number of Distinct Observations	6
Raw S	tatistics	THE REPORT OF THE PERSON OF TH	Log-transformed Statistics	
	Minimum	50	Minimum of Log Data	3.912
	Maximum	1400	Maximum of Log Data	7.244
	Mean	194.4	Mean of log Data	4.524
	Median	50	SD of log Data	1.05
	SD	350.3		
	Coefficient of Variation	1.802		
	Skewness	3.157		
	, L		1 t.	
			and the second s	
	F	Relevant U	CL Statistics	
Normal Dist	tribution Test		Lognormal Distribution Test	
Sh	apiro Wilk Test Statistic	0.486	Shapiro Wilk Test Statistic	0.65
Sh	apiro Wilk Critical Value	0.887	Shapiro Wilk Critical Value	0.88
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	347.9	95% H-UCL	340.2
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	345
!	95% Adjusted-CLT UCL	412.3	97.5% Chebyshev (MVUE) UCL	428.4
	95% Modified-t UCL	359.4	99% Chebyshev (MVUE) UCL	592.2
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	0.688	Data do not follow a Discernable Distribution (0.0)	5)
	Theta Star	282.4		
	nu star	22.03		
Approximate	e Chi Square Value (.05)	12.36	Nonparametric Statistics	
	ed Level of Significance	0.0335	95% CLT UCL	338.4
	justed Chi Square Value	11.54	95% Jackknife UCL	347.9
			95% Standard Bootstrap UCL	330.6
Anders	on-Darling Test Statistic	2.826	95% Bootstrap-t UCL	937.2
	Darling 5% Critical Value	0.772	95% Hall's Bootstrap UCL	928.6
	v-Smirnov Test Statistic	0.409	95% Percentile Bootstrap UCL	345.6
Kolmogorov-Sr	mirnov 5% Critical Value	0.223	95% BCA Bootstrap UCL	435
Data not Gamma Distribut			95% Chebyshev(Mean, Sd) UCL	576.1
			97.5% Chebyshev(Mean, Sd) UCL	741.3
	i		99% Chebyshev(Mean, Sd) UCL	1066
Assuming Gar	nma Distribution			
	nma Distribution pproximate Gamma UCL	346.4		
95% Ap		346.4		
95% Ap	proximate Gamma UCL		Use 99% Chebyshev (Mean, Sd) UCL	

				Field ID	POND 1 SW1	POND 2 SW2	POND 3 SW3	POND 4-SW4	POND 5-SW5
				Sampled Date		14/01/2015	14/01/2015	20/03/2017	20/03/2017
				ANZECC 2000	, , , , , , , , , , , , , , , , , , , ,			1	.,,
	Analyte	Units	EQL	Freshwater					
	• •		`	95%					
Heavy Me	t Arsenic	mg/L	0.001	33,0	0.001	< 0.001	0.001	0.005	<0.001
incury inc	Cadmium	mg/L	0.0002	0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
	Chromium	mg/L	0.001	0.000	0.005	0.033	0.11	0.084	0.007
	Copper	mg/L	0.001	0.0014	0.005	0.023	0.019	0.034	0.005
	Lead	mg/L	0.001	0.0034	<0.001	0.003	0.002	0.018	<0.001
	Mercury	mg/L	0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	Nickel	mg/L	0.001	0.011	0.008	0.049	0.026	0.059	0.048
	Zinc	mg/L	0.001	0.008	0.003	0.021	0.011	0.079	0.02
Inorganic	Electrical conductivity *(lab)	uS/cm	1	0.000	320	290	240	-	-
inorganic	pH (Lab)	pH Units	0.1		8.4	6.5	8	-	
ОСР	4,4-DDE	μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
UCF	a-BHC	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Aldrin	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	b-BHC	μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Chlordane	μg/L μg/L	1	0.08	<1	<1	<1	<1	<1
	d-BHC	μg/L	0.1	0.08	<0.1	<0.1	<0.1	<0.1	<0.1
	DDD	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	DDT	μg/L μg/L	0.1	0.01	<0.1	<0.1	<0.1	<0.1	<0.1
	Dieldrin		0.1	0.01	<0.1	<0.1	<0.1	<0.1	<0.1
1	Endosulfan I	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Endosulfan II	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Endosulfan ii Endosulfan sulphate	μg/L μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Endosuifan suipnate Endrin		0.1	0.02	<0.1	<0.1	<0.1	<0.1	<0.1
1	Endrin Endrin aldehyde	μg/L μg/L	0.1	0.02	<0.1	<0.1	<0.1	<0.1	<0.1
1	-								
1	Endrin ketone	μg/L	0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1
	g-BHC (Lindane) Heptachlor	μg/L	0.1	0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1
		μg/L		0.09	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1
	Heptachlor epoxide	μg/L	0.1						
	Hexachlorobenzene	μg/L	0.1		<0.1	<0.1	<0.1	<0.1	<0.1
	Methoxychlor	μg/L	0.1	0.0002	<0.1	<0.1	<0.1	<0.1	<0.1
	Toxaphene	mg/L	0.01	0.0002	<0.01	<0.01	<0.01	<0.01	<0.01
OPP	Azinophos methyl	μg/L	2	0.02	<2	<2	<2	<2	<2
	Bolstar (Sulprofos)	μg/L	2		<2	<2	<2	<2	<2
	Chlorfenvinphos	μg/L	2		-	-	-	<2	<2
	Chlorpyrifos	μg/L	2	0.01	<2	<2	<2	<20	<20
	Chlorpyrifos-methyl	mg/L	0.002		-	-	-	<0.002	<0.002
	Coumaphos	μg/L	20		-	-	-	<20	<20
	Demeton-O	μg/L	2		<2	<2	<2	<2	<2
	Demeton-S	μg/L	20		-	-	-	<20	<20
	Diazinon	μg/L	2	0.01	<2	<2	<2	<2	<2
	Dichlorvos	μg/L	2		<2	<2	<2	<2	<2
	Dimethoate	μg/L	2	0.15	-	-	-	<2	<2
	Disulfoton	μg/L	2		<2	<2	<2	<2	<2
	EPN	μg/L	2		-	-	-	<2	<2
	Ethion	μg/L	2		<2	<2	<2	<2	<2
	Ethoprop	μg/L	2		<2	<2	<2	<2	<2
	Fenitrothion	μg/L	2	0.2	<2	<2	<2	<2	<2
	Fensulfothion	μg/L	2		<2	<2	<2	<2	<2
	Fenthion	μg/L	2		<2	<2	<2	<2	<2
	Malathion	μg/L	2	0.05	- 0.000	-	-	<2	<2
	Merphos	mg/L	0.002		<0.002	<0.002	<0.002	<0.002	<0.002
1	Methyl parathion	μg/L	2		<2	<2	<2	<2	<2
1	Mevinphos (Phosdrin)	μg/L	2		<2	<2	<2	<2	<2
	Monocrotophos	μg/L	2		-	-	-	<2	<2
	Naled (Dibrom)	μg/L	2		<2	<2	<2	<2	<2
	Omethoate	μg/L	2	0.00	-	-	-	<2	<2
1	Parathion	μg/L	2	0.004	-	-	-	<2	<2
1	Phorate	μg/L	2		<2	<2	<2	<2	<2
	Pirimiphos-methyl	mg/L	0.02		-	-	-	<0.02	<0.02
	Pyrazophos	μg/L	2		-	-	-	<2	<2
1	Ronnel	μg/L	2		<2	<2	<2	<2	<2
1	Terbufos	μg/L	2		-	-	-	<2	<2
	Trichloronate	μg/L	2		<2	<2	<2	<2	<2
	Tetrachlorvinphos	mg/L	0.002		-	-	-	<0.002	<0.002
	Tokuthion	μg/L	2		<2	<2	<2	<2	<2
Organic	2,4,5-Trichlorophenoxy acetic acid	mg/L	0.001	0.036	-	-	-	<0.02	<0.001
1	2,4,5-TP (Silvex)	mg/L	0.001		-	-	-	<0.02	<0.001
	2,4-Dichlorophenoxy acetic acid	mg/L	0.001	0.28	-	-	-	<0.02	<0.001
1	2,4-Dichlorprop	mg/L	0.001		-	-	-	<0.02	<0.001
1	4-(2,4-Dichlorophenoxy) butyric acid (2,	μg/L	1		-	-	-	<20	<1
	4,6-Dinitro-2-methylphenol	μg/L	1		-	-	-	<20	<1
	Actril (loxynil)	mg/L	0.001		-	-	-	<0.02	<0.001
	Dicamba	μg/L	1		-	-	-	<20	<1
	Dinoseb	μg/L	1			-	-	<20	<1
Ī	2-Methyl-4-chlorophenoxy acetic acid	μg/L	1		-	-	-	<20	<1
Ī	2-Methyl-4-Chlorophenoxy butanoic ac	μg/L	1		-	-	-	<20	<1
L	Mecoprop	μg/L	1		-	-	-	<20	<1
Notes:									

Results Exceeds ANZECC 2000 Fresh water 95% guidelines
- Not Analysed

			SDG Field ID Sampled Date	3458 SS1 14/01/2015	3458 QC2 14/01/2015	RPD	3458 SS1 14/01/2015	3459 QC 3 14/01/2015	RPD	23-Mar-17 SS20 20/03/2017	23-Mar-17 QC6 20/03/2017	RPD	23-Mar-17 SS14 20/03/2017	23-Mar-17 QC7 20/03/2017	RPD	23-Mar-17 SS14 20/03/2017	4573 QC8 20/03/2017	RPD
BTEX	Analyte Benzene	Units mg/kg	EQL 0.1 (Primary): 0.2 (Interlab)	<0.1	<0.1	0	<0.1	<0.2	0				<0.1	<0.1	0	<0.1	<0.2	0
BIEX	Ethylbenzene Toluene	mg/kg	0.1 (Primary): 0.5 (Interlab)	<0.1	<0.1	0	<0.1	<0.5 <0.5	0	-	-	-	<0.1	<0.1	0	<0.1	<0.5 <0.5	0
	Xylene (m & p)	mg/kg mg/kg	0.1 (Primary): 0.5 (Interlab) 0.2 (Primary): 0.5 (Interlab)	<0.2	<0.2	0	<0.2	<0.5	0	-	-	-	<0.1	<0.2	0	<0.1	<0.5	0
	Xylene (o) Xylene Total	mg/kg mg/kg	0.1 (Primary): 0.5 (Interlab) 0.3 (Primary): 0.5 (Interlab)	<0.1 <0.3	<0.1 <0.3	0	<0.1 <0.3	<0.5 <0.5	0	-	-		<0.1 <0.3	<0.1 <0.3	0	<0.1 <0.3	<0.5 <0.5	0
Organic	2,4,5-Trichlorophenoxy acetic acid 2,4,5-TP (Silvex)	mg/kg mg/kg	0.5 (Primary): 0.02 (Interlab) 0.5 (Primary): 0.02 (Interlab)	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.02 <0.02	0
	2,4-Dichlorophenoxy acetic acid 2,4-Dichlorprop	mg/kg mg/kg	0.5 (Primary): 0.02 (Interlab) 0.5 (Primary): 0.02 (Interlab)	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.02 <0.02	0
	4-(2,4-Dichlorophenoxy) butyric acid (2,4-DB) Actril (loxynil)	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	-	
	Dicamba 4,6-Dinitro-2-methylphenol	mg/kg mg/kg	0.5 (Primary): 0.02 (Interlab) 0.5	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.02	0
	Dinoseb 2-Methyl-4-chlorophenoxy acetic acid	mg/kg mg/kg	0.5 0.5 (Primary): 0.02 (Interlab)	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	- <0.02	0
	2-Methyl-4-Chlorophenoxy butanoic acid Mecoprop	mg/kg mg/kg	0.5 (Primary): 0.02 (Interlab) 0.5 (Primary): 0.02 (Interlab)	-	-	-	-	-	-	-	-	-	<0.5 <0.5	<0.5	0	<0.5 <0.5	<0.02 <0.02	0
Heavy Metal	Arsenic	mg/kg	2 (Primary): 5 (Interlab)	3.8	3.2	17	3.8	<5.0	0	4.9	5.1	4	<2.0	<2.0	0	<2.0	<5.0	0
	Cadmium Chromium	mg/kg mg/kg	0.4 (Primary): 1 (Interlab) 5 (Primary): 2 (Interlab)	<0.4 82.0	<0.4 79.0	4	<0.4 82.0	<1.0 96.0	0 16	<0.4 19.0	<0.4 25.0	0 27	<0.4 93.0	<0.4 99.0	6	<0.4 93.0	<1.0 72.0	0 25
	Copper Lead	mg/kg mg/kg	5	32.0 <5.0	32.0 <5.0	0	32.0 <5.0	34.0 6.0	6 18	16.0 <5.0	17.0 <5.0	6 0	42.0 23.0	43.0 18.0	2 24	42.0 23.0	29.0 11.0	37 71
	Mercury Nickel	mg/kg mg/kg	0.1 5 (Primary): 2 (Interlab)	<0.1 54.0	<0.1 51.0	6	<0.1 54.0	<0.1 70.0	0 26	<0.1 15.0	<0.1 20.0	0 29	<0.1 63.0	<0.1 63.0	0	<0.1 63.0	<0.1 43.0	0 38
OCP	Zinc 4,4-DDE	mg/kg mg/kg	5 0.05	40.0 <0.05	39.0 <0.05	3	40.0 <0.05	53.0	28	82.0	99.0	19 -	460.0 <0.05	380.0 <0.05	19 0	460.0 < 0.05	286.0 < 0.05	47
	a-BHC Aldrin	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	b-BHC Chlordane	mg/kg mg/kg	0.05 0.1 (Primary): 0.05 (Interlab)	<0.05	<0.05	0	<0.05	-	-	-	-	-	<0.05 <0.1	<0.05 <0.1	0	<0.05 <0.1	<0.05 <0.05	0
	Chlordane d-BHC	mg/kg mg/kg	0.1 0.05	<0.1 <0.05	<0.1 <0.05	0	<0.1 <0.05	-	-	-	-	-	<0.05	<0.05	- 0	<0.05	<0.05	- 0
1	DDD DDT	mg/kg	0.05 0.05 0.05 (Primary): 0.2 (Interlab)	<0.05	<0.05	0	<0.05	-	-	-	-		<0.05 <0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05 <0.2	0
1	DDT	mg/kg mg/kg	0.05	<0.05	<0.05	0	< 0.05	-	-	-	-	-	-	-	-	-	-	-
1	Dieldrin Endosulfan I	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	0.31 <0.05	0.15 <0.05	70 0	0.31 <0.05	0.16 <0.05	64 0
1	Endosulfan II Endosulfan sulphate	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
1	Endrin Endrin aldehyde	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	Endrin ketone g-BHC (Lindane)	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	Heptachlor Heptachlor epoxide	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.05 <0.05	0
	Hexachlorobenzene Methoxychlor	mg/kg mg/kg	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	-	-	-	-	-	<0.05	<0.05	0 -	<0.05	<0.05	0
	Methoxychlor Toxaphene	mg/kg mg/kg	0.05 (Primary): 0.2 (Interlab)	<1.0	<1.0	- 0	<1.0		-	-	-	-	<0.05 <1.0	<0.05 <1.0	0	<0.05 <1.0	<0.2	0
OPP	Azinophos methyl	mg/kg	0.2 (Primary): 0.05 (Interlab)	-	-	-	-	-	-	-	-	-	<0.2	<0.2	0	<0.2	<0.05	0
	Azinophos methyl Bolstar (Sulprofos)	mg/kg mg/kg	0.2	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-	-	-	-	<0.2	<0.2	0	<0.2	-	-
	Chlorfenvinphos Chlorpyrifos	mg/kg mg/kg	0.2 (Primary): 0.05 (Interlab) 0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	<0.2	<0.2	0 -	<0.2	<0.05	-
	Chlorpyrifos Chlorpyrifos-methyl	mg/kg mg/kg	0.2 (Primary): 0.05 (Interlab) 0.2 (Primary): 0.05 (Interlab)	-	-	-	-	-	-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	<0.05 <0.05	0
	Coumaphos Demeton-O	mg/kg mg/kg	0.2	- <0.2	<0.2	- 0	- <0.2	-	-	-	-		<2.0 <0.2	<2.0 <0.2	0	<2.0 <0.2	-	-
	Demeton-S Diazinon	mg/kg mg/kg	0.2 0.2 (Primary): 0.05 (Interlab)	-	-	-	-	-	-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	- <0.05	- 0
	Diazinon Dichlorvos	mg/kg mg/kg	0.2 0.2	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-	-	-	-	-	-	-	-	-	-
	Dichlorvos Dimethoate	mg/kg mg/kg	0.2 (Primary): 0.05 (Interlab) 0.2 (Primary): 0.05 (Interlab)	-	-		-	-	-	-	-		<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	<0.05 <0.05	0
	Disulfoton EPN	mg/kg mg/kg	0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	<0.2	<0.2	0	<0.2	-	-
	Ethion Ethion	mg/kg mg/kg	0.2 (Primary): 0.05 (Interlab) 0.2	- <0.2	- <0.2	- 0	- <0.2	-	-	-	-	-	<0.2	<0.2	0	<0.2	<0.05	0
	Ethoprop Fenitrothion	mg/kg mg/kg	0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-
	Fensulfothion Fenthion	mg/kg mg/kg	0.2 0.2 (Primary): 0.05 (Interlab)	<0.2	<0.2	0	<0.2	-	-	-	-		<0.2	<0.2	0	<0.2	<0.05	- 0
	Fenthion	mg/kg	0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	-	-	-	-	-	-
	Malathion Merphos	mg/kg mg/kg	0.2 (Primary): 0.05 (Interlab) 0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	<0.2 <0.2	<0.2	0	<0.2	<0.05	-
	Methyl parathion Mevinphos (Phosdrin)	mg/kg mg/kg	0.2 0.2	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-	-	-	-	<0.2 <0.2	<0.2	0	<0.2	<0.2	-
	Monocrotophos Naled (Dibrom)	mg/kg mg/kg	2 (Primary): 0.2 (Interlab) 0.5	<0.5	<0.5	0	<0.5	-	-	-	-	-	<2.0	<2.0	-	<2.0	<0.2	-
	Naled (Dibrom) Omethoate	mg/kg mg/kg	0.2	-	-	-	-	-	-	-	-	-	<0.2 <2.0	<0.2 <2.0	0	<0.2 <2.0	-	-
	Parathion Phorate	mg/kg mg/kg	0.2	<0.2	<0.2	- 0	<0.2	-	-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	<0.2	0
1	Pirimiphos-methyl Pyrazophos	mg/kg mg/kg	0.2 0.2	-	-		-	-	-		-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-
1	Ronnel Terbufos	mg/kg mg/kg	0.2 0.2	<0.2	<0.2	0	<0.2	-	-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-
1	Trichloronate Tetrachlorvinphos	mg/kg mg/kg	0.2 0.2	<0.2	<0.2	0	<0.2		-	-	-	-	<0.2 <0.2	<0.2 <0.2	0	<0.2 <0.2	-	-
PAH	Tokuthion Acenaphthene	mg/kg mg/kg	0.2 0.5	<0.2 <0.5	<0.2 <0.5	0	<0.2 <0.5	- <0.5	- 0	-	-		<0.2 <0.5	<0.2 <0.5	0	<0.2 <0.5	- <0.5	- 0
1	Acenaphthylene Anthracene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
1	Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	÷	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Benzo(a)pyrene TEQ (lower bound) * Benzo(a)pyrene TEQ (medium bound) *	mg/kg mg/kg	0.5 0.5	<0.5 0.6	<0.5 <0.6	0	<0.5	<0.5	0	-	-		<0.5	<0.5	0	<0.5	<0.5 <0.6	0
	Benzo(a)pyrene TEQ (upper bound) *	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0	-	-	-	1.2	1.2	0	1.2	1.2	0
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Chrysene Benzo[b+j]fluoranthene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-		<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Dibenz(a,h)anthracene Fluoranthene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Naphthalene Phenanthrene	mg/kg mg/kg	0.5 (Primary): 1 (Interlab) 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Pyrene Total PAHs	mg/kg mg/kg	0.5 0.5	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0	-	-	-	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5	0
TPH	Naphthalene C6-C10 less BTEX (F1)	mg/kg mg/kg	0.5 (Primary): 1 (Interlab) 20 (Primary): 10 (Interlab)	<0.5 <20.0	<0.5 <20.0	0	<0.5 <20.0	<0.5 <10.0	0	-	-	-	<0.5 <20.0	<0.5 <20.0	0	<0.5 <20.0	<0.5 <10.0	0
	F2-NAPHTHALENE C6 - C9	mg/kg	50 20 (Primary): 10 (Interlab)	<50.0 <20.0	<50.0 <20.0	0	<50.0 <20.0	<50.0 <10.0	0	-	-		<50.0 <20.0	<50.0 <20.0	0	<50.0 <20.0	<50.0 <10.0	0
	C10-C16	mg/kg mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0	-	-		<50.0	<50.0	0	<50.0	<50.0	0
	C16-C34 C34-C40	mg/kg mg/kg	100 100 20 (Primary): 10 (Interlab)	<100.0 <100.0	<100.0 <100.0	0	<100.0 <100.0	<100.0 <100.0	0	-	-	-	<100.0 <100.0	<100.0 <100.0	0	<100.0 <100.0	<100.0 <100.0	0
	C6 - C10 C10 - C14	mg/kg mg/kg	20 (Primary): 10 (Interlab) 20 (Primary): 50 (Interlab)	<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<10.0 <50.0	0	-	-		<20.0 <20.0	<20.0 <20.0	0	<20.0 <20.0	<10.0 <50.0	0
	C15 - C28 C29 - C36	mg/kg mg/kg	50 (Primary): 100 (Interlab) 50 (Primary): 100 (Interlab)	<50.0 <50.0	<50.0 <50.0	0	<50.0 <50.0	<100.0 <100.0	0	-	-	-	<50.0 <50.0	<50.0 <50.0	0	<50.0 <50.0	<100.0 <100.0	0
*RPDs have only been	C10 - C36 (Sum of total) considered where a concentration is greater than	mg/kg 0 times the	50 e EQL.	<50.0	<50.0	0	<50.0	<50.0	0	-	-	-	<50.0	<50.0	0	<50.0	<50.0	0

^{*}RPDs have only been considered where a concentration is greater than 0 times the EQL.

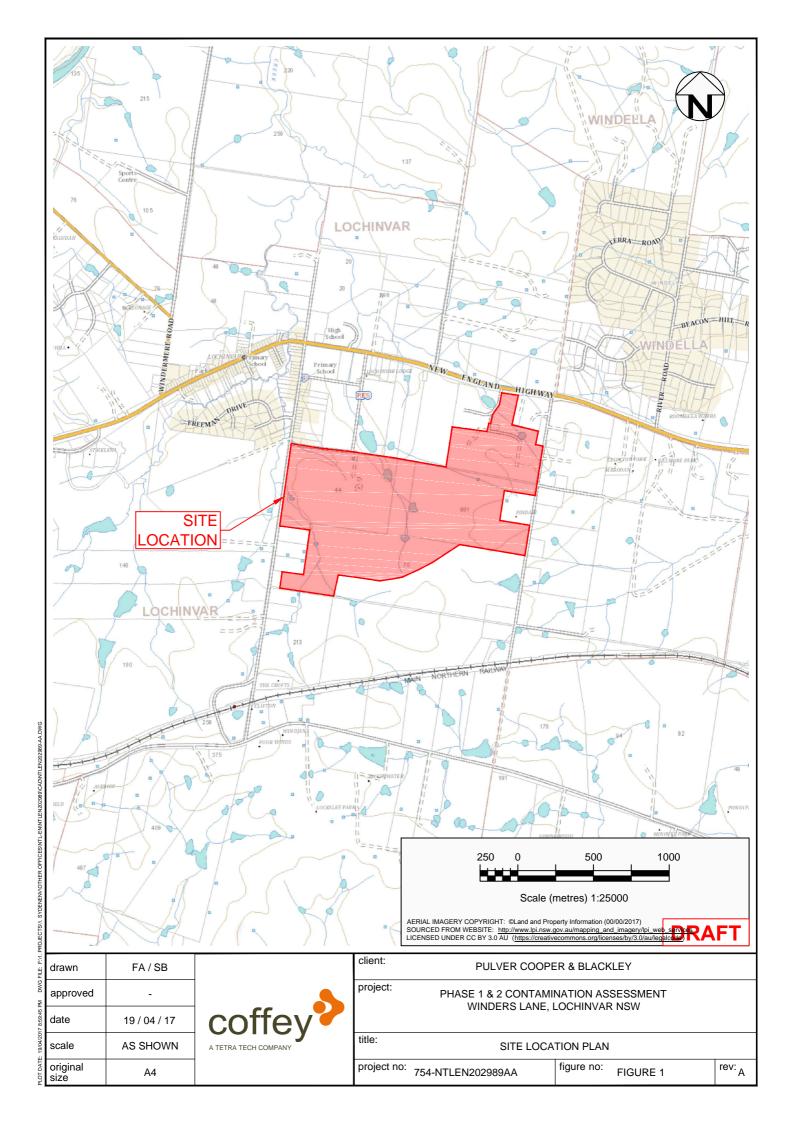
**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 200 (0-10 x EQL); 30 (10-20 x EQL); 30 (> 20 x EQL))

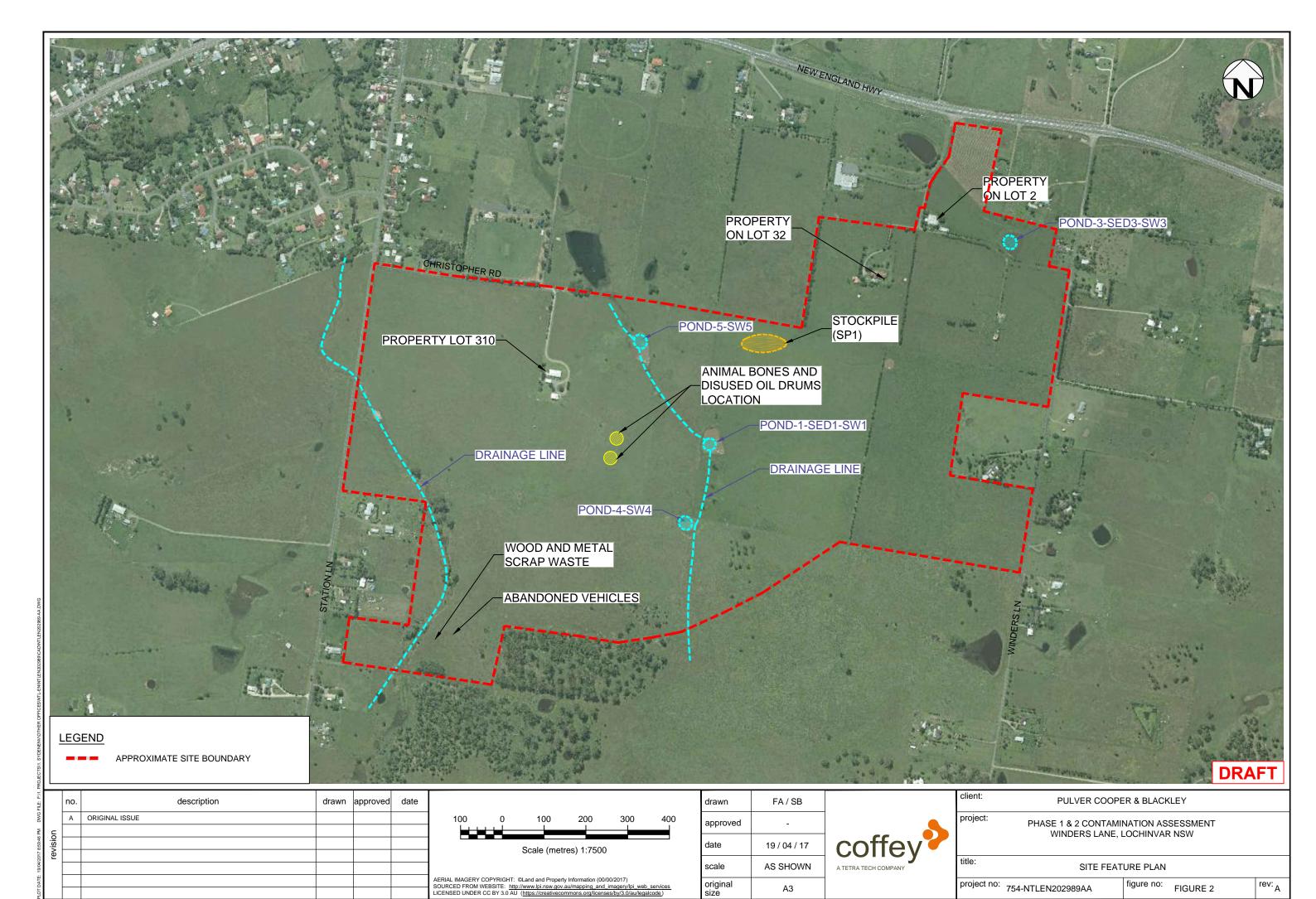
***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

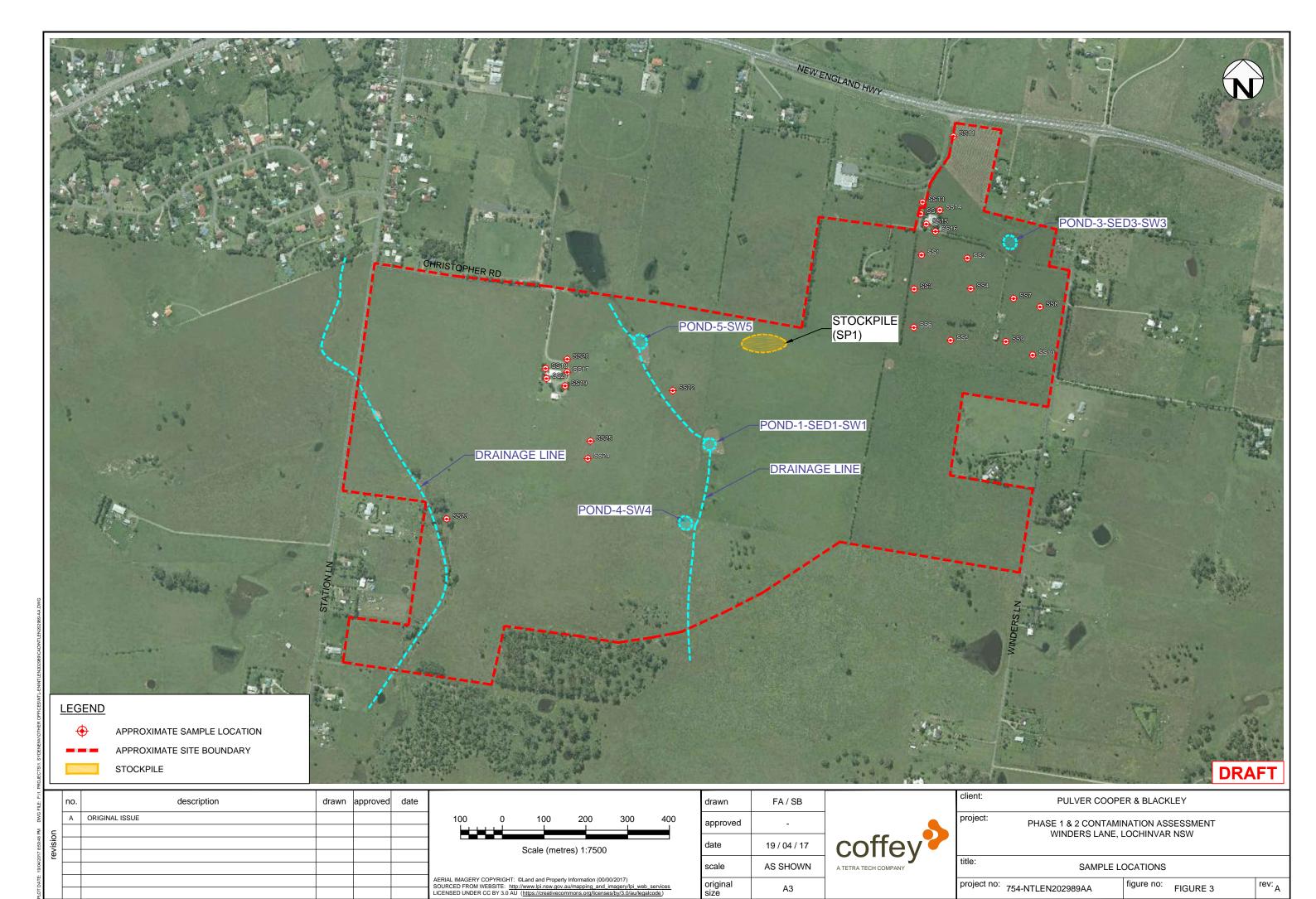
SDG	3458	3458	
Field ID	POND 1 SW1	QC1	RPD
Sampled Date	14/01/2015	14/01/2015	

	Analyte	Units	EQL			
Heavy Metal	Arsenic	mg/l	0.001	0.001	<0.001	0
-	Cadmium	mg/l	0.0002	< 0.0002	< 0.0002	0
	Chromium	mg/l	0.001	0.005	0.005	0
	Copper	mg/l	0.001	0.005	0.006	18
	Lead	mg/l	0.001	<0.001	< 0.001	0
	Mercury	mg/l	0.0001	< 0.0001	< 0.0001	0
	Nickel	mg/l	0.001	0.008	0.008	0
	Zinc	mg/l	0.001	0.003	0.003	0
OCP	4,4-DDE	μg/l	0.1	<0.1	<0.1	0
	a-BHC	μg/l	0.1	<0.1	<0.1	0
	Aldrin	μg/l	0.1	<0.1	<0.1	0
	b-BHC	μg/l	0.1	<0.1	<0.1	0
	Chlordane	μg/l	1	<1.0	<1.0	0
	d-BHC	μg/l	0.1	<0.1	<0.1	0
	DDD	μg/l	0.1	<0.1	<0.1	0
	DDT	μg/l	0.1	<0.1	<0.1	0
	Dieldrin	μg/l	0.1	<0.1	<0.1	0
	Endosulfan I	μg/l	0.1	<0.1	<0.1	0
	Endosulfan II	μg/l	0.1	<0.1	<0.1	0
	Endosulfan sulphate	μg/I μg/I	0.1	<0.1	<0.1	0
	Endrin	μg/l	0.1	<0.1	<0.1	0
	Endrin aldehyde	μg/I μg/I	0.1	<0.1	<0.1	0
	Endrin ketone		0.1	<0.1	<0.1	0
		μg/l	0.1	<0.1	<0.1	0
	g-BHC (Lindane) Heptachlor	μg/l	0.1	<0.1	<0.1	0
	Heptachlor epoxide	μg/l	0.1	<0.1	<0.1	0
		μg/l				
	Hexachlorobenzene	μg/l	0.1	<0.1	<0.1	0
	Methoxychlor	μg/l	0.1	<0.1	<0.1	0
0.00	Toxaphene	mg/l	0.01	<0.01	<0.01	0
OPP	Azinophos methyl	μg/l	2	<2.0	<2.0	0
	Bolstar (Sulprofos)	μg/l	2	<2.0	<2.0	0
	Chlorpyrifos	μg/l	2	<2.0	<2.0	0
	Demeton-O	μg/l	2	<2.0	<2.0	0
	Diazinon	μg/l	2	<2.0	<2.0	0
	Dichlorvos	μg/l	2	<2.0	<2.0	0
	Disulfoton	μg/l	2	<2.0	<2.0	0
	Ethion	μg/l	2	<2.0	<2.0	0
	Ethoprop	μg/l	2	<2.0	<2.0	0
	Fenitrothion	μg/l	2	<2.0	<2.0	0
	Fensulfothion	μg/l	2	<2.0	<2.0	0
	Fenthion	μg/l	2	<2.0	<2.0	0
	Merphos	mg/l	0.002	< 0.002	<0.002	0
	Methyl parathion	μg/l	2	<2.0	<2.0	0
	Mevinphos (Phosdrin)	μg/l	2	<2.0	<2.0	0
	Naled (Dibrom)	μg/l	2	<2.0	<2.0	0
	Phorate	μg/l	2	<2.0	<2.0	0
	Ronnel	μg/l	2	<2.0	<2.0	0
1	Trichloronate	μg/l	2	<2.0	<2.0	0
	Tokuthion	μg/l	2	<2.0	<2.0	0

^{*}RPDs have only been considered where a concentration is greater than 0 times the EQL.

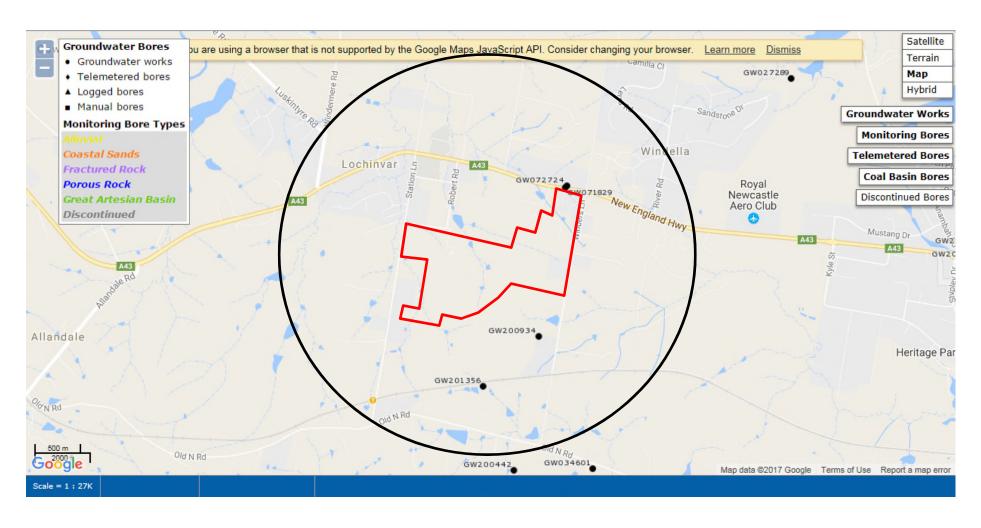

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 200 (0-10 x EQL); 30 (10-20 x EQL); 30 (> 20 x EQL))


***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory


Table LR5 Equipment Rinsate and Trip Blank Results PCB Lochinvar NTLEN202989

			SDG Field ID Sampled Date Sample Type	3458 QC4 14/01/2015 Rinsate	3458 QC5 14/01/2015 Trip_B	23-Mar-17 QC9 20/03/2017 Rinsate
	Analyte	Units	EQL			
Heavy Metal	Arsenic Cadmium	mg/l mg/l	0.001 0.0002	<0.001 <0.0002	-	<0.001 <0.0002
	Chromium Copper	mg/l mg/l	0.001 0.001	<0.001 <0.001	-	<0.001 <0.001
	Lead Mercury	mg/l mg/l	0.001 0.0001	<0.001 <0.0001	-	<0.001 <0.0001
	Nickel Zinc	mg/l mg/l	0.001 0.001	<0.001 <0.001	-	<0.001 <0.005
OCP	4,4-DDE a-BHC	μg/l μg/l	0.1	<0.1	-	<0.1
	Aldrin	μg/l	0.1	<0.1	-	<0.1
	b-BHC Chlordane	μg/l μg/l	0.1	<0.1 <1	-	<0.1 <1
	d-BHC DDD	μg/l μg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
	DDT Dieldrin	μg/l μg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
	Endosulfan I Endosulfan II	μg/l μg/l	0.1 0.1	<0.1 <0.1	-	<0.1 <0.1
	Endosulfan sulphate Endrin	μg/l μg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
	Endrin aldehyde	μg/l	0.1	<0.1	-	<0.1
	Endrin ketone g-BHC (Lindane)	μg/l μg/l	0.1 0.1	<0.1 <0.1	-	<0.1 <0.1
	Heptachlor Heptachlor epoxide	μg/l μg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
	Hexachlorobenzene Methoxychlor	μg/l μg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
OPP	Toxaphene Azinophos methyl	mg/l µg/l	0.01	<0.01 <2	-	<0.01 <2
J	Bolstar (Sulprofos)	μg/l	2 2	<2	-	<2 <2 <2
	Chlorpyrifos Chlorpyrifos	μg/l μg/l	2	<2	-	<20
	Chlorpyrifos-methyl Coumaphos	mg/l µg/l	0.002 20	-	-	<0.002 <20
	Demeton-O Demeton-S	μg/l μg/l	20	<2 -	-	<2 <20
	Diazinon Dichlorvos	μg/l μg/l	2	<2 <2	-	<2 <2
	Dimethoate Disulfoton	μg/l μg/l	2	- <2	-	<2 <2
	EPN	μg/l	2	-	-	<2
	Ethion Ethoprop	μg/l μg/l	2	<2 <2	-	<2 <2
	Fenitrothion Fensulfothion	μg/l μg/l	2	<2 <2	-	<2 <2
	Fenthion Malathion	μg/l μg/l	2	<2	-	<2 <2
	Merphos Methyl parathion	mg/l µg/l	0.002	<0.002 <2	-	<0.002
	Mevinphos (Phosdrin)	μg/l	2 2	<2	-	<2
	Monocrotophos Naled (Dibrom)	μg/l μg/l	2	- <2	-	<2 <2
	Omethoate Parathion	μg/l μg/l	2 2	-	-	<2 <2
	Phorate Pirimiphos-methyl	μg/l mg/l	0.02	<2	-	<2 <0.02
	Pyrazophos Ronnel	μg/l μg/l	2	- <2	-	<2 <2
	Terbufos Trichloronate	μg/l μg/l	2	- <2	-	<2 <2
	Tetrachlorvinphos	mg/l	0.002	-	-	<0.002
Organic	Tokuthion 2,4,5-Trichlorophenoxy acetic acid	µg/l mg/l	0.001	<2 -	-	<2 <0.001
	2,4,5-TP (Silvex) 2,4-Dichlorophenoxy acetic acid	mg/l mg/l	0.001 0.001	-	-	<0.001 <0.001
	2,4-Dichlorprop 4-(2,4-Dichlorophenoxy) butyric acid (2,4-DB)	mg/l µg/l	0.001	-	-	<0.001 <1
	4,6-Dinitro-2-methylphenol Actril (loxynil)	μg/l mg/l	0.001	-	-	<1 <0.001
	Dicamba Dinoseb	μg/l	1	-	-	<1
	Endosulfan I	μg/l μg/l	0.1		-	
	2-Methyl-4-chlorophenoxy acetic acid 2-Methyl-4-Chlorophenoxy butanoic acid	μg/l μg/l	1	-	-	<1 <1
TPH	Mecoprop Naphthalene	μg/l μg/l	10	- <20	- <20	<1 <10
	F2-NAPHTHALENE C6 - C9	mg/l µg/l	0.05 20	<0.05 <20	- <20	<0.05 <20
	C6-C10 less BTEX (F1) C10-C16	mg/l mg/l	0.02 0.05	<0.02 <0.05	<0.02	<0.02 <0.05
	C16-C34 C34-C40	mg/l mg/l	0.1	<0.1 <0.1	-	<0.1 <0.1
	C6 - C10 C10 - C14	mg/l µg/l	0.02	<0.02 <50	<0.02	<0.02 <50
	C15 - C28	μg/l	100	<100	-	<100
	C29 - C36 C10 - C36 (Sum of total)	μg/l μg/l	100 100	<100 <100	-	<100 <100
PAH	Acenaphthene Acenaphthylene	μg/l μg/l	1	<1 <1	-	<1 <1
	Anthracene Benzo(a)anthracene	μg/l μg/l	1	<1 <1	-	<1 <1
	Benzo(a)pyrene Benzo(g,h,i)perylene	μg/l μg/l	1	<1 <1	-	<1
	Benzo(k)fluoranthene	μg/l	1	<1	-	<1
	Chrysene Benzo[b+j]fluoranthene	μg/l mg/l	0.001	<1 <0.001	-	<0.001
	Dibenz(a,h)anthracene Fluoranthene	μg/l μg/l	1	<1 <1	-	<1 <1
	Fluorene Indeno(1,2,3-c,d)pyrene	μg/l μg/l	1	<1 <1	-	<1 <1
	Naphthalene Phenanthrene	μg/l μg/l	1	<1 <1	-	<1 <1
	Pyrene Total PAHs	μg/l μg/l	1	<1 <1	-	<1
BTEX	Benzene	μg/l	1	<1	<1	<1
	Ethylbenzene Toluene	μg/l μg/l	1	<1 <1	<1 <1	<1 <1
	Xylene (m & p) Xylene (o)	μg/l μg/l	1	<2 <1	<2 <1	<2 <1
	Xylene Total	μg/l	3	<3	<3	<3

Figures



LOCHINVAR REGISTERED MONITORING WELLS

Site Boundary

1km Radius around site

NSW Office of Water Work Summary

GW071829

Authorised Purpose

Intended Purpose(s): TOWN WATER SUPPLY

Work Type: Bore

Work Status: Supply Obtained

Construct.Method: **Owner Type:**

Commenced Date: Final Depth: 16.00 m Completion Date: 01/10/1992 Drilled Depth: 16.00 m

Contractor Name:

Driller:

Assistant Driller:

Property: Standing Water Level 16.000

(m):

Salinity Description: GWMA: **GW Zone:** Yield (L/s):

Site Details

Site Chosen By:

County **Parish** Cadastre NORTH.025

Form A: NORTH

68

Licensed:

Region: 20 - Hunter CMA Map:

River Basin: 210 - HUNTER RIVER Grid Zone: Scale:

Area/District:

Elevation: 45.50 m (A.H.D.) Northing: 6380711.0 Latitude: 32°42'07.3"S Elevation Est. Contour 8-15M. **Easting:** 356617.0 Longitude: 151°28'13.1"E

Source:

GS Map: -MGA Zone: 0 Coordinate GD., ACC. MAP

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

	Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	 Interval	Details
1	1	1	Casing	P.V.C.	0.00	0.00	152		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
					l	I	(m)		

Geologists Log Drillers Log

From	To	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			

Remarks

26/11/2009: Updated details as per existing data.

*** End of GW071829 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW072724

Authorised Purpose

· (s):

Intended Purpose(s): STOCK, DOMESTIC, FARMING

Work Type: Bore
Work Status:
Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: 70.00 m

Completion Date: 31/12/1992 Drilled Depth:

Contractor Name:

Driller:

Assistant Driller:

Property: Standing Water Level (m):
GWMA: Salinity Description:

GW Zone: Yield (L/s):

Site Details

Site Chosen By:

 County
 Parish
 Cadastre

 Form A: NORTH
 NORTH.025
 L220 DP246447

Licensed:

Region: 20 - Hunter CMA Map: 9132-1S

River Basin: 210 - HUNTER RIVER Grid Zone: Scale:

Area/District:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6380726.0
 Latitude:
 32°42'06.8"S

 Elevation
 Unknown
 Easting:
 356630.0
 Longitude:
 151°28'13.6"E

Source:

GS Map: - MGA Zone: 0 Coordinate GD.,ACC.GIS

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

	Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	 Interval	Details
1	1	1	Casing	P.V.C.	0.00	0.00	152		

Water Bearing Zones

From	То	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
					l	I	(m)		

Geologists Log Drillers Log

From	To	Thickness	Drillers Description	Geological Material	Comments	
(m)	(m)	(m)				

Remarks

31/12/1992: ACC = 7

*** End of GW072724 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW200934

Licence: 20BL167816 Licence Status: ACTIVE

Authorised Purpose DOMESTIC

(s):

Intended Purpose(s): DOMESTIC

Work Type: Bore

Work Status: Supply Obtained

Construct.Method:

Owner Type: Private

Commenced Date:Final Depth: 25.00 mCompletion Date: 03/03/2000Drilled Depth: 25.00 m

Contractor Name: HUNTER DRILLING SERVICES

PTY LTD

Driller: David Hall Thomson

Assistant Driller:

Property: N/A Standing Water Level: 12.000 GWMA: Salinity: Fair GW Zone: Yield: 0.200

Site Details

Site Chosen By:

County Parish Cadastre
Form A: NORTH NORTH.25 1//746278

Licensed:

Region: 20 - Hunter CMA Map:

River Basin: - Unknown Grid Zone: Scale:

Area/District:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6379270.0
 Latitude:
 32°42′54.0″S

 Elevation:
 Unknown
 Easting:
 356377.0
 Longitude:
 151°28′03.1″E

Source:

GS Map: - MGA Zone: 0 Coordinate Unknown

Source:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)		Outside Diameter (mm)		Interval	Details
1		Annulus	Waterworn/Rounded	0.00	0.00				
1	1	Opening	Slots - Horizontal	0.00	0.00			1	Sawn, PVC, A: 2.00mm
1	1	Casing	P.V.C.	0.00	25.00	150	138		Seated on Bottom, Glued

Water Bearing Zones

Fro (m)	m	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	D.D.L. (m)	(L/s)	 Duration (hr)	Salinity (mg/L)
1	2.00	17.00	5.00	Unknown	12.00				

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)	-	_	
0.00	1.00	1.00	BLACK SOIL	Soil	
1.00	7.00	6.00	BASALT WEATHERED AND DECOMPOSED	Basalt	
7.00	12.00	5.00	WEATHERED BASALT	Basalt	
12.00	17.00	5.00	BASALT FRESH SOFT FINE GRAINED	Basalt	
17.00	25.00	8.00	BASALT FRESH HARD	Basalt	

Remarks

*** End of GW200934 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201356

Licence: 20BL172372 Licence Status: ACTIVE

Authorised Purpose MONITORING BORE

(s):

Intended Purpose(s): MONITORING BORE

Work Type: Bore
Work Status: Equipped

Construct.Method: Auger - Solid Flight

Owner Type: Private

Commenced Date: Final Depth: 6.30 m
Completion Date: 03/12/2009 Drilled Depth: 6.30 m

Contractor Name: Total Drilling

Driller: Christopher David Kiernan

Assistant Driller: Ben Kiernan

Property: NA 3 WILLIAM STREET Standing Water Level:

GILLIESTON HEIGHTS 2321

GWMA: Salinity: GW Zone: Yield:

Site Details

Site Chosen By:

 County
 Parish
 Cadastre

 Form A: NORTH
 NORTH.25
 63//564264

Licensed:

Region: 20 - Hunter CMA Map: 9132-1S

River Basin: 210 - HUNTER RIVER Grid Zone: Scale:

Area/District:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6378783.0
 Latitude:
 32°43'09.5"S

 Elevation:
 Unknown
 Easting:
 355843.0
 Longitude:
 151°27'42.3"E

Source:

GS Map: - MGA Zone: 0 Coordinate GPS - Global

Source: Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement

of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

or Ora	of Graver Fack, F. C-1 ressure Gernerited, G-Gump, GE-Gerniralisers								
Hole	Pipe	Component	Type	From	То	Outside	Inside	Interval	Details
				(m)	(m)	Diameter	Diameter		
						(mm)	(mm)		
1		Hole	Hole	0.00	6.30	150			Auger - Solid Flight
1		Annulus	Cement	0.00	0.10	150	50		PL:Poured/Shovelled
1		Annulus	Bentonite	0.10	3.20	150	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	3.20	6.30	150	50		Graded, PL:Poured/Shovelled
1	1	Casing	Pvc Class 18	0.00	6.30	50	44		Seated on Bottom, Screwed
1	1	Opening	Slots - Horizontal	3.30	6.30	50		1	Mechanically Slotted, PVC Class
									18, Screwed, SL: 45.0mm, A:
1						l			6.00mm

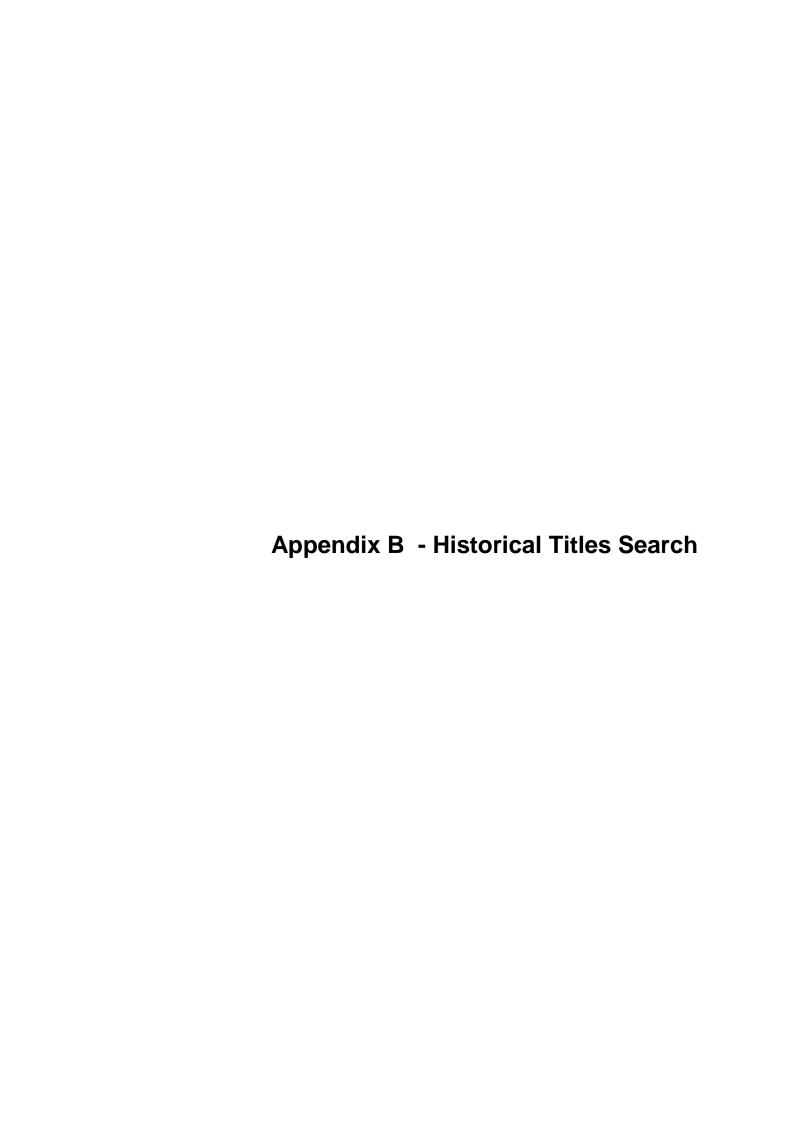
Water Bearing Zones

From	Το	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity	
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)	
					I	I	(m)		1 1	

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.20		Sand, fine grained, yellow brown, organic matter	Sand	
0.20	1.00	0.80	Clay, medium, brown mottled, trace silt	Clay	
1.00	2.50	1.50	Clay, heavy, white yellow, trace sand	Clay	
2.50	6.30	3.80	Clay, heavy, yellow, mottled white	Clay	


Remarks

03/12/2009: Form A Remarks:

Nat Carling, 30-Mar-2012; GPS provided by the driller. No completion date provided, taken from driller's signature on the form.

*** End of GW201356 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

ADVANCE LEGAL SEARCHERS PTY LIMITED

(ACN 147 943 842) ABN 82 147 943 842

P.O. Box 149
Yagoona NSW 2199
Telephone: +612 9644 679
Mobile: 0412 169 809

Facsimile: +612 8076 3026 Email: alsearch@optusnet.com.au

12th January, 2015

COFFEY ENVIROMENTS LIMITED 19 Warabrook Boulevard, WARABROOK, NSW 2304

Attention: Libby Betz,

RE: 801 New England Highway,

Lochinvar WARA 15-0002

Current Search

Folio Identifier 32/1132263 (title attached) DP 1132263 (plan attached) Dated 06th January, 2015 Registered Proprietor: **EDWIN JAMES AIRD JUNIOR**

Title Tree Lot 32 DP 1132263

Folio Identifier 32/1132263

(a)	(b)					
Folio Identifier	Folio Identifier 3/718712					
(ai)	(aii)	Folio Identifier 2/746278				
CTVol 13952 Folio 48	CA 8487	CA 18539				
IVA 28533	Conveyance Bk 2954 No 9	Conveyance Bk 3560 No 683				
Conveyance Book 3283 No 358	/	Conveyance Bk 3501 No 311				
Conveyance Book 2954 No 9	/	Conveyance Bk 3478 No 430				
Conveyance Bl	k 2809 No 356	Conveyance Bk 1400 No 627				
Conveyance B	k 2452 No 206	Acknow Bk 1397 No 651				
Conveyance Bk 2117 No 218	Conveyance Bk 2117 No 217	****				
Conveyance B	k 1218 No 422					

Conveyance Bk 1102 No 980

Summary of proprietor(s) **Lot 32 DP 1132263**

Year Proprietor

	(Lot 32 DP 1132263)
2009 – todate	Edwin James Aird, junior

See Notes (a) & (b)

Note (a)

	(Lot 3 DP 718712)
1990 - 2009	Edwin James Aird, junior
1985 – 1990	Edwin James Aird, retired
	Ellie Aird
	Airds Pty Limited

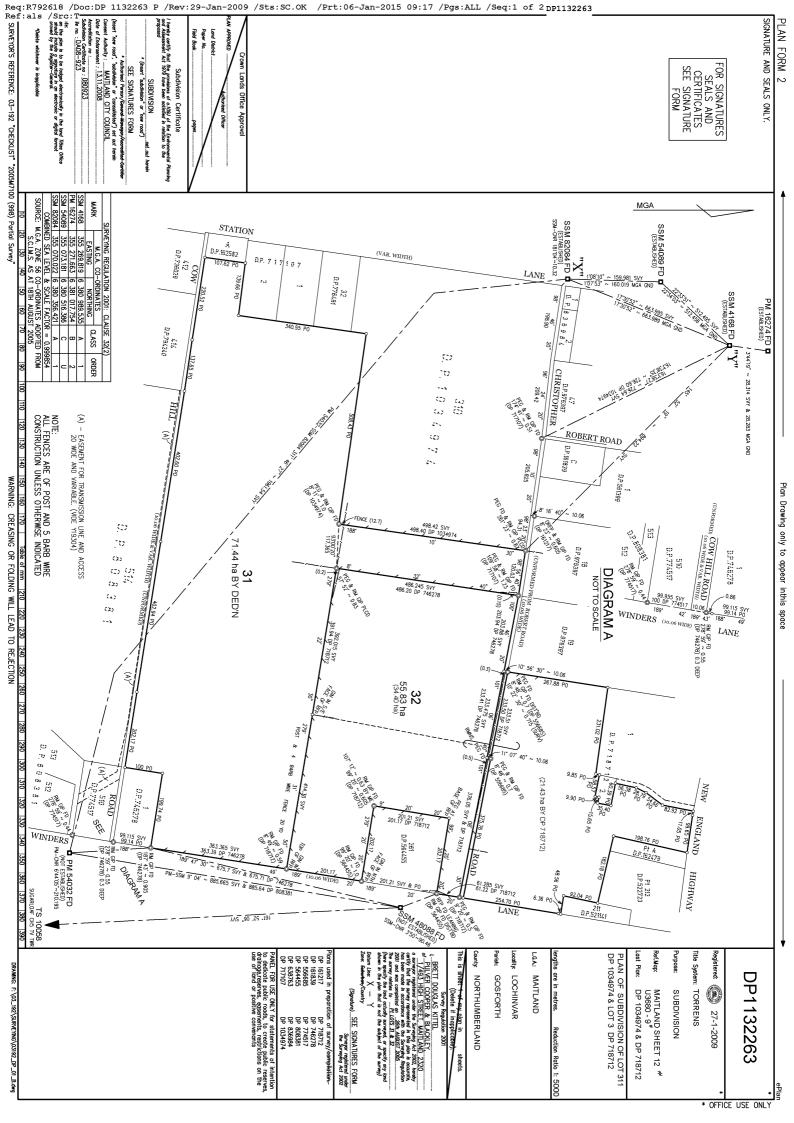
See Notes (ai) & (aii)

Note (ai)

	(Lot 1 DP 556685 – CTVol 13952 Fol 48)
1980 – 1985	Airds Pty Limited
1979 – 1980	Airds Pty Limited
	(Australian and New Zealand Banking Group Limited, mortgagee)
	(Lot 1 of Subdivision of Lots 20 & 21 of Windermere Estate of Portion 68
	Parish Gosforth – Conv Bk 3283 No 358)
1976 – 1979	Airds Pty Limited
	(Lot 1 of Subdivision of Lots 20 & 21 of Windermere Estate of Portion 68
	Parish Gosforth – Conv Bk 2954 No 9)
1969 – 1976	Edwin James Aird, manufacturer
	Ellie Aird
	(Lot 1 of Subdivision of Lots 20 & 21 of Windermere Estate of Portion 68
	Parish Gosforth – Conv Bk 2809 No 356)
1966 – 1969	Alexander William Benton, farming contractor
	Neta Eileen Benton
	(Lots 20, 21 & 26 of Windermere Estate of Portion 68 Parish Gosforth –
	Conv Bk 2452 No 206)
1958 – 1966	Kate Aldridge Bruhn, wife of minister of religion
1954 – 1958	Kate Aldridge Bruhn, wife of minister of religion / executrix
	Ethel Florence Winder, estate
	David William Winder, estate
	Violet Emily Moore, married woman
	Madge Ruth Ernst, widow

Cont.

Cont.


	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
1950 – 1954	Conv Bk 2117 No 217) Violet Emily Moore married warmen
1930 – 1934	Violet Emily Moore, married woman
	Madge Ruth Ernst, widow
	Mary Isobel Sinclair, executrix
	Ellen Winder, estate
	Ethel Florence Emily Winder, spinster
	David William Winder, farmer
1929 – 1950	Ethel Florence Emily Winder, spinster /executrix
	Annie Winder, estate
	Mary Isobel Sinclair, executrix
	Ellen Winder, estate
	Hugh Wallace Winder, estate
	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 1102 No 980)
1917 – 1929	Annie Winder, spinster
	Ellen Winder, spinster
	Ethel Winder, spinster
	Hugh Wallace Winder, farmer
1882 - 1917	Charles Simpson, executor
	Thomas Winder, estate

Note (aii)

	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 2954 No 9)
1969 – 1985	Edwin James Aird, manufacturer
	Ellie Aird
	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 2809 No 356)
1966 – 1969	Alexander William Benton, farming contractor
	Neta Eileen Benton
	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 2452 No 206)
1958 – 1966	Kate Aldridge Bruhn, wife of minister of religion
1954 – 1958	Kate Aldridge Bruhn, wife of minister of religion / executrix
	David William Winder, estate
	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 2452 No 206)
1950 – 1954	David William Winder, dairy farmer
1929 – 1950	Florence Emily Winder, executrix
	Annie Winder, estate
	Mary Isobel Sinclair, executrix
	Ellen Winder, estate
	Ethel Florence Emily Winder
	Hugh Wallace Winder, estate
	(Part of Lots 20, 21 & 26 of the Windermere Estate and other lands –
	Conv Bk 1102 No 980)
1917 – 1929	Annie Winder, spinster
	Ellen Winder, spinster
	Ethel Winder, spinster
	Hugh Wallace Winder, farmer
1882 – 1917	Charles Simpson, executor
	Thomas Winder, estate

Note (b)

	(Lot 311 DP 1034974)
2002 – 2009	Edwin James Aird, junior
2001 – 2002	Richard Karl Huirf
	(Lot 2 DP 746278)
1987 – 2001	Richard Karl Huirf
	(Lots 25 & 30 of Melville estate and other lands – Conv Bk 3560 No 683)
1983 – 1987	Edwin James Aird, junior, company director
	(Lots 25 & 30 of Melville estate and other lands – Conv Bk 3501 No 311)
1982 – 1983	Abturka Pty Limited
	(Lots 22 to 27 of Melville estate and other lands – Conv Bk 3478 No 430)
1981 – 1982	Alumax of Australia Pty Limited
1980 – 1981	Francis Joseph Heagney, company secretary / executor
	Francis Bertrand Heagney, estate
	(Lots 22 to 27 of Melville estate and other lands – Conv Bk 1400 No 627)
1925 – 1980	Francis Bertrand Heagney, farmer
	(Lots 22 to 27 of Melville estate and other lands – Ackn Bk 1397 No 651)
1925 – 1925	Francis Heagney, farmer
1925 – 1925	Francis Heagney, farmer / executor
	Patrick Heagney, estate
1883 – 1925	Francis Heagney, farmer
	Patrick Heagney, farmer / executor
	Michael Connolly, farmer / executor
	Patrick Markham, estate

Req:R792618 /Doc:DP 1132263 P /Rev:29-Jan-2009 /Sts:SC.OK /Prt:06-Jan-201 Reg:als/pgscall /Seq:2 of 2

CERTIFICATES, SIGNATURES AND SEALS

Sheet 1 of 1 sheet(s)

PLAN OF SUBDIVISION OF LOT 311 DP1034974 & LOT 3 DP718712

DP1132263

Registered:

and drainage reserves.

27-01-2009

SIGNATURES, SEALS and STATEMENTS of intention to dedicate public roads or to create public reserves

Surveying Regulation, 2001

I, BRETT DOUGLAS KITTEL of PULVER COOPER & BLACKLEY. **\98 LAWES STREET, EAST MAITLAND NSW 2323** a surveyor registered under the Surveying Act, 2002, hereby certify that the survey represented in this plan is accurate, has been made in accordance with the Surveying Regulation, 2006 and was completed on:. 26ST August 2005

The survey relates to Pt LOTS 31 & 32.....

(specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey)

Signature

Byert K 1776_____ Dated: 26/08/05

Surveyor registered under the Surveying Act, 2002

Datum Line: X-Y..... Type: Urban/Rural

Crown Lands NSW/Western Lands Office Approval

I.....in approving this plan certify (Authorised Officer)

that all necessary approvals in regard to the allocation of the land shown herein have been given-

Date:

File Number:

Subdivision Certificate

I certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to:

the proposed......set out

herein

(insert 'subdivision' or 'new road')

* Authorised Person/General Manager/Accredited Certifier

Consent Authority:MAITLAND CITY COUNCIL.....

Date of Endorsement: 13.11.08

Accreditation no:

Subdivision Certificate no:080923

File no: DA 08-923

* Delete whichever is inapplicable.

ed for and on behalf of N 000 054 635 by its duty aut mey under Power of Attorney re ok 4541 No. 455 who dec of Attorney in the presence of:

133 Castlereagh Street, Sydney Address of Witness

MAITLAND MUTUAL BUILDING SOCIETY LIMITED ACN 087 651 983 BY ITS ATTORNEY

(name) RODNEY WILL IAMS

(position) SECURITIES MANAGER

PURSUANT TO POWER OF ATTORNEY REGISTERED BOOK 4521 No. 745

DATED: 27 NOVEMBER 2008

(signed)

(: WATINESS)

Use PLAN FORM 6A for additional certificates, signatures and seals

SURVEYOR'S REFERENCE: 03-192 "CHECKLIST" "2005M7100 (998) Partial Survey"

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

 18/36 Osborne Road,
 Telephone:
 +612 9977 6713

 Manly NSW 2095
 Mobile:
 0412 169 809

Facsimile: +612 8076 3026 Email: search@alsearchers.com.au

13th March, 2017

COFFEY ENVIRONMENTS PTY LTD 19 Warabrook Boulevard, WARABROOK NSW 2304

Attention: Damien Hendrickx

RE: Lochinvar PO WARA17-0233

 Note 1:
 Lot 2
 DP 718712
 (page 1)

 Note 2:
 Lot 310
 DP 1034974
 (page 5)

 Note 3:
 Lot 311
 DP 1135580
 (page 8)

Note 1:

Current Search

Folio Identifier 2/718712 (title attached) DP 718712 (plan attached) Dated 09th March, 2017 Registered Proprietor: **EDWIN JAMES AIRD CAROL ANN AIRD**

Title Tree Lot 2 DP 718712

Folio Identifier 2/718712

CA 8487

Conveyance Book 2954 No. 9

Conveyance Book 2809 No. 356

Conveyance Book 2452 No. 206

Conveyance Book 2117 No's 217 & 218

Conveyance Book 1573 No. 89

Conveyance Book 1102 No. 980

Summary of proprietor(s) **Lot 2 DP 718712**

Year Proprietor(s)

	(Lot 2 DP 718712)
2015 – todate	Edwin James Aird
	Carol Ann Aird
2015 – 2015	Edwin James Aird
	Merran Power
2003 – 2015	Edwin James Aird, manufacturer
1985 – 2003	Edwin James Aird, manufacturer
	Ellie Aird, his wife
	(Allotment 26 of Windermere Estate and other land – Area 47 Acres
	1 Rood 35 Perches and other land – Conv Bk 2954 No. 9)
1969 – 1985	Edwin James Aird, manufacturer
	Ellie Aird, his wife
	(Allotment 26 of Windermere Estate and other land – Area 47 Acres
	1 Rood 35 Perches and other land – Conv Bk 2809 No. 356)
1966 – 1969	Alexander William Benton, farming contractor
	Neta Eileen Benton, his wife
	(Allotment 26 of Windermere Estate and other land – Area 47 Acres
	1 Rood 35 Perches and other land – Conv Bk 2452 No. 206)
1958 – 1966	Kate Aldridge Bruhn, wife of David Gilbert Bruhn, minister of religion
1954 – 1958	Kate Aldridge Bruhn, wife of David Gilbert Bruhn, minister of religion /
	executrix
	Violet Emily Moore, wife of George Deakin Moore, fitter / executrix
	Madge Ruth Ernest, widow
	Ethel Florence Winder, estate
	David William Winder, estate
	(Allotment 26 of Windermere Estate and other land – Area 47 Acres
	1 Rood 35 Perches and other land – Conv Bk 2117 No's 217 & 218)
1950 – 1954	Violet Emily Moore, wife of George Deakin Moore, fitter
	Madge Ruth Ernest, widow
	David William Winder, farmer
	Ethel Florence Emily Winder, spinster
1950 – 1950	Ethel Florence Emily Winder, spinster / executrix
	Mary Isobel Sinclair, executrix
	Hugh Wallace Winder, estate

Cont.

Cont.

	(Allotment 26 of Windermere Estate and other land – Area 47 Acres 1 Rood 35 Perches and other land – Conv Bk 1573 No. 89)
1929 – 1950	Ethel Florence Emily Winder, spinster
	Hugh Wallace Winder, farmer
1929 – 1929	Ethel Florence Emily Winder, spinster / executrix
	Hugh Wallace Winder, farmer / executor
	Annie Winder, estate
	Ellen Winder, estate
	(Allotment 26 of Windermere Estate and other land – Area 47 Acres
	1 Rood 35 Perches and other land – Conv Bk 1102 No. 980)
1917 – 1929	Annie Winder, spinster
	Ellen Winder, spinster
	Ethel Winder, spinster
	Hugh Wallace Winder, farmer

Note 2:

Current Search

Folio Identifier 310/1034974 (title attached) DP 1034974 (plan attached) Dated 09th March, 2017 Registered Proprietor: RICHARD KARL HVIRF

Title Tree Lot 310 DP 1034974

Folio Identifier 310/1034974

Folio Identifier 31/776491

Folio Identifier 3/717107

(a) (b)

CTVol 9452 Folio 110 CA 7125

CTVol 2608 Folio 169 Conv Book 3584 No. 592

**** Conv Book 3501 No. 311

Conv Book 3443 No. 42

Conv Book 3157 No. 687

Conv Book 1820 No. 974

Conv Book 1765 No's 628 & 629

(bii) (bii)

Conv Book 1123 No. 795 Conv Book 1167 No. 348

Summary of proprietor(s) **Lot 310 DP 1034974**

Year Proprietor(s)

	(Lot 310 DP 1034974)
2001 – todate	Richard Karl Hvirf
	(Lot 31 DP 776491)
2001 - 2001	Richard Karl Hvirf
1988 - 2001	Julie Annette Hvir
	Richard Karl Hvirf
	(Lot 3 DP 717107)
1985 – 1988	Julie Annette Hvirf
	Richard Karl Hvirf

See Notes (a) & (b)

Note (a)

	(Lot 2 DP 503317 – CTVol 9452 Fol 110)
1984 – 1985	Julie Annette Hvirf, wife
	Richard Karl Hvirf, fitter
1982 – 1984	Abturka Pty Limited
1981 – 1982	Alumax of Australia Pty. Limited.
1974 – 1981	Jones Nominees Pty. Limited.
1963 – 1974	Christian Knife, farmer
	(Lots 22, 24, 28 & 29 of the Windermere Estate – Area 166 Acres 1
	Rood 15 Perches – CTVol 2608 Fol 169)
1937 – 1963	Christian Knife, farmer
1937 – 1937	George Joseph Knife, farmer
1916 – 1937	George Knife, farmer
1915 – 1916	Ernest Winder, farmer

Note (b)

	(Lot 23 & Part Lot 27 DP 976397 – Conv Bk 3584 No. 592)
1983 – 1985	Julie Annette Hvirf, fitter
	Richard Karl Hvirf, wife
	(Lot 23 & Part Lot 27 DP 976397 – Conv Bk 3501 No. 311)
1981 – 1983	Abturka Pty Limited
	(Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33
	Perches and other land – Conv Bk 3443 No. 42)
1980 – 1981	Alumax of Australia Pty. Limited
	(Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33
	Perches and other land – Conv Bk 3157 No. 687)
1974 – 1980	Jones Nominees Pty. Limited (In Liquidation)
	(Lot 23 & Part Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33
	Perches and other land – Conv Bk 1820 No. 974)
1938 – 1974	Christian Knife, farmer
	(Lot 23 & Lot 27 of Melville Estate – Area 24 Acres 3 Roods 33
	Perches and other land – Conv Bk 1765 No's 628 & 629)
1936 – 1938	Patrick Joseph McMahon, farmer,

See Notes (bi) & (bii)

Note (bi)

	(Allotment 27 of Melville Estate – Area 49 Acres 1 Rood 16 Perches and other land – Conv Bk 1123 No.795)
1918 - 1936	John Thomas Keys, hotelkeeper

Note (bii)

	(Allotment 23 of Melville Estate – Area 24 Acres 3 Roods 33 Perches and other land – Conv Bk 1167 No. 348)
1919 – 1936	James Morris, old age pensioner
	William Morris, retired farmer
	Thomas Morris, retired farmer
	Ethel Eleanor Badcock, wife of George Badcock, miner
	George Badcock, miner
	Joseph Morris, checkweighman
	William James Morris, wagon packer

Note 3:

Current Search

Folio Identifier 311/1135580 (title attached) DP 1135580 (plan attached) Dated 09th March, 2017 Registered Proprietor: **EDWIN JAMES AIRD JUNIOR**

Title Tree Lot 311 DP 1135580

Folio Identifier 311/1135580

Folio Identifier 31/1132263

Folio Identifier 311/1034974

See Notes (a) & (b)

(a)

Folio Identifier 2/746278

(aii)

CTVol 9452 Folio 109 CA 18539

CTVol 2608 Folio 169 Conv Bk 3560 No 683

**** Conv Bk 3501 No 311

Conv Bk 3478 No 430

Conv Bk 1400 No 627

Ackn Bk 1397 No 651

(b)

Folio Identifier 31/776491

Folio Identifier 3/717107

(bi) (bii)

CA 7125 CTVol 9452 Folio 110

Conv Book 3584 No. 592 CTVol 2608 Folio 169

Conv Book 3501 No. 311 ****

Conv Book 3443 No. 42

Conv Book 3157 No. 687

Conv Book 1820 No. 974

Conv Book 1765 No.s 628 & 629

(bia) (bib)

Conv Book 1123 No. 795 Conv Book 1167 No. 348

Summary of proprietor(s) **Lot 311 DP 1135580**

Year Proprietor

	(Lot 311 DP 1135580)	
2009 – todate	Edwin James Aird Junior	
	(Lot 31 DP 1132263)	
2009 – 2009	Edwin James Aird Junior	
	(Lot 311 DP 1034974)	
2002 – 2009	Edwin James Aird Junior	
2001 - 2002	Richard Karl Hvirf	
	Edwin James Aird Junior	

See Notes (a) & (b)

Note (a)

	(Lot 2 DP 746278)
1987 – 2001	Edwin James Aird Junior

See Notes (ai) & (aii)

Note (ai)

	(Lot 1 DP 503317 – CTVol 9452 Fol 109)				
1983 – 1987	Edwin James Aird Junior				
1982 – 1983	Abturka Pty Limited				
1980 – 1982	Alumax of Australia Pty. Limited.				
1968 – 1980	John Albert Wilkes, cartage contractor				
	Ruth Marie Wilkes, wife				
1963 – 1968	Stanley Thomas Wootton, gentleman				
1963 – 1963	Christian Knife, farmer				
	(Lots 22, 24, 28 & 29 of the Melville Estate – Area 166 Acres 1 Rood				
15 Perches – CTVol 2608 Fol 169)					
1937 – 1963	Christian Knife, farmer				
1937 – 1937	George Joseph Knife, farmer				
1916 – 1937	George Knife, farmer				
1915 – 1916	Ernest Winder, farmer				

Note (aii)

	(Lots 25 & 30 of Melville Estate and other lands – Conv Bk 3560 No 683)			
1983 – 1987	Edwin James Aird, junior, company director			
	(Lots 25 & 30 of Melville Estate and other lands – Conv Bk 3501 No 311)			
1982 – 1983	Abturka Pty Limited			
	(Lots 22 to 27 of Melville Estate and other lands – Conv Bk 3478 No 430)			
1981 – 1982	Alumax of Australia Pty Limited			
1980 – 1981	Francis Joseph Heagney, company secretary / executor			
	Francis Bertrand Heagney, estate			
	(Lots 22 to 27 of Melville Estate and other lands – Conv Bk 1400 No 627)			
1925 – 1980	Francis Bertrand Heagney, farmer			
	(Lots 22 to 27 of Melville Estate and other lands – Ackn Bk 1397 No 651)			
1925 – 1925	Francis Heagney, farmer			
1925 – 1925	Francis Heagney, farmer / executor			
	Patrick Heagney, estate			
1883 – 1925	Francis Heagney, farmer / executor			
	Patrick Heagney, farmer / executor			
	Michael Connolly, farmer / executor			
	Patrick Markham, estate			

Note (b)

	(Lot 31 DP 776491)
2001 - 2001	Richard Karl Hvirf
1988 - 2001	Julie Annette Hvir
	Richard Karl Hvirf
	(Lot 3 DP 717107)
1985 – 1988	Julie Annette Hvirf
	Richard Karl Hvirf

See Notes (bi) & (bii)

Note (bi)

	(Lot 2 DP 503317 – CTVol 9452 Fol 110)				
1984 – 1985	Julie Annette Hvirf, wife				
	Richard Karl Hvirf, fitter				
1982 – 1984	Abturka Pty Limited				
1981 – 1982	Alumax of Australia Pty. Limited.				
1974 – 1981	Jones Nominees Pty. Limited.				
1963 – 1974	Christian Knife, farmer				
	(Lots 22, 24, 28 & 29 of the Melville Estate – Area 166 Acres 1 Rood				
	15 Perches – CTVol 2608 Fol 169)				
1937 – 1963	Christian Knife, farmer				
1937 – 1937	George Joseph Knife, farmer				
1916 – 1937	George Knife, farmer				
1915 – 1916	Ernest Winder, farmer				

Note (bii)

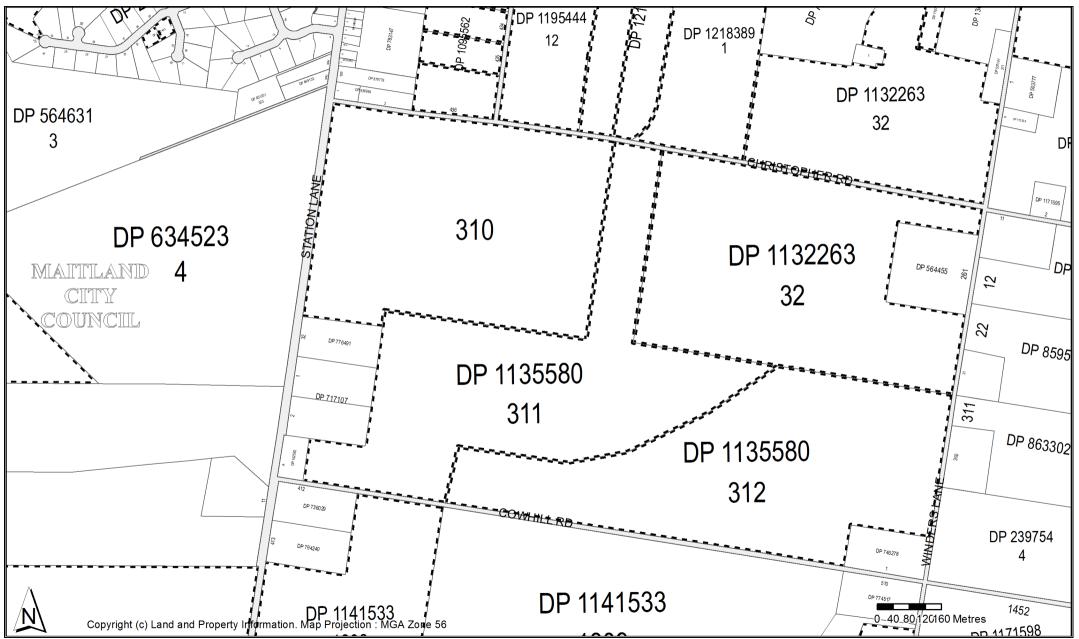
	(Lot 23 & Part Lot 27 DP 976397 – Conv Bk 3584 No. 592)			
1983 – 1985	Julie Annette Hvirf, fitter			
	Richard Karl Hvirf, wife			
	(Lot 23 & Part Lot 27 DP 976397 – Conv Bk 3501 No. 311)			
1981 – 1983	Abturka Pty Limited			
	(Lot 23 & Part Lot 27 of the Melville Estate – Area 24 Acres 3 Roods			
	33 Perches – Conv Bk 3443 No. 42)			
1980 – 1981	Alumax of Australia Pty. Limited			
	(Lot 23 & Part Lot 27 of the Melville Estate – Area 24 Acres 3 Roods			
	33 Perches- Conv Bk 3157 No. 687)			
1974 – 1980	Jones Nominees Pty. Limited (In Liquidation)			
	(Lot 23 & Part Lot 27 of the Melville Estate – Area 24 Acres 3 Roods			
	33 Perches – Conv Bk 1820 No. 974)			
1938 – 1974	Christian Knife, farmer			
	(Lot 23 & Lot 27 of the Melville Estate – Area 24 Acres 3 Roods 33			
	Perches – Conv Bk 1765 No's 628 & 629)			
1936 – 1938	Patrick Joseph McMahon, farmer,			

See Notes (biia) & (bib)

Note (biia)

	(Allotment 27 of the Melville Estate – Area 49 Acres 1 Rood 16 Perches– Conv Bk 1123 No.795)
1918 – 1936	John Thomas Keys, hotelkeeper

Note (biib)


	(Allotment 23 of the Melville Estate – Area 24 Acres 3 Roods 33
	Perches – Conv Bk 1167 No. 348)
1919 – 1936	James Morris, old age pensioner
	William Morris, retired farmer
	Thomas Morris, retired farmer
	Ethel Eleanor Badcock, wife of George Badcock, miner
	George Badcock, miner
	Joseph Morris, checkweighman
	William James Morris, wagon packer

Cadastral Records Enquiry Report

Ref: Coffey - Lochinvar Identified Parcel: Lot 311 DP 1135580

Requested Parcel: Lot 311 DP 1135580

County: NORTHUMBERLAND **LGA**: MAITLAND Parish: GOSFORTH

Land & Property Information

Locality: LOCHINVAR

Cadastral Records Enquiry Report

Ref : Coffey - Lochinvar

Requested Parcel: Lot 311 DP 1135580 Identified Parcel: Lot 311 DP 1135580 Locality: LOCHINVAR **LGA: MAITLAND** Parish: GOSFORTH **County: NORTHUMBERLAND** Status Surv/Comp **Purpose** DP264380 Lot(s): 32 DP1227188 REGISTERED SURVEY **EASEMENT** DP542920 Lot(s): 141 DP1171595 REGISTERED SURVEY RESUMPTION OR ACQUISITION DP1034974 Lot(s): 310 HISTORICAL SURVEY SUBDIVISION DP776491 DP1095562 Lot(s): 434, 435, 436 CA98403 - LOTS 433-436 DP1095562 DP1107022 Lot(s): 21 CA103245 - LOT 21 DP1107022 DP1132263 Lot(s): 32 DP718712 **HISTORICAL** SURVEY SUBDIVISION DP746278 **HISTORICAL** SURVEY SUBDIVISION DP776491 HISTORICAL SURVEY SUBDIVISION REGISTERED SURVEY SUBDIVISION DP1034974 DP1135580 Lot(s): 311, 312 DP746278 HISTORICAL SURVEY SUBDIVISION DP776491 HISTORICAL SURVEY SUBDIVISION DP1034974 REGISTERED **SURVEY** SUBDIVISION SUBDIVISION DP1132263 REGISTERED SURVEY DP1141532 Lot(s): 1205 SURVEY DP776055 **HISTORICAL** CONSOLIDATION DP1141533 Lot(s): 1311 DP808381 HISTORICAL SURVEY SUBDIVISION Lot(s): 1308 DP794240 HISTORICAL SURVEY SUBDIVISION DP1142442 Lot(s): 1, 2 DP264380 SURVEY SUBDIVISION **HISTORICAL** DP1195444 Lot(s): 12 **HISTORICAL SURVEY** UNRESEARCHED DP161839 DP561399 HISTORICAL COMPILATION DEPARTMENTAL SURVEY SUBDIVISION DP1097563 REGISTERED DP1216128 Lot(s): 102 DP633208 HISTORICAL **SURVEY** OLD SYSTEM CONVERSION SUBDIVISION DP634523 HISTORICAL **SURVEY** DP997240 HISTORICAL **COMPILATION DEPARTMENTAL** DP1093291 REGISTERED SURVEY SUBDIVISION DP1111493 REGISTERED SURVEY SUBDIVISION DP1132799 HISTORICAL SURVEY OLD SYSTEM CONVERSION DP1177217 REGISTERED COMPILATION CONSOLIDATION PA82590 - LOT 1 DP1132799

COMPILATION

CA104021 - LOT 1819 DP1124571

HISTORICAL

DP1218389 Lot(s): 1, 2, 3

DP1124571

LIMITED FOLIO CREATION

Cadastral Records Enquiry Report

Ref: Coffey - Lochinvar **Identified Parcel**: Lot 311 DP 1135580

Requested Parcel: Lot 311 DP 1135580 Identified Parcel: Lot 311 DP 1135580

Locality: LOCHINVAR LGA: MAITLAND Parish: GOSFORTH County: NORTHUMBERLAND

Locality: LOCHINVAR	LGA : MAITLAND	Parish: GOSFORTH	County: NORTHUMBERLAND
Plan	Surv/Comp	Purpose	
DP136186	COMPILATION	DEPARTMENTAL	
DP162582	SURVEY	UNRESEARCHEI	
DP239754	SURVEY	SUBDIVISION	
DP249750	SURVEY	SUBDIVISION	
DP264380	SURVEY	SUBDIVISION	
DP503777	SURVEY	SUBDIVISION	
DP521141	SURVEY	SUBDIVISION	
DP542920	SURVEY	SUBDIVISION	
DP564455	SURVEY	SUBDIVISION	
DP564631	SURVEY	SUBDIVISION	
DP634523	SURVEY	SUBDIVISION	
DP717107	SURVEY	SUBDIVISION	
DP718712	SURVEY	SUBDIVISION	
DP736029	SURVEY	SUBDIVISION	
DP746278	SURVEY	SUBDIVISION	
DP772028	SURVEY	SUBDIVISION	
DP774517	SURVEY	SUBDIVISION	
DP776491	SURVEY	SUBDIVISION	
DP783147	COMPILATION	DEPARTMENTAL	-
DP794240	SURVEY	SUBDIVISION	
DP831201	SURVEY	SUBDIVISION	
DP836984	SURVEY	SUBDIVISION	
DP849133	SURVEY	SUBDIVISION	
DP854217	SURVEY	SUBDIVISION	
DP859518	SURVEY	SUBDIVISION	
DP862305	SURVEY	SUBDIVISION	
DP863302	SURVEY	SUBDIVISION	
DP878779	SURVEY	SUBDIVISION	
DP1034974	SURVEY	SUBDIVISION	
DP1095562	COMPILATION	LIMITED FOLIO (CREATION
DP1107022	COMPILATION	LIMITED FOLIO (CREATION
DP1132263	UNRESEARCHED	SUBDIVISION	
DP1132263	SURVEY	SUBDIVISION	
DP1135580	UNRESEARCHED	SUBDIVISION	
DP1135580	SURVEY	SUBDIVISION	
DP1141532	UNRESEARCHED	RESUMPTION O	R ACQUISITION
DP1141532	SURVEY	RESUMPTION O	
DP1141533	SURVEY	RESUMPTION O	
DP1141533	UNRESEARCHED	RESUMPTION O	
DP1142442	SURVEY	SUBDIVISION	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DP1171595	SURVEY	RESUMPTION O	RACQUISITION
DP1171598	SURVEY	RESUMPTION O	
DP1195444	SURVEY	SUBDIVISION	
DP1216128	SURVEY	SUBDIVISION	
DP1218389	COMPILATION	SUBDIVISION	
DP1218389	COMPILATION	SUBDIVISION	
DI 1210000	OOMI ILATION	OUDIVIOION	

ESTATE AND LAND REFERRED TO Estate in Fee Simple in lot in Deposited Plan 503317 at Lochinvar in the City of Maitland Parish of Gosforth and County of Northumberland.

27

FIRST SCHEDULE (Continued overleaf)

120 a Ir 15p

46ac

CHRISTIAN KNIPE

PERSONS ARE

Registrar General

SECOND SCHEDULE (Continued overleaf)

1. Reservations and conditions, if any, contained in the Crown Grant(s) referred to in the said Deposited

Registrar General

OK.SC

2011

09452-109

/Doc

CT

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

FORM No. 184A

of

/Pgs:ALL

NEW SOUTH WALES

(For Grant and title reference prior to first edition see Deposited Plan.)

STREATE OF TITLE PERTY ACT, 1900, as amended.

0452

I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule.

Witness

OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON

CAUTIONED AGAINST

BBailey

Registrar-General. PLAN SHOWING LOCATION OF LAND

WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE

LAND TITLES OFFICE

25 270° 24 120 a. lr. 15p. 27 ESTATE AND LAND REFERRED TO

Estate in Fee Simple in lot 2 in Deposited Plan 503317 at Lochinvar in the City of Maitland Parish of Gosforth and County of Northumberland.

FIRST SCHEDULE (Continued overleaf)

CHRISTIAN KNIFT

Registrar General

SECOND SCHEDULE (Continued overleaf)

1. Reservations and conditions, if any, contained in the Crown Grant(s) referred to in the said Deposited Plan.

Registrar General

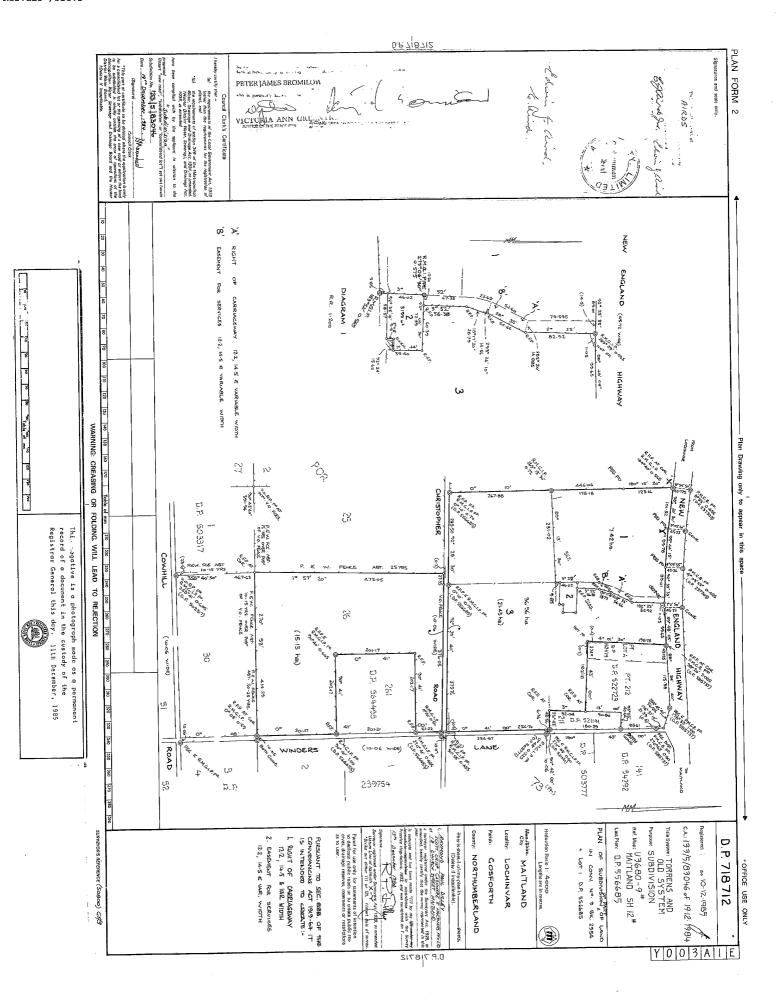
REGISTERED PROPRIETOR PRINT SCHEDULE (continued) PRINT SCHEDULE PROPRIETOR PROPRIETOR
FIRST SCHEDULE (continued) OR OR OR OR OR OR OR OR OR O
大利·曼斯尔克斯 克克 ·奥尔斯特斯基的阿尔特斯斯斯斯斯特 人名 · · · · · · · · · · · · · · · · · ·

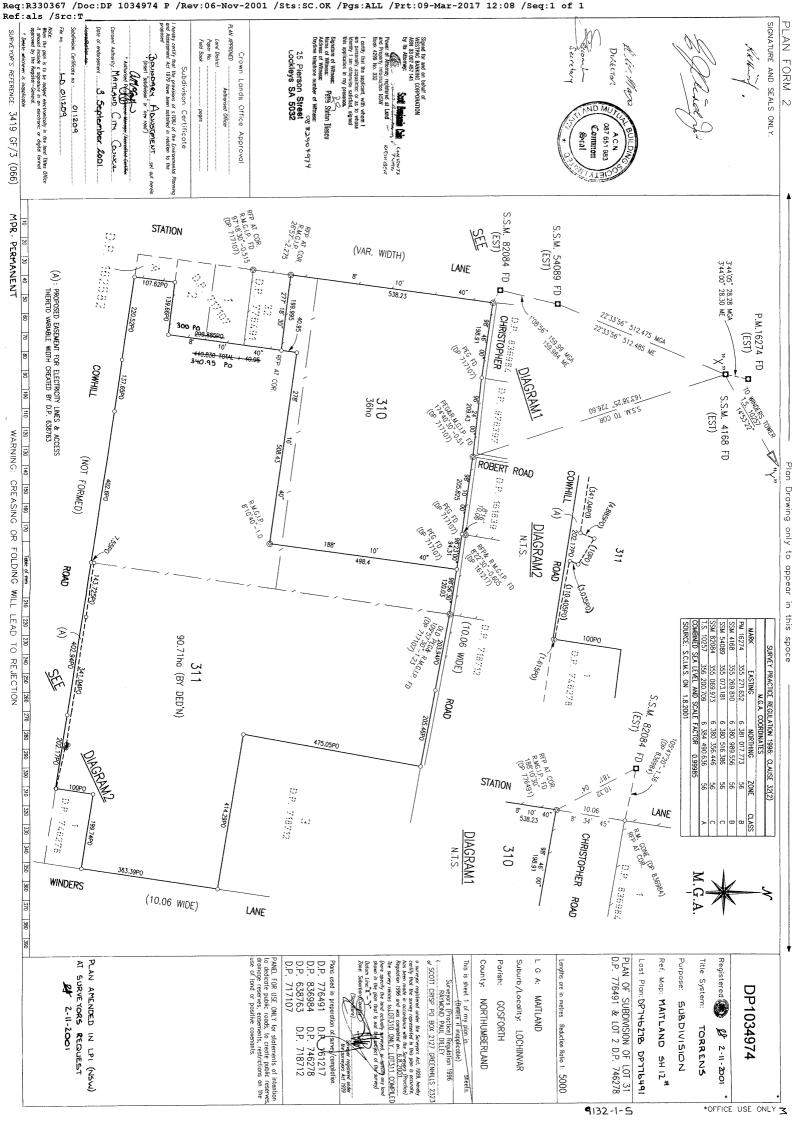
Form: Licen	ce: MID/0734/97			RANSFER New South Wales eal Property Act 1900	/845161J
			Office of State Re	venue use only	. <u> </u>
					NEW SOUTH WALES DUTY 0000664015-001
(A)	A) LAND TRANSFERRED If appropriate, specify the share or part transferred.		FOLIO IDEN	TIFIER 31/776491	TRANSFER- COURT ORDER DUTIABLE AMOUNT \$ ************** DUTY \$ ************* TRANSFER STAMPED
(B)	LODGED BY		1 25 G	Name, Address or DX and Tele	Phone RTGAGE COMPANY
				Reference (15 character max):	
(C)	TRANSFEROR		JULIE ANNI	ETTE HVIRF	
(D)	acknowledges Ord as regards the land			he Family Court of Australia e transferee an estate in fee	a at Newcastle in suit number 1123 of 2000 and simple.
(E)	Encumbrances (if	-	1. Nil	2.	3.
(F) (G)	TRANSFEREE	T TS (s713 LGA) TW (Sheriff)	RICHARD K	ARL HVIRF	
(U) (H)	We certify this dea		or the purposes of	f the Real Property Act 1900	DATE 9 JULY 2001
•				personally known to me.	
	Maya	Signature of W	litness		
	Maya V	of Witness (BLO	CK LETTERS)	/	1 'n 1/ P
•	C/- 42 King	St New Address of Wi	ocastle mess	risu 9	Signature of Transferor
	Signed in my prese	ence by the Tr	ansferee who is p	oersonally known to me.	
	mmone	Signature of W	itness		
	MICHELL	E MG	VEIL		4
	Name of Name o	f Witness (BLO	JK LETTERS)		11

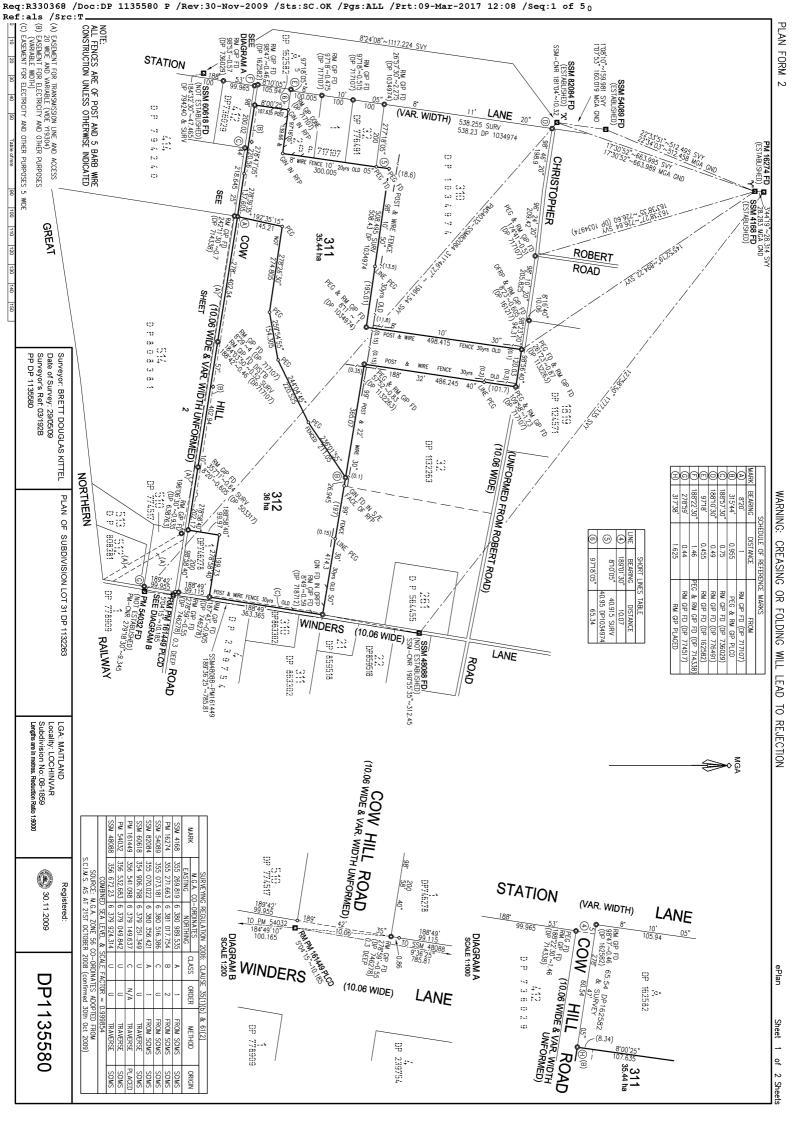
VII POHII. Licence: 10V/0096/96 **New South Wales** Edition: 0011 **Real Property Act 1900** PRIVACY NOTE: this information is legally required and will bec 8361278H Office of State Revenue use only (N.S.) STAMP DUTY STAMP No. 481 CLIENT No. 1405679 ൕ 25 McKenzie STAMP DUTY \$2.00 SIGNATURE..... DATE 20-11-01 OUTOL TRANSACTION No. ASSESSMENT DETAILS: OFFICE OF STATE REVENUE TORRENS TITLE If appropriate, specify the part transferred (N.S.W. TREASURY) 1405679 FOLIO IDENTIFIER 311/103974 311/1034974 CODES Name, Address or DX and Telephone LODGED BY Delivery 28A GALLOWAY & CO. Box Phone: (02) 9233 1011 Fax: (02) 9232 6491 DX 340, SYDNEY L.T.O. Delivery 28A (Sheriff) HOMP Reference (optional): TRANSFEROR JAMES AIRD JUNIOR AND RICHARD KARL HVIRF (N.S.W. THEASURY) 1405870 (D) CONSEPERATION The transferor acknowledges receipt of the consideration of \$ 331,830.00 and as regards the land specified above transfers to the transferee an estate in fee simple. **ESTATE** SHARE **TRANSFERRED** 1. NIL 2. Encumbrances (if applicable): (G) OFFICE OF STATE REVENUE TRANSFEREE (H) (N.S.W. TREASURY) 1405679 EDWIN JAMES AIRD, JUNIOR AND CAROL ANN ALTERATION NOTED (1)(N.S.VI, TREASURY) 27.6% COMMON IN EQUAL SHARES TENANCY: TENANTS-IN **(I)** ALTERATION NOTED ಹ / (/ **..** / DATE dd mm уууу Certified correct for the purposes of the Real I certify that the transferor, with whom I am personally acquainted or as to **(J)** Property Act 1900 by the transferor. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferor: Signature of witness Name of witness: S. S. CANT Address of witness: CASSANTICLES Certified correct for the purposes of the Real I certify that the transferee, with whom I am personally acquainted or as to Property Act 1900 by the transferee. whose identity I am otherwise satisfied, signed this transfer in my presence. Signature of transferee: Signature of witness: Solicitor for Transferee Name of witness: BRETT LINDSAY WIGGINS If signed on the transferee's behalf by a solicitor Address of witness: or licensed conveyancer, insert the signatory's full name and capacity below: Page 1 of A set of notes on this form (01T-2) is available number additional from Land and Property Information NSW. pages sequentially All handwriting must be in block capitals.

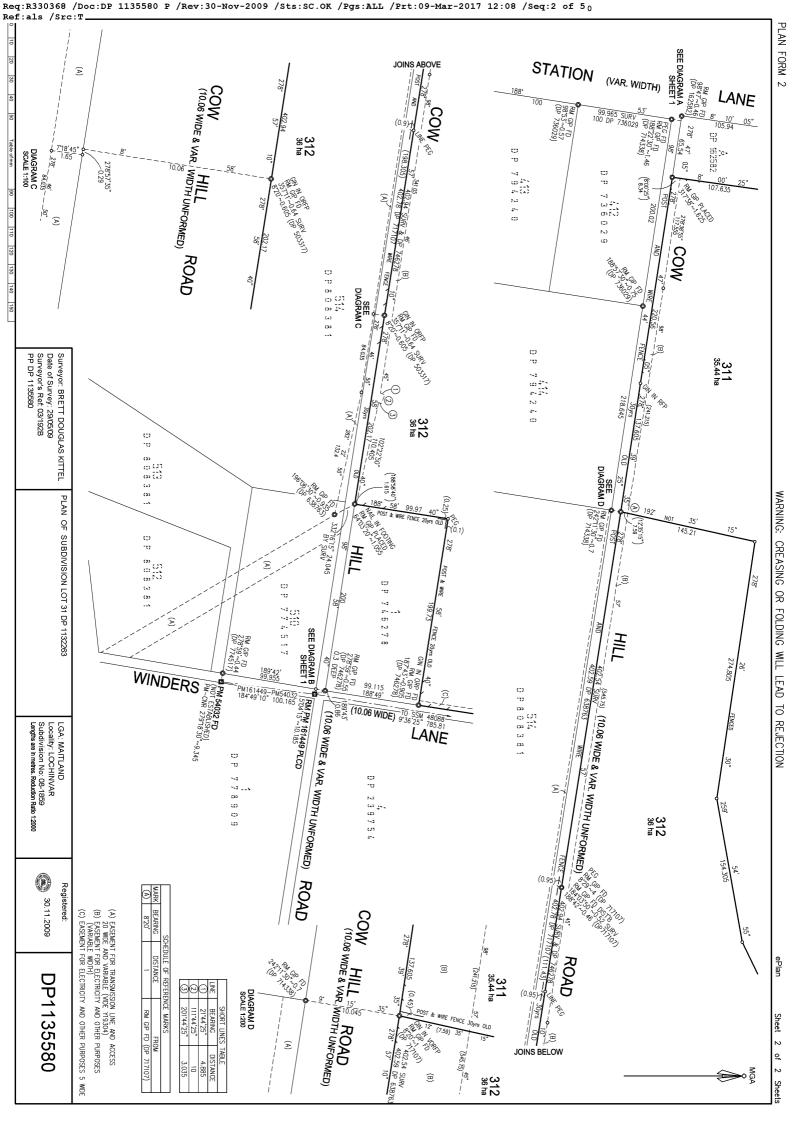
Req:R332517 /Doc:DL 8361278 /Rev:18-Feb-2002 /Sts:NO.OK /Pgs:ALL /Prt:09-Mar-2017 15:03

Ref:coffey - lochinva /Src:T


Req:R330834 /Doc:DL AJ043555 /Rev:04-Feb-2015 /Sts:NO.OK /Pgs:ALL /Prt:09-Mar-2017 12:45 /Seq:1 of 1 Ref:coffey - lochinva /Src:T 03AE Form: TRANSMISSION 01-05-051 Licence: Licensee: LEAP Legal Software Pty Limited APPLICATION AJ43555H Firm name: Wiggins Cheffings Lawyers by an Executor, Administrator or Trustee **New South Wales** Section 93 Real Property Act 1900 PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any. 30/12/2014 Folio Identifier 32/1132263 (A) TORRENS TITLE BRETT FIELDING AUTHORISED AGE 10(B) REGISTERED NUMBER **TORRENS TITLE DEALING** DOCUMENT NAME, ADDRESS OR DX, TELEPHONE, AND CUSTOMER ACCOUNT NUMBER IF ANY (C) LODGED BY CODE COLLECTION BOX BOX 30R L J KANE & CO LLPN 123818G WC -AIRD REFERENCE: **EDWIN JAMES AIRD** (D) DECEASED REGISTERED **PROPRIETOR** EDWIN JAMES AIRD & MERRAN POWER (E) APPLICANT (F) The abovementioned applicant, being entitled as executor of the will of the deceased registered proprietor (who died on 10 February 2014) pursuant to Probate No. 2014/88190 granted on 19 May 2014 to Edwin James Aird and Merran Power (a certified copy of which is lodged herewith) hereby applies to be registered as proprietor of the estate or interest of the deceased registered proprietor in the abovementioned land DATE Certified correct for the purposes of the Real Property Act (G) 1900 on behalf of the applicant by the person whose signature appears below. RELODGED Signature: Signatory's name: **Brett Lindsay Wiggins** Signatory's capacity: Solicitor 3 0 DEC 2014.


(H) This section is to be completed where a notice of sale is required and the relevant data has been forwarded through eNOS.


The applicant's solicitor certifies that the eNOS data relevant to this dealing has been submitted and stored under eNOS ID No.


Full name: Brett Lindsay Wiggins Signature:

*s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation

OFFICE USE ONLY

DEPOSITED PLAN ADMINISTRATION SHEET

SIGNATURES, SEALS and STATEMENTS of intention to dedicate public roads, to create public reserves, drainage reserves, easements, restrictions on the use of land or positive covenants.

Pursuant to Section 88B of the Conveyancing Act 1919, as amended it is intended to create:

- 1. Easement for Electricity and other Purposes variable Width (B)
- 2. Easement for Electricity and other Purposes 5 wide (C)

Edwin Japes Aird Junior

Use PLAN FORM 6A for additional certificates, signatures, seals and statements

Crown Lands NSW/Western Lands Office Approval I.....in approving this plan certify (Authorised Officer) that all necessary approvals in regard to the allocation of the land shown herein have been given Signature:.... Date: File Number: Office

Subdivision Certificate

I certify that the provisions of s.109J of the Environmental Planning and Assessment Act 1979 have been satisfied in relation to:

the proposed....SUBDIVISION..... set out herein (insert 'subdivision' or 'new road')

* Authorised Person/General Manager/Accredited Certifier

Consent Authority: ..Maitland City Council..... Date of Endorsement: 24.7.09 Accreditation no:

Subdivision Certificate no: ..08-1859.....

File no: DA08-1859.....

* Delete whichever is inapplicable.

DP1135580

Registered:

30.11.2009

Title System:

TORRENS

Purpose:

SUBDIVISION

PLAN OF SUBDIVISION OF LOT 31 DP1132263

LGA:

Maitland

Locality:

Lochinvar

Parish:

Gosforth

County:

Northumberland

Surveying Regulation, 2006

I, Brett Douglas Kittel - Pulver Cooper & Blackley..... of 98 Lawes Street, East Maitland 2323.....

a surveyor registered under the Surveying Act, 2002, certify that the survey represented in this plan is accurate, has been made in accordance with the Surveying Regulation, 2006 and was completed on:...29th May 2009.....

The survey relates to ..Lots 311 & 312.....

(specify the land actually surveyed or specify any land shown in the plan that is not the subject of the survey)

Signature

Beeft Kittle Dated:

Surveyor registered under the Surveying Act, 2002

Datum Line: 'X \~ \/Y'.....

Type: Urban/Rural

Plans used in the preparation of survey/compilation DP836984

DP161217 DP718712 DP162582 DP736029

DP1034974

DP11132263

DP503317 DP746278 DP564455

DP774517

DP638763 DP776491 DP714338 DP794240

DP717107 DP808381

(if insufficient space use Plan Form 6A annexure sheet)

SURVEYOR'S REFERENCE 03/192B

(PP DP1135580)

CERTIFICATES, SIGNATURES AND SEALS Sheet 2 of 3 sheet(s)	
PLAN OF SUBDIVISION OF LOT 31 DP1132263	DP1135580
	* Registered: 30.11.2009
Subdivision Certificate No: 08-1859	Date of Endorsement: 24.7.09
Executed for and on behalf of Stockland) Development Pty Limited ACN 000 064 835 by its duly authorised) Attorney under Power of Attorney Registered in Book 572 No // who) declares that he has no notification of) revocation of the said Power of Attorney) in the presence of: Signature of Witness Anna Potts Name of Witness 133 Castlere ag L St Sydney Address of Witness	Bulletoney Signature of Attorney Signature of Attorney Name of Attorney
Executed for and on behalf of ENERGY AUSTRALIA by Katherine Margayet Guntan Its duly constituted Attorney Pursuant to Power of Attorney Registered Book 4520 No 401 in the presence of: Signature of Witness Success there sydres was Address of Witness	Signature of Attorney 2000 AMALIA

SURVEYOR'S REFERENCE: 03/192B

(PP DP1135580)

Req:R330368 /Doc:DP 1135580 P /Rev:30-Nov-2009 /Sts:SC.OK /Pgs:ALL /Prt:09-Mar-2017 12:08 /Seq:5 of 5 Ref:als /Src:T)RM 6A

>	
Z	
0	
ш	
$\overline{\mathbf{S}}$	
\supset	
Ш	
\circ	
正	
正	
\sim	

CERTIFICATES, SIGNATURES AND SEALS

Sheet 3 of 3 sheet(s)

PLAN OF SUBDIVISION OF LOT 31 DP1132263

DP1135580

Registered:

30.11.2009

Subdivision Certificate No: 08-1859

Date of Endorsement:: 24.7.09

MAITLAND MUTUAL BUILDING SOCIETY LIMITED ACR 037 651 983 BY ITS ATTORNEY

(name) RODNEY WILLIAMS

(position) SECURITIES WANAGER

PURSUANT TO POWER OF ATTORNEY REGISTERED BOOK 4521 No. 745

DATED: 06 OCT 2009

(signed)

(MICHELE SEARL)

EXECUTED BY MAITLAND MUTUAL BUILDING SOCIETY LIMITED

SURVEYOR'S REFERENCE: 03-192B

(PP DP1135580)

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:11PM

FOLIO: 2/718712

First Title(s): OLD SYSTEM
Prior Title(s): CA8487

Recorded	Number	Type of Instrument	C.T. Issue
17/12/1985	CA8487	CONVERSION ACTION	FOLIO CREATED EDITION 1
23/11/1990	Z356726	DISCHARGE OF MORTGAGE	EDITION 2
28/1/2003	9314273	TRANSMISSION APPLICATION	EDITION 3
30/1/2015	AJ43555	TRANSMISSION APPLICATION (EXECUTOR, ADMINISTRATOR, TRUSTEE)	EDITION 4
29/4/2015 29/4/2015	AJ402141 AJ402142	TRANSFER MORTGAGE	EDITION 5

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:31PM

FOLIO: 2/746278

First Title(s): OLD SYSTEM

Prior Title(s): VOL 9452 FOL 109 CA18539

Recorded	Number	Type of Instrument	C.T. Issue
 6/4/1987	 CA18539	CONVERSION ACTION	FOLIO CREATED EDITION 1
12/11/1992	E891017	MORTGAGE	EDITION 2
2/10/1996 2/10/1996	2487489 2487490	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 3
2/11/2001	DP1034974	DEPOSITED PLAN	FOLIO CANCELLED

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:15PM

FOLIO: 3/717107

First Title(s): OLD SYSTEM

Prior Title(s): VOL 9452 FOL 110 CA7125

Recorded	Number	Type of Instrument	C.T. Issue
 2/10/1985	 CA7125	CONVERSION ACTION	FOLIO CREATED EDITION 1
12/11/1986	DP638763	DEPOSITED PLAN	
22/7/1988	DP776491	DEPOSITED PLAN	FOLIO CANCELLED RESIDUE REMAINS
6/10/1993		AMENDMENT: PARISH-COUNTY	
14/9/2015	AJ811575	DEPARTMENTAL DEALING	

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:14PM

FOLIO: 31/776491

First Title(s): OLD SYSTEM
Prior Title(s): 3/717107

Recorded	Number	Type of Instrument	C.T. Issue
25/7/1988	DP776491	DEPOSITED PLAN	FOLIO CREATED EDITION 1
13/10/1994	U698426	MORTGAGE	EDITION 2
10/8/2001 10/8/2001 10/8/2001 10/8/2001	7845159 7845160 7845161 7845162	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 3
2/11/2001	DP1034974	DEPOSITED PLAN	FOLIO CANCELLED

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:17PM

FOLIO: 31/1132263

First Title(s): OLD SYSTEM
Prior Title(s): 311/1034974

Recorded	Number	Type of Ir	nstrument	C.T. 3	Issue
 27/1/2009	 DP1132263	DEPOSITED	PLAN	FOLIO EDITIO	CREATED ON 1
30/11/2009	DP1135580	DEPOSITED	PLAN	FOLIO	CANCELLED

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:13PM

FOLIO: 310/1034974

First Title(s): OLD SYSTEM
Prior Title(s): 31/776491

Recorded	Number	Type of Instrument	C.T. Issue
 2/11/2001	 DP1034974	DEPOSITED PLAN	FOLIO CREATED EDITION 1
14/1/2004	AA325758	DISCHARGE OF MORTGAGE	EDITION 2
3/2/2004	AA379722	MORTGAGE	EDITION 3

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:18PM

FOLIO: 311/1034974

First Title(s): OLD SYSTEM

Prior Title(s): 2/746278 31/776491

Recorded	Number	Type of Instrument	C.T. Issue
2/11/2001	DP1034974	DEPOSITED PLAN	FOLIO CREATED EDITION 1
15/2/2002 15/2/2002 15/2/2002 15/2/2002	8361276 8361277 8361278 8361279	DISCHARGE OF MORTGAGE DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 2
18/2/2004	AA429209	MORTGAGE	EDITION 3
27/1/2009	DP1132263	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

coffey - lochinva

PRINTED ON 9/3/2017

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

9/3/2017 12:16PM

FOLIO: 311/1135580

First Title(s): OLD SYSTEM
Prior Title(s): 31/1132263

Recorded	Number	Type of Instrument	C.T. Issue
30/11/2009	DP1135580	DEPOSITED PLAN	FOLIO CREATED EDITION 1
12/8/2016	AK674633	DISCHARGE OF MORTGAGE	EDITION 2

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 2/718712

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 ----- ---- ---- 5
 29/4/2015

LAND

LOT 2 IN DEPOSITED PLAN 718712

AT LOCHINVAR

LOCAL GOVERNMENT AREA MAITLAND

PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP718712

FIRST SCHEDULE

EDWIN JAMES AIRD

CAROL ANN AIRD

AS JOINT TENANTS

(T AJ402141)

SECOND SCHEDULE (4 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 DP718712 RIGHT OF CARRIAGEWAY APPURTENANT TO THE LAND ABOVE DESCRIBED
- 3 DP718712 EASEMENT FOR SERVICES APPURTENANT TO THE LAND ABOVE DESCRIBED
- 4 AJ402142 MORTGAGE TO MAITLAND MUTUAL BUILDING SOCIETY LIMITED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

coffey - lochinva

PRINTED ON 9/3/2017

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 310/1034974

 SEARCH DATE
 TIME
 EDITION NO
 DATE

 ----- ----- ----- 3
 3/2/2004

LAND

LOT 310 IN DEPOSITED PLAN 1034974
AT LOCHINVAR
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND

FIRST SCHEDULE

RICHARD KARL HVIRF

SECOND SCHEDULE (2 NOTIFICATIONS)

TITLE DIAGRAM DP1034974

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 AA379722 MORTGAGE TO STOCKLAND DEVELOPMENT PTY LIMITED

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

coffey - lochinva

PRINTED ON 9/3/2017

Advance Legal Searchers Pty Ltd hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 311/1135580

LAND

LOT 311 IN DEPOSITED PLAN 1135580
AT LOCHINVAR
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF GOSFORTH COUNTY OF NORTHUMBERLAND

FIRST SCHEDULE

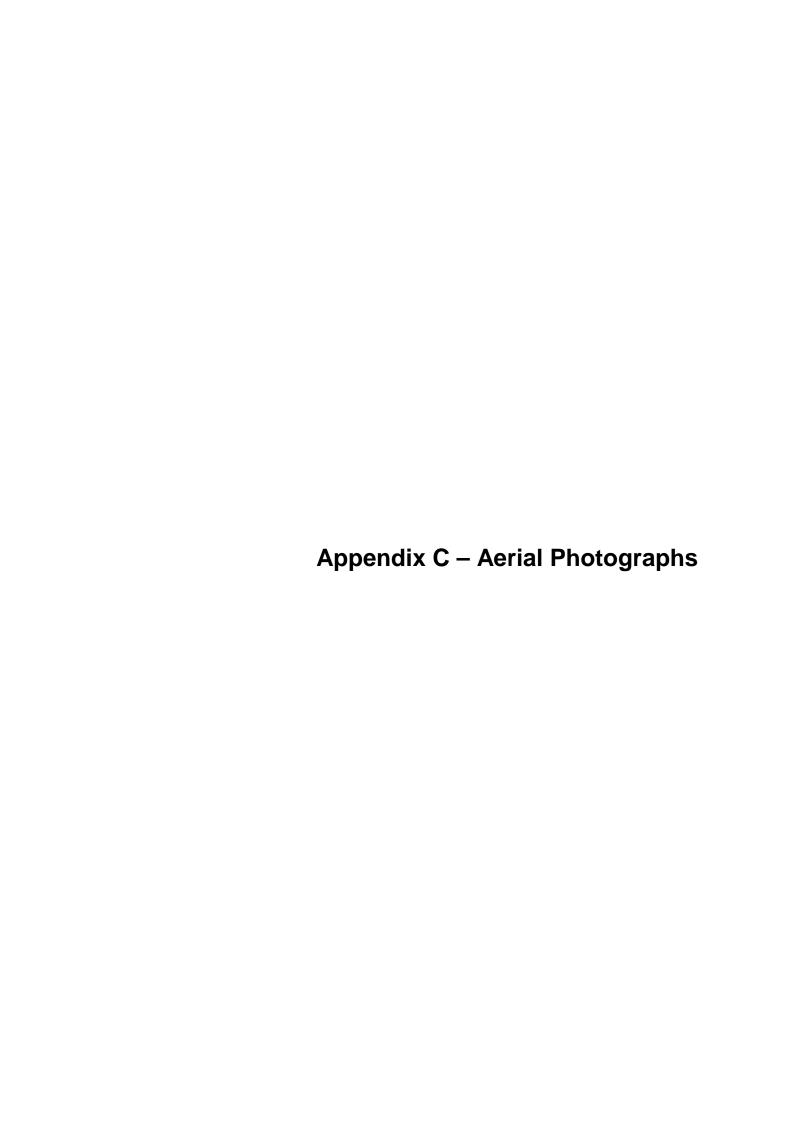
EDWIN JAMES AIRD JUNIOR

SECOND SCHEDULE (3 NOTIFICATIONS)

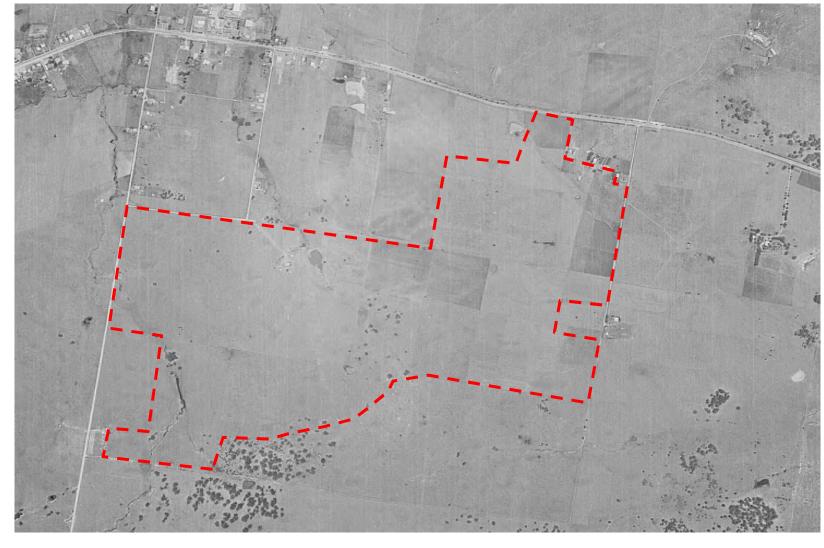
TITLE DIAGRAM DP1135580

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 AA429209 MORTGAGE TO STOCKLAND DEVELOPMENT PTY LIMITED
- 3 DP1135580 EASEMENT FOR ELECTRICITY AND OTHER PURPOSES VARIABLE WIDTH AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM

NOTATIONS


DP638763 NOTE: PROPOSED EASEMENT

UNREGISTERED DEALINGS: NIL


*** END OF SEARCH ***

coffey - lochinva

PRINTED ON 9/3/2017

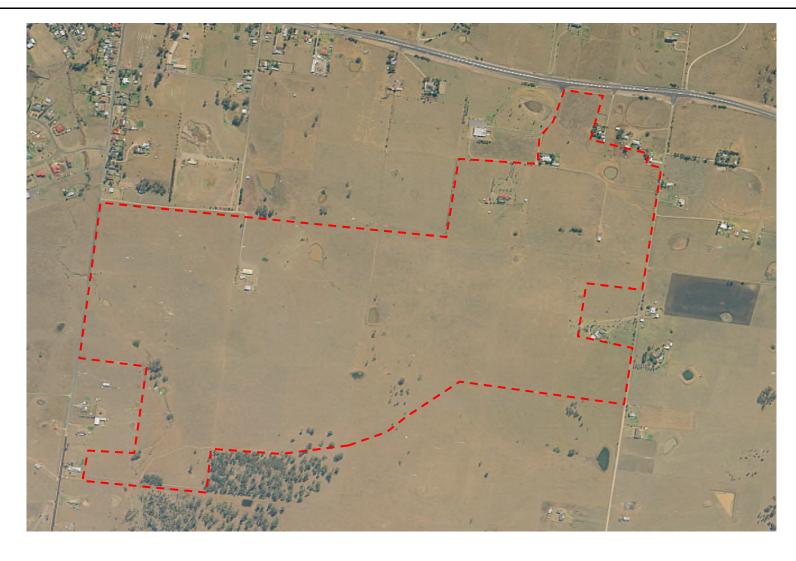
drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	Δ4

client:	ent: PULVER COOPER & BLACKLEY		
project:	project: PHASE 1 & 2 CONTAMINATION ASSESSMENT		
PROPOSED RESIDENTIAL SUBDIVISION, WINDERS LANE, LOCHINVAR NSW			
title:	title: 1963 AERIAL PHOTOGRAPH		
project no:	NTLEN202989	figure no: 1963	

drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	A4

client:	ent: PULVER COOPER & BLACKLEY			
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT			
PROPOSED RESIDENTIAL SUBDIVISION, WINDERS LANE, LOCHINVAR NSW				
title:	itle: 1975 AERIAL PHOTOGRAPH			
project no:	NTLEN202989	figure no: 1975		

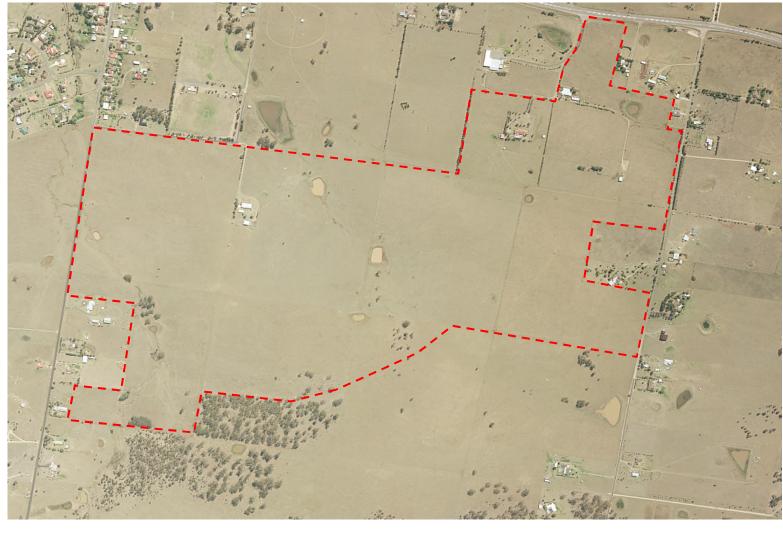
drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	Δ4


client:	PULVER COOPER & BLACKLEY
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT

PROPOSED RESIDENTIAL SUBDIVISION, WINDERS LANE, LOCHINVAR NSW

title: 1984 AERIAL PHOTOGRAPH

project no: NTLEN202989 figure no: 1984

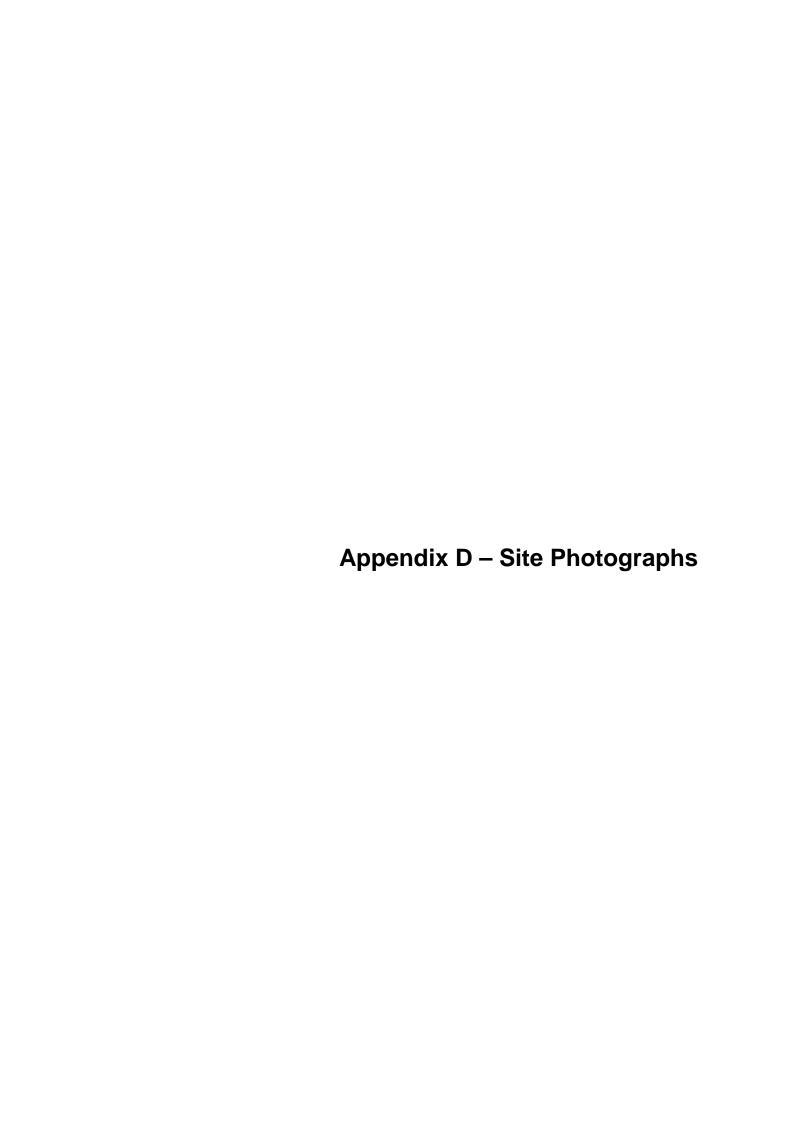


drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	A4

client:	PULVER	R COOPER & BLACKLEY		
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT			
	PROPOSED RESIDENTIAL SU	BDIVISION, WINDERS LANE, LOCHINVAR NSW		
title:	1994 AERIAL PHOTOGRAPH			
project no:	NTLEN202989	figure no: 1994		

drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	Δ4

client:	PULVER	R COOPER & BLACKLEY			
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT				
	PROPOSED RESIDENTIAL SU	BDIVISION, WINDERS LANE	, LOCHINVAR NSW		
title:	2004 /	AERIAL PHOTOGRAPH			
project no:	NTLEN202989	figure no:	2004		


Source: Google Earth, 2016

drawn	DCH
approved	
date	18/04/2017
scale	NTS
original	A4

client:

project no:	NTLEN202989	figure no:	2016		
title:	2016	AERIAL PHOTOGRAPH			
	PROPOSED RESIDENTIAL SU	BDIVISION, WINDERS LANE,	LOCHINVAR NSW		
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT				
client:	PULVER	R COOPER & BLACKLEY			

Photograph 1: Looking across Lot 32

Photograph 2: Stockpile of soil on Lot 32

drawn	DCH		client:	PULVER COOPER	R & BLACKL	.EY
approved		coffey	project:	PHASE 1 & 2 CONTAMIN PROPOSED RESIDENTIAL		
date	18/04/2017	A TETRA TECH COMPANY		LANE, LOCHI		or, winders
scale	NTS		title:	SITE PHOTO	OGRAPHS	
original size	A4		project no:	NTLEN202989	photo no:	1 & 2

Photograph 3: House on Lot 2

Photograph 4: Shed and water tank on Lot 2

drawn	DCH		client:	PULVER COOPER	R & BLACKL	.EY
approved		coffey	project:	PHASE 1 & 2 CONTAMIN PROPOSED RESIDENTIAL		
date	18/04/2017	A TETRA TECH COMPANY		LANE, LOCHI		it, wiitbeko
scale	NTS		title:	SITE PHOTO	OGRAPHS	
original size	A4		project no:	NTLEN202989	photo no:	3 & 4

Photograph 5: Pond on Lot 310

Photograph 6: Looking across Lot 310 towards house

drawn	DCH		client:	PULVER COOPER	R & BLACKL	EY
approved		a offer s	project:	PHASE 1 & 2 CONTAMIN PROPOSED RESIDENTIAL		
date	18/04/2017	coffey *		LANE, LOCHI		N, WINDLING
scale	NTS	A IETOA IEUN GUNPANT	title:	SITE PHOTO	OGRAPHS	
original size	A4		project no:	NTLEN202989	photo no:	5 & 6

Photograph 7: House on Lot 310

Photograph 8: Looking across Lot 311

drawn	DCH		client:
approved			projec
date	18/04/2017	coffey	
scale	NTS	A TETRA TECH COMPANY	title:
original size	A4		projec

client.	PULVER COOPER & BLACKLEY					
project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT PROPOSED RESIDENTIAL SUBDIVISION, WINDERS LANE, LOCHINVAR NSW					
title:	SITE PHOTOGRAPHS					
project no:	NTLEN202989	photo no: 7 & 8				

Photograph 9: Pond on Lot 311

Photograph 10: Area of trees and rubbish on Lot 311

drawn	DCH		client:	PULVER COOPER	R & BLACKL	EY
approved		ooffor.	project:	PHASE 1 & 2 CONTAMINATION ASSESSMENT PROPOSED RESIDENTIAL SUBDIVISION, WINDERS		
date	18/04/2017	coffey *	LANE, LOCHINVAR NSW			II, WINDERO
scale	NTS		title:	SITE PHOTOGRAPHS		
original size	A4		project no:	NTLEN202989	photo no:	9 & 10

S149 Planning Certificate

ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 (AS AMENDED)

APPLICANT Coffey Services Australia

19 Warabrook Boulevard WARABROOK NSW 2304

Certificate No Certificate Date Fee Paid Receipt No

No. of Pages

17/725 09/03/2017 133.00 45097

Page 1 of 8

Your Reference

ENAUWAEA04770AB

PROPERTY

LOT 310 DP1034974 44 CHRISTOPHER ROAD

LOCHINVAR

PARISH

Gosforth

PROPERTY NO 39145

IMPORTANT: Please read this certificate carefully.

This certificate contains important information about the land described above.

Please check for any item, which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, please contact the Council by phone on (02) 49349700, or personally at Council's office at 285-287 High Street Maitland.

The information provided in this certificate relates only to the land described above. If you require information about adjoining or nearby land, or about the Council's development policies or codes for the general area, contact Council's Planning & Environment Department.

All information provided is correct as at the date issued on this certificate. However, it is possible for changes to occur at any time after issue of this certificate. We recommend that you only rely upon a very recent certificate.

The following responses are based on the Council's records and / or information from sources outside the Council. The responses are provided with all due care and in good faith, however the Council cannot accept responsibility for any omission or inaccuracy arising from information outside the control of the Council.

Furthermore, while this certificate indicates the general effect of the zoning of the abovementioned land, it is suggested that the applicable planning instruments be further investigated to determine any additional requirements.

Copies of Maitland City Council's Local Environmental Planning Instrument, Development Control Plans and Policies are available for purchase from Council's Customer Service Centre.

Maitland City Council

9 March 2017

Page 1

info@maitland.nsw.gov.au

PART 1: MATTERS PROVIDED PURSUANT TO SECTION 149 (2)

1. Local Environmental Plans (LEP)

Maitland LEP 2011, published 16 December 2011, applies to the land.

2. Exhibited draft Local Environmental Plans

No draft Local Environmental Plans that have been on public exhibition under the Act are applicable to the land.

3. Development Control Plan prepared by Council

Maitland Development Control Plan 2011 applies to the land.

4. Development Control Plans prepared by the Director-General

The Council has not been notified of any Development Control Plan applying to the land that has been prepared by the Director-General under section 51A of the Act.

5. State Environmental Planning Policies

The Minister for Planning has notified that the following State Environmental Planning Policies shall be specified on certificates under Section 149 of the Environmental Planning and Assessment Act, 1979.

The land is affected by the following State Environmental Planning Policies:

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 30 - Intensive Agriculture

State Environmental Planning Policy No. 33 - Hazardous And Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation Of Land

State Environmental Planning Policy No. 64 - Advertising And Signage

State Environmental Planning Policy No. 65 - Design Quality Of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy - Major Development 2005

State Environmental Planning Policy - State And Regional Development 2011

State Environmental Planning Policy - Affordable Rental Housing 2009

State Environmental Planning Policy - Building Sustainability Index: Basix 2004

State Environmental Planning Policy - (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy - Infrastructure 2007

Page 3

State Environmental Planning Policy - Mining, Petroleum Production And Extractive Industries 2007

State Environmental Planning Policy - Rural Lands 2008

State Environmental Planning Policy - Housing For Seniors Or People With A Disability 2004

State Environmental Planning Policy - (Miscellaneous Consent Provisions) 2007

6. Draft State Environmental Planning Policies

No draft State Environmental Planning Policy(s) applying to the land has been publicised as referred to in section 39(2) of the Act.

7. Zoning and land use under relevant LEPs

Maitland LEP 2011, published 16 December 2011, identifies the zone applying to the land as:

R1 General Residential

The following development control table(s) give the objectives of the zone, the description of the zone and identify development allowed or prohibited in each zone. Development consent where required, must be obtained from the Council.

R1 General Residential

1) Objectives of zone

- To provide for the housing needs of the community.
- To provide for a variety of housing types and densities.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.

2) Permitted without consent

Home-based child care; Home occupations

3) Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Building identification signs; Business identification signs; Child care centres; Community facilities; Dwelling houses; Group homes; Home industries; Hostels; Hotel or motel accommodation; Multi dwelling housing; Neighbourhood shops; Places of public worship; Residential flat buildings; Respite day care centres; Roads; Semi-detached dwellings; Seniors housing; Serviced apartments; Shop top housing; Any other development not specified in item 2 or 4

4) Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Entertainment facilities; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Passenger transport facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (major); Registered clubs; Research stations; Restricted premises; Rural industries; Rural workers dwellings; Service stations; Sewerage treatment plants; Sex services premises; Signage; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Warehouse or distribution centres; Waste or resource management facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

8. Land dimensions to permit the erection of a dwelling-house on the land

Maitland LEP 2011 does not contain a development standard specifying the land dimensions required to permit the erection of a dwelling-house on the land.

9. Critical Habitat

No Local Environmental Plan or draft Local Environmental Plan identifies the land as including or comprising critical habitat.

10. Conservation Area/Item of Environmental Heritage

The land is not in a Heritage Conservation Area. The land does not contain an item of Environmental Heritage.

11. Directions Under Part 3A

There is **no** direction by the Minister under Section 75P(2)(c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 (other than a project of a class prescribed by the regulations) of the Act does not have effect.

12. Coastal Protection

The Council has not received any notification from the Department of Services, Technology and Administration that the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979.

13. Mine Subsidence Compensation Act 1961

The land has not been proclaimed to be within a Mine Subsidence District under the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

14. Road widening or realignment

The land is not affected by any road widening or re-alignment under:

(a) Division 2 of Part 3 of the Roads Act 1993: or (b) any environmental planning instrument; (c) any resolution of the council.

15. Council and other public authority policies on hazard risk restrictions

All land within the Maitland Local Government Area has the potential to contain acid sulfate soils. Clause 7.1 in the Maitland Local Environmental Plan 2011 generally applies. Development consent is required where works described in the Table to this clause are proposed on land shown on the Maitland Local Environmental Plan 2011 Acid Sulfate Soils Map as being of the class specified for those works.

16. Bushfire Prone Land

The land is not mapped as 'bushfire prone land'.

17. Flood Related Development Controls

Development on this land or part of this land for the purposes of dwelling houses, attached dwellings, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is not subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Development on this land or part of this land for any other purpose <u>is not</u> subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Information given in relation to flooding is based upon Councils adopted 1:100 ARI (Average Recurrent Interval) flood event.

The Maitland Local Environmental Plan 2011 identifies the flood planning level (FPL) as the level of a 1:100 ARI flood event plus 0.5m freeboard.

18. Land reserved for acquisition

No environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument applying to the land provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

19. Contribution Plans

The following contribution plan(s) apply to the land:

- Maitland S94 Contributions Plan (City wide) 2006
- Maitland S94A Levy Contributions Plan 2006
- Lochinvar S94 Contribution Plan 2013
- Maitland City Wide Section 94 Contributions Plan 2016

Contributions plans may be inspected and purchased at Council's Customer Service Centre.

20. Property Vegetation Plans

The Council has not received any notification from Hunter Local Land Services that the land is affected by a property vegetation plan under the Native Vegetation Act 2003.

21. Order under Trees (Disputes Between Neighbours) Act 2006.

Council has not received notification from the Land and Environment Court of New South Wales that the land is affected by an Order Under Trees (Disputes Between Neighbours) Act 2006.

22. Conditions Affecting Seniors Housing

1) Site Compatibility Certificate

Council is unaware of whether a current site compatibility certificate issued under clause 25 of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 has been issued for the land.

2) Conditions of Development Consent since 11 October 2007

No development consent has been granted for the development permitted by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 after 11 October 2007.

23. Site Compatibility Certificates for Infrastucture

Council is unaware of whether a valid site compatibility certificate has been issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 for the land.

24. Complying Development

Complying development under the General Housing Code may be carried out on the land.

Complying development under the Rural Housing Code may not be carried out on the land as it is not within an applicable zone.

Complying development under the Housing Alterations Code may be carried out on the land.

Complying development under the General Development Code may be carried out on the land.

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land.

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may not be carried out on the land as it is not within an applicable zone.

Complying development under the **Subdivisions Code** may be carried out on the land.

Complying development under the **Demolition Code** may be carried out on the land.

Complying development under the Fire Safety Code may be carried out on the land.

<u>Note:</u> Despite the above provisions, if only part of a lot is subject to an exclusion or exemption under Clause 1.17A or Clause 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) Amendment (Commercial and Industrial Development and Other Matters) 2013, complying development may be carried out on that part of the lot that is not affected by the exclusion or exemption.

25. Contaminated Land

- (a) The land to which this certificate relates is not significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.
- (b) The land to which this certificate relates is not subject to a management order within the meaning of the Contaminated Land Management Act 1997.
- (c) The land to which this certificate relates is not the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.
- (d) The land to which this certificate relates is not subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.

(e) Council has not been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this certificate relates.

26. Site compatibility certificates and conditions for affordable rental housing

(1) Site Compatibility Certificate

Council is unaware if a current site compatibility certificate (affordable rental housing) has been issued in accordance with State Environmental Planning Policy (Affordable Rental Housing) 2009.

27. Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Council is unaware of whether an Order or an Authorisation has been issued under Section 23 and 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009, for the carrying out of development on the land.

PART 2: ADDITIONAL MATTERS PROVIDED PURSUANT TO SECTION 149 (5)

The following information is provided in accordance with section 149(5) of the Environmental Planning and Assessment Act 1979. Section 149(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 149(5). If this information is to be relied upon, it should be independently checked.

Maitland LEP 2011 makes the following special provisions in relation to the land

1. Preservation of trees or vegetation

Clause 5.9 in the Maitland Local Environmental Plan 2011 applies to the land. The objective of this clause is to preserve the amenity of the area, including biodiversity values, through the preservation of trees or other vegetation.

2. Development Consent

Council's records indicate that the land has not had any development consent granted within the five (5) years preceding the date of this certificate.

3. Draft DCP's

No Draft Development Control Plan is expressed to apply to the land subject to this certificate.

4. Suspension of covenants

Clause 1.9A in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. This clause suspends any agreement, covenant or other instrument that restricts the development of land that is permissible under the provisions of the Maitland Local Environmental Plan 2011 to the extent necessary to serve that purpose.

5. Filling of land

Earthworks (excavation and filling of land) require development consent. Clause 7.2 in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. Earthworks (defined as both excavation and filling of land) require development consent of Council unless the works are exempt development, ancillary to other development for which development consent is required or granted, or considered by Council to be of a minor nature.

6. Development in the vicinity of heritage items

Clause 5.10 in the Maitland Local Environmental Plan 2011 generally applies to all land in the Maitland Local Government Area, where the land is located in the vicinity of a heritage item or heritage conservation area. This clause requires a consent authority to consider the effect of the proposed development on the heritage significance of the item or area concerned, before granting development consent.

David Evans - General Manager

Per.

End of Certificate

S149 Planning Certificate

ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 (AS AMENDED)

APPLICANT

Coffey Services Australia

19 Warabrook Boulevard WARABROOK NSW 2304 Certificate No Certificate Date Fee Paid Receipt No

No. of Pages

17/726 09/03/2017 133.00 45097

Page 1 of 8

Your Reference

ENAUWARA04770AB

PROPERTY

LOT 311 DP1135580

70 CHRISTOPHER ROAD

LOCHINVAR

PARISH

Gosforth

PROPERTY NO 46622

IMPORTANT: Please read this certificate carefully.

This certificate contains important information about the land described above.

Please check for any item, which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, please contact the Council by phone on (02) 49349700, or personally at Council's office at 285-287 High Street Maitland.

The information provided in this certificate relates only to the land described above. If you require information about adjoining or nearby land, or about the Council's development policies or codes for the general area, contact Council's Planning & Environment Department.

All information provided is correct as at the date issued on this certificate. However, it is possible for changes to occur at any time after issue of this certificate. We recommend that you only rely upon a very recent certificate.

The following responses are based on the Council's records and / or information from sources outside the Council. The responses are provided with all due care and in good faith, however the Council cannot accept responsibility for any omission or inaccuracy arising from information outside the control of the Council.

Furthermore, while this certificate indicates the general effect of the zoning of the abovementioned land, it is suggested that the applicable planning instruments be further investigated to determine any additional requirements.

Copies of Maitland City Council's Local Environmental Planning Instrument, Development Control Plans and Policies are available for purchase from Council's Customer Service Centre.

Maitland City Council

9 March 2017

Page 1

PART 1: MATTERS PROVIDED PURSUANT TO SECTION 149 (2)

1. Local Environmental Plans (LEP)

Maitland LEP 2011, published 16 December 2011, applies to the land.

2. Exhibited draft Local Environmental Plans

No draft Local Environmental Plans that have been on public exhibition under the Act are applicable to the land.

3. Development Control Plan prepared by Council

Maitland Development Control Plan 2011 applies to the land.

4. Development Control Plans prepared by the Director-General

The Council has not been notified of any Development Control Plan applying to the land that has been prepared by the Director-General under section 51A of the Act.

5. State Environmental Planning Policies

The Minister for Planning has notified that the following State Environmental Planning Policies shall be specified on certificates under Section 149 of the Environmental Planning and Assessment Act, 1979.

The land is affected by the following State Environmental Planning Policies:

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 30 - Intensive Agriculture

State Environmental Planning Policy No. 33 - Hazardous And Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation Of Land

State Environmental Planning Policy No. 64 - Advertising And Signage

State Environmental Planning Policy No. 65 - Design Quality Of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy - Major Development 2005

State Environmental Planning Policy - State And Regional Development 2011

State Environmental Planning Policy - Affordable Rental Housing 2009

State Environmental Planning Policy - Building Sustainability Index: Basix 2004

State Environmental Planning Policy - (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy - Infrastructure 2007

State Environmental Planning Policy - Mining, Petroleum Production And Extractive Industries 2007

State Environmental Planning Policy - Rural Lands 2008

State Environmental Planning Policy - Housing For Seniors Or People With A Disability 2004

State Environmental Planning Policy - (Miscellaneous Consent Provisions) 2007

6. Draft State Environmental Planning Policies

No draft State Environmental Planning Policy(s) applying to the land has been publicised as referred to in section 39(2) of the Act.

7. Zoning and land use under relevant LEPs

Maitland LEP 2011, published 16 December 2011, identifies the zone applying to the land as:

R1 General Residential

The following development control table(s) give the objectives of the zone, the description of the zone and identify development allowed or prohibited in each zone. Development consent where required, must be obtained from the Council.

R1 General Residential

1) Objectives of zone

- To provide for the housing needs of the community.
- To provide for a variety of housing types and densities.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.

2) Permitted without consent

Home-based child care; Home occupations

3) Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Building identification signs; Business identification signs; Child care centres; Community facilities; Dwelling houses; Group homes; Home industries; Hostels; Hotel or motel accommodation; Multi dwelling housing; Neighbourhood shops; Places of public worship; Residential flat buildings; Respite day care centres; Roads; Semi-detached dwellings; Seniors housing; Serviced apartments; Shop top housing; Any other development not specified in item 2 or 4

4) Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Entertainment facilities; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Passenger transport facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (major); Registered clubs; Research stations; Restricted premises; Rural industries; Rural workers dwellings; Service stations; Sewerage treatment plants; Sex services premises; Signage; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Warehouse or distribution centres; Waste or resource management facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

8. Land dimensions to permit the erection of a dwelling-house on the land

Maitland LEP 2011 does not contain a development standard specifying the land dimensions required to permit the erection of a dwelling-house on the land.

9. Critical Habitat

No Local Environmental Plan or draft Local Environmental Plan identifies the land as including or comprising critical habitat.

10. Conservation Area/Item of Environmental Heritage

The land is not in a Heritage Conservation Area. The land does not contain an item of Environmental Heritage.

11. Directions Under Part 3A

There is **no** direction by the Minister under Section 75P(2)(c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 (other than a project of a class prescribed by the regulations) of the Act does not have effect.

12. Coastal Protection

The Council has not received any notification from the Department of Services, Technology and Administration that the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979.

13. Mine Subsidence Compensation Act 1961

The land has not been proclaimed to be within a Mine Subsidence District under the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

14. Road widening or realignment

The land is not affected by any road widening or re-alignment under:

(a) Division 2 of Part 3 of the Roads Act 1993: or (b) any environmental planning instrument; (c) any resolution of the council.

15. Council and other public authority policies on hazard risk restrictions

All land within the Maitland Local Government Area has the potential to contain acid sulfate soils. Clause 7.1 in the Maitland Local Environmental Plan 2011 generally applies. Development consent is required where works described in the Table to this clause are proposed on land shown on the Maitland Local Environmental Plan 2011 Acid Sulfate Soils Map as being of the class specified for those works.

16. Bushfire Prone Land

The land is mapped as 'bushfire prone land' and as such restrictions may apply to new development on this land.

17. Flood Related Development Controls

Development on this land or part of this land for the purposes of dwelling houses, attached dwellings, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is not subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Development on this land or part of this land for any other purpose <u>is not</u> subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Information given in relation to flooding is based upon Councils adopted 1:100 ARI (Average Recurrent Interval) flood event.

The Maitland Local Environmental Plan 2011 identifies the flood planning level (FPL) as the level of a 1:100 ARI flood event plus 0.5m freeboard.

18. Land reserved for acquisition

No environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument applying to the land provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

19. Contribution Plans

The following contribution plan(s) apply to the land:

- Maitland S94A Levy Contributions Plan 2006
- Maitland S94 Contributions Plan (City wide) 2006
- Lochinvar S94 Contribution Plan 2013
- Maitland City Wide Section 94 Contributions Plan 2016

Contributions plans may be inspected and purchased at Council's Customer Service Centre.

20. Property Vegetation Plans

The Council has not received any notification from Hunter Local Land Services that the land is affected by a property vegetation plan under the Native Vegetation Act 2003.

21. Order under Trees (Disputes Between Neighbours) Act 2006.

Council has not received notification from the Land and Environment Court of New South Wales that the land is affected by an Order Under Trees (Disputes Between Neighbours) Act 2006.

22. Conditions Affecting Seniors Housing

1) Site Compatibility Certificate

Council is unaware of whether a current site compatibility certificate issued under clause 25 of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 has been issued for the land.

2) Conditions of Development Consent since 11 October 2007

No development consent has been granted for the development permitted by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 after 11 October 2007.

23. Site Compatibility Certificates for Infrastucture

Council is unaware of whether a valid site compatibility certificate has been issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 for the land.

24. Complying Development

Complying development under the General Housing Code may be carried out on the land.

Complying development under the **Rural Housing Code** may not be carried out on the land as it is not within an applicable zone.

Complying development under the Housing Alterations Code may be carried out on the land.

Complying development under the General Development Code may be carried out on the land.

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land.

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may not be carried out on the land as it is not within an applicable zone.

Complying development under the Subdivisions Code may be carried out on the land.

Complying development under the **Demolition Code** may be carried out on the land.

Complying development under the Fire Safety Code may be carried out on the land.

<u>Note:</u> Despite the above provisions, if only part of a lot is subject to an exclusion or exemption under Clause 1.17A or Clause 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) Amendment (Commercial and Industrial Development and Other Matters) 2013, complying development may be carried out on that part of the lot that is not affected by the exclusion or exemption.

25. Contaminated Land

- (a) The land to which this certificate relates is not significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.
- (b) The land to which this certificate relates is not subject to a management order within the meaning of the Contaminated Land Management Act 1997.
- (c) The land to which this certificate relates is not the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.
- (d) The land to which this certificate relates is not subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.

(e) Council has not been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this certificate relates.

26. Site compatibility certificates and conditions for affordable rental housing

(1) Site Compatibility Certificate

Council is unaware if a current site compatibility certificate (affordable rental housing) has been issued in accordance with State Environmental Planning Policy (Affordable Rental Housing) 2009.

27. Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Council is unaware of whether an Order or an Authorisation has been issued under Section 23 and 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009, for the carrying out of development on the land.

PART 2: ADDITIONAL MATTERS PROVIDED PURSUANT TO SECTION 149 (5)

The following information is provided in accordance with section 149(5) of the Environmental Planning and Assessment Act 1979. Section 149(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 149(5). If this information is to be relied upon, it should be independently checked.

Maitland LEP 2011 makes the following special provisions in relation to the land

1. Preservation of trees or vegetation

Clause 5.9 in the Maitland Local Environmental Plan 2011 applies to the land. The objective of this clause is to preserve the amenity of the area, including biodiversity values, through the preservation of trees or other vegetation.

2. Development Consent

Council's records indicate that the land has not had any development consent granted within the five (5) years preceding the date of this certificate.

3. Draft DCP's

No Draft Development Control Plan is expressed to apply to the land subject to this certificate.

4. Suspension of covenants

Clause 1.9A in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. This clause suspends any agreement, covenant or other instrument that restricts the development of land that is permissible under the provisions of the Maitland Local Environmental Plan 2011 to the extent necessary to serve that purpose.

5. Filling of land

Earthworks (excavation and filling of land) require development consent. Clause 7.2 in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. Earthworks (defined as both excavation and filling of land) require development consent of Council unless the works are exempt development, ancillary to other development for which development consent is required or granted, or considered by Council to be of a minor nature.

6. Development in the vicinity of heritage items

Clause 5.10 in the Maitland Local Environmental Plan 2011 generally applies to all land in the Maitland Local Government Area, where the land is located in the vicinity of a heritage item or heritage conservation area. This clause requires a consent authority to consider the effect of the proposed development on the heritage significance of the item or area concerned, before granting development consent.

David Evans - General Manager

Per:

End of Certificate

S149 Planning Certificate

ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 (AS AMENDED)

APPLICANT Coffev Se

Coffey Services Australia

19 Warabrook Boulevard

WARABROOK NSW 2304

Certificate No Certificate Date Fee Paid

Receipt No

No. of Pages

17/723 09/03/2017 133.00 45097

Page 1 of 8

Your Reference

ENAUWARA04770AB

PROPERTY

LOT 2 DP718712

803 NEW ENGLAND HIGHWAY

LOCHINVAR

IMPORTANT: Please read this certificate carefully.

PARISH

Gosforth

PROPERTY NO 31929

This certificate contains important information about the land described above.

Please check for any item, which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, please contact the Council by phone on (02) 49349700, or personally at Council's office at 285-287 High Street Maitland.

The information provided in this certificate relates only to the land described above. If you require information about adjoining or nearby land, or about the Council's development policies or codes for the general area, contact Council's Planning & Environment Department.

All information provided is correct as at the date issued on this certificate. However, it is possible for changes to occur at any time after issue of this certificate. We recommend that you only rely upon a very recent certificate.

The following responses are based on the Council's records and / or information from sources outside the Council. The responses are provided with all due care and in good faith, however the Council cannot accept responsibility for any omission or inaccuracy arising from information outside the control of the Council.

Furthermore, while this certificate indicates the general effect of the zoning of the abovementioned land, it is suggested that the applicable planning instruments be further investigated to determine any additional requirements.

Copies of Maitland City Council's Local Environmental Planning Instrument, Development Control Plans and Policies are available for purchase from Council's Customer Service Centre.

Maitland City Council

9 March 2017

Page 1

PART 1: MATTERS PROVIDED PURSUANT TO SECTION 149 (2)

1. Local Environmental Plans (LEP)

Maitland LEP 2011, published 16 December 2011, applies to the land.

2. Exhibited draft Local Environmental Plans

No draft Local Environmental Plans that have been on public exhibition under the Act are applicable to the land.

3. Development Control Plan prepared by Council

Maitland Development Control Plan 2011 applies to the land.

4. Development Control Plans prepared by the Director-General

The Council has not been notified of any Development Control Plan applying to the land that has been prepared by the Director-General under section 51A of the Act.

5. State Environmental Planning Policies

The Minister for Planning has notified that the following State Environmental Planning Policies shall be specified on certificates under Section 149 of the Environmental Planning and Assessment Act, 1979.

The land is affected by the following State Environmental Planning Policies:

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 30 - Intensive Agriculture

State Environmental Planning Policy No. 33 - Hazardous And Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation Of Land

State Environmental Planning Policy No. 64 - Advertising And Signage

State Environmental Planning Policy No. 65 - Design Quality Of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy - Major Development 2005

State Environmental Planning Policy - State And Regional Development 2011

State Environmental Planning Policy - Affordable Rental Housing 2009

State Environmental Planning Policy - Building Sustainability Index: Basix 2004

State Environmental Planning Policy - (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy - Infrastructure 2007

State Environmental Planning Policy - Mining, Petroleum Production And Extractive Industries 2007

State Environmental Planning Policy - Rural Lands 2008

State Environmental Planning Policy - Housing For Seniors Or People With A Disability 2004

State Environmental Planning Policy - (Miscellaneous Consent Provisions) 2007

6. Draft State Environmental Planning Policies

No draft State Environmental Planning Policy(s) applying to the land has been publicised as referred to in section 39(2) of the Act.

7. Zoning and land use under relevant LEPs

Maitland LEP 2011, published 16 December 2011, identifies the zone applying to the land as:

R1 General Residential

The following development control table(s) give the objectives of the zone, the description of the zone and identify development allowed or prohibited in each zone. Development consent where required, must be obtained from the Council.

R1 General Residential

1) Objectives of zone

- · To provide for the housing needs of the community.
- To provide for a variety of housing types and densities.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.

2) Permitted without consent

Home-based child care; Home occupations

3) Permitted with consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Building identification signs; Business identification signs; Child care centres; Community facilities; Dwelling houses; Group homes; Home industries; Hostels; Hotel or motel accommodation; Multi dwelling housing; Neighbourhood shops; Places of public worship; Residential flat buildings; Respite day care centres; Roads; Semi-detached dwellings; Seniors housing; Serviced apartments; Shop top housing; Any other development not specified in item 2 or 4

4) Prohibited

Agriculture; Air transport facilities; Airstrips; Amusement centres; Animal boarding or training establishments; Biosolids treatment facilities; Boat building and repair facilities; Boat launching ramps; Boat sheds; Camping grounds; Car parks; Caravan parks; Cemeteries; Charter and tourism boating facilities; Commercial premises; Correctional centres; Crematoria; Depots; Eco-tourist facilities; Entertainment facilities; Extractive industries; Farm buildings; Forestry; Freight transport facilities; Function centres; Heavy industrial storage establishments; Helipads; Highway service centres; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Information and education facilities; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Open cut mining; Passenger transport facilities; Public administration buildings; Recreation facilities (indoor); Recreation facilities (major); Registered clubs; Research stations; Restricted premises; Rural industries; Rural workers dwellings; Service stations; Sewerage treatment plants; Sex services premises; Signage; Storage premises; Tourist and visitor accommodation; Transport depots; Truck depots; Vehicle body repair workshops; Vehicle repair stations; Veterinary hospitals; Warehouse or distribution centres; Waste or resource management facilities; Water recreation structures; Water recycling facilities; Wharf or boating facilities; Wholesale supplies

8. Land dimensions to permit the erection of a dwelling-house on the land

Maitland LEP 2011 does not contain a development standard specifying the land dimensions required to permit the erection of a dwelling-house on the land.

9. Critical Habitat

No Local Environmental Plan or draft Local Environmental Plan identifies the land as including or comprising critical habitat.

10. Conservation Area/Item of Environmental Heritage

The land is not in a Heritage Conservation Area. The land does not contain an item of Environmental Heritage.

11. Directions Under Part 3A

There is **no** direction by the Minister under Section 75P(2)(c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 (other than a project of a class prescribed by the regulations) of the Act does not have effect.

12. Coastal Protection

The Council has not received any notification from the Department of Services, Technology and Administration that the land is affected by the operation of section 38 or 39 of the Coastal Protection Act 1979.

13. Mine Subsidence Compensation Act 1961

The land has not been proclaimed to be within a Mine Subsidence District under the meaning of section 15 of the Mine Subsidence Compensation Act 1961.

14. Road widening or realignment

The land is not affected by any road widening or re-alignment under:

(a) Division 2 of Part 3 of the Roads Act 1993: or (b) any environmental planning instrument; (c) any resolution of the council.

15. Council and other public authority policies on hazard risk restrictions

All land within the Maitland Local Government Area has the potential to contain acid sulfate soils. Clause 7.1 in the Maitland Local Environmental Plan 2011 generally applies. Development consent is required where works described in the Table to this clause are proposed on land shown on the Maitland Local Environmental Plan 2011 Acid Sulfate Soils Map as being of the class specified for those works.

16. Bushfire Prone Land

The land is not mapped as 'bushfire prone land'.

17. Flood Related Development Controls

Development on this land or part of this land for the purposes of dwelling houses, attached dwellings, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is not subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Development on this land or part of this land for any other purpose <u>is not</u> subject to flood related development controls contained within cl. 7.3 of the Maitland Local Environmental Plan 2011 and s. B3 of the Maitland Development Control Plan 2011.

Information given in relation to flooding is based upon Councils adopted 1:100 ARI (Average Recurrent Interval) flood event.

The Maitland Local Environmental Plan 2011 identifies the flood planning level (FPL) as the level of a 1:100 ARI flood event plus 0.5m freeboard.

18. Land reserved for acquisition

No environmental planning instrument, deemed environmental planning instrument or draft environmental planning instrument applying to the land provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

19. Contribution Plans

The following contribution plan(s) apply to the land:

- Maitland S94A Levy Contributions Plan 2006
- Maitland City Wide Section 94 Contributions Plan 2016
- Lochinvar S94 Contribution Plan 2013

Contributions plans may be inspected and purchased at Council's Customer Service Centre.

20. Property Vegetation Plans

The Council has not received any notification from Hunter Local Land Services that the land is affected by a property vegetation plan under the Native Vegetation Act 2003.

21. Order under Trees (Disputes Between Neighbours) Act 2006.

Council has not received notification from the Land and Environment Court of New South Wales that the land is affected by an Order Under Trees (Disputes Between Neighbours) Act 2006.

22. Conditions Affecting Seniors Housing

1) Site Compatibility Certificate

Council is unaware of whether a current site compatibility certificate issued under clause 25 of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 has been issued for the land.

2) Conditions of Development Consent since 11 October 2007

No development consent has been granted for the development permitted by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 after 11 October 2007.

23. Site Compatibility Certificates for Infrastucture

Council is unaware of whether a valid site compatibility certificate has been issued under clause 19 of State Environmental Planning Policy (Infrastructure) 2007 for the land.

24. Complying Development

Complying development under the General Housing Code may be carried out on the land.

Complying development under the **Rural Housing Code** may not be carried out on the land as it is not within an applicable zone.

Complying development under the Housing Alterations Code may be carried out on the land.

Complying development under the General Development Code may be carried out on the land.

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land.

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may not be carried out on the land as it is not within an applicable zone.

Complying development under the Subdivisions Code may be carried out on the land.

Complying development under the **Demolition Code** may be carried out on the land.

Complying development under the Fire Safety Code may be carried out on the land.

<u>Note:</u> Despite the above provisions, if only part of a lot is subject to an exclusion or exemption under Clause 1.17A or Clause 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) Amendment (Commercial and Industrial Development and Other Matters) 2013, complying development may be carried out on that part of the lot that is not affected by the exclusion or exemption.

25. Contaminated Land

- (a) The land to which this certificate relates is not significantly contaminated land within the meaning of the Contaminated Land Management Act 1997.
- (b) The land to which this certificate relates is not subject to a management order within the meaning of the Contaminated Land Management Act 1997.
- (c) The land to which this certificate relates is not the subject of an approved voluntary management proposal within the meaning of the Contaminated Land Management Act 1997.
- (d) The land to which this certificate relates is not subject to an ongoing maintenance order within the meaning of the Contaminated Land Management Act 1997.
- (e) Council has not been provided with a site audit statement, within the meaning of the Contaminated Land Management Act 1997, for the land to which this certificate relates.

26. Site compatibility certificates and conditions for affordable rental housing

(1) Site Compatibility Certificate

Council is unaware if a current site compatibility certificate (affordable rental housing) has been issued in accordance with State Environmental Planning Policy (Affordable Rental Housing) 2009.

27. Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009

Council is unaware of whether an Order or an Authorisation has been issued under Section 23 and 24 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009, for the carrying out of development on the land.

PART 2: ADDITIONAL MATTERS PROVIDED PURSUANT TO SECTION 149 (5)

The following information is provided in accordance with section 149(5) of the Environmental Planning and Assessment Act 1979. Section 149(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 149(5). If this information is to be relied upon, it should be independently checked.

Maitland LEP 2011 makes the following special provisions in relation to the land

1. Preservation of trees or vegetation

Clause 5.9 in the Maitland Local Environmental Plan 2011 applies to the land. The objective of this clause is to preserve the amenity of the area, including biodiversity values, through the preservation of trees or other vegetation.

2. Development Consent

Council's records indicate that the land has not had any development consent granted within the five (5) years preceding the date of this certificate.

3. Draft DCP's

No Draft Development Control Plan is expressed to apply to the land subject to this certificate.

4. Suspension of covenants

Clause 1.9A in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. This clause suspends any agreement, covenant or other instrument that restricts the development of land that is permissible under the provisions of the Maitland Local Environmental Plan 2011 to the extent necessary to serve that purpose.

5. Filling of land

Earthworks (excavation and filling of land) require development consent. Clause 7.2 in the Maitland Local Environmental Plan 2011 applies to all land within the Maitland Local Government Area. Earthworks (defined as both excavation and filling of land) require development consent of Council unless the works are exempt development, ancillary to other development for which development consent is required or granted, or considered by Council to be of a minor nature.

6. Development in the vicinity of heritage items

Clause 5.10 in the Maitland Local Environmental Plan 2011 generally applies to all land in the Maitland Local Government Area, where the land is located in the vicinity of a heritage item or heritage conservation area. This clause requires a consent authority to consider the effect of the proposed development on the heritage significance of the item or area concerned, before granting development consent.

David Evans - General Manager

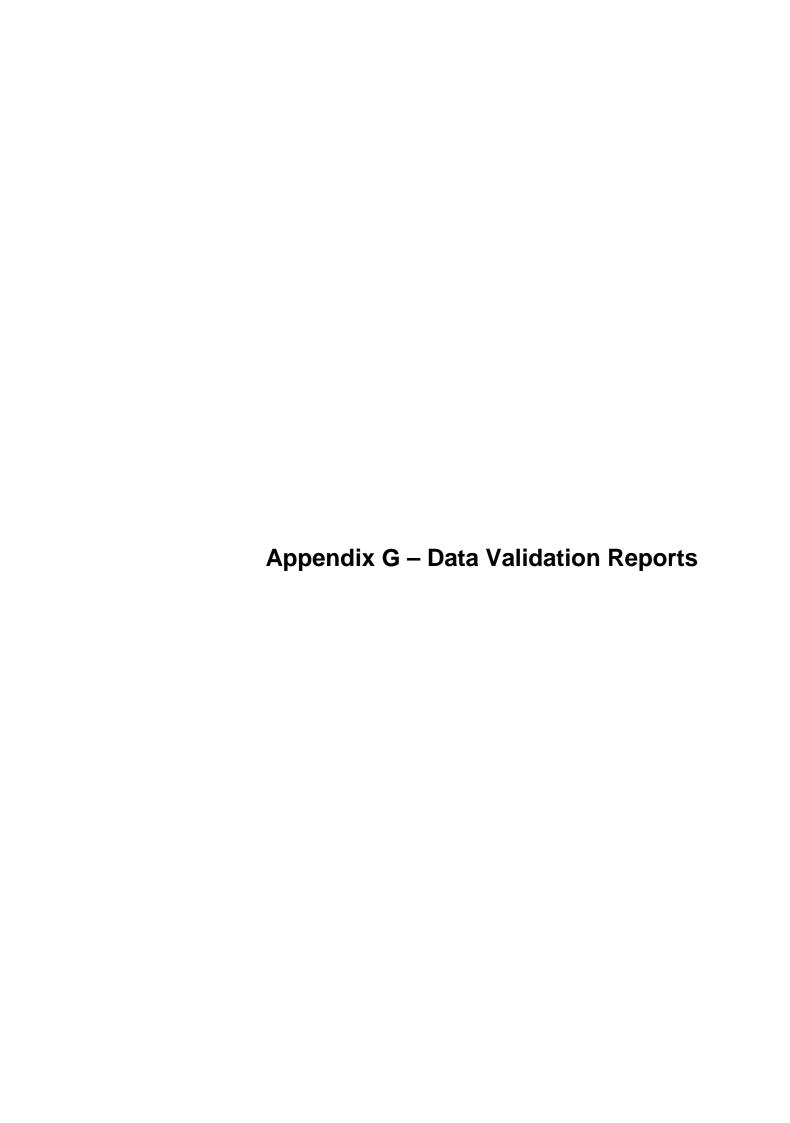
Per:

End of Certificate

Home Contaminated land Record of notices

Search results

Your search for: LGA: Maitland City Council Matched 4 notices relating to 2 sites.


Notice Type: Preliminary Investigation Order

Suburb	Address	Site Name	Refine Search Notices related to
			this site
EAST MAITLAND	Corner Melbourne Street and Brisbane	Former Gasworks Site	2 former
	STREET		
MAITLAND	Charles STREET	Maitland Gasworks	2 current

Page 1 of 1

5 April 2017

DATA COMPLETENESS

Field Considerations

	Yes / No	Comment
Were all critical locations sampled?	Yes	
Were all critical depths sampled?	Yes	
Were the SOPs appropriate and complied with?	Yes	
Was the sampler adequately experienced?	Yes	
Was the field documentation complete?	Yes	
Is a copy of the signed chain of custody form for each batch of samples included?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all critical samples analysed according to sampling plan?	Yes	
Were analytes analysed as per sampling plan?	Yes	
Were the laboratory methods appropriate?	Yes	
Were the laboratory methods adopted NATA endorsed?	Yes	
Was the NATA Seal on the laboratory reports?	Yes	
Were the laboratory reports signed by an authorised person?	Yes	
Were the laboratory PQLs below the criteria?	Yes	

Was sample documentation complete?	Yes	
Were sample holding times complied with?	No	Holding times for phenoxy herbicides and pH were exceeded. As phenoxy herbicides were not recorded above laboratory LORs and pH was used as an indicator of water quality and not considered a COC, Coffey considers that these exceedences have not adversely affect data usability.

COMPLETENESS CONCLUSION

	Yes / No	Comment
Was data adequately complete?	Yes	

DATA COMPARABILITY

Field considerations

	Yes / No	Comment
Was there more than one sampling round?	No	
Were the same sampling methodology and SOPs used for all sampling?	Yes	
Was all sampling undertaken by the same sampler?	Yes	
Were sample containers, preservation, filtering the same?	No	Different sample containers and preservation used for soil and surface water samples. Samples were collected and preserved based on Coffey SOPs and accepted industry practice.
Could climatic conditions (temperature, rainfall, wind) have influenced data comparability?	Yes	Surface water samples may have been affected by climatic conditions.
Were the same types of samples collected (filtered, size fractions etc) for each media?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were the same analytical methods used (including clean up)?	No	Different laboratory methods were used for soil and surface water samples. The laboratory methods used were NATA-endorsed.
Were the PQLs the same?	No	Different PQLs used by the primary and secondary laboratories.
Were the same laboratories used?	No	Eurofins-MGT was used as the primary laboratory. ALS was used as the secondary laboratory.
Were the units reported the same?	No	Soil samples were reported in mg/kg. Surface water samples were reported in mg/L, µg/L, pH units and µS/cm.

COMPARABILITY CONCLUSION

	Yes / No	Comment
Was data adequately comparable?	Yes	

DATA REPRESENTATIVENESS

Field Considerations

	Yes / No	Comment
Was appropriate media sampled?	Yes	
Was media identified sampled?	Yes	
Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable.	Yes	
Were the samples in proper custody between the field and reaching the laboratory?	Yes	
Were the samples received by the laboratory in good condition?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all samples analysed according to SAQP?	NA	There was no SAQP for this assessment.

REPRESENTATIVENESS CONCLUSION

	Yes / No	Comment
Was data adequately representative?	Yes	

DATA PRECISION AND ACCURACY

Field considerations

	Yes / No	Comment
Were the SOPs appropriate and complied with?	Yes	Based on available Coffey Environments Standard Operating Procedures.

Laboratory Considerations for Soil

	Metals	TRH	BTEX	PAH	ОСР	OPP	Herbicides
Primary	14	8	8	8	14	14	14
Field QA/QC							
Intralab Dup	1, 7%	1, 12.5%	1, 12.5%	1, 12.5%	1, 7%	1; 7%	0
Interlab Dup	1, 7%	1, 12.5%	1, 12.5%	1, 12.5%	1, 7%	1; 7%	0
Trip Spike	0	0	0	0	0	0	0
Trip Blank	NA	1	1	NA	0	NA	NA
Wash Blanks	0	1	1	1	0	0	0
LAB QA/QC							
Lab Blanks	1	1	1	1	1	1	1
Lab Dups	2	2	2	2	2	2	2
Matrix Spikes	1	1	1	1	1	1	1
Lab Control	1	1	1	1	1	1	1
Surrogate	0	0	1	2	2	1	1

Laboratory Considerations for Water

	Metals	TRH	BTEX	РАН	ОСР	OPP	Herbicides
Primary	3	0	0	0	3	3	3
Field QA/QC							
Intralab Dup	1, 33%	0	0	0	1, 33%	1, 33%	0
Interlab Dup	0	0	0	0	0	0	0
Trip Spike	0	0	0	NA	0	NA	0
Trip Blank	NA	1	1	NA	0	NA	NA
Wash Blanks	0	1	1	1	0	0	0
LAB QA/QC							
Lab Blanks	1	1	1	1	1	1	1
Lab Dups	2	2	2	2	2	2	0
Matrix Spikes	1	1	1	1	1	1	0
Lab Control	1	1	1	1	1	1	1
Surrogate	0	0	1	2	2	0	1

	Yes / No	Comment
Field QA/QC		
Were an adequate number of field duplicates analysed?	Yes	
Were the RPDs of the field duplicates within control limits?	No	RPD's in soil for nickel (SS2 and QC3) exceeded control limit of 50%. This is inferred to be due to heterogeneity of the material sampled.
Were an adequate number of trip blanks analysed?	Yes	
Were the trip blanks free of contaminants	NA	
Were an adequate number of trip spikes analysed?	No	Given the low potential for volatile contamination to be present, trip spikes were not considered to be required.
Were the trip spikes recoveries within control limits?	NA	
Were an adequate number of wash blanks analysed?	Yes	
Were the wash blanks free of contaminants?	Yes	
Lab QA/QC		
Were an adequate number of laboratory blank samples analysed?	Yes	
Were the blanks free of contaminants?	Yes	
Were an adequate number of laboratory matrix spikes and laboratory control samples analysed?	Yes	
Were an adequate number of surrogate spike samples analysed?	Yes	

Were the spikes recoveries within control limits?	Yes	
Were an adequate number of laboratory duplicates analysed?	Yes	
Were the laboratory duplicate RPDs within control limits?	No	Duplicate RPDs for cadmium were recorded outside the control limits, but passed Eurofins-MGT's Acceptance Criteria as stipulated in their SOP-05.

PRECISION AND ACCURACY CONCLUSION

	Yes / No	Comment
Was soil data adequately precise?	Yes	
Was soil data adequately accurate?	Yes	
Was water data adequately precise?	Yes	
Was water data adequately accurate?	Yes	

Table F1: Laboratory Methodologies (Eurofins-MGT) - Soil

Analysis	Method Based On	NATA Registered
втех	Based on TRH C6-C40 – LTM-ORG-2010	Yes
TPH C6-C36	Based on TRH C6-C36 – LTM-ORG-2010	Yes
TPH C6-C40	Based on TRH C6-C40 - LTM-ORG-2010	Yes
РАН	Based on USEPA 8270	Yes
Metals	Based on USEPA 6010/6020	Yes
Mercury	Based on USEPA 7470/71	Yes
OCPs	Based on USEPA 8081 Organochlorine Pesticides	Yes
OPPs	Based on USEPA 8270 Organophosphorus Pesticides	Yes
Phenoxy Herbicides	Based on Method MGT 530	Yes

Table F2: Holding Times (Eurofins-MGT) - Soil

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
втех	14 days	1 day	Yes
TPH C6-C36	14 days	1 day	Yes
TPH C6-C40	14 days	1 day	Yes
PAH	14 days	1 day	Yes
Metals	28 days	1 day	Yes
OCPs	14 days	1 day	Yes
OPPs	14 days	1 day	Yes
Phenoxy	14 days	19 days	No

Herbicides		

Table F3: Soil Laboratory Methodologies (ALS)

Analysis	ysis Method Based On	
Soil		
TPH C6-C9/BTEX	ALS Method EP080	Yes
TPH C10-C36	ALS Method EP071	Yes
PAH	ALS Method EP075(SIM)	Yes
Metals	ALS Method EG005T	Yes
Mercury	ALS Method EG035T	Yes

Table F4: Soil Holding Times (ALS)

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
TPH C6-C9/BTEX	14 days	1 day	Yes
TPH C10-C36	14 days	1 day	Yes
PAH	14 days	2 days	Yes
Metals	28 days	2 days	Yes

Table F5: Water Holding Times Eurofins MGT

Analysis	Method Based On	NATA Registered
втех	Based on TRH C6-C40 – LTM-ORG-2010	Yes
TPH C6-C36	Based on TRH C6-C36 – LTM-ORG-2010	Yes
TPH C6-C40	Based on TRH C6-C40 - LTM-ORG-2010	Yes
Volatile Organics	Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS	Yes

РАН	Based on USEPA 8270	Yes
Metals	Based on USEPA 6010/6020	Yes
Mercury	Based on USEPA 7470/71	Yes
OCPs	Based on USEPA 8081 Organochlorine Pesticides	Yes
OPPs	Based on USEPA 8270 Organophosphorus Pesticides	Yes
рН	Based on APHA 2510	Yes
Electrical conductivity	Based on APHA 4500	Yes
Phenoxy Herbicides	Based on Method MGT 530	Yes

Table F6: Holding Times (Eurofins-MGT) - Water

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
BTEX	14 days	1 day	Yes
TPH C6-C36	7 days	7days	Yes
TPH C6-C40	7 days	7 days	Yes
Volatile Organics	7 days	1 day	Yes
PAH	7 days	8 days	Yes
Metals	28 days	2 days	Yes
OCPs	7 days	7 days	Yes
OPPs	7 days	7 days	Yes
рН	6 hours	1 day	No
Electrical conductivity	28 days	1 day	Yes
Phenoxy Herbicides	14 days	19 days	No

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

I.	SAN	ИPL	E H	AN	DLI	NG
----	-----	-----	-----	----	-----	----

 Were the sample holding times me
--

- 2. Were the samples in **proper custody** between the field and reaching the laboratory?
- 3. Were the samples **properly and adequately** preserved? *This includes keeping the samples chilled, where applicable.*
- 4. Were the samples received by the laboratory in good condition?

Yes	No
	(Comment
	below)
\boxtimes	
\boxtimes	

|--|

Nil

Sample Handling was:	Satisfactory Partially Satisfactory	☐ Unsatisfactory

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

II PRECISION/ACCURACY ASSESSMENT

 Was a NATA registered laboratory ι 	/ used?
--	---------

- 2. Did the laboratory perform the requested tests?
- 3. Were the laboratory methods adopted NATA endorsed?
- 4. Were the appropriate test procedures followed?
- 5. Were the reporting limits satisfactory?
- 6. Was the NATA Seal on the reports?
- 7. Were the reports signed by an authorised person?

Yes	No
	(Comment below)
\boxtimes	

CO	MI	ИΕ	N٦	rs:
----	----	----	----	-----

Nil

Precision/Accuracy of the Laboratory Report	Satisfactory	Unsatisfactory
	☐ Partially Satisfactory	

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

III. FIELD QA/QC

Number of Samples Analysed
 Number of Days of Sampling:
 Number of Sampling Events:

4. Number and Type of QA/QC Samples Collected:

	SOIL	WAIER
Field Duplicates (at least 1 in 10 samples)	3	N/A
Trip Blanks (at least 1/day or sampling event)	0	N/A
Wash Blanks (at least 1/day/matrix/equipment)	0	1
Other (Field Blanks, Trip Spike, etc.)	0	N/A

5. FIELD DUPLICATES

- A. Were an Adequate Number of field duplicates collected?
- B. Were RPDs within Control Limits?
 - a. Organics (100% (5-10 x EQL); 50% (10-30 x EQL); 30% (> 30 x EQL))
 - b. Metals/Inorganics (100% (5-10 x EQL); 50% (10-30 x EQL); 30% (> 30 x EQL))

Yes	No
	(Comment
	below)
\boxtimes	
	_

COMMENTS:

RPDs for nickel and zinc exceeded the control limit of 30% between primary sample SS14 and triplicate sample QC8. This is inferred to be due to sample heterogeneity.

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

6.	TRIP	BL	.ANKS	
----	------	-----------	-------	--

A. V	Vere an	Adequate	Number	of trip	blanks	collected?
------	---------	----------	--------	---------	--------	------------

В.	Were the Trip Blanks free of contaminants?
	(If no, comment whether the contaminants present are also detected
	in the samples and whether they are common laboratory chemicals.)

Yes	N/A
	(Comment
	below)

7. RINSATE SAMPLES

- A. Were an adequate number of rinsate samples collected?
- B. Were the rinsate samples free of contaminants?(If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.)

Yes	N/A
	(Comment
	below)
\boxtimes	
\boxtimes	

COMMENTS:

As volatile contamination was not anticipated to be present at the site, trip spikes and blanks were considered not to be required for this assessment.

Field QA/QC was:	Satisfactory	Unsatisfactory
	☐ Partially Satisfactory	

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

IV LABORATORY INTERNAL QUALITY CONTROL PROCEDURES

1. Type of QA/QC Samples

	Yes	No
Laboratory Blanks/Reagent Blanks (at least 1 per batch)	\square	
Laboratory Duplicates (at least 1 per batch or 1 per 10 samples whichever is the smaller)		
Matrix Spikes/Matrix Spike Duplicates (1 for each soil type)		
Laboratory Control Spike		
Surrogate (where appropriate)*		

^{*}Number of surrogates spikes carried out on each sample

- 2 Were the laboratory blanks/reagents blanks free of contamination?
- 3. Were the spike recoveries within laboratory control limits?
 - a. Organics
 - b. Metals/Inorganic
- 4. Were the RPDs of the laboratory duplicates within control limits?
- 5. Were the surrogate recoveries within control limits?

Yes	No
	(Comment
	below)
\square	
	$\boxtimes \Box$
\boxtimes	

COMMENTS:

A matrix spike recovery of 133% for Lead was recorded. The laboratory code Q08 was quoted, which states: "The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference."

QA/QC DATA VALIDATION REPORT

Job No: 754-NTLEN202989 Eurofins Report: 539344

ALS: EM1703497

The	laboratory internal QA/QC was:		Unsatisfactory
		Partially Satisfactory	
V.	DATA USABILITY		
1.	Data Directly Usable		
2.	Data Usable with the following correct	ions/modifications (see comment belo	ow)
3.	Data Not Usable.		
	MENTS:		
None	9.		

Appendix H – Laboratory Reports and Chain of Custody Documentation

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304 NATA

WORLD RECOGNISED
ACCREDITATION

SS₂

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

SS3

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

SS4

Attention: Libby Betz

Client Sample ID

Report 444435-S
Project name WINDERS LANE
Project ID ENAUWARA04581AA
Received Date Jan 15, 2015

Sample Matrix Soil Soil Soil Soil M15-Ja04883 M15-Ja04884 M15-Ja04885 Eurofins | mgt Sample No. M15-Ja04886 **Date Sampled** Jan 14, 2015 Jan 14, 2015 Jan 14, 2015 Jan 14, 2015 LOR Test/Reference Unit **Total Recoverable Hydrocarbons - 1999 NEPM Fractions** TRH C6-C9 mg/kg < 20 < 20 TRH C10-C14 < 20 < 20 20 mg/kg < 50 < 50 TRH C15-C28 50 mg/kg TRH C29-C36 50 mg/kg < 50 < 50 TRH C10-36 (Total) 50 mg/kg < 50 < 50 **BTEX** Benzene 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 Toluene 0.1 mg/kg Ethylbenzene 0.1 mg/kg < 0.1 < 0.1 < 0.2 < 0.2 m&p-Xylenes 0.2 mg/kg o-Xylene 0.1 mg/kg < 0.1 < 0.1 < 0.3 Xylenes - Total 0.3 mg/kg < 0.3 4-Bromofluorobenzene (surr.) % 101 89 **Total Recoverable Hydrocarbons - 2013 NEPM Fractions** Naphthalene^{N02} 0.5 mg/kg < 0.5 < 0.5 TRH C6-C10 20 mg/kg < 20 < 20 TRH C6-C10 less BTEX (F1)N04 20 mg/kg < 20 < 20 TRH >C10-C16 50 mg/kg < 50 < 50 TRH >C10-C16 less Naphthalene (F2)N01 50 mg/kg < 50 < 50 TRH >C16-C34 100 mg/kg < 100 < 100 TRH >C34-C40 100 < 100 mg/kg < 100 **Polycyclic Aromatic Hydrocarbons** Benzo(a)pyrene TEQ (lower bound) * 0.5 mg/kg < 0.5 < 0.5 0.6 Benzo(a)pyrene TEQ (medium bound) * 0.5 mg/kg 0.6 Benzo(a)pyrene TEQ (upper bound) * 0.5 mg/kg 1.2 1.2 Acenaphthene 0.5 mg/kg < 0.5 < 0.5 0.5 < 0.5 < 0.5 Acenaphthylene mg/kg Anthracene 0.5 mg/kg < 0.5 < 0.5

SS1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Benz(a)anthracene

Benzo(g.h.i)perylene

Benzo(k)fluoranthene

Dibenz(a.h)anthracene

Benzo(b&j)fluorantheneN07

Benzo(a)pyrene

Chrysene

ì	m	Ø	t
		5	•

Client Sample ID			664	cco	cca	664
·			SS1	SS2	SS3	SS4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04883	M15-Ja04884	M15-Ja04885	M15-Ja04886
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	=	=
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	=	=
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	93	97	-	-
p-Terphenyl-d14 (surr.)	1	%	99	109	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-ВНС	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	143	133	143	129
Tetrachloro-m-xylene (surr.)	1	%	145	129	138	149
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID Sample Matrix			SS1 Soil	SS2 Soil	SS3 Soil	SS4 Soil	
Eurofins mgt Sample No.			M15-Ja04883	M15-Ja04884	M15-Ja04885	M15-Ja04886	
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	
Test/Reference	LOR	Unit	,	, , ,	, , ,	,	
Organophosphorous Pesticides	'	1					
Naled	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
Triphenylphosphate (surr.)	1	%	101	103	97	92	
Heavy Metals							
Arsenic	2	mg/kg	3.8	3.5	3.1	3.4	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	82	66	78	77	
Copper	5	mg/kg	32	53	28	23	
Lead	5	mg/kg	< 5	< 5	< 5	< 5	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	54	36	50	29	
Zinc	5	mg/kg	40	33	39	34	
% Moisture	0.1	%	32	32	33	35	

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04887	M15-Ja04888	M15-Ja04889	M15-Ja04890
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 40	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	68	-
TRH C29-C36	50	mg/kg	< 50	< 50	170	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	240	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.2	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.2	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.2	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.4	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.2	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.6	-
4-Bromofluorobenzene (surr.)	1	%	108	103	105	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	^{G01} < 1	-
TRH C6-C10	20	mg/kg	< 20	< 20	^{G01} < 40	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	^{G01} < 40	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	<u> </u>
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	<u>-</u>
TRH >C16-C34	100	mg/kg	< 100	< 100	180	-
TRH >C34-C40	100	mg/kg	< 100	< 100	130	-

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04887	M15-Ja04888	M15-Ja04889	M15-Ja04890
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	_
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	89	100	121	-
p-Terphenyl-d14 (surr.)	1	%	87	100	113	-
Organochlorine Pesticides	•					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	131	128	128	127
Tetrachloro-m-xylene (surr.)	1	%	143	143	125	97

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04887	M15-Ja04888	M15-Ja04889	M15-Ja04890
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	83	88	104	118
Heavy Metals						
Arsenic	2	mg/kg	2.2	3.0	3.0	2.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	87	77	91	97
Copper	5	mg/kg	38	41	38	44
Lead	5	mg/kg	< 5	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	46	43	50	53
Zinc	5	mg/kg	31	29	39	36
% Moisture	0.1	%	25	31	32	37

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS9 Soil M15-Ja04891 Jan 14, 2015	SS10 Soil M15-Ja04892 Jan 14, 2015	SS11 Soil M15-Ja04893 Jan 14, 2015	POND 1 SED1 Soil M15-Ja04897 Jan 14, 2015
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	110	< 50	-
TRH C29-C36	50	mg/kg	81	160	54	-
TRH C10-36 (Total)	50	mg/kg	81	270	54	-

		1	T	1		
Client Sample ID			SS9	SS10	SS11	POND 1 SED1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04891	M15-Ja04892	M15-Ja04893	M15-Ja04897
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	77	82	65	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	_
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	_
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	_
TRH >C16-C34	100	mg/kg	< 100	220	< 100	_
TRH >C34-C40	100	mg/kg	< 100	110	< 100	_
Polycyclic Aromatic Hydrocarbons		199				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	_
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PAH	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	91	112	104	-
p-Terphenyl-d14 (surr.)	1	%	113	108	113	-
Organochlorine Pesticides	•	•				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

	1				POND 1 SED1
		Soil	Soil	Soil	Soil
		M15-Ja04891	M15-Ja04892	M15-Ja04893	M15-Ja04897
		Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
LOR	Unit				
0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 0.05
					< 1
					120
					104
	70	1 30	100	100	104
0.2	ma/ka	< 0.2	< 0.2	<02	< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					< 0.5
					< 0.2
					< 0.2
					< 0.2
					< 0.2
					88
	70			100	
2	ma/ka	2.3	2.5	2.2	5.2
					< 0.4
					64
					26
					< 5
					< 0.1
					57
					39
] 5	mg/kg	30	40	49	აყ
0.1	%	36	33	28	29
	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 mg/kg 0.06 mg/kg 0.07 mg/kg 0.08 mg/kg 0.9 mg/k	LOR	LOR	LOR

ample Matrix urofins mgt Sample No. late Sampled est/Reference otal Recoverable Hydrocarbons - 1999 NEPM Frace RH C6-C9 RH C10-C14 RH C15-C28 RH C29-C36 RH C10-36 (Total) ITEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene ^{NO2} RH C6-C10 RH C6-C10 less BTEX (F1) ^{NO4} RH > C10-C16 less Naphthalene (F2) ^{NO1}			Soil M15-Ja04898	Soil	Soil	
est/Reference otal Recoverable Hydrocarbons - 1999 NEPM Frace RH C6-C9 RH C10-C14 RH C15-C28 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene ^{NO2} RH C6-C10 RH C6-C10 less BTEX (F1) ^{NO4} RH >C10-C16 less Naphthalene (F2) ^{NO1}			M15-Ja04898		Soil	
est/Reference otal Recoverable Hydrocarbons - 1999 NEPM Frace RH C6-C9 RH C10-C14 RH C15-C28 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-Xylenes -Xylenes ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene laphthalene RH C6-C10 RH C6-C10 less BTEX (F1) RH >C10-C16 less Naphthalene (F2) NOTE HERE RESEARCH STORM				M15-Ja04899	M15-Ja04901	
otal Recoverable Hydrocarbons - 1999 NEPM Frace RH C6-C9 RH C10-C14 RH C15-C28 RH C29-C36 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - TotalBromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1) NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2) NO5			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	
otal Recoverable Hydrocarbons - 1999 NEPM Frace RH C6-C9 RH C10-C14 RH C15-C28 RH C29-C36 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - TotalBromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1) NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2) NO5	LOR	Unit				
RH C6-C9 RH C10-C14 RH C15-C28 RH C29-C36 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene ^{NO2} RH C6-C10 RH C6-C10 less BTEX (F1) ^{NO4} RH >C10-C16 less Naphthalene (F2) ^{NO1}	tions					
RH C10-C14 RH C15-C28 RH C29-C36 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-XylenesXylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fractiant laphthalene PNO2 RH C6-C10 RH C6-C10 less BTEX (F1) RH >C10-C16 RH >C10-C16 less Naphthalene (F2) NO3	20	mg/kg	-	-	< 20	
RH C15-C28 RH C29-C36 RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fractional Properties laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1) NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2) NO1	20	mg/kg	_	_	< 20	
RH C29-C36 RH C10-36 (Total) ITEX enzene oluene thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1) NO4 RH >C10-C16 less Naphthalene (F2) NO1	50	mg/kg	-	-	< 50	
RH C10-36 (Total) TEX enzene oluene thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fract laphthalene PNO2 RH C6-C10 RH C6-C10 less BTEX (F1) RH >C10-C16 RH >C10-C16 less Naphthalene (F2) RH >C10-C16 less Naphthalene (F2)	50	mg/kg	-	-	< 50	
enzene oluene thylbenzene n&p-XylenesXylene ylenes - TotalBromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1)NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2)NO1	50	mg/kg	-	-	< 50	
oluene thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene ^{NO2} RH C6-C10 RH C6-C10 less BTEX (F1) ^{NO4} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{NO1}	'					
oluene thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frace laphthalene ^{NO2} RH C6-C10 RH C6-C10 less BTEX (F1) ^{NO4} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{NO1}	0.1	mg/kg	-	_	< 0.1	
thylbenzene n&p-Xylenes -Xylene ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fractaphthalene aphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1)NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2)NO1	0.1	mg/kg	-	_	< 0.1	
n&p-XylenesXylene ylenes - TotalBromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fract laphthalene No2 RH C6-C10 RH C6-C10 less BTEX (F1)N04 RH >C10-C16 RH >C10-C16 less Naphthalene (F2)N01	0.1	mg/kg	-	_	< 0.1	
	0.2	mg/kg	-	-	< 0.2	
ylenes - Total -Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Fract laphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1)NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2)NO1	0.1	mg/kg	-	-	< 0.1	
-Bromofluorobenzene (surr.) otal Recoverable Hydrocarbons - 2013 NEPM Frac aphthalene NO2 RH C6-C10 RH C6-C10 less BTEX (F1)NO4 RH >C10-C16 RH >C10-C16 less Naphthalene (F2)NO1	0.3	mg/kg	-	-	< 0.3	
laphthalene ^{N02} RH C6-C10 RH C6-C10 less BTEX (F1) ^{N04} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{N01}	1	%	-	-	51	
RH C6-C10 RH C6-C10 less BTEX (F1) ^{N04} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{N01}	tions					
RH C6-C10 RH C6-C10 less BTEX (F1) ^{N04} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{N01}	0.5	mg/kg	-	-	< 0.5	
RH C6-C10 less BTEX (F1) ^{N04} RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{N01}	20	mg/kg	-	-	< 20	
RH >C10-C16 RH >C10-C16 less Naphthalene (F2) ^{N01}	20	mg/kg	-	-	< 20	
	50	mg/kg	-	-	< 50	
	50	mg/kg	-	-	< 50	
RH >C16-C34	100	mg/kg	-	-	< 100	
RH >C34-C40	100	mg/kg	-	-	< 100	
olycyclic Aromatic Hydrocarbons						
enzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	
enzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	
enzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	
cenaphthene	0.5	mg/kg	-	-	< 0.5	
cenaphthylene	0.5	mg/kg	-	-	< 0.5	
nthracene	0.5	mg/kg	-	-	< 0.5	
enz(a)anthracene	0.5	mg/kg	-	-	< 0.5	
enzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	
enzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	
enzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	
enzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	
hrysene	0.5	mg/kg	-	-	< 0.5	
ibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	
luoranthene	0.5	mg/kg	-	-	< 0.5	
luorene	0.5	mg/kg	-	-	< 0.5	
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	
aphthalene	0.5	mg/kg	-	-	< 0.5	
henanthrene	0.5	mg/kg	-	-	< 0.5	
yrene	0.5	mg/kg	-	-	< 0.5	
otal PAH	0.5	mg/kg	-	-	< 0.5	
-Fluorobiphenyl (surr.)	1	%	-	-	91	
-Terphenyl-d14 (surr.)	1	%	-	-	96	
rganochlorine Pesticides			1	1		
hlordanes - Total						
.4'-DDD	0.1	mg/kg	< 0.1	< 0.1	< 0.1	
.4'-DDE .4'-DDT	0.1 0.05 0.05	mg/kg mg/kg mg/kg	< 0.1 < 0.05 < 0.05	< 0.1 < 0.05 < 0.05	< 0.1 < 0.05 < 0.05	

Client Sample ID			POND 2 SED2	POND 3 SED3	QC2
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04898	M15-Ja04899	M15-Ja04901
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit			
Organochlorine Pesticides					
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	103	109	125
Tetrachloro-m-xylene (surr.)	1	%	101	101	86
Organophosphorous Pesticides					
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Naled	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	105	115	95
Heavy Metals					
Arsenic	2	mg/kg	2.7	2.9	3.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	90	78	79
Copper	5	mg/kg	41	34	32
Lead	5	mg/kg	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	53	120	51
Zinc	5	mg/kg	35	24	39

Client Sample ID			POND 2 SED2	POND 3 SED3	QC2
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Ja04898 M15-Ja048		M15-Ja04901
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit			
% Moisture	0.1	%	44	43	33

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 16, 2015	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Melbourne	Jan 16, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 16, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite 10			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 16, 2015	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Jan 16, 2015	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Organophosphorous Pesticides	Melbourne	Jan 16, 2015	14 Day
- Method: USEPA 8270 Organophosphorus Pesticides			
Metals M8	Melbourne	Jan 16, 2015	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
% Moisture	Melbourne	Jan 15, 2015	14 Day

⁻ Method: LTM-GEN-7080 Moisture

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.: Report #:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

444435

web: www.eurofins.com.au

Phone: 02 4016 2300 Fax: 02 4016 2380

Received:

Jan 15, 2015 1:25 PM Jan 22, 2015

Due: Priority: 5 Day **Contact Name:** Libby Betz

Eurofins | mgt Client Manager: Mary Makarios

		Moisture	onductivity (at 25°C)	-	ganochlorine Pesticides	ganophosphorous Pesticides	etals M8	rofins mgt Suite 10	TEX and Volatile TRH			
Laboratory where analysis is conducted												
Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х
Sydney Labora	atory - NATA Site	# 18217										
Brisbane Labo	ratory - NATA Sit	e # 20794										
External Labor	ratory											
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
SS1	Jan 14, 2015		Soil	M15-Ja04883	Х						Х	
SS2	Jan 14, 2015		Soil	M15-Ja04884	Х						Х	
SS3	Jan 14, 2015		Soil	M15-Ja04885	Х			Х	Х	Х		
SS4	Jan 14, 2015		Soil	M15-Ja04886	X			Х	Х	Х		
SS5	Jan 14, 2015		Soil	M15-Ja04887	Х						Х	
SS6	Jan 14, 2015		Soil M15-Ja04888								Х	
SS7	Jan 14, 2015		Soil	M15-Ja04889	Х						Х	
SS8	Jan 14, 2015		Soil	M15-Ja04890	X			Χ	Χ	Х		
SS9	Jan 14, 2015		Soil	M15-Ja04891	X						Х	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 12 of 24

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Facsimile: +61 3 8564 5090

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.:

444435

Report #: Phone: 02 4016 2300 Fax: 02 4016 2380

Received: Jan 15, 2015 1:25 PM Due: Jan 22, 2015

Priority: 5 Day **Contact Name:** Libby Betz

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			% Moisture	Conductivity (at 25°C)	рH	Organochlorine Pesticides	Organophosphorous Pesticides	Metals M8	Eurofins mgt Suite 10	BTEX and Volatile TRH
Laboratory who	ere analysis is c	onducted										
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217										
Brisbane Labo	ratory - NATA Si	te # 20794										
External Labor	atory											
SS10	Jan 14, 2015		Soil	M15-Ja04892	Х						Χ	
SS11	Jan 14, 2015		Soil	M15-Ja04893	Х						Χ	
POND 1 SW1	Jan 14, 2015		Water	M15-Ja04894		Х	Х	Х	Х	Х		
POND 2 SW2	Jan 14, 2015		Water	M15-Ja04895		Х	Х	Х	Х	Х		
POND 3 SW3	Jan 14, 2015		Water	M15-Ja04896		Х	Х	Х	Х	Х		
POND 1 SED1	Jan 14, 2015		Soil	M15-Ja04897	Х			Х	Х	Х		
POND 2 SED2	Jan 14, 2015		Soil	M15-Ja04898	Х			Χ	Х	Х		
POND 3 SED3	Jan 14, 2015		Soil	M15-Ja04899	Х			Χ	Х	Х		
QC1	Jan 14, 2015		Water	M15-Ja04900		Х	Х	Х	Х	Х		
QC2	Jan 14, 2015		Soil	M15-Ja04901	Χ						Χ	

ABN = 50 005 085 521 e.mail: EnviroSales@eurofins.com.au web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Coffey Environments P/L N'castle Order No.: Received: Jan 15, 2015 1:25 PM

Address: Lot 101, 19 Warabrook Boulevard Report #: 444435 Due: Jan 22, 2015

 Warabrook
 Phone:
 02 4016 2300
 Priority:
 5 Day

 NSW 2304
 Fax:
 02 4016 2380
 Contact Name:
 Libby Betz

Project Name: WINDERS LANE
Project ID: ENAUWARA04581AA

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			% Moisture	Conductivity (at 25°C)	рН	Organochlorine Pesticides	Organophosphorous Pesticides	Metals M8	Eurofins mgt Suite 10	BTEX and Volatile TRH
Laborator	y where analysis is c	onducted										
Melbourne	e Laboratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydney La	aboratory - NATA Site	# 18217										
Brisbane	Laboratory - NATA Si	te # 20794										
External L	aboratory											
QC4	Jan 14, 2015		Water	M15-Ja04902							Х	
QC5	Jan 14, 2015		Water	M15-Ja04903								Х

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance quidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \, \text{Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data}.$

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank				•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	Hig/kg	V 100	100	1 400	
Polycyclic Aromatic Hydrocarbons				Τ	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene		< 0.5	0.5	Pass	
	mg/kg				
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank				T	
Organochlorine Pesticides				-	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	<u> </u>

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	IIIg/kg			1 033	
Organophosphorous Pesticides			T I		
Bolstar	mg/kg	< 0.2	0.2	Pass	
	1 2 2				
Chlorpyrifos Demotion O	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	-
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl azinphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Naled	mg/kg	< 0.5	0.5	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank	, <u>, , , , , , , , , , , , , , , , , , </u>				
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	-41				
Total Recoverable Hydrocarbons - 1999 NEPM Fra		400		_	
TRH C6-C9	%	100	70-130	Pass	-
TRH C10-C14	%	114	70-130	Pass	
LCS - % Recovery					
BTEX	T				
Benzene	%	123	70-130	Pass	
Toluene	%	121	70-130	Pass	
Ethylbenzene	%	118	70-130	Pass	
m&p-Xylenes	%	112	70-130	Pass	
Xylenes - Total	%	114	70-130	Pass	_

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
Naphthalene	%	95		75-125	Pass	
TRH C6-C10	%	95		70-130	Pass	
TRH >C10-C16	%	116		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	93		70-130	Pass	
Acenaphthylene	%	98		70-130	Pass	
Anthracene	%	96		70-130	Pass	
Benz(a)anthracene	%	93		70-130	Pass	
Benzo(a)pyrene	%	88		70-130	Pass	
Benzo(b&i)fluoranthene	%	103		70-130	Pass	
Benzo(g.h.i)perylene	%	87		70-130	Pass	
Benzo(k)fluoranthene	%	80		70-130	Pass	
Chrysene	%	91		70-130	Pass	
Dibenz(a.h)anthracene	%	89		70-130	Pass	
Fluoranthene	%	95		70-130	Pass	
Fluorene	%	93		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	87		70-130	Pass	
Naphthalene	%	95		70-130	Pass	
•						
Phenanthrene	%	95		70-130	Pass	
Pyrene	%	93		70-130	Pass	
LCS - % Recovery		т т				
Organochlorine Pesticides					_	
4.4'-DDD	%	116		70-130	Pass	
4.4'-DDE	%	127		70-130	Pass	
4.4'-DDT	%	122		70-130	Pass	
a-BHC	%	112		70-130	Pass	
Aldrin	%	108		70-130	Pass	
b-BHC	%	106		70-130	Pass	
d-BHC	%	112		70-130	Pass	
Dieldrin	%	110		70-130	Pass	
Endosulfan I	%	96		70-130	Pass	
Endosulfan II	%	118		70-130	Pass	
Endosulfan sulphate	%	117		70-130	Pass	
Endrin	%	117		70-130	Pass	
Endrin aldehyde	%	111		70-130	Pass	
Endrin ketone	%	115		70-130	Pass	
g-BHC (Lindane)	%	110		70-130	Pass	
Heptachlor	%	110		70-130	Pass	
Heptachlor epoxide	%	107		70-130	Pass	
Hexachlorobenzene	%	102		70-130	Pass	
Methoxychlor	%	111		70-130	Pass	
LCS - % Recovery						
Organophosphorous Pesticides						
Diazinon	%	93		70-130	Pass	
Ethion	%	116		70-130	Pass	
Fenitrothion	%	108	+	70-130	Pass	
Methyl parathion	%	80		70-130	Pass	
	%	103		70-130		
Mevinphos	70	103		10-130	Pass	
LCS - % Recovery						
Heavy Metals	0/	100		90.400	Dess	
Arsenic	%	102		80-120	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Cadmium			%	111		80-120	Pass	Code
Chromium			%	120		80-120	Pass	
			%	116		80-120	Pass	
Copper								
Lead			%	117		80-120	Pass	
Mercury			%	114		75-125	Pass	
Nickel			%	119		80-120	Pass	
Zinc			%	118		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		_		Ι	T	T	Г	
Total Recoverable Hydrocarbons				Result 1			_	
TRH C10-C14	M15-Ja04883	CP	%	97		70-130	Pass	
Spike - % Recovery				T	T	1	Г	
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions	I	Result 1				
TRH >C10-C16	M15-Ja04883	CP	%	97		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	M15-Ja06341	NCP	%	80		75-125	Pass	
Spike - % Recovery	•		•	•				
Total Recoverable Hydrocarbons ·	· 1999 NEPM Fract	ions		Result 1		T		
TRH C6-C9	M15-Ja04884	CP	%	102		70-130	Pass	
Spike - % Recovery	1 W110 0404004		//	102		70-130	1 1 433	
				Popult 1				
BTEX	N45 1-04004	0.0	0/	Result 1		70.400	D	
Benzene	M15-Ja04884	CP	%	93		70-130	Pass	
Toluene	M15-Ja04884	CP	%	100		70-130	Pass	
Ethylbenzene	M15-Ja04884	CP	%	112		70-130	Pass	
m&p-Xylenes	M15-Ja04884	CP	%	102		70-130	Pass	
o-Xylene	M15-Ja04884	CP	%	103		70-130	Pass	
Xylenes - Total	M15-Ja04884	CP	%	103		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	M15-Ja04884	СР	%	120		70-130	Pass	
TRH C6-C10	M15-Ja04884	СР	%	112		70-130	Pass	
Spike - % Recovery						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3.00	
Polycyclic Aromatic Hydrocarbons	e			Result 1				
		СР	%	80		70-130	Page	
Acenaphthylone	M15-Ja04884	CP	%	85			Pass	
Acenaphthylene	M15-Ja04884			1		70-130	Pass	
Anthracene	M15-Ja04884	CP	%	80		70-130	Pass	
Benz(a)anthracene	M15-Ja04884	CP	%	81		70-130	Pass	
Benzo(a)pyrene	M15-Ja04884	CP	%	76		70-130	Pass	
Benzo(b&j)fluoranthene	M15-Ja04884	CP	%	71		70-130	Pass	
Benzo(g.h.i)perylene	M15-Ja04884	CP	%	73		70-130	Pass	
Benzo(k)fluoranthene	M15-Ja04884	CP	%	74		70-130	Pass	
Chrysene	M15-Ja04884	CP	%	80		70-130	Pass	
Dibenz(a.h)anthracene	M15-Ja04884	CP	%	75		70-130	Pass	
Fluoranthene	M15-Ja04884	СР	%	81		70-130	Pass	
Fluorene	M15-Ja04884	CP	%	82		70-130	Pass	
Indeno(1.2.3-cd)pyrene	M15-Ja04884	CP	%	71		70-130	Pass	
Naphthalene	M15-Ja04884	CP	%	84		70-130	Pass	
Phenanthrene	M15-Ja04884	CP	%	80		70-130	Pass	
		CP						
Pyrene % Pagazzania	M15-Ja04884	LCP	%	80		70-130	Pass	
Spike - % Recovery				T		T		
Heavy Metals	T	1 -	1	Result 1		1	_	
Cadmium	M15-Ja04887	CP	%	76		75-125	Pass	
Chromium	M15-Ja04887	CP	%	105		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Copper	M15-Ja04887	CP	%	105			75-125	Pass	
Lead	M15-Ja04887	CP	%	75			75-125	Pass	
Mercury	M15-Ja04887	CP	%	104			70-130	Pass	
Nickel	M15-Ja04887	CP	%	85			75-125	Pass	
Zinc	M15-Ja04887	CP	%	79			75-125	Pass	
Spike - % Recovery									
Organochlorine Pesticides				Result 1					
4.4'-DDD	M15-Ja04889	CP	%	107			70-130	Pass	
4.4'-DDE	M15-Ja04889	СР	%	100			70-130	Pass	
4.4'-DDT	M15-Ja04889	СР	%	114			70-130	Pass	
a-BHC	M15-Ja04889	СР	%	98			70-130	Pass	
Aldrin	M15-Ja04889	СР	%	91			70-130	Pass	
b-BHC	M15-Ja04889	СР	%	112			70-130	Pass	
d-BHC	M15-Ja04889	СР	%	100			70-130	Pass	
Dieldrin	M15-Ja04889	СР	%	90			70-130	Pass	
Endosulfan I	M15-Ja04889	СР	%	90			70-130	Pass	
Endosulfan II	M15-Ja04889	CP	%	91			70-130	Pass	
Endosulfan sulphate	M15-Ja04889	CP	%	88			70-130	Pass	
Endrin	M15-Ja04889	CP	%	94			70-130	Pass	
Endrin aldehyde	M15-Ja04889	CP	%	83			70-130	Pass	
Endrin ketone	M15-Ja04889	CP	%	119			70-130	Pass	
g-BHC (Lindane)	M15-Ja04889	CP	%	97			70-130	Pass	
Heptachlor	M15-Ja04889	CP	%	113			70-130	Pass	
Heptachlor epoxide	M15-Ja04889	CP	%	89			70-130	Pass	
Hexachlorobenzene	M15-Ja04889	CP	//	89			70-130	Pass	
Methoxychlor	M15-Ja04889	CP	<u> </u>	125			70-130	Pass	
Spike - % Recovery	W13-Ja04669	CF	/0	123			70-130	газз	
Organophosphorous Pesticides				Result 1					
Diazinon	M15-Ja04893	СР	%	87			70-130	Pass	
Ethion	M15-Ja04893	CP	<u> </u>	93			70-130	Pass	
		CP		84					
Fenitrothion Methyl parethian	M15-Ja04893		%				70-130	Pass	
Methyl parathion	M15-Ja04893	CP	%	117			70-130	Pass	
Mevinphos	M15-Ja04893	CP	%	79			70-130	Pass	
Spike - % Recovery				Docuted.					
Heavy Metals	145 1 04004	0.0	0/	Result 1			70.100	_	
Mercury	M15-Ja04901	CP	%	106			70-130	Pass	0 117 1
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				T _	T_	:			
Polycyclic Aromatic Hydrocarbons		1		Result 1	Result 2	RPD		_	
Acenaphthene	M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	l	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
υστικο(α)ργιστισ	M15-Ja04883	CF	9/9	 					
Benzo(b&j)fluoranthene	M15-Ja04883 M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
\ /! /					< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Benzo(b&j)fluoranthene	M15-Ja04883	СР	mg/kg	< 0.5					
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M15-Ja04883 M15-Ja04883	CP CP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene	M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene	M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30% 30%	Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene	M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene	M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene	M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a.h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene	M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883 M15-Ja04883	CP CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	30% 30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass Pass Pass	

Duplicate									
				D It 4	D 11 0	DDD			
Organophosphorous Pesticides	1445 1 2 2 2 2 2			Result 1	Result 2	RPD	0001		
Bolstar	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl azinphos	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Naled	M15-Ja04883	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phorate	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M15-Ja04883	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M15-Ja04883	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate			199				3070		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M15-Ja04886	СР	mg/kg	3.4	3.8	11	30%	Pass	
Cadmium	M15-Ja04886	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M15-Ja04886	CP	mg/kg	77	75	3.0	30%	Pass	
Copper	M15-Ja04886	CP	mg/kg	23	22	5.0	30%	Pass	
Lead	M15-Ja04886	CP		< 5	< 5		30%	Pass	
	M15-Ja04886	CP	mg/kg mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Mercury Nickel		CP				<u><1</u>	30%		
	M15-Ja04886		mg/kg	29	29			Pass	
Zinc	M15-Ja04886	CP	mg/kg	34	37	9.0	30%	Pass	
Duplicate				D. audi 4	D 11 0	DDD		T	
Heavy Metals	145 1 04007	0.0		Result 1	Result 2	RPD	000/	 	0.45
Arsenic	M15-Ja04887	CP	mg/kg	2.2	3.3	40	30%	Fail	Q15
Cadmium	M15-Ja04887	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M15-Ja04887	CP	mg/kg	87	88	1.0	30%	Pass	
Copper	M15-Ja04887	CP	mg/kg	38	39	2.0	30%	Pass	
Lead	M15-Ja04887	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M15-Ja04887	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M15-Ja04887	CP	mg/kg	46	46	2.0	30%	Pass	
Zinc	M15-Ja04887	CP	mg/kg	31	32	5.0	30%	Pass	
Duplicate				T	1				
Organochlorine Pesticides	1	1	T	Result 1	Result 2	RPD			
Chlordanes - Total	M15-Ja04888	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-Di 10				< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M15-Ja04888	CP	mg/kg	< 0.05	\ 0.00 I				
	M15-Ja04888 M15-Ja04888	CP CP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M15-Ja04888		mg/kg	< 0.05	< 0.05	<1	30%		
Aldrin b-BHC d-BHC	M15-Ja04888 M15-Ja04888	CP CP	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30% 30%	Pass	
Aldrin b-BHC d-BHC Dieldrin	M15-Ja04888 M15-Ja04888 M15-Ja04888	CP CP	mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05	< 0.05 < 0.05 < 0.05	<1 <1 <1	30% 30% 30%	Pass Pass	
Aldrin b-BHC d-BHC	M15-Ja04888 M15-Ja04888	CP CP	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30% 30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD	Ι		
Endrin	M15-Ja04888	СР	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M15-Ja04888	CP	mg/kg mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<u><1</u>	30%	Pass	
Hexachlorobenzene	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M15-Ja04888	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M15-Ja04888	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	W113-Ja04666	L CF	i ilig/kg				30 /0	Fass	
Total Recoverable Hydrocarbons	- 1999 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH C10-C14	M15-Ja04889	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M15-Ja04889	CP	mg/kg	68	60	13	30%	Pass	
TRH C29-C36	M15-Ja04889	CP	mg/kg	170	140	17	30%	Pass	
Duplicate	W113-Ja04669	L CF	i ilig/kg	170	140	17	30 /0	Fass	
Total Recoverable Hydrocarbons	- 2013 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH >C10-C16	M15-Ja04889	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M15-Ja04889	CP	mg/kg	180	150	16	30%	Pass	
TRH >C34-C40	M15-Ja04889	CP	mg/kg	130	110	19	30%	Pass	
Duplicate	W113-3a04669	L CF	i ilig/kg	130	110	19	30 /0	Fass	
Total Recoverable Hydrocarbons	- 1000 NEDM Fract	ione		Result 1	Result 2	RPD			
TRH C6-C9	M15-Ja04891	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate Duplicate	W113-3a04691	L CF	i ilig/kg		< 20		30 /6	Fass	
BTEX				Result 1	Result 2	RPD			
Benzene	M15-Ja04891	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M15-Ja04891	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M15-Ja04891	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M15-Ja04891	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	M15-Ja04891	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Xylenes - Total	M15-Ja04891	CP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
Duplicate	W113-3a04691	L CF	i ilig/kg	V 0.3	< 0.3	<u> </u>	30 /0	F ass	
Total Recoverable Hydrocarbons	- 2013 NEDM Fract	ione		Result 1	Result 2	RPD			
Naphthalene	M15-Ja04891	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M15-Ja04891	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	M15-Ja04891	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	W15-5804691	l Ci	i ilig/kg	\ 20	<u> </u>		30 70	1 033	
Polycyclic Aromatic Hydrocarbor	ne .			Result 1	Result 2	RPD			
Acenaphthene	M15-Ja04892	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
Dibenz(a.h)anthracene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
Indeno(1.2.3-cd)pyrene		CP					30%		
, ,,,	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M15-Ja04892	CP	mg/kg	< 0.5	< 0.5	<1		Pass	
Pyrene	M15-Ja04892	LCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Organophosphorous Pesti	cides			Result 1	Result 2	RPD			
Bolstar	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl azinphos	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Naled	M15-Ja04892	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phorate	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M15-Ja04892	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M15-Ja04892	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M15-Ja04899	CP	mg/kg	2.9	3.2	10	30%	Pass	
Cadmium	M15-Ja04899	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M15-Ja04899	CP	mg/kg	78	84	7.0	30%	Pass	
Copper	M15-Ja04899	CP	mg/kg	34	34	1.0	30%	Pass	
Lead	M15-Ja04899	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M15-Ja04899	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M15-Ja04899	CP	mg/kg	120	98	17	30%	Pass	
Zinc	M15-Ja04899	CP	mg/kg	24	26	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M15-Ja04901	CP	mg/kg	3.2	2.9	10	30%	Pass	
Cadmium	M15-Ja04901	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M15-Ja04901	CP	mg/kg	79	80	1.0	30%	Pass	
Copper	M15-Ja04901	CP	mg/kg	32	32	1.0	30%	Pass	
Lead	M15-Ja04901	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M15-Ja04901	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M15-Ja04901	CP	mg/kg	51	50	1.0	30%	Pass	
Zinc	M15-Ja04901	СР	mg/kg	39	38	3.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins | mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

Authorised By

N02

Mary Makarios Analytical Services Manager Carroll Lee Senior Analyst-Organic (VIC) Carroll Lee Senior Analyst-Volatile (VIC) Emily Rosenberg Senior Analyst-Metal (VIC) Huona Le Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Euroffins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Euroffins I mgt be liable for consequential clausers in continuous transfers of the company of

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304 NATA

WORLD RECOGNISED
ACCREDITATION

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Libby Betz

Report444435-WProject nameWINDERS LANEProject IDENAUWARA04581AAReceived DateJan 15, 2015

Client Sample ID			POND 1 SW1	POND 2 SW2	POND 3 SW3	QC1
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M15-Ja04894	M15-Ja04895	M15-Ja04896	M15-Ja04900
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit	July 14, 2010	0411 14, 2010	0411 14, 2010	0411 14, 2010
Organochlorine Pesticides	LOR	Offic				
Chlordanes - Total	0.001	ma/l	< 0.001	< 0.001	< 0.001	< 0.001
4.4'-DDD	0.001	mg/L mg/L	< 0.001	< 0.001		< 0.001
4.4'-DDE	0.0001		< 0.0001	< 0.0001	< 0.0001 < 0.0001	< 0.0001
		mg/L				
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Toxaphene	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	105	84	76	88
Tetrachloro-m-xylene (surr.)	1	%	116	141	88	116
Organophosphorous Pesticides						
Bolstar	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Chlorpyrifos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Demeton-O	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Diazinon	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Disulfoton	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Ethion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Ethoprop	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Fenthion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002

Client Sample ID			POND 1 SW1	POND 2 SW2	POND 3 SW3	QC1
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			M15-Ja04894	M15-Ja04895	M15-Ja04896	M15-Ja04900
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
Organophosphorous Pesticides						
Merphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methyl azinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Mevinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Naled	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Phorate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Ronnel	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Tokuthion	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Trichloronate	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Triphenylphosphate (surr.)	1	%	71	63	97	125
Conductivity (at 25°C)	1	uS/cm	320	290	240	-
рН	0.1	pH Units	8.4	6.5	8.0	=
Heavy Metals						
Arsenic	0.001	mg/L	0.001	< 0.001	0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.005	0.033	0.11	0.005
Copper	0.001	mg/L	0.005	0.023	0.019	0.006
Lead	0.001	mg/L	< 0.001	0.003	0.002	< 0.001
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.008	0.049	0.026	0.008
Zinc	0.001	mg/L	0.003	0.021	0.011	0.003

Client Sample ID Sample Matrix			QC4 Water	QC5 Water
Eurofins mgt Sample No.			M15-Ja04902	M15-Ja04903
Date Sampled			Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPN	/ Fractions			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-
Volatile Organics				
Naphthalene ^{N02}	0.02	mg/L	-	< 0.02
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	67	73

Client Sample ID			QC4	QC5
Sample Matrix			Water	Water
Eurofins mgt Sample No.			M15-Ja04902	M15-Ja04903
Date Sampled			Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10	0.02	mg/L	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-
Chrysene	0.001	mg/L	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	-
Fluorene	0.001	mg/L	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-
Naphthalene	0.001	mg/L	< 0.001	-
Phenanthrene	0.001	mg/L	< 0.001	-
Pyrene	0.001	mg/L	< 0.001	-
Total PAH	0.001	mg/L	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	53	-
p-Terphenyl-d14 (surr.)	1	%	66	-
Organochlorine Pesticides	•			
Chlordanes - Total	0.001	mg/L	< 0.001	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-
a-BHC	0.0001	mg/L	< 0.0001	-
Aldrin	0.0001	mg/L	< 0.0001	-
b-BHC	0.0001	mg/L	< 0.0001	-
d-BHC	0.0001	mg/L	< 0.0001	-
Dieldrin	0.0001	mg/L	< 0.0001	-
Endosulfan I	0.0001	mg/L	< 0.0001	-
Endosulfan II	0.0001	mg/L	< 0.0001	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-
Endrin	0.0001	mg/L	< 0.0001	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	-
Endrin ketone	0.0001	mg/L	< 0.0001	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-
Heptachlor	0.0001	mg/L	< 0.0001	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	_
Hexachlorobenzene	0.0001	mg/L	< 0.0001	_

Client Sample ID			QC4	QC5
Sample Matrix			Water	Water
Eurofins mgt Sample No.			M15-Ja04902	M15-Ja04903
Date Sampled			Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit		
Organochlorine Pesticides	ļ -			
Methoxychlor	0.0001	mg/L	< 0.0001	-
Toxaphene	0.01	mg/L	< 0.01	-
Dibutylchlorendate (surr.)	1	%	79	-
Tetrachloro-m-xylene (surr.)	1	%	107	-
Organophosphorous Pesticides	·	_		
Bolstar	0.002	mg/L	< 0.002	-
Chlorpyrifos	0.002	mg/L	< 0.002	-
Demeton-O	0.002	mg/L	< 0.002	-
Diazinon	0.002	mg/L	< 0.002	-
Dichlorvos	0.002	mg/L	< 0.002	-
Disulfoton	0.002	mg/L	< 0.002	-
Ethion	0.002	mg/L	< 0.002	-
Ethoprop	0.002	mg/L	< 0.002	-
Fenitrothion	0.002	mg/L	< 0.002	-
Fensulfothion	0.002	mg/L	< 0.002	-
Fenthion	0.002	mg/L	< 0.002	-
Merphos	0.002	mg/L	< 0.002	-
Methyl azinphos	0.002	mg/L	< 0.002	-
Methyl parathion	0.002	mg/L	< 0.002	-
Mevinphos	0.002	mg/L	< 0.002	-
Naled	0.002	mg/L	< 0.002	-
Phorate	0.002	mg/L	< 0.002	-
Ronnel	0.002	mg/L	< 0.002	-
Tokuthion	0.002	mg/L	< 0.002	-
Trichloronate	0.002	mg/L	< 0.002	-
Triphenylphosphate (surr.)	1	%	54	-
Heavy Metals				
Arsenic	0.001	mg/L	< 0.001	-
Cadmium	0.0002	mg/L	< 0.0002	-
Chromium	0.001	mg/L	< 0.001	-
Copper	0.001	mg/L	< 0.001	-
Lead	0.001	mg/L	< 0.001	-
Mercury	0.0001	mg/L	< 0.0001	-
Nickel	0.001	mg/L	< 0.001	-
Zinc	0.001	mg/L	< 0.001	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 22, 2015	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Volatile Organics	Melbourne	Jan 15, 2015	7 Day
- Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS			
BTEX	Melbourne	Jan 15, 2015	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 22, 2015	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite 10			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 22, 2015	7 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Jan 22, 2015	7 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Organophosphorous Pesticides	Melbourne	Jan 22, 2015	7 Day
- Method: USEPA 8270 Organophosphorus Pesticides			
Metals M8	Melbourne	Jan 16, 2015	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
Conductivity (at 25°C)	Melbourne	Jan 15, 2015	28 Day
- Method: APHA 2510 Conductivity by Direct Measurement			
рН	Melbourne	Jan 15, 2015	0 Hours

⁻ Method: APHA 4500 pH by Direct Measurement - ** Samples analysed outside holding time. Analysis should be performed in situ. Results for reference only.

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.: Report #:

444435

Phone: 02 4016 2300 Fax: 02 4016 2380

Received: Jan 15, 2015 1:25 PM Due: Jan 22, 2015

Priority: 5 Day **Contact Name:** Libby Betz

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			% Moisture	Conductivity (at 25°C)	pH	Organochlorine Pesticides	Organophosphorous Pesticides	Metals M8	Eurofins mgt Suite 10	BTEX and Volatile TRH
	ere analysis is co		1074			\ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. v	V	-
	ooratory - NATA S atory - NATA Site		1271		Х	Х	Х	Х	X	Х	Х	Х
	ratory - NATA Site											
External Labor		16 # 20194										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
SS1	Jan 14, 2015		Soil	M15-Ja04883	Х						Х	
SS2	Jan 14, 2015		Soil	M15-Ja04884	Х						Х	
SS3	Jan 14, 2015		Soil	M15-Ja04885	Х			Х	Х	Х		
SS4	Jan 14, 2015		Soil	M15-Ja04886	Х			Х	Х	Х		
SS5	Jan 14, 2015		Soil	M15-Ja04887	Х						Х	
SS6	Jan 14, 2015		Soil	M15-Ja04888	Х						Х	
SS7	Jan 14, 2015		Soil	M15-Ja04889	X						Х	
SS8	Jan 14, 2015		Soil	M15-Ja04890	X			Х	Х	Х		
SS9	Jan 14, 2015		Soil	M15-Ja04891	X						Х	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 6 of 17 Report Number: 444435-W

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.:

444435

Report #: Phone: 02 4016 2300 Fax: 02 4016 2380

Contact Name: Libby Betz

Eurofins | mgt Client Manager: Mary Makarios

Jan 22, 2015

5 Day

Jan 15, 2015 1:25 PM

		Sample Detail			% Moisture	Conductivity (at 25°C)	рH	Organochlorine Pesticides	Organophosphorous Pesticides	Metals M8	Eurofins mgt Suite 10	BTEX and Volatile TRH
Laboratory who	ere analysis is c	onducted										
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217										
Brisbane Labo	ratory - NATA Si	te # 20794										
External Labor	atory											
SS10	Jan 14, 2015		Soil	M15-Ja04892	Х						Х	
SS11	Jan 14, 2015		Soil	M15-Ja04893	Х						Х	
POND 1 SW1	Jan 14, 2015		Water	M15-Ja04894		Х	Х	Х	Х	Х		
POND 2 SW2	Jan 14, 2015		Water	M15-Ja04895		Х	Х	Х	Х	Х		
POND 3 SW3	Jan 14, 2015		Water	M15-Ja04896		Х	Х	Х	Х	Х		
POND 1 SED1	Jan 14, 2015		Soil	M15-Ja04897	Х			Х	Х	Х		
POND 2 SED2	Jan 14, 2015		Soil	M15-Ja04898	Х			Х	Х	Х		
POND 3 SED3	Jan 14, 2015		Soil	M15-Ja04899	Х			Х	Х	Х		
QC1	Jan 14, 2015		Water	M15-Ja04900		Х	Х	Х	Х	Х		
QC2	Jan 14, 2015		Soil	M15-Ja04901	Χ						Χ	

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.:

444435

Report #: Phone: 02 4016 2300 Fax: 02 4016 2380

Received: Jan 15, 2015 1:25 PM

Due: Jan 22, 2015 Priority: 5 Day **Contact Name:** Libby Betz

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			% Moisture	Conductivity (at 25°C)	рН	Organochlorine Pesticides	Organophosphorous Pesticides	Metals M8	Eurofins mgt Suite 10	BTEX and Volatile TRH
Laboratory who	ere analysis is c	onducted										
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217										
Brisbane Labor	ratory - NATA Si	te # 20794										
External Labora	atory											
QC4	Jan 14, 2015		Water	M15-Ja04902							Х	
QC5	Jan 14, 2015		Water	M15-Ja04903								Х

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Report Number: 444435-W

Page 8 of 17

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \, \text{Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data}.$

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				,	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	ctions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Volatile Organics					
Naphthalene	mg/L	< 0.02	0.02	Pass	
Method Blank					
втех					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	IIIg/L	< 0.003	0.003	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	rtions				
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH C6-C10 less BTEX (F1)	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.02	Pass	
TRH >C16-C34		< 0.05	0.05	Pass	
TRH >C34-C40	mg/L		0.1	Pass	
	mg/L	< 0.1	0.1	Pass	
Method Blank		T T			
Polycyclic Aromatic Hydrocarbons		0.004	0.004	D	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acthoracy	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Organochlorine Pesticides	Т				
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Organophosphorous Pesticides					
Bolstar	mg/L	< 0.002	0.002	Pass	
Chlorpyrifos	mg/L	< 0.002	0.002	Pass	
Demeton-O	mg/L	< 0.002	0.002	Pass	
Diazinon	mg/L	< 0.002	0.002	Pass	
Dichlorvos	mg/L	< 0.002	0.002	Pass	
Disulfoton	mg/L	< 0.002	0.002	Pass	
Ethion	mg/L	< 0.002	0.002	Pass	
Ethoprop	mg/L	< 0.002	0.002	Pass	
Fenitrothion	mg/L	< 0.002	0.002	Pass	
Fensulfothion	mg/L	< 0.002	0.002	Pass	
Fenthion	mg/L	< 0.002	0.002	Pass	
Merphos	mg/L	< 0.002	0.002	Pass	
Methyl azinphos	mg/L	< 0.002	0.002	Pass	
Methyl parathion	mg/L	< 0.002	0.002	Pass	
Mevinphos	mg/L	< 0.002	0.002	Pass	
Naled	mg/L	< 0.002	0.002	Pass	
Phorate	mg/L	< 0.002	0.002	Pass	
Ronnel	mg/L	< 0.002	0.002	Pass	
Tokuthion	mg/L	< 0.002	0.002	Pass	
Trichloronate	mg/L	< 0.002	0.002	Pass	
Method Blank					
Heavy Metals	1				
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1		70 :00		
TRH C6-C9	%	85	70-130	Pass	
TRH C10-C14	%	115	70-130	Pass	
LCS - % Recovery					
Volatile Organics			75 105		
Naphthalene	%	77	75-125	Pass	
LCS - % Recovery					
BTEX					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzene	%	92	70-130	Pass	
Toluene	%	93	70-130	Pass	
Ethylbenzene	%	90	70-130	Pass	
m&p-Xylenes	%	88	70-130	Pass	
Xylenes - Total	%	90	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
TRH C6-C10	%	79	70-130	Pass	
TRH >C10-C16	%	116	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	82	70-130	Pass	
Acenaphthylene	%	82	70-130	Pass	
Anthracene	%	100	70-130	Pass	
Benz(a)anthracene	%	96	70-130	Pass	
Benzo(a)pyrene	%	109	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	105	70-130	Pass	
Benzo(k)fluoranthene	%	120	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	118	70-130	Pass	
Fluoranthene	%	90	70-130	Pass	
Fluorene	%	87	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	111	70-130	Pass	
Naphthalene	%	72	70-130	Pass	
Phenanthrene	%	92	70-130	Pass	
Pyrene	%	89	70-130	Pass	
LCS - % Recovery		09	70-130	rass_	
Organochlorine Pesticides		Т	T		
4.4'-DDD	%	79	70-130	Pass	
4.4'-DDE		96	70-130		
	%			Pass	
4.4'-DDT	%	88	70-130	Pass	
a-BHC	%	96	70-130	Pass	
Aldrin	%	90	70-130	Pass	
b-BHC	%	110	70-130	Pass	
d-BHC	%	97	70-130	Pass	
Dieldrin	%	117	70-130	Pass	
Endosulfan I	%	97	70-130	Pass	
Endosulfan II	%	89	70-130	Pass	
Endosulfan sulphate	%	77	70-130	Pass	
Endrin	%	92	70-130	Pass	
Endrin ketone	%	84	70-130	Pass	
g-BHC (Lindane)	%	107	70-130	Pass	
Heptachlor	%	81	70-130	Pass	
Heptachlor epoxide	%	86	70-130	Pass	
Hexachlorobenzene	%	106	70-130	Pass	
Methoxychlor	%	99	70-130	Pass	
LCS - % Recovery					
Organophosphorous Pesticides	1	 _ _ _ _ _ _ _ _ 			
Diazinon	%	78	70-130	Pass	
Ethion	%	88	70-130	Pass	
Fenitrothion	%	71	70-130	Pass	
Methyl parathion	%	108	70-130	Pass	
Mevinphos	%	116	70-130	Pass	

LicS - % Recovery	Qualifying Code
Assentic	
Cadmium	
Section Sec	
Copper	
Mercury	
Mercury	
Mercury	
Nicke	
Test	
Test	
Source	Qualifying
Organophosphorous Pesticides Result 1 CD Diazinon M15-Ja04895 CP % 78 70-130 Pass Ethion M15-Ja04895 CP % 92 70-130 Pass Fenitrothion M15-Ja04895 CP % 78 70-130 Pass Methyl parathion M15-Ja04895 CP % 78 70-130 Pass Methyl parathion M15-Ja04895 CP % 77 70-130 Pass Methyl parathion M15-Ja04895 CP % 123 70-130 Pass Methyl parathion M15-Ja04895 CP % 122 70-130 Pass Spike - & Result 1 Result 1 70-130 Pass 70-130 Pass A4-DDE M15-Ja04896 CP % 90 70-130 Pass a-BHC M15-Ja04896 CP % 79 70-130 Pass b-BHC M15-Ja04896 CP % 85 <th>Code</th>	Code
Diazinon	
Ethion	
Fenitrothion	
Methyl parathion	
Mevinphos M15-Ja04895 CP % 77 70-130 Pass Spike - % Recovery Spike - % Reco	
Spike - % Recovery Organochlorine Pesticides Result 1 At-DDD M15-Ja04896 CP % 85 70-130 Pass 4.4'-DDE M15-Ja04896 CP % 90 70-130 Pass a-BHC M15-Ja04896 CP % 79 70-130 Pass Aldrin M15-Ja04896 CP % 79 70-130 Pass Aldrin M15-Ja04896 CP % 78 70-130 Pass Aldrin M15-Ja04896 CP % 94 70-130 Pass B-BHC M15-Ja04896 CP % 85 70-130 Pass d-BHC M15-Ja04896 CP % 76 70-130 Pass Endosulfan I M15-Ja04896 CP % 77 70-130 Pass Endosulfan II M15-Ja04896 CP % 81 70-130 Pass Endosulfan II M15-Ja04896 CP % 89 <td></td>	
Organochlorine Pesticides Result 1 CP Result 1 A.4-DDD A.4-DDE M15-Ja04896 CP % 85 70-130 Pass 4.4-DDE M15-Ja04896 CP % 90 70-130 Pass a-BHC M15-Ja04896 CP % 79 70-130 Pass Aldrin M15-Ja04896 CP % 78 70-130 Pass b-BHC M15-Ja04896 CP % 94 70-130 Pass b-BHC M15-Ja04896 CP % 85 70-130 Pass b-BHC M15-Ja04896 CP % 85 70-130 Pass b-BHC M15-Ja04896 CP % 76 70-130 Pass b-BHC M15-Ja04896 CP % 76 70-130 Pass Endosulfan M15-Ja04896 CP % 81 70-130 Pass Endosulfan M15-Ja04896 CP % 89 </td <td></td>	
4.4°-DDD	
4.4'-DDE M15-Ja04896 CP % 90 70-130 Pass ABHC M15-Ja04896 CP % 79 70-130 Pass Aldrin M15-Ja04896 CP % 78 70-130 Pass ABHC M15-Ja04896 CP % 94 70-130 Pass d-BHC M15-Ja04896 CP % 85 70-130 Pass d-BHC M15-Ja04896 CP % 76 70-130 Pass Endosulfan I M15-Ja04896 CP % 77 70-130 Pass Endosulfan II M15-Ja04896 CP % 81 70-130 Pass Endosulfan sulphate M15-Ja04896 CP % 89 70-130 Pass Endrin M15-Ja04896 CP % 89 70-130 Pass Endrin ketone M15-Ja04896 CP % 87 70-130 Pass B-BHC (Lindane) M15-Ja04896 <td></td>	
4.4°-DDE M15-Ja04896 CP % 90 70-130 Pass a-BHC M15-Ja04896 CP % 79 70-130 Pass Aldrin M15-Ja04896 CP % 78 70-130 Pass b-BHC M15-Ja04896 CP % 94 70-130 Pass d-BHC M15-Ja04896 CP % 85 70-130 Pass d-BHC M15-Ja04896 CP % 76 70-130 Pass Endosulfan I M15-Ja04896 CP % 76 70-130 Pass Endosulfan II M15-Ja04896 CP % 81 70-130 Pass Endosulfan sulphate M15-Ja04896 CP % 89 70-130 Pass Endrin ketone M15-Ja04896 CP % 89 70-130 Pass Endrin ketone M15-Ja04896 CP % 87 70-130 Pass B-BHC (Lindane) M15-J	
a-BHC	
Aldrin	
b-BHC M15-Ja04896 CP % 94 70-130 Pass d-BHC M15-Ja04896 CP % 85 70-130 Pass Dieldrin M15-Ja04896 CP % 76 70-130 Pass Endosulfan I M15-Ja04896 CP % 77 70-130 Pass Endosulfan II M15-Ja04896 CP % 81 70-130 Pass Endosulfan sulphate M15-Ja04896 CP % 79 70-130 Pass Endrin M15-Ja04896 CP % 89 70-130 Pass Endrin ketone M15-Ja04896 CP % 79 70-130 Pass Endrin ketone M15-Ja04896 CP % 87 70-130 Pass Endrin ketone M15-Ja04896 CP % 87 70-130 Pass Endrin ketone M15-Ja04896 CP % 87 70-130 Pass Heptachlor epoxide <td></td>	
d-BHC	
Dieldrin	
Endosulfan M15-Ja04896 CP % 77 70-130 Pass	
Endosulfan II	
Endosulfan sulphate	
Endrin	
Endrin ketone	
g-BHC (Lindane) M15-Ja04896 CP % 87 70-130 Pass Heptachlor epoxide M15-Ja04896 CP % 79 70-130 Pass Hexachlorobenzene M15-Ja04896 CP % 92 70-130 Pass Spike - % Recovery Heavy Metals Result 1 Arsenic M15-Ja04900 CP % 95 75-125 Pass Cadmium M15-Ja04900 CP % 94 75-125 Pass Chromium M15-Ja04900 CP % 94 75-125 Pass Copper M15-Ja04900 CP % 94 75-125 Pass Lead M15-Ja04900 CP % 94 75-125 Pass Mercury M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 94 75-125	
Heptachlor epoxide	
Hexachlorobenzene	
Note	
Result 1	
Arsenic M15-Ja04900 CP % 95 75-125 Pass Cadmium M15-Ja04900 CP % 94 75-125 Pass Chromium M15-Ja04900 CP % 95 75-125 Pass Copper M15-Ja04900 CP % 94 75-125 Pass Lead M15-Ja04900 CP % 92 75-125 Pass Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 94 75-125 Pass Spike - % Recovery M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery V	
Cadmium M15-Ja04900 CP % 94 75-125 Pass Chromium M15-Ja04900 CP % 95 75-125 Pass Copper M15-Ja04900 CP % 94 75-125 Pass Lead M15-Ja04900 CP % 92 75-125 Pass Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Result 1 Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Result 1 To-130 Pass TRH C10-C14 M15-Ja06073 NCP % 89 70-130 Pass Spike - % Recovery Result 1 Result 1 No-130 Pass Spike - % Recovery Result 1 No-130 Pass Spike - % Recovery Result 1 No-130 <td></td>	
Chromium M15-Ja04900 CP % 95 75-125 Pass Copper M15-Ja04900 CP % 94 75-125 Pass Lead M15-Ja04900 CP % 92 75-125 Pass Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Result 1	
Copper M15-Ja04900 CP % 94 75-125 Pass Lead M15-Ja04900 CP % 92 75-125 Pass Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 NCP % 114 70-130 Pass TRH C6-C9 M15-Ja06073 NCP % 114 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 NCP % 92 70-130 Pass Spike - % Recovery	
Lead M15-Ja04900 CP % 92 75-125 Pass Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 70-130 Pass TRH C6-C9 M15-Ja06073 NCP % 89 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 NCP 92 70-130 Pass Spike - % Recovery	
Mercury M15-Ja04900 CP % 94 70-130 Pass Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1	
Nickel M15-Ja04900 CP % 94 75-125 Pass Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1	
Zinc M15-Ja04900 CP % 96 75-125 Pass Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Result 1 70-130 Pass TRH C6-C9 M15-Ja06073 NCP % 114 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 Result 1 Result 1 Pass Spike - % Recovery 92 70-130 Pass Spike - % Recovery Pass Pass Pass	
Spike - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 70-130 Pass TRH C6-C9 M15-Ja06073 NCP % 114 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 NCP 92 70-130 Pass Spike - % Recovery Spike - % Recovery 92 70-130 Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Result 1 Comparison of the color of the c	
TRH C6-C9 M15-Ja06073 NCP % 114 70-130 Pass TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 Image: Result 1 Image: Result 2 Image: Result 3 Image: Resul	
TRH C10-C14 M15-Ja04806 NCP % 89 70-130 Pass Spike - % Recovery Volatile Organics Result 1 Spike - % 70-130 Pass Naphthalene M15-Ja06073 NCP % 92 70-130 Pass Spike - % Recovery Pass Pass Pass Pass	
Spike - % Recovery Volatile Organics Result 1 Colspan="6">Colspan="6"	
Volatile Organics Result 1	
Naphthalene M15-Ja06073 NCP % 92 70-130 Pass Spike - % Recovery	
Naphthalene M15-Ja06073 NCP % 92 70-130 Pass Spike - % Recovery	
Spike - % Recovery	
BTEX Result 1	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzene	M15-Ja06073	NCP	%	91			70-130	Pass	
Toluene	M15-Ja06073	NCP	%	94			70-130	Pass	
Ethylbenzene	M15-Ja06073	NCP	%	96			70-130	Pass	
m&p-Xylenes	M15-Ja06073	NCP	%	78			70-130	Pass	
o-Xylene	M15-Ja06073	NCP	%	98			70-130	Pass	
Xylenes - Total	M15-Ja06073	NCP	%	85			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarboi	ns - 2013 NEPM Fract	tions		Result 1					
TRH C6-C10	M15-Ja06073	NCP	%	120			70-130	Pass	
TRH >C10-C16	M15-Ja04806	NCP	%	89			70-130	Pass	
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	M15-Ja07218	NCP	%	87			70-130	Pass	
Acenaphthylene	M15-Ja07218	NCP	%	92			70-130	Pass	
Anthracene	M15-Ja07218	NCP	%	98			70-130	Pass	
Benz(a)anthracene	M15-Ja07218	NCP	%	101			70-130	Pass	
Benzo(a)pyrene	M15-Ja07218	NCP	%	112			70-130	Pass	
Benzo(b&j)fluoranthene	M15-Ja07218	NCP	%	104			70-130	Pass	
Benzo(g.h.i)perylene	M15-Ja07218	NCP	%	101			70-130	Pass	
Benzo(k)fluoranthene	M15-Ja07218	NCP	%	119			70-130	Pass	
Chrysene	M15-Ja07218	NCP	%	99			70-130	Pass	
Dibenz(a.h)anthracene	M15-Ja07218	NCP	%	110			70-130	Pass	
Fluoranthene	M15-Ja07218	NCP	%	97			70-130	Pass	
Fluorene	M15-Ja07218	NCP	%	91			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M15-Ja07218	NCP	%	106			70-130	Pass	
Naphthalene	M15-Ja07218	NCP	%	81			70-130	Pass	
Phenanthrene	M15-Ja07218	NCP	<u> </u>	91			70-130	Pass	
	M15-Ja07218	NCP	<u> </u>	95			70-130	Pass	
Pyrene		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				1					
Organochlorine Pesticides	1			Result 1	Result 2	RPD		_	
Chlordanes - Total	M15-Ja04894	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
	M15-Ja04894	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	W15-3a04634			- 0 0004	< 0.0001	<1	30%	Pass	
Endrin Endrin aldehyde	M15-Ja04894	CP	mg/L	< 0.0001	1 0.000 .		0070	1 400	
-		CP CP	mg/L mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	M15-Ja04894			t					
Endrin aldehyde Endrin ketone	M15-Ja04894 M15-Ja04894	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde Endrin ketone g-BHC (Lindane)	M15-Ja04894 M15-Ja04894 M15-Ja04894	CP CP	mg/L mg/L	< 0.0001 < 0.0001	< 0.0001 < 0.0001	<1 <1	30% 30%	Pass Pass	
Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor	M15-Ja04894 M15-Ja04894 M15-Ja04894 M15-Ja04894	CP CP CP	mg/L mg/L mg/L	< 0.0001 < 0.0001 < 0.0001	< 0.0001 < 0.0001 < 0.0001	<1 <1 <1	30% 30% 30%	Pass Pass Pass	

mgt

Duplicate									
Organophosphorous Pesticides				Result 1	Result 2	RPD			
Bolstar	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Chlorpyrifos	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Demeton-O	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Diazinon	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Dichlorvos	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Disulfoton	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethion	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ethoprop	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenitrothion	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fensulfothion	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Fenthion	M15-Ja04894	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Merphos	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl azinphos	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Methyl parathion	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Mevinphos	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Naled	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Phorate	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Ronnel	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Tokuthion	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Trichloronate	M15-Ja04894	СР	mg/L	< 0.002	< 0.002	<1	30%	Pass	
Duplicate		•			,				
•				Result 1	Result 2	RPD			
Conductivity (at 25°C)	M15-Ja05645	NCP	uS/cm	6200	6100	1.0	30%	Pass	
pH	M15-Ja05645	NCP	pH Units	7.9	7.9	pass	30%	Pass	
Duplicate		•							
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M15-Ja04900	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M15-Ja04900	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M15-Ja04900	CP	mg/L	0.005	0.005	1.0	30%	Pass	
Copper	M15-Ja04900	CP	mg/L	0.006	0.006	<1	30%	Pass	
Lead	M15-Ja04900	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M15-Ja04900	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M15-Ja04900	CP	mg/L	0.008	0.008	3.0	30%	Pass	
Zinc	M15-Ja04900	CP	mg/L	0.003	0.004	40	30%	Fail	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD		T	
TRH C10-C14	M15-Ja06070	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M15-Ja06070	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M15-Ja06070	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			, <u> </u>						
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M15-Ja06070	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M15-Ja06070	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M15-Ja06070	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbor	ns			Result 1	Result 2	RPD			
Acenaphthene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(D&I)IIIoraninene									
Benzo(b&j)fluoranthene Benzo(g.h.i)perylene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

mgt

Dunlicate									
Duplicate Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Chrysene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M15-Ja07217	NCP	mg/L	0.0014	0.0018	29	30%	Pass	
Phenanthrene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M15-Ja07217	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				,			<u>'</u>		
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M15-Ja04903	СР	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Naphthalene	M15-Ja04903	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M15-Ja04903	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M15-Ja04903	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M15-Ja04903	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M15-Ja04903	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M15-Ja04903	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M15-Ja04903	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	Total Recoverable Hydrocarbons - 2013 NEPM Fractions Result 1 Result 2 RPD								
TRH C6-C10	M15-Ja04903	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	M15-Ja04903	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Mary Makarios Analytical Services Manager Carroll Lee Senior Analyst-Organic (VIC) Carroll Lee Senior Analyst-Volatile (VIC) Emily Rosenberg Senior Analyst-Metal (VIC) Huona Le Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Attention: Damien Hendrickx

Report 445698-S

Project name WINDERS LANE
Project ID ENAUARA04581AA
Received Date Jan 29, 2015

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS1 Soil M15-Ja14487 Jan 14, 2015
Test/Reference	LOR	Unit	
% Clay*	1	%	47
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	100
pH (1:5 Aqueous extract)	0.1	pH Units	7.8
% Moisture	0.1	%	35
Ion Exchange Properties			
Cation Exchange Capacity	0.05	meq/100g	R14340

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
% Clay*	Brisbane	Jan 30, 2015	6 Month
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Melbourne	Jan 29, 2015	7 Day
- Method: LM-LTM-INO-4000			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Jan 29, 2015	7 Day
- Method: LM-LTM-INO-4010			
Ion Exchange Properties	Melbourne	Jan 30, 2015	
% Moisture	Melbourne	Jan 29, 2015	14 Day

Report Number: 445698-S

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

Project Name: WINDERS LANE Project ID: ENAUARA04581AA Order No.:

Report #: 445698 Phone: 02 4016 2300

Fax: 02 4016 2380 **Contact Name:**

Eurofins | mgt Client Manager: Mary Makarios

Feb 3, 2015

3 Day

Jan 29, 2015 11:33 AM

		Sample Detail			% Clay*	pH (1:5 Aqueous extract)	Moisture Set	Cation Exchange Capacity
Laboratory whe	ere analysis is co	onducted						
Melbourne Lab	oratory - NATA S	Site # 1254 & 14	271			Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217						
Brisbane Labor	atory - NATA Si	te # 20794			Х			
External Labora	atory							
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
SS1	Jan 14, 2015		Soil	M15-Ja14487	Χ	Χ	Χ	Χ

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
% Clay*			%	pass			1	N/A	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Clay*	M15-Ja09434	NCP	%	10	10	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C)	M15-Ja14487	СР	uS/cm	100	98	5.0	30%	Pass	
pH (1:5 Aqueous extract)	M15-Ja14487	СР	pH Units	7.8	7.7	pass	30%	Pass	
% Moisture	M15-Ja14516	NCP	%	18	18	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	No
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

R14 These results have been confirmed by repeat analysis

Authorised By

 Mary Makarios
 Analytical Services Manager

 Emily Rosenberg
 Senior Analyst-Metal (VIC)

 Huong Le
 Senior Analyst-Inorganic (VIC)

 Richard Corner
 Senior Analyst-Inorganic (QLD)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 445698-S

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Damien Hendrickx

Report 445956-S
Project name WINDERS LANE
Project ID ENAUWARA04581AA
Received Date Feb 02, 2015

Client Sample ID			SS1	SS2	SS3	SS4	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins mgt Sample No.			M15-Fe00144	M15-Fe00145	M15-Fe00146	M15-Fe00147	
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	
Test/Reference	LOR	Unit					
Acid Herbicides							
2.4-D	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dicamba	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
MCPA	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
МСРВ	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Warfarin (surr.)	1	%	92	95	92	89	
% Moisture	0.1	%	38	31	34	33	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS5 Soil M15-Fe00148 Jan 14, 2015	SS6 Soil M15-Fe00149 Jan 14, 2015	SS7 Soil M15-Fe00150 Jan 14, 2015	SS8 Soil M15-Fe00151 Jan 14, 2015
Test/Reference	LOR	Unit				
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dicamba	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
MCPA	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
МСРВ	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Warfarin (surr.)	1	%	97	94	95	89

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M15-Fe00148	M15-Fe00149	M15-Fe00150	M15-Fe00151
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit				
% Moisture	0.1	%	24	30	31	35

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS9 Soil M15-Fe00152 Jan 14, 2015	SS10 Soil M15-Fe00153 Jan 14, 2015	SS11 Soil M15-Fe00154 Jan 14, 2015	POND 1 SED 1 Soil M15-Fe00155 Jan 14, 2015
Test/Reference	LOR	Unit	04.1 1 1, 2010	0411 1 1, 2010	04.1 1 1, 2010	July 11, 2010
Acid Herbicides		J 0				
2.4-D	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dicamba	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
МСРА	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
МСРВ	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Warfarin (surr.)	1	%	95	95	118	96
		T				
% Moisture	0.1	%	36	31	28	28

Client Sample ID Sample Matrix Eurofins mgt Sample No.			POND 2 SED 2 Soil M15-Fe00156	POND 3 SED 3 Soil M15-Fe00157
Date Sampled			Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit		
Acid Herbicides				
2.4-D	0.5	mg/kg	< 0.5	< 0.5
2.4-DB	0.5	mg/kg	< 0.5	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5
Dicamba	0.5	mg/kg	< 0.5	< 0.5
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5
Dinoseb	0.5	mg/kg	< 0.5	< 0.5
MCPA	0.5	mg/kg	< 0.5	< 0.5
MCPB	0.5	mg/kg	< 0.5	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	< 0.5
Warfarin (surr.)	1	%	90	98
% Moisture	0.1	%	45	42

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Acid Herbicides	Melbourne	Feb 02, 2015	14 Day
- Method: MGT 530			
% Moisture	Melbourne	Feb 02, 2015	14 Day

- Method: LTM-GEN-7080 Moisture

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au

Moisture Set

web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

Project Name: WINDERS LANE Project ID: **ENAUWARA04581AA** Order No.:

Report #: 445956 Phone: 02 4016 2300

Fax: 02 4016 2380 Received: Feb 2, 2015 10:06 AM Due: Feb 3, 2015

Priority: 1 Day **Contact Name:** Damien Hendrickx

Eurofins | mgt Client Manager: Mary Makarios

	Acid Herbicides
--	-----------------

Sample Detail

Laboratory where analysis is conducted		
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Х
Sydney Laboratory - NATA Site # 18217		
Brisbane Laboratory - NATA Site # 20794		
Futamed Laboratom.		

External Laboratory						
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
SS1	Jan 14, 2015		Soil	M15-Fe00144	Х	Х
SS2	Jan 14, 2015		Soil	M15-Fe00145	Х	Х
SS3	Jan 14, 2015		Soil	M15-Fe00146	Х	Х
SS4	Jan 14, 2015		Soil	M15-Fe00147	Х	Χ
SS5	Jan 14, 2015		Soil	M15-Fe00148	Х	Х
SS6	Jan 14, 2015		Soil	M15-Fe00149	Х	Х
SS7	Jan 14, 2015		Soil	M15-Fe00150	Х	Х
SS8	Jan 14, 2015		Soil	M15-Fe00151	Х	Х
SS9	Jan 14, 2015		Soil	M15-Fe00152	Х	Χ

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

Warabrook NSW 2304

WINDERS LANE **Project Name:** Project ID: **ENAUWARA04581AA** Order No.:

Report #: 445956 Phone: 02 4016 2300

Fax: 02 4016 2380 Received: Feb 2, 2015 10:06 AM

Due: Feb 3, 2015 Priority: 1 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			Acid Herbicides	Moisture Set
	ere analysis is co					
	oratory - NATA		271		Х	Х
	tory - NATA Site					
External Labora	atory - NATA Si	te # 20794				
SS10	Jan 14, 2015		Soil	M15-Fe00153	Х	Х
SS11	Jan 14, 2015		Soil	M15-Fe00154	X	X
POND 1 SED 1			Soil	M15-Fe00155	Х	Х
POND 2 SED 2			Soil	M15-Fe00156	Х	Х
POND 3 SED 3			Soil	M15-Fe00157	Х	Х
POND 1 SW1	Jan 14, 2015		Water	M15-Fe00158	Χ	
POND 2 SW2	Jan 14, 2015		Water	M15-Fe00159	Χ	
POND 3 SW3	Jan 14, 2015		Water	M15-Fe00160	Χ	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 5 of 9

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Facsimile: +61 3 8564 5090

Date Reported:Feb 03, 2015

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Quality Control Results

		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		mg/kg	< 0.5			0.5	Pass	
		%	86			70-130	Pass	
-								
Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass	Qualifying Code
			Result 1					
M15-Fe00145	CP	%	76			70-130	Pass	
M15-Fe00145	СР	%	70				Pass	
		,,,					1 5.55	
			Result 1					
M15-Fe00155	CP	%				70-130	Pass	
	_							
+			1					
	QA	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Lab Sample ID	Source							
Lab Sample ID	Source							
Lab Sample ID	Source		Result 1	Result 2	RPD			
		ma/ka	Result 1	Result 2	RPD <1	30%	Pass	
M15-Fe00144	СР	mg/kg mg/ka	< 0.5	< 0.5	<1	30%	Pass Pass	
M15-Fe00144 M15-Fe00144	CP CP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	
M15-Fe00144 M15-Fe00144 M15-Fe00144	CP CP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	<1 <1 <1	30% 30%	Pass Pass	
M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144	CP CP CP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1	30% 30% 30%	Pass Pass Pass	
M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144	CP CP CP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144 M15-Fe00144	CP CP CP CP	mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<1 <1 <1 <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
	M15-Fe00145 M15-Fe00145 M15-Fe00155 M15-Fe00155 M15-Fe00155 M15-Fe00155	M15-Fe00145 CP M15-Fe00145 CP M15-Fe00155 CP M15-Fe00155 CP M15-Fe00155 CP M15-Fe00155 CP M15-Fe00155 CP	mg/kg mg/k	mg/kg	mg/kg	mg/kg	Mg/kg < 0.5 0.5	Mg/kg < 0.5 0.5 Pass

							1		1
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Herbicides				Result 1	Result 2	RPD			
MCPA	M15-Fe00144	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
МСРВ	M15-Fe00144	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M15-Fe00144	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M15-Fe00150	CP	%	31	31	<1	30%	Pass	
Duplicate									
Acid Herbicides				Result 1	Result 2	RPD			
2.4-D	M15-Fe00154	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-DB	M15-Fe00154	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-T	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-TP	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Actril (loxynil)	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dicamba	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorprop	M15-Fe00154	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dinitro-o-cresol	M15-Fe00154	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dinoseb	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
МСРВ	M15-Fe00154	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M15-Fe00154	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 No

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

 Mary Makarios
 Analytical Services Manager

 Carroll Lee
 Senior Analyst-Organic (VIC)

 Emily Rosenberg
 Senior Analyst-Metal (VIC)

 Huong Le
 Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 445956-S

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Damien Hendrickx

Report445956-WProject nameWINDERS LANEProject IDENAUWARA04581AAReceived DateFeb 02, 2015

Client Sample ID Sample Matrix			POND 1 SW1 Water	POND 2 SW2 Water	POND 3 SW3 Water
Eurofins mgt Sample No.			M15-Fe00158	M15-Fe00159	M15-Fe00160
Date Sampled			Jan 14, 2015	Jan 14, 2015	Jan 14, 2015
Test/Reference	LOR	Unit			
Acid Herbicides					
2.4-D	0.001	mg/L	< 0.001	< 0.001	< 0.001
2.4-DB	0.001	mg/L	< 0.001	< 0.001	< 0.001
2.4.5-T	0.001	mg/L	< 0.001	< 0.001	< 0.001
2.4.5-TP	0.001	mg/L	< 0.001	< 0.001	< 0.001
Actril (loxynil)	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dicamba	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dichlorprop	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dinitro-o-cresol	0.001	mg/L	< 0.001	< 0.001	< 0.001
Dinoseb	0.001	mg/L	< 0.001	< 0.001	< 0.001
MCPA	0.001	mg/L	< 0.001	< 0.001	< 0.001
MCPB	0.001	mg/L	< 0.001	< 0.001	< 0.001
Mecoprop	0.001	mg/L	< 0.001	< 0.001	< 0.001
Warfarin (surr.)	1	%	60	^{Q09A} 1	74

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAcid HerbicidesMelbourneFeb 02, 201514 Day

- Method: MGT 530

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

Project Name: WINDERS LANE Project ID: **ENAUWARA04581AA** Order No.:

Report #: 445956 Phone: 02 4016 2300

Fax: 02 4016 2380 Received: Feb 2, 2015 10:06 AM

Due: Feb 3, 2015 **Priority:** 1 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Mary Makarios

Sample Detail	Acid Herbicides	Moisture Set
Laboratory where analysis is conducted		
Melbourne Laboratory - NATA Site # 1254 & 14271	Х	Χ
Sydney Laboratory - NATA Site # 18217		
Brisbane Laboratory - NATA Site # 20794		
External Laboratory		

Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
SS1	Jan 14, 2015		Soil	M15-Fe00144	Х	Х
SS2	Jan 14, 2015		Soil	M15-Fe00145	Х	Х
SS3	Jan 14, 2015		Soil	M15-Fe00146	Х	Х
SS4	Jan 14, 2015		Soil	M15-Fe00147	Х	Х
SS5	Jan 14, 2015		Soil	M15-Fe00148	Х	Х
SS6	Jan 14, 2015		Soil	M15-Fe00149	Х	Х
SS7	Jan 14, 2015		Soil	M15-Fe00150	Х	Х
SS8	Jan 14, 2015		Soil	M15-Fe00151	Х	Х
SS9	Jan 14, 2015		Soil	M15-Fe00152	Х	Х

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail: EnviroSales@eurofins.com.au web: www.eurofins.com.au

Company Name: Coffey Environments P/L N'castle Address:

Lot 101, 19 Warabrook Boulevard Warabrook

NSW 2304 WINDERS LANE

ENAUWARA04581AA

Project Name: Project ID:

Order No.: Report #:

445956

Phone: 02 4016 2300 Fax: 02 4016 2380

Feb 2, 2015 10:06 AM Due: Feb 3, 2015

Priority: 1 Day

Contact Name: Damien Hendrickx

Eurofins | mgt Client Manager: Mary Makarios

		Sample Detail			Acid Herbicides	Moisture Set
	ere analysis is co					
	oratory - NATA S		271		Х	Х
	tory - NATA Site					
	atory - NATA Si	te # 20794				
External Labora SS10	Jan 14, 2015		Soil	M15-Fe00153	Х	Х
SS10	Jan 14, 2015		Soil	M15-Fe00153	X	X
POND 1 SED 1	·		Soil	M15-Fe00155	X	X
POND 2 SED 2			Soil	M15-Fe00156	X	X
POND 3 SED 3	·		Soil	M15-Fe00157	X	X
POND 1 SW1	Jan 14, 2015		Water	M15-Fe00158	X	
POND 2 SW2	Jan 14, 2015		Water	M15-Fe00159	X	
POND 3 SW3	Jan 14, 2015		Water	M15-Fe00160	Х	

Report Number: 445956-W

Eurofins | mgt Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

UNITS

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxophene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- $10. \ \ Duplicate \ RPD's \ are \ calculated \ from \ raw \ analytical \ data \ thus \ it \ is \ possible \ to \ have \ two \ sets \ of \ data.$

Report Number: 445956-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Acid Herbicides					
2.4-D	mg/L	< 0.001	0.001	Pass	
2.4-DB	mg/L	< 0.001	0.001	Pass	
2.4.5-T	mg/L	< 0.001	0.001	Pass	
2.4.5-TP	mg/L	< 0.001	0.001	Pass	
Actril (loxynil)	mg/L	< 0.001	0.001	Pass	
Dicamba	mg/L	< 0.001	0.001	Pass	
Dichlorprop	mg/L	< 0.001	0.001	Pass	
Dinitro-o-cresol	mg/L	< 0.001	0.001	Pass	
Dinoseb	mg/L	< 0.001	0.001	Pass	
MCPA	mg/L	< 0.001	0.001	Pass	
MCPB	mg/L	< 0.001	0.001	Pass	
Mecoprop	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery					
Acid Herbicides					
2.4-D	%	79	70-130	Pass	
2.4-DB	%	76	70-130	Pass	
2.4.5-T	%	84	70-130	Pass	
2.4.5-TP	%	81	70-130	Pass	
Actril (loxynil)	%	73	70-130	Pass	
Dicamba	%	81	70-130	Pass	
Dichlorprop	%	80	70-130	Pass	
Dinitro-o-cresol	%	73	70-130	Pass	
Dinoseb	%	74	70-130	Pass	
MCPA	%	79	70-130	Pass	
MCPB	%	79	70-130	Pass	
Mecoprop	%	83	70-130	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	No
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

The Surrogate recovery is outside of the recommended acceptance criteria due to matrix interference and is unquantifiable. A result of 1 has been reported for the purposes of providing a numerical result. Acceptance criteria were met for all other QC.

Authorised By

Mary Makarios Analytical Services Manager
Carroll Lee Senior Analyst-Organic (VIC)

Glenn Jackson

National Laboratory Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Imgl shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg/be liable for consequential damages including, but not limited to, lost profits, damages for refaultive to meet decidines and ols the production arising from this report. This document shall not be reproduced or expect in full and refates only to the times tested. Unlies indicated otherwise, the tests were performed on the samples as received.

Report Number: 445956-W

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304 lac-MRA

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Damien Hendrickx

 Report
 539344-S

 Project name
 LOCHINVAR

 Project ID
 754-NTLEN202989

 Received Date
 Mar 23, 2017

Client Sample ID			SS12	SS13	SS14	SS15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25965	M17-Ma25966	M17-Ma25967	M17-Ma25968
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F						
TRH C6-C9	20	mg/kg	< 20	-	< 20	_
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	-
втех						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	53	-	50	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SS12	SS13	SS14	SS15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25965	M17-Ma25966	M17-Ma25967	M17-Ma25968
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
•	LOD	Linit	Wai 20, 2017	Wai 20, 2017	Wai 20, 2017	Wai 20, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	0.5	1 "	0.5	0.5	0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Tatal BALIX	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	131	89	124	100
p-Terphenyl-d14 (surr.)	1	%	93	82	96	88
Organochlorine Pesticides	0.4		0.4		0.1	
Chlordanes - Total	0.1	mg/kg	< 0.1	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	-	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	-	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	-	0.31	-
Endosulfan I Endosulfan II	0.05 0.05	mg/kg	< 0.05 < 0.05	-	< 0.05 < 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	< 0.05	-
Endrin	0.05	mg/kg mg/kg	< 0.05	_	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05		< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	< 0.05	<u> </u>
Heptachlor	0.05	mg/kg	< 0.05	_	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	< 0.05	_
Methoxychlor	0.05	mg/kg	< 0.05	_	< 0.05	_
Toxaphene	1	mg/kg	< 1	_	< 1	_
Dibutylchlorendate (surr.)	1	%	116	_	108	_
Tetrachloro-m-xylene (surr.)	1	%	97	-	84	-
Organophosphorus Pesticides		,,,				
Azinphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	_
Bolstar	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Coumaphos	2	mg/kg	< 2	-	< 2	-
Demeton-S	0.2	mg/kg	< 0.2	-	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	-	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	-	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	-	< 0.2	-
Dimethoate	0.2	mg/kg	< 0.2	-	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	-	< 0.2	-
EPN	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethion	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethoprop	0.2	mg/kg	< 0.2	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fenitrothion	0.2	mg/kg	< 0.2	-	< 0.2	-
Fensulfothion	0.2	mg/kg	< 0.2	-	< 0.2	-

					1	1
Client Sample ID			SS12	SS13	SS14	SS15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25965	M17-Ma25966	M17-Ma25967	M17-Ma25968
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Fenthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Malathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Merphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Methyl parathion	0.2	mg/kg	< 0.2	-	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Monocrotophos	2	mg/kg	< 2	-	< 2	-
Naled	0.2	mg/kg	< 0.2	-	< 0.2	-
Omethoate	2	mg/kg	< 2	-	< 2	-
Phorate	0.2	mg/kg	< 0.2	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	< 0.2	-
Pyrazophos	0.2	mg/kg	< 0.2	-	< 0.2	-
Ronnel	0.2	mg/kg	< 0.2	-	< 0.2	-
Terbufos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	-	< 0.2	-
Trichloronate	0.2	mg/kg	< 0.2	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	101	-	111	_
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4-DB	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4.5-T	0.5	mg/kg	< 0.5	-	< 0.5	-
2.4.5-TP	0.5	mg/kg	< 0.5	-	< 0.5	-
Actril (loxynil)	0.5	mg/kg	< 0.5	-	< 0.5	-
Dicamba	0.5	mg/kg	< 0.5	-	< 0.5	-
Dichlorprop	0.5	mg/kg	< 0.5	-	< 0.5	-
Dinitro-o-cresol	0.5	mg/kg	< 0.5	-	< 0.5	-
Dinoseb	0.5	mg/kg	< 0.5	-	< 0.5	-
MCPA	0.5	mg/kg	< 0.5	-	< 0.5	-
МСРВ	0.5	mg/kg	< 0.5	-	< 0.5	-
Mecoprop	0.5	mg/kg	< 0.5	-	< 0.5	-
Warfarin (surr.)	1	%	112	-	108	-
Total Recoverable Hydrocarbons - 2013 NE	PM Fractions					
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
% Moisture	1	%	28	18	19	23
Heavy Metals						
Arsenic	2	mg/kg	2.0	3.2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	96	44	93	43
Copper	5	mg/kg	45	28	42	22
Lead	5	mg/kg	19	21	23	10
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	50	40	63	28
Zinc	5	mg/kg	120	120	460	87

011 / 0 1 10			1	1	1	1
Client Sample ID			SS16	SS17	SS18	SS19
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25969	M17-Ma25970	M17-Ma25971	M17-Ma25972
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	< 20	< 20	=	-
TRH C15-C28	50	mg/kg	320	51	=	-
TRH C29-C36	50	mg/kg	340	130	-	-
TRH C10-36 (Total)	50	mg/kg	660	181	=	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	_
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	_
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	_
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	_
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	_
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	_
4-Bromofluorobenzene (surr.)	1	%	70	85	-	_
Total Recoverable Hydrocarbons - 2013 NEPM		,		1		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	_	_
TRH C6-C10	20	mg/kg	< 20	< 20	_	_
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	_
Polycyclic Aromatic Hydrocarbons		ing/kg	120	120		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	108	116	87	93
p-Terphenyl-d14 (surr.)	1	%	89	90	90	79
Organochlorine Pesticides		,,,				1
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	<u> </u>
4.4'-DDD	0.05	mg/kg	< 0.1	< 0.1	-	
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	<u> </u>
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	

Client Sample ID			SS16	SS17	SS18	SS19
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25969	M17-Ma25970	M17-Ma25971	M17-Ma25972
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Toxaphene	1	mg/kg	< 1	< 1	-	-
Dibutylchlorendate (surr.)	1	%	109	126	-	-
Tetrachloro-m-xylene (surr.)	1	%	92	105	-	-
Organophosphorus Pesticides		1				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-	-
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Coumaphos	2	mg/kg	< 2	< 2	-	-
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	-	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	-	-
Diazinon	0.2	mg/kg	< 0.2	< 0.2	-	-
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-	-
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	-	-
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-	-
EPN	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethion	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	-	-
Fenthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Malathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Merphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	-	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-	-
Monocrotophos	2	mg/kg	< 2	< 2	-	-
Naled	0.2	mg/kg	< 0.2	< 0.2	-	-
Omethoate	2	mg/kg	< 2	< 2	-	-
Phorate	0.2	mg/kg	< 0.2	< 0.2	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	-	-
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	-	-
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-	-
Terbufos	0.2	mg/kg	< 0.2	< 0.2	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	-	-

Client Sample ID			SS16	SS17	SS18	SS19
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25969	M17-Ma25970	M17-Ma25971	M17-Ma25972
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Organophosphorus Pesticides	•	•				
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	-	-
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	-	-
Triphenylphosphate (surr.)	1	%	92	75	-	-
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	< 0.5	-	-
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	-	=
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	-	=
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	-	=
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	-	=
Dicamba	0.5	mg/kg	< 0.5	< 0.5	-	-
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	-	-
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	-	-
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	-	-
МСРА	0.5	mg/kg	< 0.5	< 0.5	-	-
МСРВ	0.5	mg/kg	< 0.5	< 0.5	-	-
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	-	-
Warfarin (surr.)	1	%	82	84	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	590	170	-	-
TRH >C34-C40	100	mg/kg	220	110	-	-
% Moisture	1	%	13	19	19	9.8
Heavy Metals		-				
Arsenic	2	mg/kg	6.0	3.1	2.5	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	39	29	17
Copper	5	mg/kg	11	23	24	6.7
Lead	5	mg/kg	14	8.9	6.8	7.0
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	18	37	28	13
Zinc	5	mg/kg	93	49	35	48

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS20 Soil M17-Ma25973 Mar 20, 2017	SS21 Soil M17-Ma25974 Mar 20, 2017	SS22 Soil M17-Ma25975 Mar 20, 2017	SS23 Soil M17-Ma25976 Mar 20, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	28	< 20	-	-
TRH C15-C28	50	mg/kg	1200	< 50	-	-
TRH C29-C36	50	mg/kg	440	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	1668	< 50	-	-

		1		1	1	1
Client Sample ID			SS20	SS21	SS22	SS23
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25973	M17-Ma25974	M17-Ma25975	M17-Ma25976
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	71	69	-	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH C6-C10	20	mg/kg	< 20	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	-
Polycyclic Aromatic Hydrocarbons	<u>'</u>					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	_	_
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	_
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	81	107	-	-
p-Terphenyl-d14 (surr.)	1	%	61	92	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

mgt

Client Sample ID			SS20	SS21	SS22	SS23
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25973	M17-Ma25974	M17-Ma25975	M17-Ma25976
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit	Mai 20, 2017	Mai 20, 2017	Mai 20, 2017	Mai 20, 2017
	LOR	Unit				
Organochlorine Pesticides	0.05		0.05	0.05	0.05	0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	59	117	120	123
Tetrachloro-m-xylene (surr.)	1	%	96	97	107	97
Organophosphorus Pesticides		"	_	2.2	2.2	2.2
Azinphos-methyl	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	3.0	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Disulfoton EPN	0.2	mg/kg	< 2	< 0.2 < 0.2	< 0.2 < 0.2	< 0.2 < 0.2
		mg/kg		< 0.2		
Ethion	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 2		< 0.2	< 0.2
Ethyl parathion Fenitrothion	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 2	< 0.2 < 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg mg/kg	< 2	< 0.2	< 0.2 < 0.2	< 0.2 < 0.2
Malathion	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	89	88	88	87

Client Sample ID			SS20	SS21	SS22	SS23
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25973	M17-Ma25974	M17-Ma25975	M17-Ma25976
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit			,	Í
Acid Herbicides						
2.4-D	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-DB	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-TP	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Actril (loxynil)	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dicamba	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinitro-o-cresol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dinoseb	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
MCPA	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
МСРВ	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Warfarin (surr.)	1	%	82	86	96	82
Total Recoverable Hydrocarbons - 2013 NEPM Fra	actions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	1400	< 100	-	-
TRH >C34-C40	100	mg/kg	210	< 100	-	-
% Clay	1	%	7.5	-	-	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	130	-	-	-
pH (1:5 Aqueous extract)	0.1	pH Units	5.3	-	-	-
% Moisture	1	%	12	25	31	24
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	27	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	4.9	2.4	2.7	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	19	190	120	80
Copper	5	mg/kg	16	63	27	20
Lead	5	mg/kg	< 5	28	13	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1
Nickel	5	mg/kg	15	49	52	36
Zinc	5	mg/kg	82	84	27	37

Client Sample ID			SP1	SS24	QC6	QC7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25977	M17-Ma25978	M17-Ma25981	M17-Ma25982
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	< 50

Client Sample ID			SP1	2004	QC6	QC7
-			1	SS24	1	
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25977	M17-Ma25978	M17-Ma25981	M17-Ma25982
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	53	71	-	56
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons		_				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	101	114	-	132
p-Terphenyl-d14 (surr.)	1	%	78	86	-	105
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
b-BHC	0.05	mg/kg	< 0.05	-	-	< 0.05 < 0.05
d-BHC Dieldrin	0.05	mg/kg	< 0.05 < 0.05	-	-	0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg mg/kg	< 0.05	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin Sulphate Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05

011 10 110				1		1
Client Sample ID			SP1	SS24	QC6	QC7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25977	M17-Ma25978	M17-Ma25981	M17-Ma25982
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Toxaphene	1	mg/kg	< 1	-	-	< 1
Dibutylchlorendate (surr.)	1	%	136	-	-	120
Tetrachloro-m-xylene (surr.)	1	%	102	-	-	97
Organophosphorus Pesticides	<u>'</u>					
Azinphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Bolstar	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Coumaphos	2	mg/kg	< 2	-	-	< 2
Demeton-S	0.2	mg/kg	< 0.2	-	-	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	-	-	< 0.2
Diazinon	0.2	mg/kg	< 0.2	-	-	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	-	-	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	-	-	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	-	-	< 0.2
EPN	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethion	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	-	-	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	-	-	< 0.2
Fenthion	0.2	mg/kg	< 0.2	-	-	< 0.2
Malathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Merphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	-	-	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Monocrotophos	2	mg/kg	< 2	-	-	< 2
Naled	0.2	mg/kg	< 0.2	-	-	< 0.2
Omethoate	2	mg/kg	< 2	-	-	< 2
Phorate	0.2	mg/kg	< 0.2	-	-	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	-	-	< 0.2
Ronnel	0.2	mg/kg	< 0.2	-	-	< 0.2
Terbufos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	-	-	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	-	-	< 0.2
Triphenylphosphate (surr.)	1	%	89	-	-	86

Client Sample ID			SP1	SS24	QC6	QC7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ma25977	M17-Ma25978	M17-Ma25981	M17-Ma25982
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit				
Acid Herbicides	ļ -					
2.4-D	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-DB	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-TP	0.5	mg/kg	< 0.5	-	-	< 0.5
Actril (loxynil)	0.5	mg/kg	< 0.5	-	-	< 0.5
Dicamba	0.5	mg/kg	< 0.5	-	-	< 0.5
Dichlorprop	0.5	mg/kg	< 0.5	-	-	< 0.5
Dinitro-o-cresol	0.5	mg/kg	< 0.5	-	-	< 0.5
Dinoseb	0.5	mg/kg	< 0.5	-	-	< 0.5
MCPA	0.5	mg/kg	< 0.5	-	-	< 0.5
МСРВ	0.5	mg/kg	< 0.5	-	-	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	-	-	< 0.5
Warfarin (surr.)	1	%	94	-	-	82
Total Recoverable Hydrocarbons -	2013 NEPM Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	-	< 100
% Moisture	1	%	23	24	14	19
Heavy Metals						
Arsenic	2	mg/kg	2.5	< 2	5.1	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	110	78	25	99
Copper	5	mg/kg	82	20	17	43
Lead	5	mg/kg	6.9	12	< 5	18
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	98	24	20	63
Zinc	5	mg/kg	65	23	99	380

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 27, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 27, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 27, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Mar 27, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 27, 2017	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Acid Herbicides	Melbourne	Mar 27, 2017	14 Day
- Method: LTM-ORG-2180 Phenoxy Acid Herbicides			
% Clay	Brisbane	Mar 28, 2017	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract)	Melbourne	Mar 27, 2017	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Mar 27, 2017	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Eurofins mgt Suite B14			
Organochlorine Pesticides	Melbourne	Mar 27, 2017	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Mar 27, 2017	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Mar 27, 2017	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	Mar 28, 2017	
% Moisture	Melbourne	Mar 24, 2017	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 18217

Page 14 of 26

Company Name: Coffey Environments P/L N'castle Order No.: Received: Mar 23, 2017 8:30 AM

Address: Lot 101, 19 Warabrook Boulevard Report #: 539344 Due: Mar 30, 2017

Warabrook Phone: 02 4016 2300 Priority: 5 Day
NSW 2304 Fax: 02 4016 2380 Contact Name: Damien Hendrickx

NSW 2304 Fax. 02 4010 2300 Contact Name. Dalmen renunco

Project Name: LOCHINVAR
Project ID: 754-NTLEN202989
Eurofins | mgt Analytical Services Manager : Mary Makarios

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Acid Herbicides	Metals M8	втех	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217													
Bris	bane Laborator	y - NATA Site #	20794			Х										
Pert	h Laboratory - I	NATA Site # 182	217													
Exte	rnal Laboratory	/														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	SS12	Mar 20, 2017		Soil	M17-Ma25965				Х	Х	Х	Х	Х	Х		X
2	SS13	Mar 20, 2017		Soil	M17-Ma25966				Х		Х			Х		
3	SS14	Mar 20, 2017		Soil	M17-Ma25967				Х	Х	Х	Х	Х	Х		Х
4	SS15	Mar 20, 2017		Soil	M17-Ma25968				Х		Х			Х		
5	SS16	Mar 20, 2017		Soil	M17-Ma25969				Х	Х	Х	Х	Х	Х		Х
6	SS17	Mar 20, 2017		Soil	M17-Ma25970				Х	Х	Х	Х	Х	Х		Х
7	SS18	Mar 20, 2017		Soil	M17-Ma25971				Х		Х			Х		
8	SS19	Mar 20, 2017		Soil	M17-Ma25972				Х		Х			Х		
9	SS20	Mar 20, 2017		Soil	M17-Ma25973	Х		Х	Х	Х	Х	Х	Х	Х	Х	x

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Report Number: 539344-S

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Mary Makarios

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Page 15 of 26

Company Name: Coffey Environments P/L N'castle Order No.: Received: Mar 23, 2017 8:30 AM

Address: Lot 101, 19 Warabrook Boulevard Report #: 539344 Due: Mar 30, 2017

 Warabrook
 Phone:
 02 4016 2300
 Priority:
 5 Day

NSW 2304 Fax: 02 4016 2380 Contact Name: Damien Hendrickx

Project Name: LOCHINVAR
Project ID: 754-NTLEN202989

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Acid Herbicides	Metals M8	втех	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217													
Bris	bane Laborator	y - NATA Site #	20794			Х										
Pert	h Laboratory - N	NATA Site # 182	17	1												
10	SS21	Mar 20, 2017		Soil	M17-Ma25974				Х	Х	Х	Х	Χ	Х		Х
11	SS22	Mar 20, 2017		Soil	M17-Ma25975					Х	Х		Χ	Х		
12	SS23	Mar 20, 2017		Soil	M17-Ma25976					Х	Х		Χ	Х		
13	SP1	Mar 20, 2017		Soil	M17-Ma25977				Х	Х	Х	Х	Χ	Х		Х
14	SS24	Mar 20, 2017		Soil	M17-Ma25978				Х		Х	Χ		Х		Х
15	POND 4-SW4	Mar 20, 2017		Water	M17-Ma25979					Х	Х		Χ			
16	POND 5-SW5	Mar 20, 2017		Water	M17-Ma25980					Х	Х		Х			
17	QC6	Mar 20, 2017		Soil	M17-Ma25981						Х			Х		
18	QC7	Mar 20, 2017		Soil	M17-Ma25982				Х	Х	Х	Χ	Χ	Х		Х
19	QC9	Mar 20, 2017		Water	M17-Ma25983				Х	Х	Х	Х	Х			Х
20	SS25	Mar 20, 2017		Soil	M17-Ma25984		Х									
Test	st Counts			1	1	1	14	13	19	10	13	16	1	10		

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 539344-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 539344-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	, ,				
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2 < 0.2	0.2	Pass	
	mg/kg	\ \ U.Z	J U.Z	Pass	
Method Blank Acid Herbicides					
2.4-D	mg/kg	< 0.5	0.5	Pass	
2.4-DB	mg/kg	< 0.5	0.5	Pass	
2.4.5-T	mg/kg	< 0.5	0.5	Pass	
2.4.5-TP	mg/kg	< 0.5	0.5	Pass	
Actril (loxynil)	mg/kg	< 0.5	0.5	Pass	
Dicamba	mg/kg	< 0.5	0.5	Pass	
Dichlorprop	mg/kg	< 0.5	0.5	Pass	
Dinitro-o-cresol	mg/kg	< 0.5	0.5	Pass	
Dinoseb	mg/kg	< 0.5	0.5	Pass	

Test	Units	Result 1	Acceptanc Limits	Pass Limits	Qualifying Code
MCPA	mg/kg	< 0.5	0.5	Pass	
МСРВ	mg/kg	< 0.5	0.5	Pass	
Mecoprop	mg/kg	< 0.5	0.5	Pass	
Method Blank				·	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				·	
% Clay	%	< 1	1	Pass	
Method Blank				·	
Ion Exchange Properties					
Cation Exchange Capacity	meg/100g	< 0.05	0.05	Pass	
Method Blank	<u> </u>				
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	IIIg/kg	_ < 3		Fass	
•				T	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions TRH C6-C9	0/	104	70.120	Pass	
	%	124	70-130		
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery BTEX		П		Т	
	0/	05	70.420	Dana	
Benzene	%	95	70-130	Pass	
Toluene	%	113	70-130	Pass	
Ethylbenzene	%	124	70-130	Pass	
m&p-Xylenes	%	123	70-130	Pass	
Xylenes - Total	%	123	70-130	Pass	
LCS - % Recovery		Г		_	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1				
Naphthalene	%	116	70-130	Pass	
TRH C6-C10	%	111	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	1				
Acenaphthene	%	93	70-130	Pass	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	82	70-130	Pass	
Benz(a)anthracene	%	117	70-130	Pass	
Benzo(a)pyrene	%	119	70-130	Pass	
Benzo(b&j)fluoranthene	%	111	70-130	Pass	
Benzo(g.h.i)perylene	%	79	70-130	Pass	
Benzo(k)fluoranthene	%	108	70-130	Pass	
Chrysene	%	116	70-130	Pass	
Dibenz(a.h)anthracene	%	79	70-130	Pass	
Fluoranthene	%	72	70-130	Pass	
Fluorene	%	87	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	78	70-130	Pass	
Naphthalene	%	127	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	77	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
4.4'-DDD	%	117	70-130	Pass	
4.4'-DDE	%	107	70-130	Pass	
4.4'-DDT	%	122	70-130	Pass	
a-BHC	%	102	70-130	Pass	
Aldrin	%	102	70-130	Pass	
b-BHC	%	106	70-130	Pass	
d-BHC	%	113	70-130	Pass	
Dieldrin	%	101	70-130	Pass	
Endosulfan I	%	105	70-130	Pass	
Endosulfan II	%	118	70-130	Pass	
Endosulfan sulphate	%	109	70-130	Pass	
Endrin	%	108	70-130	Pass	
Endrin aldehyde	%	117	70-130	Pass	
Endrin ketone	%	123	70-130	Pass	
g-BHC (Lindane)	%	105	70-130	Pass	
Heptachlor	%	97	70-130	Pass	
Heptachlor epoxide	%	104	70-130	Pass	
Hexachlorobenzene	%	95	70-130	Pass	
Methoxychlor	%	118	70-130	Pass	
LCS - % Recovery					
Organophosphorus Pesticides	-				
Diazinon	%	92	70-130	Pass	
Dimethoate	%	78	70-130	Pass	
Ethion	%	75	70-130	Pass	
Fenitrothion	%	90	70-130	Pass	
Methyl parathion	%	79	70-130	Pass	
Mevinphos	%	77	70-130	Pass	
LCS - % Recovery					
Acid Herbicides	1				
2.4-D	%	100	70-130	Pass	
2.4-DB	%	85	70-130	Pass	
2.4.5-T	%	106	70-130	Pass	
2.4.5-TP	%	105	70-130	Pass	
Actril (loxynil)	%	87	70-130	Pass	
Dicamba	%	93	70-130	Pass	
Dichlorprop	%	96	70-130	Pass	
Dinitro-o-cresol	%	75	70-130	Pass	
Dinoseb	%	77	70-130	Pass	
MCPA	%	108	70-130	Pass	
МСРВ	%	86	70-130	Pass	
Mecoprop	%	83	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1	_			
TRH >C10-C16	%	76	70-130	Pass	
LCS - % Recovery		1 1		T_	
% Clay	%	100	70-130	Pass	
LCS - % Recovery					
Heavy Metals	1	<u> </u>		<u> </u>	
Arsenic	%	110	80-120	Pass	
Cadmium	%	112	80-120	Pass	<u> </u>

Tes	ı		Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Chromium			%	106		80-120	Pass	
Copper			%	98		80-120	Pass	
Lead			%	112		80-120	Pass	
Mercury			%	109		75-125	Pass	
Nickel			%	98		80-120	Pass	
Zinc			%	113		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M17-Ma26401	NCP	%	106		70-130	Pass	
TRH C10-C14	B17-Ma25488	NCP	%	78		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M17-Ma26401	NCP	%	100		70-130	Pass	
Toluene	M17-Ma26401	NCP	%	107		70-130	Pass	
Ethylbenzene	M17-Ma26401	NCP	%	117		70-130	Pass	
m&p-Xylenes	M17-Ma26401	NCP	%	126		70-130	Pass	
o-Xylene	M17-Ma26401	NCP	%	104		70-130	Pass	
Xylenes - Total	M17-Ma26401	NCP	%	119		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1				
Naphthalene	M17-Ma26401	NCP	%	114		70-130	Pass	
TRH C6-C10	M17-Ma26401	NCP	%	111		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbo	ons			Result 1				
Acenaphthene	P17-Ma25848	NCP	%	95		70-130	Pass	
Acenaphthylene	P17-Ma25848	NCP	%	96		70-130	Pass	
Anthracene	P17-Ma25848	NCP	%	110		70-130	Pass	
Benz(a)anthracene	P17-Ma25848	NCP	%	89		70-130	Pass	
Benzo(a)pyrene	P17-Ma25848	NCP	%	101		70-130	Pass	
Benzo(b&j)fluoranthene	P17-Ma25848	NCP	%	71		70-130	Pass	
Benzo(g.h.i)perylene	P17-Ma25848	NCP	%	96		70-130	Pass	
Benzo(k)fluoranthene	P17-Ma25848	NCP	%	128		70-130	Pass	
Chrysene	P17-Ma25848	NCP	%	110		70-130	Pass	
Dibenz(a.h)anthracene	P17-Ma25848	NCP	%	101		70-130	Pass	
Fluoranthene	P17-Ma25848	NCP	%	93		70-130	Pass	
Fluorene	P17-Ma25848	NCP	%	93		70-130	Pass	
Indeno(1.2.3-cd)pyrene	P17-Ma25848	NCP	%	93		70-130	Pass	
Naphthalene	P17-Ma25848	NCP	%	93		70-130	Pass	
Phenanthrene	P17-Ma25848	NCP	%	97		70-130	Pass	
Pyrene	P17-Ma25848	NCP	%	93		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	S17-Ma25372	NCP	%	128		70-130	Pass	
Dimethoate	S17-Ma25372	NCP	%	89		70-130	Pass	
Ethion	S17-Ma25372	NCP	%	91		70-130	Pass	
Fenitrothion	S17-Ma25372	NCP	%	119		70-130	Pass	
Methyl parathion	S17-Ma25372	NCP	%	88		70-130	Pass	
Mevinphos	S17-Ma25372	NCP	%	88		70-130	Pass	
Spike - % Recovery				<u> </u>				
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	B17-Ma25488	NCP	%	78		70-130	Pass	
Spike - % Recovery			,,,,					
Heavy Metals				Result 1				

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	M17-Ma25966	CP	%	107			75-125	Pass	
Cadmium	M17-Ma25966	CP	%	115			75-125	Pass	
Chromium	M17-Ma25966	CP	%	124			75-125	Pass	
Copper	M17-Ma25966	CP	%	121			75-125	Pass	
Lead	M17-Ma25966	CP	%	133			75-125	Fail	Q08
Mercury	M17-Ma25966	СР	%	102			70-130	Pass	
Nickel	M17-Ma25966	СР	%	118			75-125	Pass	
Zinc	M17-Ma25966	СР	%	98			75-125	Pass	
Spike - % Recovery	·	•		•					
Acid Herbicides				Result 1					
2.4-D	M17-Ma25967	СР	%	110			70-130	Pass	
Actril (loxynil)	M17-Ma25967	СР	%	106			70-130	Pass	
Dichlorprop	M17-Ma25967	CP	%	120			70-130	Pass	
MCPA	M17-Ma25967	CP	%	120			70-130	Pass	
MCPB	M17-Ma25967	CP	%	85			70-130	Pass	
Spike - % Recovery	WITT MIGEOGOT	Į Ūi	70				70 100	1 400	
Organochlorine Pesticides				Result 1					
4.4'-DDD	M17-Ma25974	СР	%	127			70-130	Pass	
4.4'-DDE	M17-Ma25974	CP	%	107			70-130	Pass	
4.4'-DDT	M17-Ma25974	CP	%	130			70-130	Pass	
a-BHC	M17-Ma25974	CP	%	108			70-130	Pass	
Aldrin	M17-Ma25974	CP	%	95			70-130	Pass	
b-BHC	M17-Ma25974	CP	%	84			70-130	Pass	
d-BHC		CP		108			70-130		
	M17-Ma25974		%					Pass	
Dieldrin	M17-Ma25974	CP	%	105			70-130	Pass	
Endosulfan I	M17-Ma25974	CP	%	107			70-130	Pass	
Endosulfan II	M17-Ma25974	CP	%	121			70-130	Pass	
Endosulfan sulphate	M17-Ma25974	CP	%	116			70-130	Pass	
Endrin	M17-Ma25974	CP	%	119			70-130	Pass	
Endrin aldehyde	M17-Ma25974	CP	%	119			70-130	Pass	
Endrin ketone	M17-Ma25974	CP	%	120			70-130	Pass	
g-BHC (Lindane)	M17-Ma25974	CP	%	107			70-130	Pass	
Heptachlor	M17-Ma25974	CP	%	78			70-130	Pass	
Heptachlor epoxide	M17-Ma25974	CP	%	100			70-130	Pass	
Hexachlorobenzene	M17-Ma25974	CP	%	98			70-130	Pass	
Methoxychlor	M17-Ma25974	CP	%	124			70-130	Pass	
Spike - % Recovery				I	ı				
Heavy Metals	1	1		Result 1					
Arsenic	M17-Ma25976	CP	%	86			75-125	Pass	
Cadmium	M17-Ma25976	CP	%	96			75-125	Pass	
Chromium	M17-Ma25976	CP	%	101			75-125	Pass	
Copper	M17-Ma25976	CP	%	105			75-125	Pass	
Lead	M17-Ma25976	CP	%	112			75-125	Pass	
Mercury	M17-Ma25976	CP	%	108			70-130	Pass	
Nickel	M17-Ma25976	CP	%	104			75-125	Pass	
Zinc	M17-Ma25976	CP	%	102			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate Total Recoverable Hydrocarbon	se - 1000 NEDM Erect	ione		Result 1	Result 2	RPD			
TRH C6-C9	M17-Ma26400	NCP	malka	< 20	< 20		30%	Pass	
			mg/kg	1		<1			
TRH C10-C14 TRH C15-C28	B17-Ma25487	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
	B17-Ma25487	NCP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate				l			I		
BTEX	T	1 .	1	Result 1	Result 2	RPD		++	
Benzene	M17-Ma26400	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-Ma26400	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M17-Ma26400	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M17-Ma26400	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M17-Ma26400	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M17-Ma26400	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1			ı		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		\perp	
Naphthalene	M17-Ma26400	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-Ma26400	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Endrin ketone	M17-Ma26964	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Acid Herbicides				Result 1	Result 2	RPD			
2.4-D	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-DB	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-T	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-TP	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Actril (loxynil)	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dicamba	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorprop	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dinitro-o-cresol	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dinoseb	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
МСРВ	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M17-Ma23878	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	•	•		_					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD		T	
TRH >C10-C16	B17-Ma25487	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	B17-Ma25487	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	B17-Ma25487	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>						
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ma25965	СР	mg/kg	2.0	2.1	3.0	30%	Pass	
Cadmium	M17-Ma25965	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ma25965	CP	mg/kg	96	86	11	30%	Pass	
Copper	M17-Ma25965	CP	mg/kg	45	39	13	30%	Pass	
Lead	M17-Ma25965	CP	mg/kg	19	19	2.0	30%	Pass	
Mercury	M17-Ma25965	CP	mg/kg	0.1	0.1	8.0	30%	Pass	
Nickel	M17-Ma25965	CP	mg/kg	50	43	15	30%	Pass	
Zinc	M17-Ma25965	CP	mg/kg	120	120	<1	30%	Pass	
Duplicate	1 101.17 IVIGE0000	<u> </u>	9/10	120	120		0070	, aos	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ma25966	СР	mg/kg	3.2	3.2	1.0	30%	Pass	
Cadmium	M17-Ma25966	CP	mg/kg	< 0.4	< 0.4	<1.0 <1	30%	Pass	
		CP		44	44	1.0	30%	Pass	
Coppor	M17-Ma25966	CP	mg/kg						
Copper	M17-Ma25966		mg/kg	28	29	1.0	30%	Pass	
Lead	M17-Ma25966	CP	mg/kg	21	21	2.0	30%	Pass	
Mercury	M17-Ma25966	CP	mg/kg	0.1	0.1	10	30%	Pass	
Nickel	M17-Ma25966	CP	mg/kg	40	40	1.0	30%	Pass	
Zinc	M17-Ma25966	CP	mg/kg	120	120	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	9			Result 1	Result 2	RPD			
	1	СР	ma/ka				200/	Pass	
Acenaphthene Acenaphthylene	M17-Ma25967 M17-Ma25967	CP	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30% 30%	Pass	
Anthracene	M17-Ma25967	CP	mg/kg mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
. ,	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene Benzo(k)fluoranthene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-Ma25967	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M17-Ma25967	CP		< 0.5	< 0.5	<1	30%	Pass	
Duplicate	I IVI I I -IVIAZOSOI	LCP	mg/kg	<u> </u>	< 0.5	<u> </u>	30%	rass	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	M17-Ma25967	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	M17-Ma25967	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	M17-Ma25967	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M17-Ma25967	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M17-Ma25967	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	_

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M17-Ma25973	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M17-Ma25973	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M17-Ma25978	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M17-Ma25973	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	I WITT WAZSSTS	01	i ilig/kg				3070	1 433	
Duplicate				Result 1	Result 2	RPD			
% Clay	M17-Ma24089	NCP	%	5.0	5.0	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C)	M17-Ma26158	NCP	uS/cm	61	59	4.0	30%	Pass	
pH (1:5 Aqueous extract)	M17-Ma26168	NCP	pH Units	8.4	8.5	pass	30%	Pass	
Duplicate	W117-Wa20100	INCI	pri Onits	0.4	0.5	pass	30 /0	1 833	
Duplicate				Result 1	Result 2	RPD			
% Moisture	M17-Ma25974	СР	%	25	25	<1	30%	Pass	
Duplicate	W117-Wa25574	l Ci	/0	2.5	20		30 /0	1 833	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ma25975	СР	mg/kg	2.7	3.2	17	30%	Pass	
Cadmium	M17-Ma25975	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ma25975	CP	mg/kg	120	130	7.0	30%	Pass	
Copper	M17-Ma25975	CP	mg/kg	27	29	7.0	30%	Pass	
Lead	M17-Ma25975	CP	mg/kg	13	14	7.0	30%	Pass	
Mercury	M17-Ma25975	CP	mg/kg	0.1	< 0.1	4.0	30%	Pass	
Nickel	M17-Ma25975	CP	mg/kg	52	53	1.0	30%	Pass	
Zinc	M17-Ma25975	CP	mg/kg	27	34	22	30%	Pass	
Duplicate			,g/ng		, J-		3370	1 400	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ma25976	СР	mg/kg	11	11	<1	30%	Pass	
Cadmium	M17-Ma25976	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ma25976	CP	mg/kg	80	80	<1	30%	Pass	
Copper	M17-Ma25976	CP	mg/kg	20	20	1.0	30%	Pass	
Lead	M17-Ma25976	CP	mg/kg	16	16	<1	30%	Pass	
Mercury	M17-Ma25976	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Ma25976	CP	mg/kg	36	36	1.0	30%	Pass	
	M17-Ma25976	CP							
Zinc	INITI-INIAZOS/10	l Cr	mg/kg	37	37	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

N02

Mary Makarios Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Senior Analyst-Volatile (VIC) Harry Bacalis Huong Le Senior Analyst-Inorganic (VIC) Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Euroffins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Euroffins Img be liable for consequential damages including, but no limited to, lots profits, damages for tentative to meet decidenties and lot store production arising from this report. This document shall be reproduced or expect in full and retrietates only to the terms tested. Unless indicated otherwise, the tests were performed on the samples as received.

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook NSW 2304

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Damien Hendrickx

 Report
 539344-W

 Project name
 LOCHINVAR

 Project ID
 754-NTLEN202989

 Received Date
 Mar 23, 2017

Client Sample ID			POND 4-SW4	POND 5-SW5	QC9
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Ma25979	M17-Ma25980	M17-Ma25983
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit		, ,	,
Total Recoverable Hydrocarbons - 1999 NEPM		Orne			
TRH C6-C9	0.02	mg/L	_	_	< 0.02
TRH C10-C14	0.05	mg/L	_	_	< 0.05
TRH C15-C28	0.1	mg/L	_	_	< 0.1
TRH C29-C36	0.1	mg/L	_	_	< 0.1
TRH C10-36 (Total)	0.1	mg/L	_	_	< 0.1
BTEX		g/ =			10
Benzene	0.001	mg/L	-	_	< 0.001
Toluene	0.001	mg/L	-	_	< 0.001
Ethylbenzene	0.001	mg/L	-	_	< 0.001
m&p-Xylenes	0.002	mg/L	_	_	< 0.002
o-Xylene	0.001	mg/L	_	_	< 0.001
Xylenes - Total	0.003	mg/L	_	_	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	_	87
Total Recoverable Hydrocarbons - 2013 NEPM		,,,			<u> </u>
Naphthalene ^{N02}	0.01	mg/L	_	_	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	-	_	< 0.05
TRH C6-C10	0.02	mg/L	_	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	_	-	< 0.02
Polycyclic Aromatic Hydrocarbons		, <u>J</u>			
Acenaphthene	0.001	mg/L	-	-	< 0.001
Acenaphthylene	0.001	mg/L	-	-	< 0.001
Anthracene	0.001	mg/L	-	-	< 0.001
Benz(a)anthracene	0.001	mg/L	-	-	< 0.001
Benzo(a)pyrene	0.001	mg/L	-	-	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	-	-	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	-	-	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	-	-	< 0.001
Chrysene	0.001	mg/L	-	-	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	-	-	< 0.001
Fluoranthene	0.001	mg/L	-	-	< 0.001
Fluorene	0.001	mg/L	-	-	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	-	< 0.001
Naphthalene	0.001	mg/L	-	-	< 0.001
Phenanthrene	0.001	mg/L	-	-	< 0.001
Pyrene	0.001	mg/L	-	-	< 0.001

Client Semple ID			DOND 4 CW4	DOND 5 CW5	000
Client Sample ID			POND 4-SW4	POND 5-SW5	QC9
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Ma25979	M17-Ma25980	M17-Ma25983
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Total PAH*	0.001	mg/L	-	-	< 0.001
2-Fluorobiphenyl (surr.)	1	%	-	-	77
p-Terphenyl-d14 (surr.)	1	%	-	-	119
Organochlorine Pesticides					
Chlordanes - Total	0.001	mg/L	< 0.001	< 0.001	< 0.001
4.4'-DDD	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Toxaphene	0.01	mg/L	< 0.01	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	99	70	75
Tetrachloro-m-xylene (surr.)	1	%	81	50	64
Organophosphorus Pesticides					
Azinphos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002
Bolstar	0.002	mg/L	< 0.002	< 0.002	< 0.002
Chlorfenvinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Chlorpyrifos	0.02	mg/L	< 0.02	< 0.02	< 0.02
Chlorpyrifos-methyl	0.002	mg/L	< 0.002	< 0.002	< 0.002
Coumaphos	0.02	mg/L	< 0.02	< 0.02	< 0.02
Demeton-S	0.02	mg/L	< 0.02	< 0.02	< 0.02
Demeton-O	0.002	mg/L	< 0.002	< 0.002	< 0.002
Diazinon	0.002	mg/L	< 0.002	< 0.002	< 0.002
Dichlorvos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Dimethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Disulfoton	0.002	mg/L	< 0.002	< 0.002	< 0.002
EPN	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethoprop	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ethyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fenitrothion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fensulfothion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Fenthion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Malathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Merphos	0.002	mg/L	< 0.002	< 0.002	< 0.002

Client Sample ID			POND 4-SW4	POND 5-SW5	QC9
Sample Matrix			Water	Water	Water
Eurofins mgt Sample No.			M17-Ma25979	M17-Ma25980	M17-Ma25983
Date Sampled			Mar 20, 2017	Mar 20, 2017	Mar 20, 2017
Test/Reference	LOR	Unit		20, 2011	20, 2011
Organophosphorus Pesticides	LOIC	Offic			
Methyl parathion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Mevinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Monocrotophos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Naled	0.002	mg/L	< 0.002	< 0.002	< 0.002
Omethoate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Phorate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Pirimiphos-methyl	0.02	mg/L	< 0.02	< 0.02	< 0.002
Pyrazophos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Ronnel	0.002	mg/L	< 0.002	< 0.002	< 0.002
Terbufos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Tetrachlorvinphos	0.002	mg/L	< 0.002	< 0.002	< 0.002
Tokuthion	0.002	mg/L	< 0.002	< 0.002	< 0.002
Trichloronate	0.002	mg/L	< 0.002	< 0.002	< 0.002
Triphenylphosphate (surr.)	1	%	122	70	95
Acid Herbicides					
2.4-D	0.001	mg/L	< 0.02	< 0.001	< 0.001
2.4-DB	0.001	mg/L	< 0.02	< 0.001	< 0.001
2.4.5-T	0.001	mg/L	< 0.02	< 0.001	< 0.001
2.4.5-TP	0.001	mg/L	< 0.02	< 0.001	< 0.001
Actril (loxynil)	0.001	mg/L	< 0.02	< 0.001	< 0.001
Dicamba	0.001	mg/L	< 0.02	< 0.001	< 0.001
Dichlorprop	0.001	mg/L	< 0.02	< 0.001	< 0.001
Dinitro-o-cresol	0.001	mg/L	< 0.02	< 0.001	< 0.001
Dinoseb	0.001	mg/L	< 0.02	< 0.001	< 0.001
MCPA	0.001	mg/L	< 0.02	< 0.001	< 0.001
MCPB	0.001	mg/L	< 0.02	< 0.001	< 0.001
Mecoprop	0.001	mg/L	< 0.02	< 0.001	< 0.001
Warfarin (surr.)	1	%	89	99	93
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	-	< 0.1
Heavy Metals					
Arsenic	0.001	mg/L	0.005	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.084	0.007	< 0.001
Copper	0.001	mg/L	0.034	0.005	< 0.001
Lead	0.001	mg/L	0.018	< 0.001	< 0.001
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.059	0.048	< 0.001
Zinc	0.005	mg/L	0.079	0.020	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 27, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			. 20,
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 24, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010		, -	,
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 27, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			·
BTEX	Melbourne	Mar 24, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 27, 2017	7 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Acid Herbicides	Melbourne	Mar 27, 2017	14 Day
- Method: LTM-ORG-2180 Phenoxy Acid Herbicides			
Metals M8	Melbourne	Mar 24, 2017	28 Days
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Eurofins mgt Suite B14			
Organochlorine Pesticides	Melbourne	Mar 27, 2017	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Mar 27, 2017	7 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Page 5 of 14

Company Name: Coffey Environments P/L N'castle

Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

Project Name: LOCHINVAR Project ID: 754-NTLEN202989

Date Reported:Mar 31, 2017

Order No.: Received: Mar 23, 2017 8:30 AM

Report #: 539344 Due: Mar 30, 2017 Phone: 02 4016 2300 Priority: 5 Day

Fax: 02 4016 2380 **Contact Name:** Damien Hendrickx

Eurofins | mgt Analytical Services Manager : Mary Makarios

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Acid Herbicides	Metals M8	втех	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons	
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	
Sydi	dney Laboratory - NATA Site # 18217																
Bris	risbane Laboratory - NATA Site # 20794					Х											
Pert	risbane Laboratory - NATA Site # 20794 Perth Laboratory - NATA Site # 18217																
Exte	rnal Laboratory	у	1														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1	SS12	Mar 20, 2017		Soil	M17-Ma25965				Х	Х	Х	Х	Х	Х		Х	
2	SS13	Mar 20, 2017		Soil	M17-Ma25966				Х		Х			Х			
3	SS14	Mar 20, 2017		Soil	M17-Ma25967				Х	Х	Х	Х	Х	Х		Х	
4	SS15	Mar 20, 2017		Soil	M17-Ma25968				Х		Х			Х			
5	SS16	Mar 20, 2017		Soil	M17-Ma25969				Х	Х	Х	Х	Х	Х		Х	
6	SS17	Mar 20, 2017		Soil	M17-Ma25970				Х	Х	Х	Х	Х	Х		Х	
7	SS18	Mar 20, 2017		Soil	M17-Ma25971				Х		Х			Х			
8	SS19	Mar 20, 2017		Soil	M17-Ma25972				Х		Х			Х			
9	SS20	Mar 20, 2017		Soil	M17-Ma25973	Х		Х	Х	Х	Х	Х	Х	Х	Х	X	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Report Number: 539344-W

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 4016 2300

02 4016 2380

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Coffey Environments P/L N'castle

Address: Lot 101, 19 Warabrook Boulevard

> Warabrook NSW 2304

Project Name: LOCHINVAR Project ID: 754-NTLEN202989 Order No.: Received: Mar 23, 2017 8:30 AM Report #: 539344

Due: Mar 30, 2017

Priority: 5 Day **Contact Name:** Damien Hendrickx

Eurofins | mgt Analytical Services Manager : Mary Makarios

		Sa	mple Detail			% Clay	HOLD	pH (1:5 Aqueous extract)	Polycyclic Aromatic Hydrocarbons	Acid Herbicides	Metals M8	втех	Eurofins mgt Suite B14	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	.71			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217													
Bris	bane Laborator	y - NATA Site #	20794			Χ										
Pert	h Laboratory - N	NATA Site # 182	17													
10	SS21	Mar 20, 2017		Soil	M17-Ma25974				Х	Х	Х	Х	Χ	Х		Х
11	SS22	Mar 20, 2017		Soil	M17-Ma25975					Х	Х		Χ	Х		
12	SS23	Mar 20, 2017		Soil	M17-Ma25976					Х	Х		Χ	Х		
13	SP1	Mar 20, 2017		Soil	M17-Ma25977				Х	Х	Х	Х	Χ	Х		Х
14	SS24	Mar 20, 2017		Soil	M17-Ma25978				Х		Х	Х		Х		Х
15	POND 4-SW4	Mar 20, 2017		Water	M17-Ma25979					Х	Х		Χ			
16	POND 5-SW5	Mar 20, 2017		Water	M17-Ma25980					Х	Х		Χ			
17	QC6	Mar 20, 2017		Soil	M17-Ma25981						Х			Х		
18	QC7	Mar 20, 2017		Soil	M17-Ma25982				Х	Х	Х	Х	Χ	Х		Х
19	QC9	Mar 20, 2017		Water	M17-Ma25983				Х	Х	Х	Х	Χ			Х
20	SS25	Mar 20, 2017		Soil	M17-Ma25984		Х									
Test	Counts					1	1	1	14	13	19	10	13	16	1	10

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 539344-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 539344-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u>'</u>				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank				•	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	 				
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	

	T		Acceptance	Pass	Qualifying
Test	Units	Result 1	Limits	Limits	Code
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Acid Herbicides					
2.4-D	mg/L	< 0.001	0.001	Pass	
2.4-DB	mg/L	< 0.001	0.001	Pass	
2.4.5-T	mg/L	< 0.001	0.001	Pass	
2.4.5-TP	mg/L	< 0.001	0.001	Pass	
Actril (loxynil)	mg/L	< 0.001	0.001	Pass	
Dicamba	mg/L	< 0.001	0.001	Pass	
Dichlorprop	mg/L	< 0.001	0.001	Pass	
Dinitro-o-cresol	mg/L	< 0.001	0.001	Pass	
Dinoseb	mg/L	< 0.001	0.001	Pass	
MCPA	mg/L	< 0.001	0.001	Pass	
МСРВ	mg/L	< 0.001	0.001	Pass	
Mecoprop	mg/L	< 0.001	0.001	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		T T			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	85	70-130	Pass	
TRH C10-C14	%	76	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	116	70-130	Pass	
Toluene	%	116	70-130	Pass	
Ethylbenzene	%	116	70-130	Pass	
m&p-Xylenes	%	122	70-130	Pass	
Xylenes - Total	%	120	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				<u> </u>	
Naphthalene	%	102	70-130	Pass	
TRH C6-C10	%	89	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons	<u> </u>			_	
Acenaphthene	%	115	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	%	116	70-130	Pass	0000
Anthracene	%	126	70-130	Pass	
Benz(a)anthracene	%	116	70-130	Pass	
Benzo(a)pyrene	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	%	110	70-130	Pass	
Benzo(g.h.i)perylene	%	127	70-130	Pass	
Benzo(k)fluoranthene	%	101	70-130	Pass	
Chrysene	%	113	70-130	Pass	
Dibenz(a.h)anthracene	%	122	70-130	Pass	
Fluoranthene	%	99	70-130	Pass	
Fluorene	%	121	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	119	70-130	Pass	
Naphthalene	%	93	70-130	Pass	
Phenanthrene	%	129	70-130	Pass	
Pyrene	%	101	70-130	Pass	
LCS - % Recovery		T		T	
Organochlorine Pesticides	ı			-	
4.4'-DDD	%	95	70-130	Pass	
4.4'-DDE	%	93	70-130	Pass	
4.4'-DDT	%	115	70-130	Pass	
a-BHC	%	124	70-130	Pass	
Aldrin	%	83	70-130	Pass	
b-BHC	%	112	70-130	Pass	
d-BHC	%	109	70-130	Pass	
Dieldrin	%	118	70-130	Pass	
Endosulfan I	%	121	70-130	Pass	
Endosulfan II	%	108	70-130	Pass	
Endosulfan sulphate	%	104	70-130	Pass	
Endrin	%	109	70-130	Pass	
Endrin aldehyde	%	99	70-130	Pass	
Endrin ketone	%	91	70-130	Pass	
g-BHC (Lindane)	%	119	70-130	Pass	
Heptachlor	%	100	70-130	Pass	
Heptachlor epoxide	%	117	70-130	Pass	
Hexachlorobenzene	%	82	70-130	Pass	
Methoxychlor	%	121	70-130	Pass	
LCS - % Recovery					
Acid Herbicides		101	70.400	-	
2.4-DB	%	101	70-130	Pass	
2.4.5-T	%	108	70-130	Pass	
2.4.5-TP	%	79	70-130	Pass	
Actril (loxynil)	%	81	70-130	Pass	
Dichlorprop	%	91	70-130	Pass	
Dinoseb	%	85	70-130	Pass	
MCPA	%	89	70-130	Pass	
MCPB	%	102	70-130	Pass	
Mecoprop	%	84	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
TRH >C10-C16	%	90	70-130	Pass	
LCS - % Recovery					
LOG - 70 RECOVERY					
				Π	
Heavy Metals Arsenic	%	105	80-120	Pass	

	Test		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chromium			%	99	80-120	Pass	
Copper			%	97	80-120	Pass	
Lead			%	98	80-120	Pass	
Mercury			%	103	75-125	Pass	
Nickel			%	96	80-120	Pass	
Zinc			%	100	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				Decult 4		l	
Organochlorine Pesticides	M47 M-04405	NOD	0/	Result 1	70.420	Dana	
4.4'-DDD	M17-Ma24135	NCP	%	90	70-130	Pass	
4.4'-DDE	M17-Ma24135	NCP	%	114	70-130	Pass	
4.4'-DDT	M17-Ma24135	NCP	%	111	70-130	Pass	
a-BHC	M17-Ma24135	NCP	%	96	70-130	Pass	
Aldrin	M17-Ma24135	NCP	%	90	70-130	Pass	
b-BHC	M17-Ma24135	NCP	%	84	70-130	Pass	
d-BHC	M17-Ma24135	NCP	%	85	70-130	Pass	
Dieldrin	M17-Ma24135	NCP	%	105	70-130	Pass	
Endosulfan I	M17-Ma24135	NCP	%	87	70-130	Pass	
Endosulfan II	M17-Ma24135	NCP	%	80	70-130	Pass	
Endosulfan sulphate	M17-Ma24135	NCP	%	76	70-130	Pass	
Endrin	M17-Ma24135	NCP	%	97	70-130	Pass	
Endrin aldehyde	M17-Ma24135	NCP	%	80	70-130	Pass	
Endrin ketone	M17-Ma21976	NCP	%	72	70-130	Pass	
g-BHC (Lindane)	M17-Ma24135	NCP	%	98	70-130	Pass	
Heptachlor	M17-Ma24135	NCP	%	94	70-130	Pass	
Heptachlor epoxide	M17-Ma24135	NCP	%	87	70-130	Pass	
Hexachlorobenzene	M17-Ma24135	NCP	%	84	70-130	Pass	
Methoxychlor	M17-Ma24135	NCP	%	121	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	M17-Ma25980	СР	%	104	75-125	Pass	
Cadmium	M17-Ma25980	СР	%	96	75-125	Pass	
Chromium	M17-Ma25980	СР	%	96	75-125	Pass	
Copper	M17-Ma25980	CP	%	94	75-125	Pass	
Lead	M17-Ma25980	CP	%	97	75-125	Pass	
Mercury	M17-Ma25980	CP	%	90	70-130	Pass	
Nickel	M17-Ma25980	CP	%	88	75-125	Pass	
Zinc	M17-Ma25980	CP	%	94	75-125	Pass	
Spike - % Recovery	WITT-Wa23900	L CF	/0	94	75-125	Fass	
Total Recoverable Hydrocar	hone 1000 NEDM Front	ione		Popult 1		I	
TRH C6-C9			0/	Result 1	70.420	Door	
	M17-Ma26638	NCP	%	92	70-130	Pass	
TRH C10-C14	M17-Ma27536	NCP	%	71	70-130	Pass	
Spike - % Recovery						I	
BTEX	T			Result 1			
Benzene	M17-Ma26638	NCP	%	109	70-130	Pass	
Toluene	M17-Ma26638	NCP	%	106	70-130	Pass	
Ethylbenzene	M17-Ma26638	NCP	%	104	70-130	Pass	
m&p-Xylenes	M17-Ma26638	NCP	%	109	70-130	Pass	
o-Xylene	M17-Ma26638	NCP	%	105	70-130	Pass	
Xylenes - Total	M17-Ma26638	NCP	%	108	70-130	Pass	
Spike - % Recovery				,		1	
Total Recoverable Hydrocar	bons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	M17-Ma26638	NCP	%	91	70-130	Pass	
TRH C6-C10	M17-Ma26638	NCP	%	91	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbons	S			Result 1					
Acenaphthene	M17-Ma25693	NCP	%	110			70-130	Pass	
Acenaphthylene	M17-Ma25693	NCP	%	111			70-130	Pass	
Anthracene	M17-Ma25693	NCP	%	111			70-130	Pass	
Benz(a)anthracene	M17-Ma25693	NCP	%	118			70-130	Pass	
Benzo(a)pyrene	M17-Ma25693	NCP	%	78			70-130	Pass	
Benzo(b&j)fluoranthene	M17-Ma25693	NCP	%	75			70-130	Pass	
Benzo(g.h.i)perylene	M17-Ma25693	NCP	%	123			70-130	Pass	
Benzo(k)fluoranthene	M17-Ma25693	NCP	%	71			70-130	Pass	
Chrysene	M17-Ma25693	NCP	%	116			70-130	Pass	
Dibenz(a.h)anthracene	M17-Ma25693	NCP	%	113			70-130	Pass	
Fluoranthene	M17-Ma25693	NCP	%	103			70-130	Pass	
Fluorene	M17-Ma25693	NCP	%	114			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Ma25693	NCP	%	106			70-130	Pass	
Naphthalene	M17-Ma25693	NCP	%	108			70-130	Pass	
Phenanthrene	M17-Ma25693	NCP	%	115			70-130	Pass	
Pyrene	M17-Ma25693	NCP	%	106			70-130	Pass	
Spike - % Recovery			,,,				10.00	. 455	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	M17-Ma27536	NCP	%	73			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M17-Ma26666	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
4.4'-DDD	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDE	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDT	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
a-BHC	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Aldrin	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
g-BHC (Lindane)	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Methoxychlor	M17-Ma26666	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Toxaphene	M17-Ma26666	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Duplicate	IVITY-IVIAZOGGO	1401	mg/L	< 0.01	< 0.01		3070	1 433	
				Result 1	Result 2	RPD			
•				1	< 0.001	<1	30%	Pass	
Heavy Metals	M17-M225090	CD	ma/l			S 1			ı
Heavy Metals Arsenic	M17-Ma25980	CP CP	mg/L	< 0.001					
Heavy Metals Arsenic Cadmium	M17-Ma25980	СР	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Heavy Metals Arsenic Cadmium Chromium	M17-Ma25980 M17-Ma25980	CP CP	mg/L mg/L	< 0.0002 0.007	< 0.0002 0.006	<1 16	30% 30%	Pass Pass	
Heavy Metals Arsenic Cadmium Chromium Copper	M17-Ma25980 M17-Ma25980 M17-Ma25980	CP CP	mg/L mg/L mg/L	< 0.0002 0.007 0.005	< 0.0002 0.006 0.005	<1 16 5.0	30% 30% 30%	Pass Pass Pass	
Heavy Metals Arsenic Cadmium Chromium Copper Lead	M17-Ma25980 M17-Ma25980 M17-Ma25980 M17-Ma25980	CP CP CP	mg/L mg/L mg/L mg/L	< 0.0002 0.007 0.005 < 0.001	< 0.0002 0.006 0.005 < 0.001	<1 16 5.0 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Heavy Metals Arsenic Cadmium Chromium Copper	M17-Ma25980 M17-Ma25980 M17-Ma25980	CP CP	mg/L mg/L mg/L	< 0.0002 0.007 0.005	< 0.0002 0.006 0.005	<1 16 5.0	30% 30% 30%	Pass Pass Pass	

Duplicate									
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-Ma26637	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	M17-Ma27760	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	M17-Ma27760	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	M17-Ma27760	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M17-Ma26637	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	M17-Ma26637	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	M17-Ma26637	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	M17-Ma26637	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	M17-Ma26637	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	M17-Ma26637	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M17-Ma26637	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	M17-Ma26637	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarl	oons			Result 1	Result 2	RPD			
Acenaphthene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M17-Ma28001	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M17-Ma27760	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	M17-Ma27760	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	M17-Ma27760	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	

Report Number: 539344-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Mary Makarios Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported everyein full and are fetted send yet of the liable to meet when the sindle and otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order : **EM1500386** Page : 1 of 6

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Melbourne

Contact : MS LIBBY BETZ : Bronwyn Sheen

Address : 19 WARABRROK BOULEVARD Address : 4 Westall Rd Springvale VIC Australia 3171

WARABROOK NSW, AUSTRALIA 2304

 Telephone
 : +61 02 4016 2300
 Telephone
 : +61-3-8549 9636

 Facsimile
 : +61 02 4016 2380
 Facsimile
 : +61-3-8549 9601

Project : ENAUWARA04581AA Winders Lane QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : 3459
 Date Samples Received
 : 16-JAN-2015

 Sampler
 : JK
 Issue Date
 : 22-JAN-2015

Site : ----

No. of samples received : 1

Quote number : EN/077/14 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

NATA Accredited Laboratory 825

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Herman Lin Laboratory Manager Melbourne Inorganics

Nancy Wang Senior Semivolatile Instrument Chemist Melbourne Organics

Address 4 Westall Rd Springvale VIC Australia 3171 PHONE +61-3-8549 9600 Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 6
Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 6
Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC 3						
	Client sampling date / time			14-JAN-2015 15:00						
Compound	CAS Number	LOR	Unit	EM1500386-001						
EA055: Moisture Content										
Moisture Content (dried @ 103°C)		1.0	%	30.7						
EG005T: Total Metals by ICP-AES										
Arsenic	7440-38-2	5	mg/kg	<5						
Cadmium	7440-43-9	1	mg/kg	<1						
Chromium	7440-47-3	2	mg/kg	96						
Copper	7440-50-8	5	mg/kg	34						
Lead	7439-92-1	5	mg/kg	6						
Nickel	7440-02-0	2	mg/kg	70						
Zinc	7440-66-6	5	mg/kg	53						
EG035T: Total Recoverable Mercury by FIMS										
Mercury	7439-97-6	0.1	mg/kg	<0.1						
EP075(SIM)B: Polynuclear Aromatic	c Hvdrocarbons									
Naphthalene	91-20-3	0.5	mg/kg	<0.5						
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5						
Acenaphthene	83-32-9	0.5	mg/kg	<0.5						
Fluorene	86-73-7	0.5	mg/kg	<0.5						
Phenanthrene	85-01-8	0.5	mg/kg	<0.5						
Anthracene	120-12-7	0.5	mg/kg	<0.5						
Fluoranthene	206-44-0	0.5	mg/kg	<0.5						
Pyrene	129-00-0	0.5	mg/kg	<0.5						
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5						
Chrysene	218-01-9	0.5	mg/kg	<0.5						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5						
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5						
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5						
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5						
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5						
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5						
Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5						
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5						
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6						
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2						
EP080/071: Total Petroleum Hydrod	arbons									

Page : 4 of 6 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			QC 3	 	
	Cli	ent sampli	ng date / time	14-JAN-2015 15:00	 	
Compound	CAS Number	CAS Number LOR Unit		EM1500386-001	 	
EP080/071: Total Petroleum Hydrocar						
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
>C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	 	
EP080: BTEXN						
Benzene	71-43-2	0.2	mg/kg	<0.2	 	
Toluene	108-88-3	0.5	mg/kg	<0.5	 	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	 	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	 	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	 	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	 	
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP075(SIM)S: Phenolic Compound Su	urrogates					
Phenol-d6	13127-88-3	0.1	%	98.6	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	100	 	
2.4.6-Tribromophenol	118-79-6	0.1	%	80.4	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.1	%	98.3	 	
Anthracene-d10	1719-06-8	0.1	%	119	 	
4-Terphenyl-d14	1718-51-0	0.1	%	110	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.1	%	99.8	 	

Page : 5 of 6
Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID		QC 3					
	ient sampli	ng date / time	14-JAN-2015 15:00						
Compound	CAS Number	LOR	Unit	EM1500386-001					
EP080S: TPH(V)/BTEX Surrogates - Continued									
Toluene-D8	2037-26-5	0.1	%	86.6					
4-Bromofluorobenzene	460-00-4	0.1	%	92.5					

Page : 6 of 6 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Sur	rogates			
Phenol-d6	13127-88-3	54	125	
2-Chlorophenol-D4	93951-73-6	65	123	
2.4.6-Tribromophenol	118-79-6	34	122	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	61	125	
Anthracene-d10	1719-06-8	62	130	
4-Terphenyl-d14	1718-51-0	67	133	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	51	125	
Toluene-D8	2037-26-5	55	125	
4-Bromofluorobenzene	460-00-4	56	124	

QUALITY CONTROL REPORT

Work Order : **EM1500386** Page : 1 of 8

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Melbourne

Contact : MS LIBBY BETZ Contact : Bronwyn Sheen

Address : 19 WARABRROK BOULEVARD Address : 4 Westall Rd Springvale VIC Australia 3171

WARABROOK NSW, AUSTRALIA 2304

Telephone : +61 02 4016 2300 Telephone : +61-3-8549 9636
Facsimile : +61 02 4016 2380 Facsimile : +61-3-8549 9601

Project : ENAUWARA04581AA Winders Lane QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : 3459
 Date Samples Received
 : 16-JAN-2015

 Sampler
 : JK
 Issue Date
 : 22-JAN-2015

No. of samples received : 1

Quote number : EN/077/14 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

NATA Accredited

Laboratory 825

Accredited for

compliance with

ISO/IEC 17025.

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Order number

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Herman LinLaboratory ManagerMelbourne InorganicsNancy WangSenior Semivolatile Instrument ChemistMelbourne Organics

Address 4 Westall Rd Springvale VIC Australia 3171 | PHONE +61-3-8549 9600 | Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EA055: Moisture C	ontent (QC Lot: 379033	7)									
EM1500281-051	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	12.9	12.4	4.4	0% - 50%		
EG005T: Total Meta	als by ICP-AES (QC Lot	: 3791683)									
EM1500375-006	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	20	14	34.5	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	11	8	28.6	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	5	<5	0.0	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	13	8	41.8	No Limit		
EG035T: Total Rec	overable Mercury by FI	MS (QC Lot: 3791684)									
EM1500375-006	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit		
EP075(SIM)B: Poly	nuclear Aromatic Hydro	carbons (QC Lot: 3791690)									
EM1500368-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
			205-82-3								
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3790518)									
EM1500281-017	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EM1500411-018	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit		
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 3791688)									
EM1500362-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit		
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit		

Page : 4 of 8
Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 3791688) - continued							
EM1500362-001	Anonymous	EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 3790518)							
EM1500281-017	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EM1500411-018	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 3791688)							
EM1500362-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.0	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 3790518)								
EM1500281-017	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EM1500411-018	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit

Page : 5 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 3791683	3)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	97.0	79	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	102	87	115
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	100	89	113
EG005T: Copper	7440-50-8	5	mg/kg	<5	32.0 mg/kg	99.3	90	116
EG005T: Lead	7439-92-1	5	mg/kg	<5	40.0 mg/kg	94.9	85	107
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55.0 mg/kg	101	89	111
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	101	89	111
EG035T: Total Recoverable Mercury by FIMS (QCI	Lot: 3791684)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	95.8	85	103
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 3791690)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	106	65	119
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	106	61	125
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	92.6	68	114
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	91.1	62	120
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	95.1	69	113
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	104	68	116
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	108	67	115
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	106	66	116
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	85.2	62	116
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	111	63	119
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	70.9	64	114
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	113	67	115
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	87.9	64	114
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	83.5	62	116
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	81.2	62	114
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	79.3	59	117
EP080/071: Total Petroleum Hydrocarbons (QCLot	:: 3790518)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	79.2	66	130
EP080/071: Total Petroleum Hydrocarbons (QCLot	: 3791688)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	626 mg/kg	112	65	131
EP071: C15 - C28 Fraction		100	mg/kg	<100	3144 mg/kg	106	70	126
EP071: C29 - C36 Fraction		100	mg/kg	<100	1604 mg/kg	93.9	70	122
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50				

Page : 6 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 3790518)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	86.7	64	128
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	013 Fractions (QCL	ot: 3791688)						
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	1018 mg/kg	105	68	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	4616 mg/kg	94.8	72	116
EP071: >C34 - C40 Fraction		100	mg/kg	<100	116 mg/kg	90.5	38	132
EP071: >C10 - C40 Fraction (sum)		100	mg/kg	<100				
EP080: BTEXN (QCLot: 3790518)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	89.3	74	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	89.4	75	129
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	89.0	72	124
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	90.9	72	132
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	93.4	76	130
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	92.0	66	132

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005T: Total Met	als by ICP-AES (QCLot: 3791683)						
EM1500375-008	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	99.5	78	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	99.4	84	116
		EG005T: Chromium	7440-47-3	50 mg/kg	102	79	121
		EG005T: Copper	7440-50-8	50 mg/kg	102	82	124
		EG005T: Lead	7439-92-1	50 mg/kg	105	76	124
		EG005T: Nickel	7440-02-0	50 mg/kg	98.1	78	120
		EG005T: Zinc	7440-66-6	50 mg/kg	99.6	74	128
G035T: Total Re	coverable Mercury by FIMS (QCLot: 3791684)						
EM1500375-008	Anonymous	EG035T: Mercury	7439-97-6	5.0 mg/kg	89.3	76	116
P075(SIM)B: Poly	vnuclear Aromatic Hydrocarbons (QCLot: 3791690)						
EM1500375-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	1.5 mg/kg	98.0	67	117
		EP075(SIM): Pyrene	129-00-0	1.5 mg/kg	107	52	148
P080/071: Total P	Petroleum Hydrocarbons (QCLot: 3790518)						
EM1500281-020	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	65.8	42	131

Page : 7 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Sub-Matrix: SOIL				Ма	trix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3791688)						
EM1500368-001	Anonymous	EP071: C10 - C14 Fraction		626 mg/kg	117	64	132
		EP071: C15 - C28 Fraction		3144 mg/kg	113	68	128
		EP071: C29 - C36 Fraction		1604 mg/kg	103	69	123
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 3790518)					
EM1500281-020	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	71.5	39	129
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fractions(QCL	ot: 3791688)					
EM1500368-001	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	1018 mg/kg	113	65	131
		EP071: >C16 - C34 Fraction		4616 mg/kg	101	69	119
		EP071: >C34 - C40 Fraction		116 mg/kg	118	45	137
EP080: BTEXN (Q	CLot: 3790518)						
EM1500281-020	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	74.7	50	136
		EP080: Toluene	108-88-3	2 mg/kg	73.9	56	139

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (N	IS) and Matrix Spi	ke Duplicate	(MSD) Repor	t	
				Spike	Spike Red	overy (%)	Recovery	Limits (%)	RPD)s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3790518									
EM1500281-020	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	65.8		42	131		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fi	ractions (QCLot: 3790518)								
EM1500281-020	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	71.5		39	129		
EP080: BTEXN (Q	CLot: 3790518)									
EM1500281-020	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	74.7		50	136		
		EP080: Toluene	108-88-3	2 mg/kg	73.9		56	139		
EG005T: Total Meta	als by ICP-AES (QCLot: 3791683)									
EM1500375-008	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	99.5		78	124		
		EG005T: Cadmium	7440-43-9	50 mg/kg	99.4		84	116		
		EG005T: Chromium	7440-47-3	50 mg/kg	102		79	121		
		EG005T: Copper	7440-50-8	50 mg/kg	102		82	124		
		EG005T: Lead	7439-92-1	50 mg/kg	105		76	124		
		EG005T: Nickel	7440-02-0	50 mg/kg	98.1		78	120		
		EG005T: Zinc	7440-66-6	50 mg/kg	99.6		74	128		
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 37916	84)								
EM1500375-008	Anonymous	EG035T: Mercury	7439-97-6	5.0 mg/kg	89.3		76	116		

Page : 8 of 8 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Sub-Matrix: SOIL					Matrix Spike (M	IS) and Matrix Spil	ke Duplicate	(MSD) Repor	t	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD)s (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 3791688)								
EM1500368-001	Anonymous	EP071: C10 - C14 Fraction		626 mg/kg	117		64	132		
		EP071: C15 - C28 Fraction		3144 mg/kg	113		68	128		
		EP071: C29 - C36 Fraction		1604 mg/kg	103		69	123		
EP080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 F	ractions (QCLot: 3791688)								
EM1500368-001	Anonymous	EP071: >C10 - C16 Fraction	>C10_C16	1018 mg/kg	113		65	131		
		EP071: >C16 - C34 Fraction		4616 mg/kg	101		69	119		
		EP071: >C34 - C40 Fraction		116 mg/kg	118		45	137		
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot:	3791690)								
EM1500375-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	1.5 mg/kg	98.0		67	117		
		EP075(SIM): Pyrene	129-00-0	1.5 mg/kg	107		52	148		

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **EM1500386** Page : 1 of 5

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Melbourne

Contact : MS LIBBY BETZ Contact : Bronwyn Sheen

Address : 19 WARABRROK BOULEVARD Address : 4 Westall Rd Springvale VIC Australia 3171

WARABROOK NSW, AUSTRALIA 2304

Telephone : +61 02 4016 2300 Telephone : +61-3-8549 9636
Facsimile : +61 02 4016 2380 Facsimile : +61-3-8549 9601

Project : ENAUWARA04581AA Winders Lane QC Level : NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : 3459
 Date Samples Received
 : 16-JAN-2015

 Sampler
 : JK
 Issue Date
 : 22-JAN-2015

Order number : ----

No. of samples received : 1

Quote number : EN/077/14 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 4 Westall Rd Springvale VIC Australia 3171 PHONE +61-3-8549 9600 Facsimile +61-3-8549 9601 Environmental Division Melbourne ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

Page : 2 of 5 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) QC 3	14-JAN-2015				19-JAN-2015	28-JAN-2015	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QC 3	14-JAN-2015	20-JAN-2015	13-JUL-2015	1	20-JAN-2015	13-JUL-2015	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QC 3	14-JAN-2015	20-JAN-2015	11-FEB-2015	1	21-JAN-2015	11-FEB-2015	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) QC 3	14-JAN-2015	20-JAN-2015	28-JAN-2015	✓	20-JAN-2015	01-MAR-2015	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) QC 3	14-JAN-2015	20-JAN-2015	28-JAN-2015	1	21-JAN-2015	01-MAR-2015	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QC 3	14-JAN-2015	19-JAN-2015	28-JAN-2015	1	20-JAN-2015	28-JAN-2015	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080) QC 3	14-JAN-2015	19-JAN-2015	28-JAN-2015	1	20-JAN-2015	28-JAN-2015	✓

Page : 3 of 5 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOII**Fivaluation: **x** = Quality Control frequency not within specification: √ = Quality Control frequency within specification.

Matrix: SOIL	<u> </u>			Evaluation	n: × = Quality Co	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC .	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	1	4	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	7	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	7	14.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	9	11.1	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	2	11	18.2	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	9	11.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.5	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	9	11.1	5.0	√	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	11	9.1	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	8	12.5	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Mercury by FIMS	EG035T	1	7	14.3	5.0	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-AES	EG005T	1	7	14.3	5.0	√	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH - Semivolatile Fraction	EP071	1	9	11.1	5.0	√	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
TRH Volatiles/BTEX	EP080	1	11	9.1	5.0	√	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page : 4 of 5 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 21st ed., 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 21st ed., 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Page : 5 of 5 Work Order : EM1500386

Client : COFFEY ENVIRONMENTS PTY LTD
Project : ENAUWARA04581AA Winders Lane

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW 846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

CERTIFICATE OF ANALYSIS

Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Contact : MR DAMIEN HENDRICKX

Address : 19 WARABRROK BOULEVARD

WARABROOK NSW, AUSTRALIA 2304

Telephone : +61 02 4016 2300
Project : 754-NTLEN202989

Order number : ----

C-O-C number : 4573

Sampler : SEAN BLACKFORD

Site : Lochinvar

Quote number : EN/077/17

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Bronwyn Sheen

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9636

Date Samples Received : 23-Mar-2017 17:50

Date Analysis Commenced : 24-Mar-2017

Issue Date : 30-Mar-2017 15:44

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryChris LemaitreNon-Metals Team LeaderMelbourne Inorganics, Springvale, VICEric ChauMetals Team LeaderMelbourne Inorganics, Springvale, VICLana NguyenSenior LCMS ChemistSydney Organics, Smithfield, NSWXing LinSenior Organic ChemistMelbourne Organics, Springvale, VIC

Page : 2 of 7 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project · 754-NTLEN202989

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

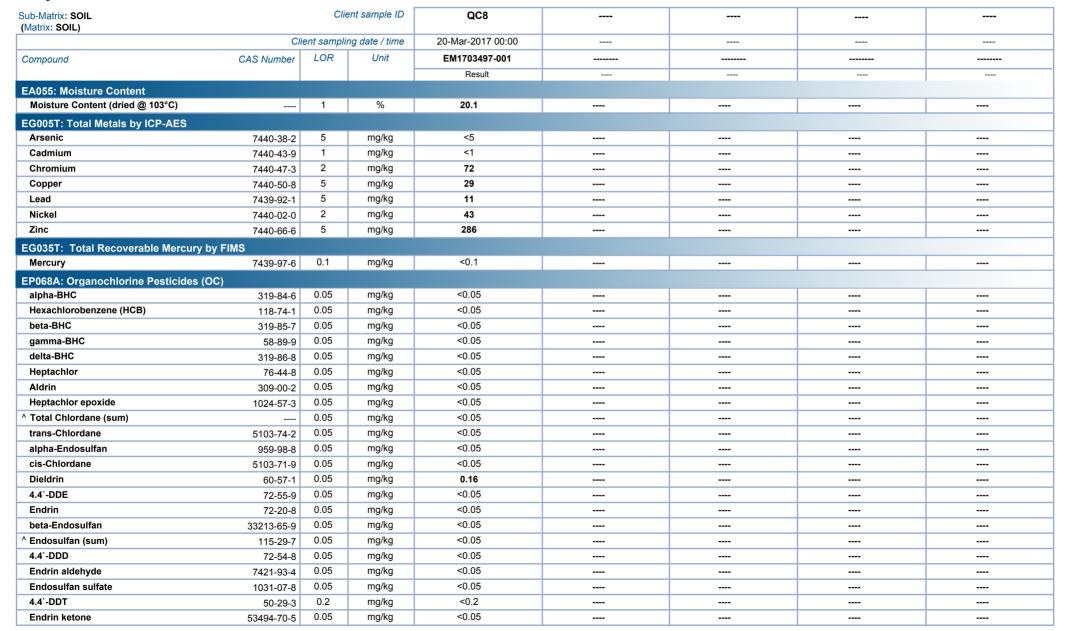
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 7 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Analytical Results

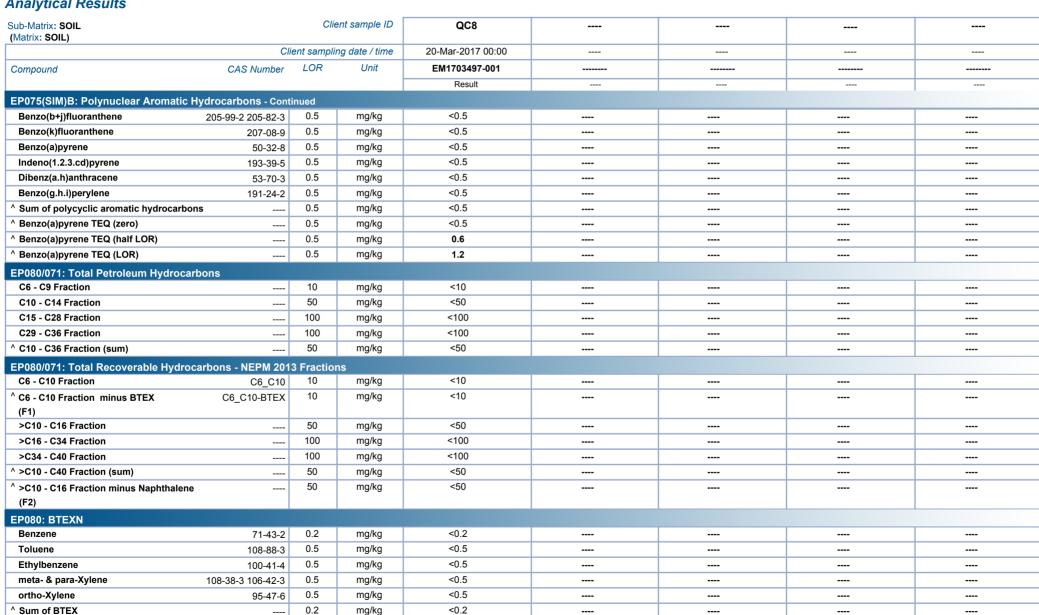


Page : 4 of 7
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Analytical Results


Page : 5 of 7 Work Order EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

754-NTLEN202989 Project

Analytical Results

^ Total Xylenes

< 0.5

1330-20-7

0.5

mg/kg

Page : 6 of 7
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC8	 	
	CI	ient sampli	ng date / time	20-Mar-2017 00:00	 	
Compound	CAS Number	LOR	Unit	EM1703497-001	 	
				Result	 	
EP080: BTEXN - Continued						
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP202A: Phenoxyacetic Acid Herbi	cides by LCMS					
4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	 	
2.4-DB	94-82-6	0.02	mg/kg	<0.02	 	
Dicamba	1918-00-9	0.02	mg/kg	<0.02	 	
Mecoprop	93-65-2	0.02	mg/kg	<0.02	 	
MCPA	94-74-6	0.02	mg/kg	<0.02	 	
2.4-DP	120-36-5	0.02	mg/kg	<0.02	 	
2.4-D	94-75-7	0.02	mg/kg	<0.02	 	
Triclopyr	55335-06-3	0.02	mg/kg	<0.02	 	
2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	 	
2.4.5-T	93-76-5	0.02	mg/kg	<0.02	 	
MCPB	94-81-5	0.02	mg/kg	<0.02	 	
Picloram	1918-02-1	0.02	mg/kg	<0.02	 	
Clopyralid	1702-17-6	0.02	mg/kg	<0.02	 	
Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	 	
P068S: Organochlorine Pesticide	Surrogate					
Dibromo-DDE	21655-73-2	0.05	%	77.1	 	
P068T: Organophosphorus Pestic	ide Surrogate					
DEF	78-48-8	0.05	%	71.1	 	
P075(SIM)S: Phenolic Compound	Surrogates					
Phenol-d6	13127-88-3	0.5	%	88.7	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	78.7	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	92.5	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	98.2	 	
Anthracene-d10	1719-06-8	0.5	%	104	 	
4-Terphenyl-d14	1718-51-0	0.5	%	102	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.0	 	
Toluene-D8	2037-26-5	0.2	%	93.6	 	
4-Bromofluorobenzene	460-00-4	0.2	%	108	 	
EP202S: Phenoxyacetic Acid Herbio						
2.4-Dichlorophenyl Acetic Acid 2.4-Dichlorophenyl Acetic Acid	19719-28-9	0.02	%	88.0	 	
2.4-Dicinorophienyi Acetic Acid	197 19-28-9	0.02	/0	00.0	 	

Page : 7 of 7
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide S	urrogate		
Dibromo-DDE	21655-73-2	38	128
EP068T: Organophosphorus Pesticio	le Surrogate		
DEF	78-48-8	33	139
EP075(SIM)S: Phenolic Compound S	urrogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124
EP202S: Phenoxyacetic Acid Herbici	de Surrogate		
2.4-Dichlorophenyl Acetic Acid	19719-28-9	45	139

QUALITY CONTROL REPORT

Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Contact : MR DAMIEN HENDRICKX

Address : 19 WARABRROK BOULEVARD

WARABROOK NSW, AUSTRALIA 2304

Telephone : +61 02 4016 2300
Project : 754-NTLEN202989

Order number : ---C-O-C number : 4573

Sampler : SEAN BLACKFORD

Site : Lochinvar Quote number : EN/077/17

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 12

Laboratory : Environmental Division Melbourne

Contact : Bronwyn Sheen

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9636

Date Samples Received : 23-Mar-2017

Date Analysis Commenced : 24-Mar-2017

Issue Date : 30-Mar-2017

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Chris Lemaitre	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Lana Nguyen	Senior LCMS Chemist	Sydney Organics, Smithfield, NSW
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project: 754-NTLEN202989

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 807431)								
EM1703499-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	19.6	19.8	1.10	0% - 50%
EG005T: Total Meta	Is by ICP-AES (QC Lot:	: 812290)							
EM1703561-004	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	71	69	2.70	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	28	27	4.56	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	13	13	0.00	No Limit
EM1703497-001	QC8	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	72	61	17.0	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	43	40	9.30	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	29	26	8.99	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	11	13	16.6	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	286	306	6.88	0% - 20%
EG035T: Total Rec	overable Mercury by FIM	MS (QC Lot: 812289)							
EM1703700-004	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1703497-001	QC8	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organoch	orine Pesticides (OC) (QC Lot: 812551)							
EM1703527-005	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 3 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Laboratory sample ID	Client sample ID						The second secon		
ED069A: Organochic	Cilent Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EPUBOA. Organiochic	orine Pesticides (OC)(QC Lot: 812551) - continued							
EM1703527-005	Anonymous	EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EM1703458-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP068B: Organopho	osphorus Pesticides (O	P) (QC Lot: 812551)							
EM1703527-005	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 4 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068B: Organopho	sphorus Pesticides (C	OP) (QC Lot: 812551) - continued							
EM1703527-005	Anonymous	EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EM1703458-001	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	ocarbons (QC Lot: 812549)							
EM1703458-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	T		- 1		, J J	1			1

Page : 5 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydr	ocarbons (QC Lot: 812549) - continued							
EM1703458-001	Anonymous	EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 807171)							
EM1703467-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EM1703469-046	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbon								
EM1703615-018	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1703458-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	,	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 807171)							
EM1703467-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EM1703469-046	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	•	ons - NEPM 2013 Fractions (QC Lot: 812550)			3 3				
EM1703615-018	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	, anonymous	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EM1703458-001	Anonymous	EP071: >C10 - C40 Fraction (sum)		100	mg/kg	<100	<100	0.00	No Limit
	,	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 807171)				33				, <u> </u>
EM1703467-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
/ / OOTO / TOO I	, alonymous	EFUOU. DEIIZEITE	11-40-2	0.2	mg/kg	-∪.∠	٦٠.٧	0.00	140 LIIIII

Page : 6 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 807171) - continu	ed							
EM1703467-001	Anonymous	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		, ,	106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EM1703469-046	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
EP202A: Phenoxyac	etic Acid Herbicides by	y LCMS (QC Lot: 810761)							
EM1703276-001	Anonymous	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
EP1702789-007	Anonymous	EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	<0.02	0.00	No Limit

Page : 7 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP202A: Phenoxyaco	etic Acid Herbicides by LCM	S (QC Lot: 810761) - continued							
EP1702789-007	Anonymous	EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	<0.02	0.00	No Limit
		EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	<0.02	0.00	No Limit

Page : 8 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005T: Total Metals by ICP-AES (QCLot: 81	2290)							
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	89.7	79	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	88.8	85	109
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	92.1	89	113
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	89.7	84	116
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	96.4	85	107
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	95.6	89	111
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	102	89	111
G035T: Total Recoverable Mercury by FIMS	(QCLot: 812289)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	91.3	85	103
EP068A: Organochlorine Pesticides (OC) (QC	CLot: 812551)							
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	94.3	45	131
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	96.4	45	125
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	96.8	46	134
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	95.2	49	133
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	76.5	52	128
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.4	48	128
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	80.0	52	128
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	52	130
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	113	51	131
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	102	57	135
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.7	51	131
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.6	51	131
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	99.9	51	131
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	131	41	131
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.0	52	132
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	50	134
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	112	49	130
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	93.6	50	132
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	99.9	38	140
P068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	88.8	64	132
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	100	41	141
EP068B: Organophosphorus Pesticides (OP)	(QCLot: 812551)							
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	97.8	54	135
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	112	51	143

Page : 9 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP)(C	QCLot: 812551) - continued							
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	126	10	136
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	111	43	128
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	103	53	131
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	97.9	53	131
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	98.4	51	133
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	102	51	130
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	97.7	54	130
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	94.5	51	135
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	97.9	49	133
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	101	50	134
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	95.9	53	131
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	108	46	134
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	101	51	133
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	98.6	51	133
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	100	51	133
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	82.6	14	124
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo	ons (QCLot: 812549)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	107	80	121
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	105	70	130
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	106	80	120
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	116	70	124
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	101	80	122
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	102	80	126
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	103	70	128
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	107	80	125
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	104	70	130
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	104	80	126
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	101	70	124
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	112	75	125
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	106	65	125
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	120	65	128
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	120	65	126
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	126	65	127
EP080/071: Total Petroleum Hydrocarbons(QC	Lot: 807171)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	107	70	127
EP080/071: Total Petroleum Hydrocarbons(QC	Lot: 812550)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	734 mg/kg	102	65	131

Page : 10 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 812550) - continued							
EP071: C15 - C28 Fraction		100	mg/kg	<100	3091 mg/kg	104	70	126
EP071: C29 - C36 Fraction		100	mg/kg	<100	1507 mg/kg	101	70	122
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50				
EP080/071: Total Recoverable Hydrocarbons - N	IEPM 2013 Fractions (QCL	ot: 807171)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	103	68	125
EP080/071: Total Recoverable Hydrocarbons - N	IEPM 2013 Fractions (QCL	ot: 812550)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1101 mg/kg	100	68	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3914 mg/kg	103	72	116
EP071: >C34 - C40 Fraction		100	mg/kg	<100	283 mg/kg	110	38	132
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50				
EP080: BTEXN (QCLot: 807171)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	91.3	74	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	97.4	77	125
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	100	73	125
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	98.6	77	128
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	107	81	128
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	91.8	66	130
EP202A: Phenoxyacetic Acid Herbicides by LCN	MS (QCLot: 810761)							
EP202: 4-Chlorophenoxy acetic acid	122-88-3	0.02	mg/kg	<0.02	0.1 mg/kg	72.2	54	128
EP202: 2.4-DB	94-82-6	0.02	mg/kg	<0.02	0.1 mg/kg	87.1	46	130
EP202: Dicamba	1918-00-9	0.02	mg/kg	<0.02	0.1 mg/kg	95.1	52	135
EP202: Mecoprop	93-65-2	0.02	mg/kg	<0.02	0.1 mg/kg	89.8	60	130
EP202: MCPA	94-74-6	0.02	mg/kg	<0.02	0.1 mg/kg	92.9	57	131
EP202: 2.4-DP	120-36-5	0.02	mg/kg	<0.02	0.1 mg/kg	83.8	50	141
EP202: 2.4-D	94-75-7	0.02	mg/kg	<0.02	0.1 mg/kg	96.9	69	131
EP202: Triclopyr	55335-06-3	0.02	mg/kg	<0.02	0.1 mg/kg	109	51	141
EP202: 2.4.5-TP (Silvex)	93-72-1	0.02	mg/kg	<0.02	0.1 mg/kg	84.1	41	126
EP202: 2.4.5-T	93-76-5	0.02	mg/kg	<0.02	0.1 mg/kg	111	57	139
EP202: MCPB	94-81-5	0.02	mg/kg	<0.02	0.1 mg/kg	81.8	39	137
EP202: Picloram	1918-02-1	0.02	mg/kg	<0.02	0.1 mg/kg	91.6	49	129
EP202: Clopyralid	1702-17-6	0.02	mg/kg	<0.02	0.1 mg/kg	65.6	49	106
EP202: Fluroxypyr	69377-81-7	0.02	mg/kg	<0.02	0.1 mg/kg	86.3	53	128

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page : 11 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Met	als by ICP-AES (QCLot: 812290)						
M1703499-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	87.1	78	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	98.2	84	116
		EG005T: Chromium	7440-47-3	50 mg/kg	108	79	121
		EG005T: Copper	7440-50-8	50 mg/kg	102	82	124
		EG005T: Lead	7439-92-1	50 mg/kg	117	76	124
		EG005T: Nickel	7440-02-0	50 mg/kg	110	78	120
		EG005T: Zinc	7440-66-6	50 mg/kg	119	74	128
G035T: Total Red	coverable Mercury by FIMS (QCLot: 812289						
	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	97.2	76	116
P068A: Organoch	nlorine Pesticides (OC) (QCLot: 812551)						
EM1703514-001	Anonymous	EP068: gamma-BHC	58-89-9	0.5 mg/kg	80.8	22	139
	, alonymous	EP068: Heptachlor	76-44-8	0.5 mg/kg	75.4	18	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	85.5	23	136
		EP068: Dieldrin	60-57-1	0.5 mg/kg	81.1	42	136
		EP068: Endrin	72-20-8	0.5 mg/kg	110	23	146
		EP068: 4.4`-DDT	50-29-3	0.5 mg/kg	54.6	20	133
P068B: Organoph	nosphorus Pesticides (OP) (QCLot: 812551						
EM1703514-001	Anonymous	EP068: Diazinon	333-41-5	0.5 mg/kg	103	49	135
	,	EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	91.0	41	127
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	96.7	47	133
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	92.7	45	133
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	87.1	40	128
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 8						
M1703497-001	QC8	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	93.8	67	117
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	93.8	52	148
P080/071: Total P	etroleum Hydrocarbons (QCLot: 807171)	El 070(Olivi). I yielle		555	33.5		
	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	82.7	42	131
		EP080: C6 - C9 Fraction		20 Hg/kg	02.1	42	131
	etroleum Hydrocarbons (QCLot: 812550)						
EM1703459-035	Anonymous	EP071: C10 - C14 Fraction		734 mg/kg	109	53	123
		EP071: C15 - C28 Fraction		3091 mg/kg	109	70	124
		EP071: C29 - C36 Fraction		1507 mg/kg	105	64	118
	ecoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLot: 807171)					
EM1703467-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	79.4	39	129
P080/071: Total R	ecoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLot: 812550)					
EM1703459-035	Anonymous	EP071: >C10 - C16 Fraction		1101 mg/kg	106	65	123
		EP071: >C16 - C34 Fraction		3914 mg/kg	107	67	121

Page : 12 of 12 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Sub-Matrix: SOIL				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL	ot: 812550) - continued					
EM1703459-035	Anonymous	EP071: >C34 - C40 Fraction		283 mg/kg	110	44	126
EP080: BTEXN (Q	CLot: 807171)						
EM1703467-002	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	90.6	50	136
		EP080: Toluene	108-88-3	2 mg/kg	110	56	139
EP202A: Phenoxy	acetic Acid Herbicides by LCMS (QCLot: 810761)						
EM1703276-001	Anonymous	EP202: Mecoprop	93-65-2	0.1 mg/kg	77.8	60	140
		EP202: MCPA	94-74-6	0.1 mg/kg	94.9	57	143
		EP202: 2.4-D	94-75-7	0.1 mg/kg	83.5	68	139
		EP202: Triclopyr	55335-06-3	0.1 mg/kg	107	51	145
		EP202: 2.4.5-T	93-76-5	0.1 mg/kg	107	57	142
		EP202: Picloram	1918-02-1	0.1 mg/kg	84.8	49	138
		EP202: Clopyralid	1702-17-6	0.1 mg/kg	71.0	49	149

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1703497** Page : 1 of 6

Client : COFFEY ENVIRONMENTS PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : MR DAMIEN HENDRICKX
 Telephone
 : +61-3-8549 9636

 Project
 : 754-NTLEN202989
 Date Samples Received
 : 23-Mar-2017

 Site
 : Lochinvar
 Issue Date
 : 30-Mar-2017

Sampler : SEAN BLACKFORD No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
oil Glass Jar - Unpreserved (EA055-103)							
QC8	20-Mar-2017				24-Mar-2017	03-Apr-2017	✓
EG005T: Total Metals by ICP-AES							
oil Glass Jar - Unpreserved (EG005T)	00 May 0047	00 Mar 0047	16 Can 2017		00 Mar 0047	16 Can 2017	
QC8	20-Mar-2017	28-Mar-2017	16-Sep-2017	√	29-Mar-2017	16-Sep-2017	✓
GO35T: Total Recoverable Mercury by FIMS		ı			ı	I	1
oil Glass Jar - Unpreserved (EG035T) QC8	20-Mar-2017	28-Mar-2017	17-Apr-2017	1	29-Mar-2017	17-Apr-2017	1
	20 Mai 2011	20 mai 2017	177012011	v	20 11101 2011	17701 2017	V
EP068A: Organochlorine Pesticides (OC) oil Glass Jar - Unpreserved (EP068)		<u> </u>			<u> </u>		
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	1	29-Mar-2017	07-May-2017	1
P068B: Organophosphorus Pesticides (OP)							-
oil Glass Jar - Unpreserved (EP068)							
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	✓	29-Mar-2017	07-May-2017	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
oil Glass Jar - Unpreserved (EP075(SIM))							
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	✓	29-Mar-2017	07-May-2017	✓
EP080/071: Total Petroleum Hydrocarbons							
oil Glass Jar - Unpreserved (EP080)	20-Mar-2017	24-Mar-2017	03-Apr-2017		24-Mar-2017	03-Apr-2017	
QC8 oil Glass Jar - Unpreserved (EP071)	20-IVIAI -20 I /	24-IVIAI -2017	03-Apr-2017	✓	24-IVId1-2017	03-Apr-2017	—
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	1	29-Mar-2017	07-May-2017	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
oil Glass Jar - Unpreserved (EP080)							
QC8	20-Mar-2017	24-Mar-2017	03-Apr-2017	✓	24-Mar-2017	03-Apr-2017	✓
oil Glass Jar - Unpreserved (EP071)			00.4 00.4=			07.14	
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	√	29-Mar-2017	07-May-2017	✓
EP080: BTEXN							
oil Glass Jar - Unpreserved (EP080)	20-Mar-2017	24-Mar-2017	03-Apr-2017		24-Mar-2017	03-Apr-2017	
QC8	20-ividi -20 i /	44-IVId1-2017	00-Apr-2017	✓	44-IVIAI-2017	03-Apr-2017	✓

Page : 3 of 6
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP202A: Phenoxyacetic Acid Herbicides by LCMS							
Soil Glass Jar - Unpreserved (EP202)							
QC8	20-Mar-2017	28-Mar-2017	03-Apr-2017	√	28-Mar-2017	07-May-2017	✓

Page : 4 of 6 Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type

Count

Rate (%)

Quality Control Specification

							, , , , , , , , , , , , , , ,
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055-103	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 6
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Project : 754-NTLEN202989

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Phenoxyacetic Acid Herbicides (LCMS - Standard DL)	EP202	SOIL	In house: LCMS (Electrospray in negative mode). Residues of acid herbicides are extracted from soil samples under the alkaline condition. An aliquot of the alkaline aqueous phase is taken and acidified before a SPE cleanup. After eluting off from the SPE cartridge, residues of acid herbicides are dissolved in HPLC mobile phase prior to instrument analysis.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Extraction for Phenoxy Acid Herbicides in Soils.	EP202-PR	SOIL	In-House: Alkaline extract followed by SPE clean up of acidified portion of the sample extract.
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.

Page : 6 of 6
Work Order : EM1703497

Client : COFFEY ENVIRONMENTS PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Version: 5

	Consigni	Consigning Office: Ware	M	ok					
coffev	Report R	Report Results to: 💪	664	Betz		Mobile:	Email: 1.664. 6	betz	@coffey.com
600	Invoices to:	:0:	•	co		Phone: 4016 2300	Email: //	11	@coffey.com
Project No: ENARWARA 045 & 1 Ad	Task No:					Ana	Analysis Request Section		
Project Name: Windon Lane	Laboratory: MG1					//	//////		
Sampler's Name: J. KIL	Project Manager: 6	Do th					XX		
Special Instructions:									
lab No.	Sample	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	SON A SON		NOTES	LES
1 55	14-1-15	\vdash	1:09	4.7					
2 55				_		//			
2									-334
4						**			
S						/			
•						/			
r						7			
20						1			
6						/			
0/						/			
1	-)	1		-1		/			
Fond 1 SWI	14-1-8		Water	P, 6, V					
2 11 2 5 11 2				,					
11 3 5W 3			-1	1					
Pand 1 sed			70.1	3					
" L sed			_	0,5					
11 3 5ed 3	-(+	1						
RELINQUISHED BY				RECE	RECEIVED BY	5,000	Sample Receipt Advice: (Lab Use Only)	Lab Use Only)	
Name: (7. Kivk Date: 14.1.	14.1.15	Name:	Calt Dig	towns	*	Date: (5/)	All Samples Recieved in Good Condition	ood Condition oper Order	P 9
o complete and a comp	1	_					Samples Bereived Properly Chilled	v Chilled	1
Company:				The state of the s	,	Time:	Lab. Ref/Batch No.		
*	c, G- Glass Bottle, J - Glass	Jar, V-Vial, Z	Ziplock Bag	, N - Nitric Acid Pre	served, C - H	ydrochloric Acid Preserved,		SEHNHH 3 S	
5 - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative	Thiosulfate, NP - No Prese	rvative, OP - 0	ther Presen	/ative					

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

@coffey.com @coffey.com 4 NOTES Sample Receipt Advice: (Lab Use Only) All Samples Recieved in Good Condition All Documentation is in Proper Order Email: fibly. betz Samples Received Properly Chilled **Analysis Request Section** 2300 Time: 1-25 PM 151 Phone: **4016** Mobile: Date: Date: (specify) T-A-T RECEIVED BY Container Type & Preservative* Water (Soil...etc) Consigning Office: Nagas 100 Report Results to: 6.56 Company: Project Manager: L · Ne 12 Name: Z Name: Time Invoices to: Laboratory: MG Sample 14-1 Date Task No: Date: 14-1-15 Time: 3:30 RELINQUISHED BY Project No: FNAUWARA04581A4 Project Name: Winder Lane Date: Sample ID Sampler's Name: グ、ベン人 5 Coffey Environments Special Instructions: Name: V. Kil 0 Lab No. Name: GOWANS PRINTING (02) 9755 3545

Coffey Environments

Issue Date: 11/08/2014

444435

Lab. Ref/Batch No.

Time:

Company:

Time:

Version: 5

Version: 5

S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative

Coffey Environments


	6		Consigning Office:		CARRAGROOF	700					
COT	Coffee		Report Re	sults to: S	Report Results to: のないの	HEURICK	E	Mobile: 0431433191)		Email: James, Leadword	@coffey.com
			Invoices to:		Daniel	the MORICK	K	Phone: (02)4016230	Email:	demie, benow cla	@coffey.com
Project No:	Project No: 754-NT-62 202989	Task No:	0			2		Ana	Analysis Request Section		
Project Name.	Project Name: Lochinor	Laboratory:	T Curplus	Syden					1/20/		
Sampler's Nar	Sampler's Name: Sea Blacker	Project Manager:	ger: De	3	Herobela	 Y		/			\
Special Instructions:	ctions:					3		7	A SA SO		
Lab No.	Sample ID		Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	X 33	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	NOTES
	5812		20/3/12	2	Solv	h	Sto				
	5513		, ,	,	-	_	-				100
	4155				AF.			1111			
	SISS		_					\			
	25 16							1			(4,
7"	C18S							1111			
	SSIS										1
	SS 19							1 Me 180			
	SS 26										100
	55 21										
Tres	5222		_							. Y	
- 2054 3 3 4 5 6 6 6 7 8 8 9	\$523										
7	SP1										
	SSZ4										Ð
1	SS2S	, (i).	0		>	>		1		Son	
TANK TEN	PONDY-SUL		_		WARK	ر م م					
	POND S-SUS		>	>	>	4	→				
100		10000									
	RELINQUISHED BY		A			REC	RECEIVED BY		Sample Receipt Advice: (Lab Use Only)	ce: (Lab Use Only)	
Name: 5,624	Name: SEUN BLACK Row Date: 21.	3.17	↑	Name:	SUE			Date: 22/3/17	All Samples Recieved in Good Condition	in Good Condition	<u>p</u>
Coffey Environments	nments Time:	100	700	Company:				Time: 2-30PM	All Documentation is in Proper Order	in Proper Order	<u>}</u>
Name:	Date:	100	^	Name:	Tool	5003		Date: 23[3/17	Samples Received Properly Chilled	operly Chilled	D
Company:	Time:	X**		Company	Company: Eure	fins/mgt		Time: 8:30 pm	Lab. Ref/Batch No.		
*Container Ty	*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Ziplock Bag, N - I	- Glass Bottle,	J - Glass Ja	ır, V-Vial,	Z - Ziplock Bag		eserved, C - I	N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved,		239344	

Issue Date: 11/08/2014

/ersion: 5

S - Sulphuric Acid Preserved, I - Ice, ST - Sodium Thiosulfate, NP - No Preservative, OP - Other Preservative

Coffey Environments

