

PRELIMINARY SITE INVESTIGATION REPORT

PROJECT: 176 Wollombi Road, Farley, NSW 2320

CLIENT: Bathla Group

DATE: 18 August 2022

REPORT NO: NE1164

GEOTESTA PTY LTD ABN 91 851 620 815

Unit 6, 20-22 Foundry Road, Seven Hills, NSW 2147
1300 852 216 info@geotesta.com.au geotesta.com.au

Contents

Table of Contents

1.	INT	INTRODUCTION			
2.	PLA	LANNING GUIDELINES			
3.	ОВЈ	OBJECTIVE			
4.	SCC	SCOPE OF WORKS			
5.	SITI	E DESC	CRIPTION	11	
	5.1	Site Identification			
	5.2	Propos	roposed Development		
	5.3	Site Details, Geology and Topography			
	5.4	Site Regional Meteorology and Hydrogeology			
	5.5	Registe	ered Bore Search	12	
	5.6	Acid Sulphate Soils			
	5.7	•			
		5.7.1	Historical Background	13	
		5.7.2	Aerial Photograph Review	13	
	5.8	Site Walkover			
	5.9	NSW C	DEH/EPA Records	16	
	5.10	Salinity	y Mapping	16	
6.	CONCEPTUAL SITE MODEL				
	6.1	Areas	of Environmental Concern	18	
	6.2	Potential Receptors and Sensitive Environments			
	6.3	Potential for migration and exposure of contamination			
	6.4	Assessment of Preliminary Site Investigation and Recommendations 19			
7.	SAMPLING AND ANALYSIS PROGRAM 21				
	7.1	Field S	Screening and Sampling Program	21	
		7.1.1	Data Quality Plan	21	
		7.1.2	Visual Inspection	21	
		7.1.3	Soil Sampling Techniques	21	
		7.1.4	Rationale for Sampling Program and Locations	21	
		7.1.5	Sampling Program	22	
		7.1.6	Soil Logging	23	
	7.2 Sampling Quality control (QC) / Quality Assurance (QA)		23		
		721	Sampling Procedures	23	

		7.2.2	Analytical QA/QC Procedures	24
8.	SAN	1PLING	PROGRAM	25
	8.1	Field Inv	restigation	25
	8.2		al Program	25
9.	ASS	ASSESSMENT CRITERIA		
	9.1	Heavy m	netals, PAH, PCB, OCP/OPP, Phenols and Asbestos	27
	9.2	Total Re (BTEX)	coverable Hydrocarbons (TRH) and Benzene Toluene Ethy	lbenzene Xylene 28
	9.3	Ecologic	al Investigation Levels	29
10.	RES	ULTS		31
	10.1	Subsurface Conditions		31
	10.2 Laboratory Analytical Results		31	
		10.2.1	Heavy Metals (HM)	31
		10.2.2	Organochlorine Pesticides / Organophosphorus Pesticides (OC	P/OPP) 33
		10.2.3	Polycyclic Aromatic Hydrocarbons (PAH)	34
		10.2.4	Total Recoverable Hydrocarbons (TRH) - 2013 NEPM Fractions	35
		10.2.5	Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) - 2013 NEI	PM Fractions 36
		10.2.6	Phenols	37
		10.2.7	Other Organics – Polychlorinated Biphenyls (PCBs)	38
		10.2.8	Asbestos	38
	10.3	Evaluati	on Analytical Quality Assurance	39
		10.3.1	Duplicate Sample	39
		10.3.2	Trip Spike	40
		10.3.3	Trip Blank	40
11.	DISC	CUSSIO	N	41
12.	CON	NCLUSIO	ONS AND RECOMMENDATIONS	42
13.	REFERENCES 44			44

Appendices

- A Photographic Log
- B Borehole Logs
- C Lotsearch
- D Laboratory Documentation

EXECUTIVE SUMMARY

Geotesta was engaged by Bathla Group to conduct a Preliminary Site Investigation (PSI) on the site referred to as 176 Wollombi Road, Farley, NSW 2320.

The PSI was conducted in general accordance with "Managing Land Contamination Planning Guidelines SEPP 55" and this report compiled, taking into consideration the NSW EPA Consultants reporting on contaminated land Contaminated Land Guidelines update May 2020 and Site History, Schedule B2 - Guideline on Site Characterisation (ASC NEPM).

The PSI contains an appraisal of the site's history and a report based on a visual site inspection and assessment. All relevant information about the site was assessed to determine the potential for site contamination. As part of the PSI a limited soil sampling and analysis program was conducted to assist in assess the environmental risk profile of the site.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

The objectives of this PSI are to:

- assess the past uses of the site and the potential environmental impacts that they may
 have had on the environmental condition of the site
- identify potential environmental risks associated with the site
- develop of conceptual model of the site and surrounding area
- assess the requirements for additional investigations (Detail Site Investigation)
- address the requirements of the planning authority.

The following scope of works was implemented to achieve the objectives of the PSI.

The scope of works included the following:

- A site inspection
- historical aerial photographs
- public record search, such as Council, OEH, EPA etc
- geological and hydrogeological review
- conduct a limited soil sampling and analysis program
- production of this report on the contamination status of the site.

From historical aerial photographs, it was observed that a residential dwelling has existed on the site since 1938 at the southwest corner, the dwelling had been extended with a newly constructed driveway located in the south-western section of the site by latest 1993. The shed

located adjacent north of the dwelling had been constructed by latest 2001. Most site areas were vacant grass covered ground surfaces, with sparsely populated trees. A tennis court located in the south-western section of the site was constructed by latest 1993.

It is observed from the aerial photo taken in 2007 that the investigated site was divided into two main parts, with the residential area occupying approximately 20% at the southwest corner and cattle farming occupying the remainder. A circular swimming pool was located adjacent north-east of the dwelling and stockpiles were noted scattered in the farming area.

There have been minor changes to the site for the past 15 years.

The soil sampling and analysis program conducted as part of the PSI indicates that there is no widespread significant soil contamination across the site, as stated below:

- The laboratory analysis detected concentrations of arsenic, chromium, lead, nickel, and zinc within the soil samples recovered. All detected concentrations were reported by the laboratory to have concentrations within the adopted Site Assessment Criteria (SAC) Health Investigation Levels (HIL A) and Ecological Investigation Levels (EIL).
- No concentrations of cadmium, copper, and mercury were detected and were therefore below the adopted site assessment criteria (HIL A and EIL).
- No concentrations of OCP/OPP were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of Total PAH and Naphthalene were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of TRH were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL, ESL and ML).
- No concentrations of BTEX were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL and ESL).
- No concentrations of Phenols were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of PCB were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No Asbestos was detected above the reporting limit of 0.001% w/w in the samples analysed and were therefore within the Site Assessment Criteria (SAC).
- An intrusive groundwater assessment was not conducted as part of this PSI, as the
 risk of contamination from groundwater is considered negligible based on past uses
 and no identified sources of contamination that would impact groundwater.

Based on the assessment undertaken, the following conclusions and recommendations can be made:

- The limited soil sampling and analysis program conducted indicated a **low** risk of soil and groundwater contamination. It is the opinion of Geotesta Pty Ltd that the site is suitable for the proposed low density residential development pending on the results of an additional Data Gap Contamination Assessment.
- Due to the existence of a significant data-gap in this investigation, a further Data Gap Contamination Assessment post demolition of the existing structures/dwellings is required to address further potential areas of concern (main emphasis on the footprint of the structures/dwellings) identified in the AECs and to determine if any contamination hotspots exist around the existing dwelling.

1. INTRODUCTION

Geotesta was engaged by Mr. Shams Abbasi to conduct a Site Contamination Investigation (PSI) on the site referred to as 176 Wollombi Road, Farley, NSW 2320.

The PSI was conducted in general accordance with "Managing Land Contamination Planning Guidelines SEPP 55" and this report compiled, taking into consideration the NSW EPA Consultants reporting on Contaminated Land Guidelines update May 2020. The PSI contains an appraisal of the site's history, a report based on a visual site inspection and an assessment of analytes for contamination. All relevant information about the site was assessed to determine the potential for site contamination. To support the outcomes of the PSI a limited sampling and analysis program was implemented.

This report is based only on the information provided at the time of this report preparation and may not be valid if changes are made to the site conditions and/or soil and groundwater.

2. PLANNING GUIDELINES

The proposed development of the land comprises of a residential subdivision with on-site roadways. The planning authority must consider the possibility that the previous land use has the potential to cause contamination of the site as well as the potential risk to health or the environment from that contamination. The PSI is the first stage to determine if there is a potential for land contamination that has a potential to impact the development application (DA).

The Guidelines recommend that re-zonings, development control plans and development applications (DAs) are backed up by information demonstrating that the land is suitable for the proposed use or can be made suitable, either by remediation or by the way the land is used.

3. OBJECTIVE

The objectives of this PSI are to:

- assess the past uses of the site and the potential environmental impacts that they may
 have had on the environmental condition of the site
- conduct a soil sampling and analysis program to assess the current environmental condition
- identify potential environmental risks associated with the site
- assess the requirements for additional investigations
- address the requirements of the planning authority

4. SCOPE OF WORKS

The following scope of works was implemented to achieve the objectives of the PSI:

- A site inspection;
- Review of historical aerial photographs;
- public record search, such as Council, and EPA;
- geological and hydrogeological maps review;
- conduct a soil sampling and analysis program; and
- production of this report on the contamination status of the site.

The PSI was conducted in general accordance with "Managing Land Contamination Planning Guidelines SEPP 55" and this report compiled, taking into consideration the NSW EPA Consultants reporting on Contaminated Land Guidelines (2020). The PSI contains an appraisal of the site's history and a report based on a visual site inspection and assessment. All relevant information about the site was assessed to determine the potential for site contamination. To support the outcomes of the PSI a limited sampling and analysis program was implemented.

Activities undertaken to achieve the above objectives are reported and discussed in the following sections.

5. SITE DESCRIPTION

5.1 Site Identification

The site under investigation is situated at 176 Wollombi Road, Farley, NSW 2320, located on the northern side of Wollombi Road and is approximately 40 km (by road) northwest of Newcastle. The site of the proposed development has an area of approximately 20,789 m². The site is located within Maitland City Council. The site location is shown in Figure 1.

The site identification detail is presented in Table 1.

Site Details	Site Observations	
Address	176 Wollombi Road, Farley, NSW 2320	
Lot/Plan no:	Lot. 23/DP701849	
Local Government Area	Maitland City Council	
Site Area (approx.)	20,800 m ²	
Zoning	R1 - General Residential	
Current Land Use	Residential, Cattle Farming	

Table 1: Site Identification

Figure 1. Site Location and Features

5.2 Proposed Development

It is understood that the site is proposed for residential subdivision with on-site roadways. The site lies within General Residential (R1) planning zones. The planning zone in the vicinity of the site is General Residential (R1).

5.3 Site Details, Geology and Topography

The subject site consisted of a single-storey dwelling, with a shed adjacent north, both are located in the south-western section of the site. Several stockpiles with broken vehicle parts, farming and household wastes were observed scattered on the site in the farming areas. The ground surface is sloping downward with slope < 7% from south to north of the site. The site lies at an elevation of approximately 35 m above sea level (ASL) referenced to Australian Height Datum (AHD) (http://en-au.topographic-map.com). A photographic log provided in Appendix A.

The Hunter 1:100,000 Quaternary Geology map indicates the site is situated in Dalwood Group (Pda) comprising of sandstone, lithic sandstone, conglomerate, siltstone, and basalt.

5.4 Site Regional Meteorology and Hydrogeology

The following climate information from the Commonwealth Bureau of Meteorology website (http://www.bom.gov.au/) can be obtained:

- The highest monthly mean maximum temperature of 35.2°C recorded from 2016 to 2022 at Maitland Airport AWS, approximately 6.5 km away from the site.
- The lowest monthly mean temperature of 17.4°C recorded from 2016 to 2022 at Maitland Airport AWS, approximately 6.5 km away from the site.
- The highest annual rainfall of 986.2mm recorded from 2016 to 2022 at Maitland Airport AWS, approximately 6.5km away from the site.

5.5 Registered Bore Search

A search of Department Primary Industries - Office of Water records identified no existing groundwater wells located within an approximate distance of 500 metre from the site.

5.6 Acid Sulphate Soils

The Department for Infrastructure, Planning and Natural Resources (DIPNR) Acid Sulphate Soils Risk Mapping (1997) and the NSW Environmental Acid Sulphate Soil Risk Mapping eSPADE application indicates that the site is rated as 'Class 5 Acid Sulfate Soils'. 'Class 5 Acid Sulfate Soils' are not expected to be underlain by acid sulphate soils.

5.7 Summary of Site History

5.7.1 Historical Background

A review of the historical aerial photographs, it was observed that a residential dwelling has existed on the site since 1938 at the southwest corner, the dwelling had been extended with a newly constructed driveway located in the south-western section of the site by latest 1993. The shed / structure located adjacent north of the dwelling had been constructed by latest 2001. Most site areas were vacant grass covered ground surfaces, with sparsely populated trees. A tennis court located in the south-western section of the site was constructed by latest 1993.

It is observed from the aerial photographs in 2007 that the investigated site was divided into two main parts, with the residential area occupying approximately 20% at the southwest corner and cattle farming occupying the remainder. A circular swimming pool was located adjacent north-east of the dwelling and stockpiles were noted scattered in the farming area.

There have been minor changes to the site for the past 15 years.

It is suspected the site is underlain by contamination from hazardous building materials, agricultural usage as well as imported fill materials.

5.7.2 Aerial Photograph Review

An aerial photograph search was conducted on 6 May 2022. The historical aerial photos were viewed within the Lotsearch Report, with the observations presented in Table 2. Historical aerial photographs are presented in Appendix C.

Table 2: Aerial Photography Review

Year	Site Observations	Surrounding Area		
1938	 Black and white photograph Dwelling located in the southwestern section Remaining area - vacant land 	Black and white photographResidential / agricultural areas		
1954	No change from previous photograph	No change from previous photograph		
1966	No change from previous photograph	No change from previous photograph		
1976	Colour photograph	Colour photographResidential / agricultural areas		

	Dwelling located in the southwestern section	
	Remaining area - vacant land	
1983	No change from previous photograph	 No change from previous photograph
1993	 Colour photograph Dwelling extended, located in the southwestern section Driveway constructed in south-western section, from Wollombi Road to the dwelling Pool constructed adjacent north of the dwelling Tennis court was constructed in the southwestern section of the site Remaining area - vacant land 	 Colour photograph Residential / agricultural areas Newly constructed dwelling adjacent east
2001	 Colour photograph Dwelling extended, located in the southwestern section Driveway constructed in south-western section, from Wollombi Road to the dwelling Pool adjacent north of the dwelling - decommissioned Tennis court located in the south-western section of the site Newly constructed shed / structure located adjacent north of the dwelling Remaining area - vacant land 	 Colour photograph Residential / agricultural areas
2007	 Colour photograph Dwelling extended, located in the southwestern section Driveway constructed in south-western section, from Wollombi Road to the dwelling Pool adjacent north of the dwelling - decommissioned Tennis court located in the south-western section of the site Shed / structure located adjacent north of the dwelling Pool constructed adjacent northeast of the dwelling 	 Colour photograph Residential / agricultural areas

	 Storage of debris / materials located in the central western boundary Remaining area - vacant land 	
2010	No change from previous photograph	No change from previous photograph
2015	No change from previous photograph	 Colour photograph Residential / agricultural areas Increase in density of dwellings
2021	 Colour photograph Dwelling extended, located in the southwestern section Driveway constructed in south-western section, from Wollombi Road to the dwelling Pool adjacent north of the dwelling - decommissioned Tennis court located in the south-western section of the site Shed / structure located adjacent north of the dwelling Pool constructed adjacent northeast of the dwelling Storage of debris / materials located in the central western boundary and in the central northern section Remaining area - vacant land 	 Colour photograph Residential / agricultural areas Increase in density of dwellings

5.8 Site Walkover

The results of the site walkover inspection carried out on 28 March 2022 are presented below.

- The investigated site was divided into two main parts, with the residential area occupying approximately 20% at the southwest section of the site and cattle farming occupying the remainder.
- In the residential area, a single-storey dwelling existed at the southwest section of the site, 40 m away from Wollombi Road. The dwelling was in good condition.
- A gravel driveway connecting the residential dwelling to Wollombi Road was noted.
- A granny flat and a circular swimming pool located at the back of the dwelling.
- A tennis court was built next to the granny flat and the swimming pool.
- A small shed was noted adjacent to the tennis court to the east.

- In front of the small shed, an agricultural farming area was observed.
- Home-grown flowers and decorative plants were noted around the residential dwelling and in the swimming pool area.
- The farming zone with almost surface area covered by grass was used to raise cows and sheep.
- Several sheds were observed in the farming zone, which appeared to be in deteriorating condition.
- Stockpiles with broken vehicle parts, farming and household wastes were noted in several locations in the farming zone.
- At the time of investigation, the vegetation onsite appeared to be healthy and in good condition.
- Cars were observed parking in the residential area as well as in the farming area.

5.9 NSW OEH/EPA Records

The site or nearby surrounding areas (<500 m) have no notices under the Contaminated Land Management Act (1997) or the Environmentally Hazardous Chemicals Act (1985) as of 6th May 2022. The same result was reported by the Lotsearch report as shown in Figure 2.

5.10 Salinity Mapping

The dryland salinity national assessment and salinity potential provided by the Lotsearch Report indicated that the site is in a 'delineated risk area but no high hazard or risk rating' (see Figure 2).

The following observations/inspections were noted onsite:

- ✓ Vegetation growth appeared healthy across the site
- ✓ No water marks or salt crystals observed on the ground surface

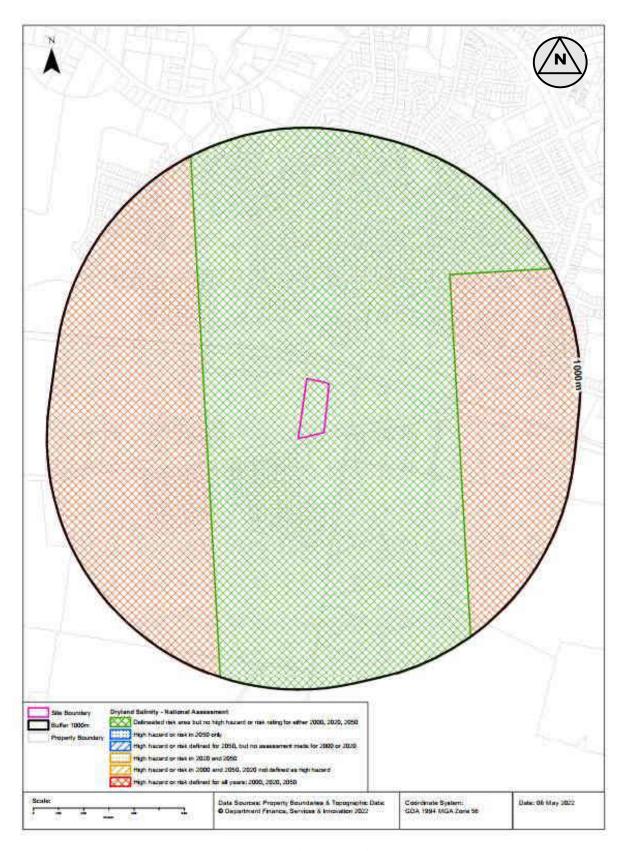


Figure 2. Salinity Potential Map

6. CONCEPTUAL SITE MODEL

6.1 Areas of Environmental Concern

Our assessment of site AECs and COPCs (Table 3) is made based on available site history, aerial photograph interpretation and site walkovers.

Table 3: Areas of Environmental Concern (AECs) and Contaminants of Primary Concern (COPCs)

AEC	Potential for Contamination	COPC	Contamination Likelihood
A – Areas of Dwelling/Sheds	Heavy metals may have been used underneath dwellings. Sheds or areas surrounding sheds may have been used as fuel storage, oil, or drums of unknown content; asbestos sheeting, may include lead-based paints.	HM, OCP/OPP, and Asbestos	Medium-High
B – Areas of light agricultural	Heavy metals and pesticides used for home-grown garden and agricultural zones may pose potential risk of contamination	HM and OCP/OPP	Medium-High
C – Stockpiles / Imported unknown fill	Contaminants from unknown contents and general refuse may have spilt or leaked onto underlying soil. Fill materials of unknown origin with a potential to contain contaminants and asbestos.	HM, TRH, PAH, BTEX and OCP/OPP	Medium to High
D – Parked Vehicle Zones	Contaminants from old vehicles and areas where vehicles have been parked for prolonged periods of time may contain refuse that may have spilled, leached or been distributed onto underlying soil.	HM, TRH, PAH and BTEX	Medium to High

6.2 Potential Receptors and Sensitive Environments

The residents and visitors/workers on site are identified as immediately sensitive environmental receptors. A summary of the identified potential receptors and sensitive environments is detailed below in Table 4.

Table 4: Potential Receptors and Sensitive Environments

Receptors/Environments	Potential Pathway		
Human Receptors:	Direct skin contact		
 Future site workers and visitors 	Ingestion of contaminated soil		
Site labourers/workers	Inhalation via airborne dust		
Residents of adjacent properties			

• Trespassers	
Sensitive Environments:	Migration via stormwater run-off or
Site fauna and flora	within groundwater
Stony Creek	Migration into underlying soil

6.3 Potential for migration and exposure of contamination

During site investigation, several potential receptors for off-site migration of potential contamination has been raised. Site history information and onsite inspection observations indicated a potential for contaminants to present a direct contact and inhalation exposure risk on site. Exposure routes of contaminants could potentially be through direct contact with exposed soils (Heavy Metals, TPH, PAHs, phenols, BTEX, OCP/OPP and PCB) or airborne dust (Asbestos). These exposure risks will "likely", and potentially at its highest risk during any demolition, earthworks, or construction phases within the site.

There is a potential for these contaminates to be present within underlying soils and can migrate vertically (dispersed up into the atmosphere, or infiltrate down into the groundwater) and migrate horizontally (through stormwater runoff pathways) from the proposed development.

6.4 Assessment of Preliminary Site Investigation and Recommendations

The results of the site history indicated the site has been used for residential and cattle farming. During the site investigation, the residential dwelling appeared to be in good condition, but most sheds in the farming area appeared to be in deteriorating condition. Cars were noted parking onsite, as well as multiple zones of stockpiles. Several of these stockpiles were situated on grassy topsoil, which may pose environmental concern to the surrounding soil. Home-grown flowers and decorative plants were noted around the residential dwelling and in the swimming pool area.

Based on the site history and walkthrough, the site is considered to have the following environmental concerns of:

- Areas of dwellings/sheds may currently (of have previously) stored fuel, oils, pesticides, zinc treated (galvanised) metals, lead based paints and/or asbestos.
- Areas of agricultural zone and garden activity may have introduced heavy metals and/or pesticides to the soil.

• Contaminants from the contents of the stockpiles and parked vehicles may have leached, spilled, or been distributed onto the underlying soil.

To address identified AECs, intrusive soil/water sampling regime is recommended to determine what, if any, remediation is required to render the site fit for residential use. A soil sampling plan is to be developed based on a judgemental or systematic sampling pattern and risk-based assessment.

Assessment shall address each of the identified AECs and assess COPC identified for each AEC (Table 3). Results of the site testing shall be assessed against Site Acceptance Criteria (SAC) with reference to *ASC NEPM* (1999, amended 2013).

7. SAMPLING AND ANALYSIS PROGRAM

A limited SAQP was developed to ensure that data collected for this PSI was representative and provided a robust basis for site assessment decisions considering the areas of environmental concerns identified in Section 6.

Preparation of the SAQP includes:

- Field Screening and Sampling Program
- Sampling QA/QC
- Sample Handling, Preservation and Storage Procedures
- Analytical Program and Site Investigation Data Assessment

7.1 Field Screening and Sampling Program

7.1.1 Data Quality Plan

Investigations at the site included field works, lab analysis and assessment. The sampling regime for the investigation area of the site was in accordance with the requirements as outlined in the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites.

7.1.2 Visual Inspection

During the sampling works for the site contamination investigation report, a visual inspection was conducted to ensure no suspected asbestos containing materials (ACM) was present. The inspections for ACM were undertaken in a systematic, back and forth fashion over the site to identify suspected ACM.

7.1.3 Soil Sampling Techniques

All techniques used for soil sampling, are based on methods specified by the *National Environmental Protection (Assessment of Site Contamination) Measure (NEPM, 2013).* Experienced personnel of Geotesta collected all the samples for delivery to NATA accredited laboratory of Eurofins MGT. Soil samples for chemical analysis were in a judgemental sampling pattern based on site history and AECs.

7.1.4 Rationale for Sampling Program and Locations

The justification of the sampling point regime for the assessment was based on the investigator's knowledge, operational requirements, experience, and history of the Site (Judgement Sampling Pattern). All historical investigations and anecdotal evidence supported the sampling approach adopted and provided for samples to be collected in an

unbiased manner. All the AECs including heavy metals, OCP/OPP, PCB, TRH, PAH, BTEX and asbestos concentrations have been targeted.

7.1.5 Sampling Program

Fieldwork for this investigation was carried out on 28 March 2022 and included drilling eight (8) boreholes (EBH1-EBH8) to a maximum depth of 1.4 m below the ground level. The sampling locations are shown in Figure 3. Standard procedures were used for sampling and soil sampling methodology was completed to meet data quality objectives.

🔞 : drilled by vehicle-mounted auger

s: drilled by hand auger

Figure 3. Sampling location

7.1.6 Soil Logging

Boreholes were logged by an experienced environmental/geotechnical engineer in accordance with Standard procedures. The borehole logs are presented in Appendix B.

7.2 Sampling Quality control (QC) / Quality Assurance (QA)

7.2.1 Sampling Procedures

General soil sampling procedures included wearing of plastic disposable gloves when handling sampling equipment and soil and changed between collections of samples. All sampling equipment was clean prior to commencement of sampling. Equipment for soil sampling included a vehicle-mounted auger, handheld auger, stainless steel sampling shovel and a 7mm sieve. All equipment was decontaminated between samplings. The following measures have been utilized during the sampling to achieve the sampling quality controls.

7.2.1.1 Sample Containers

Soil samples collected during the investigation were placed immediately into laboratory prepared glass jars with Teflon lid. Standard identification labels were adhered to each individual container and labelled according to depth, date, sampling team and media collected.

7.2.1.2 Sample Tracking and Identification

All samples were identified with a unique sample number and all sampling details were included on the sample label and were reproduced on the field sample log and chain of custody records.

7.2.1.3 Decontamination

All equipment used in the sampling program, which includes a vehicle-mounted auger, stainless steel sampling shovel and a 7mm sieve were decontaminated prior to use and between samples to prevent cross contamination. Decontamination of equipment involved the following procedures:

- Cleaning equipment in potable water to remove gross contamination
- Cleaning in a solution of Decon-90TM
- Rinsing in clean demineralised water then wiping with clean lint free cloths

7.2.1.4 Sample Transport

All samples were packed in ice from the time of collection and were transported under chain of custody from the site to NATA registered laboratory identified as Eurofins Environmental

Testing in Girraween. Collected samples were placed into an ice chilled cooler-box. During the project, the laboratory reported that all the samples arrived intact, with appropriate preservation medium and were analysed within their relative holding times for the respective analytes.

7.2.2 Analytical QA/QC Procedures

Quality control is achieved by utilising NATA accredited laboratories, using standard methods supported by internal duplicates, the checking of high, abnormal, or otherwise anomalous results against background and other chemical results for the sample concerned.

Quality assurance is achieved by confirming field or anticipated results based upon the comparison of field observations with laboratory results. One blind duplicate sample (BD1) were taken for one-day sampling and was duplicate sample of parent samples EBH2. Trip blank and trip spikes supplied by Eurofins were incorporated into the QA/QC procedure.

The laboratory undertakes additional duplicate analysis as part of their internal quality assurance program. Chain of Custody documentations were used to ensure that sample tracking and custody can be cross-checked at any point in the transfer of samples from the field to hand-over to the laboratory.

8. SAMPLING PROGRAM

8.1 Field Investigation

Fieldwork for this investigation was carried out on 28 March 2022 and included drilling eight (8) boreholes (EBH1-EBH8) to a maximum depth of 1.4 m below the ground level. During the sampling works a visual inspection was also conducted to ensure no suspected asbestos containing materials (ACM) were visible. The inspections for asbestos were undertaken in a systematic, back and forth fashion over the site to identify suspected ACM.

8.2 Analytical Program

Samples were to be analysed to provide information for the characterisation of the most likely contaminated soils. This allowed the assessment of soils samples against the Site Acceptance Criteria. All analyses were to be carried out by NATA certified laboratory Eurofins MGT in accordance with Chain of Custody (CoC) instructions supplied by Geotesta. The samples were checked for heavy metals, OCP/OPP, PAH, TRH, BTEX and Asbestos. Summary of the soil laboratory analyses is presented in Table 5. The details of sample types and depths are provided in Table 6.

Table 5: Summary of soil laboratory program

COC	Number of samples analysed	
Suite B7A1	8	
Suite B15 ²	8	
Asbestos	8	

Notes:

¹Suite B7A: TRH, BTEX, PAH, Phenols, Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, Mercury ²Suite B15: OCP, OPP, PCB

Table 6: Samples Depth and Requested Lab Tests

Sample ID	Depth (m)	Sample Type	Suite B7A	Suite B15	Asbestos
EBH1	0.5	Silty CLAY	х	x	x
EBH2	0.6	Silty CLAY	x	x	x
ЕВН3	0.5	Silty CLAY	х	x	x
EBH4	0.3	Silty CLAY	х	x	x
EBH5	0.4	Silty CLAY	х	x	x
EBH6	0.4	Silty CLAY	x	x	x
EBH7	0.4	Silty CLAY	x	x	x
EBH8	0.5	Silty CLAY	x	x	x

¹Suite B7A: TRH, BTEX, PAH, Phenols, Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, Mercury ²Suite B15: OCP, OPP, PCB

Heavy Metals such as arsenic, copper, lead, etc., Total Recoverable Hydrocarbons - 1999 NEPM Fractions, TRH: Total recoverable hydrocarbons, PAH: Polycyclic aromatic hydrocarbons, BTEX: Benzene, toluene, ethyl benzene, xylene, Polychlorinated Biphenyls (PCB), Spectated Phenols, Total Recoverable Hydrocarbons - 2013 NEPM Fractions, Chromium (hexavalent), Cyanide (total) and Fluoride

9. ASSESSMENT CRITERIA

9.1 Heavy metals, PAH, PCB, OCP/OPP, Phenols and Asbestos

Based on the proposed development, Health Investigation levels (HIL) of Residential A with soil access (*ASC NEPM 1999, amended 2013*) have been adopted as the Soil Assessment Criteria (SAC) for metals, OCP, OPP and PAH for this investigation.

The bonded asbestos Health Screening Levels (HSLs) in soils (*NEPM 2013*) were also adopted for the site. In addition to soil samples tested for asbestos, the 'presence/absence' of asbestos in soil material has been adopted as the SAC. Generic Ecological Investigation Levels (EILS) will also be used to assess the site to confirm suitability for the proposed residential land use.

Table 7 presents HILs for heavy metals, PAH, PCB, pesticides (OCP/OPP), Phenol and asbestos. It is obtained from Tables 1A (1) and Table 7 in Schedule B1 of NEPM (2013) for Residential A.

Analytes	HILs-Residential A ¹	HSLs-Residential A ¹	
Arsenic	100		
Cadmium	20		
Chromium (VI)	100		
Copper	6000		
Lead	300		
Mercury (inorganic)	40		
Nickel	400		
Zinc	7400		
Total PAHs	300		
Benzo(a)pyrene TEQ	3		
Phenols	3000		
PCB	1		
Pesticides:			
(Aldrin/Dieldrin)	6		
Chlordane	50		
DDT+DDE+DDD	240		
Chlorpyrifos	160		
Asbestos:			
Bonded ACM ² ,		0.01%	
Friable Asbestos ³ (FA), Asbestos Fines ⁴ (AF),		0.001%	
Surface Asbestos (0.1m)		No Visible	

Table 7: Site Assessment Criteria for Soils (mg/kg)

¹⁻ Criteria adopted for residential areas of the Site

²⁻ Bonded ACM (bonded Asbestos) - asbestos-containing-material which is in sound condition and where the asbestos is bound in a matrix such as cement or resin (e.g. asbestos fencing and vinyl tiles). Bonded ACM refers to, in this instance, material that cannot pass a 7 mm x 7 mm sieve.

- 3- Fibrous Asbestos friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This material is in a degraded condition such that it can be broken or crumbled by hand pressure.
- 4- Asbestos Fines AF includes free fibres, small fibre bundles and small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

9.2 Total Recoverable Hydrocarbons (TRH) and Benzene Toluene Ethylbenzene Xylene (BTEX)

The NEPM (2013) provides Health Screening Levels (HSLs), Ecological Screening Levels (ESLs) and Management Limits (MLs) for TRH fractions in soil based on concerns regarding ecological impacts, inhalation of vapours and direct contact with contaminant sources. The Fraction Number (i.e., hydrocarbon compound range) is identified and compared against the prescribed HSL, ESL and ML values. HSLs, ESLs and MLs take into consideration the followings:

- ✓ Carbon number range, indicated by a Fraction Number (F1, F2, F3 or F4)
- ✓ Type of soil (sand, silt, or clay)
- ✓ Depth to the source of contamination
- ✓ Intended land-use

For this Site, the intended land use is HSL A – Residential with garden/accessible soil and the soil type was clay within a depth range of 0-1.0 m, 1.0 - < 2.0 m and 2.0 - < 4.0 m. The criteria are summarised in Tables 8 and 9 below. They are obtained from Table 1A(3) (HSL A & HSL B), Table 1B(6) (fine soils) and Table 1B(7) (fine soils) in NEPM (2013).

Table 8: NEPM 2013 BTEX and TRH Criteria - HSL Criteria for 0-1m, 1-<2m and 2-<4m

Analytes	HSL-A(Clay)	HSL-A (Clay)	HSL-A (Clay)
	0-<1m	1-<2m	2-<4m
Benzene	0.7	1.0	2.0
Toluene	480	NL	NL
Ethylbenzene	NL	NL	NL
Xylene	110	310	NL
F1: C6-C10	50	90	150
minus BTEX			
F2:C10-C16	280	NL	NL
minus Nambahalama			
Naphthalene F3: C16-C34			
F4: C34-C40	N/A	N/A	N/A
14, 034-040	N/A	N/A	N/A

NL = Not Limiting (i.e. the soil vapour concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario).

N/A = Not applicable as F3 and F4 are non-volatile and hence are not of concern for vapour intrusion.

^{*&#}x27;Fine' refers to the soil texture grading as per NEPM 1999.

¹ NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 0-1.0m

² NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 1-<2.0m

³ NEPM 2013 Amendment Table 1A(3) – Soil HSLs for vapour intrusion – 2-<4.0m

NEPM 2013 Amendment TRH NEPM 2013 Amendment TRH Analytes Criteria (mg/kg dry wt.) Criteria (mg/kg dry wt.) **ESL** ML (Fine*) (Fine*) Benzene 65 Toluene 105 Ethylbenzene 125 Xylene 45 F1: C6-C10 180 800 F2:C10-C16 120 1000 F3: C16-C34 1300 3500 F4: C34-C40 5600 10000

Table 9: NEPM 2013 BTEX and TRH Criteria, ESL and ML Criteria for 0-1m, 1-<2m and 2-<4m

9.3 Ecological Investigation Levels

Ecological Investigation Levels (EILS) were also used to assess the site to confirm suitability for the proposed residential land use.

The current version of the NEPM (2013) specifies default EILs for arsenic, DDT, and naphthalene.

NEPM (2013) specifies a methodology for the derivation of site-specific EILs for nickel, chromium III, copper, lead, and zinc. The derivation process requires determination of ambient background concentrations (ABC) and added contaminant limits (ACLs) for these chemicals, and the EIL is then calculated as the ABC plus the ACL.

Sample# EBH5 soil properties were measured for the site-specific derivation of ACLs for Cr (III), Cu, Ni and Zn. Soil properties include:

- pH
- Cation Exchange Capacity (CEC)
- % Clay

Table 10 presents EILs derived from the measured soil properties in sample# EBH5 for aged soils in Urban Residential/Public Open Space and utilising ABC levels derived from sample# EIL.

^{&#}x27;Fine' refers to the soil texture grading as per NEPM 1999.

¹ NEPM 2013 Amendment Table 1B(6) - ESLs for TPH fractions, BTEX and benzo(a)pyrene in soil.

² NEPM 2013 Amendment Table 1B(7) – Management Limits for TPH fractions F1-F4 in soil.

Table 10: NEPM (2013) EILs for Urban Residential and Public Open Spaces

Analyte	pН	CEC^	Clay Content*	ABC	ACL	EIL
Zinc	6.2	5.2	-	12	230	242
Copper	6.2	5.2	-	-	142	142
Chromium (III)	-	-	6 %	18 ²	320	348
Nickel	-	5.2	-	-	30	30
Lead	-	-	-	5.3	1100	1,105
Arsenic	-	-	-	-	-	100
DDT	-	-	-	-	-	180
Naphthalene	-	-	-	-	-	170

Note(s):

- 1. ABC = ambient background concentrations, ACL = added contaminant limits, ESL = ecological screening levels, CEC = cation exchange capacity;
- 2. Total Chromium utilised

10. RESULTS

10.1 Subsurface Conditions

A summary of sub-surface soil conditions encountered in the site is presented below:

Based on the fieldwork results, a topsoil/fill layer to a maximum depth of 0.5m, comprising of Silty Clay material of medium plasticity, was observed in most boreholes.

The material below the topsoil/fill material was mostly Silty CLAY. No bedrock was encountered in the boreholes to 1.4 m bgl. Groundwater was not encountered in any of the boreholes.

10.2 Laboratory Analytical Results

Selected soil samples were analysed for the COPCs. A summary of analytical results follows. The laboratory documentation is presented in Appendix D.

10.2.1 Heavy Metals (HM)

A total of eight (8) soil samples were analysed for heavy metals. The results of the laboratory results for the heavy metal components are presented in Table 11. The 95% UCL was calculated as a statistical analysis of the heavy metal detections including minimum, maximum, and average along with the adopted SAC, and is shown in Table 12.

Arsenic Cadmium **Nickel** Chromium Copper Lead Mercury Zinc Sample (Ni) (As) (Cd) (Cr) (Cu) (Pb) (Hg) (Zn) EBH1 <2 < 0.4 <5 <5 <5 < 0.1 <5 <5 EBH2 6.8 < 0.4 40 <5 10 < 0.1 5.3 23 EBH3 < 0.4 <5 13 < 0.1 16 18 EBH4 <2 < 0.4 <5 <5 <5 < 0.1 <5 <5 EBH5 3.2 < 0.4 8.7 <5 14 < 0.1 <5 7.9 EBH6 <2 < 0.4 <5 <5 <5 < 0.1 <5 <5 EBH7 <2 < 0.4 <5 <5 <5 < 0.1 <5 <5 < 0.1 EBH8 <2 < 0.4 <5 <5 <5 <5 <5

Table 11: Heavy Metal Detections in soil samples (mg/kg)

Table 12: Statistical analysis of Heavy Metal Detections in Soil samples (mg/kg)

	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
Sample count	8	8	8	8	8	8	8	8
Minimum	3.2	-	8.7		5.8	-	-	7.9
Maximum	16	-	59	-	14	-	-	23
Average	3.9	-	15	-	6.6	-	-	8.7
Standard Deviation	5.31	-	22.0	-	5.00	-	-	8.02
95% Confidence	4.44	-	18.38	-	4.18	-	-	6.71
NEPM 2013 HIL A	100	20	100*	6,000	300	40	400	7,400
NEPM 2013 EIL	100		348**	142	1,105		30	242
No. of HIL A Exceedances	0	0	0	0	0	0	0	0

^{*} Note: Hexavalent Chromium

The laboratory analysis detected concentrations of arsenic, chromium, lead, nickel, and zinc within the soil samples recovered. All detected concentrations were reported by the laboratory to have concentrations within the adopted Site Assessment Criteria (SAC) – Health Investigation Levels (HIL A) and Ecological Investigation Levels (EIL).

No concentrations of cadmium, copper, and mercury were detected and were therefore below the adopted site assessment criteria (HIL A and EIL).

^{**} Note: Trivalent Chromium

^{**} Note: Duplicate sample is excluded in sample count

10.2.2 Organochlorine Pesticides / Organophosphorus Pesticides (OCP/OPP)

A total of eight (8) samples were analysed for a range of Organochlorine and Organophorus pesticides. Table 13 shows the OCP/OPP detections.

Table 13: OCP/OPP (Pesticides) Detections in soil samples (mg/kg)

	DDT+DDE +DDD	Aldrin and Dieldrin	Endrin	Chlordanes Total	Toxaphene	Chlorpyrifos
EBH 1	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 2	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 3	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 4	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 5	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 6	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 7	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
EBH 8	< 0.05	< 0.05	< 0.05	< 0.1	< 0.5	< 0.2
NEPM 2013 HIL A	240	6	10	50	20	170
No. of HIL Exceedances	0	0	0	0	0	0

No concentrations of OCP/OPP were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).

10.2.3 Polycyclic Aromatic Hydrocarbons (PAH)

A total of eight (8) samples were analysed for a range of PAH. Total PAH detections are shown in Table 14.

Table 14: Total PAH Detections in soil samples (mg/kg)

	Total PAH	Benzo(a) pyrene TEQ (Upper Bound)	Naphthalene
EBH 1	< 0.5	1.2	< 0.5
EBH 2	< 0.5	1.2	< 0.5
EBH 3	< 0.5	1.2	< 0.5
EBH 4	< 0.5	1.2	< 0.5
EBH 5	< 0.5	1.2	< 0.5
EBH 6	< 0.5	1.2	< 0.5
EBH 7	< 0.5	1.2	< 0.5
EBH 8	< 0.5	1.2	< 0.5
NEPM 2013 HIL A	300	3	170
No of NEPM Exceedances	0	0	0

TEQ- Carcinogenic PAHs: HIL is based on the 8 carcinogenic PAHs and their TEFs (potency relative to B(a)P) adopted by CCME 2008 (refer Schedule B7). The B(a)P TEQ is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its B(a)P TEF. The TEQ is calculated by the laboratory and the upper bound is calculated assuming the concentrations of PAH are at laboratory reporting limits i.e., 0.5mg/kg

No concentrations of Total PAH and Naphthalene were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).

10.2.4 Total Recoverable Hydrocarbons (TRH) - 2013 NEPM Fractions

A total of eight (8) samples were analysed for TRH. TRH detections are presented in Table 15.

Table 15: Total TRH Detections in soil samples (mg/kg)

	F1: C6-C10	F2: C10-C16	F3: C16-C34	F4: C34-C40
EBH 1	< 20	< 50	< 100	< 100
EBH 2	< 20	< 50	< 100	< 100
EBH 3	< 20	< 50	< 100	< 100
EBH 4	< 20	< 50	< 100	< 100
EBH 5	< 20	< 50	< 100	< 100
EBH 6	< 20	< 50	< 100	< 100
EBH 7	< 20	< 50	< 100	< 100
EBH 8	< 20	< 50	< 100	< 100
HSL	50	280	NL	NL
ESL	180	120	1300	5600
ML	800	1000	3500	10000
No of HSL/ESL/ML Exceedances	0	0	0	0

No concentrations of TRH were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL, ESL and ML).

10.2.5 Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) - 2013 NEPM Fractions

A total of eight (8) samples were analysed for BTEX. BTEX detections are presented in Table 16.

Table 16: Total BTEX Detections in soil samples (mg/kg)

	Benzene	Toluene	Ethylbenzene	Xylene
EBH 1	< 0.1	< 0.1	< 0.1	< 0.3
EBH 2	< 0.1	< 0.1	< 0.1	< 0.3
EBH 3	< 0.1	< 0.1	< 0.1	< 0.3
EBH 4	< 0.1	< 0.1	< 0.1	< 0.3
EBH 5	< 0.1	< 0.1	< 0.1	< 0.3
EBH 6	< 0.1	< 0.1	< 0.1	< 0.3
EBH 7	< 0.1	< 0.1	< 0.1	< 0.3
EBH 8	< 0.1	< 0.1	< 0.1	< 0.3
HSL	0.7	480	NL	110
ESL	65	105	125	45
No. of HSL/ESL Exceedances	0	0	0	0

No concentrations of BTEX were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL and ESL).

10.2.6 Phenols

A total of eight (8) samples were analysed for Phenols. Phenol detections are presented in Table 17.

Table 17: Phenol Detections in soil samples (mg/kg)

	Phenols	Pentachlorophenol	Cresols
EBH 1	< 0.5	<1	< 0.5
EBH 2	< 0.5	<1	< 0.5
EBH 3	< 0.5	<1	< 0.5
EBH 4	< 0.5	< 1	< 0.5
EBH 5	< 0.5	<1	< 0.5
EBH 6	< 0.5	<1	< 0.5
EBH 7	< 0.5	<1	< 0.5
EBH 8	< 0.5	<1	< 0.5
HIL A	3000	100	400
No. of HIL A Exceedances	0	0	0

No concentrations of Phenols were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).

10.2.7 Other Organics – Polychlorinated Biphenyls (PCBs)

A total of eight (8) samples were analysed for PCBs. PCB detections are presented in Table 18.

Table 18: PCB Detections in soil samples (mg/kg)

	Total PCBs
EBH 1	< 0.1
EBH 2	< 0.1
EBH 3	< 0.1
EBH 4	< 0.1
EBH 5	< 0.1
EBH 6	< 0.1
EBH 7	< 0.1
EBH 8	< 0.1
HIL A	1
No. of HIL A Exceedances	0

No concentrations of PCB were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).

10.2.8 Asbestos

All sample locations were visually assessed for the presence of visible asbestos containing materials (ACM's) within the surface soils. No Asbestos was detected above the Reporting Limit of 0.001% w/w in the samples analysed and were therefore within the Site Assessment Criteria (SAC).

10.3 Evaluation Analytical Quality Assurance

10.3.1 Duplicate Sample

The laboratory quality control measures are assessed based on a duplicate sample which was collected during the field works. The Relative Percentage Difference (RPD) values between primary/parent sample EBH2 and the duplicate sample BD1 was calculated to assess the results. A zero RPD means perfect agreement of results between the primary and duplicate sample whilst an RPD above 200% indicates total disagreement in results. Any value >50% RPD will be noted and discussed, as per Standards Australia requirements, with respect to its acceptability for inclusion in the dataset.

An acceptable RPD of 30% was adopted for this assessment, however, in circumstances where one or both detected concentrations within the duplicate pair were within five (5) times the LOR, an RPD of 100% was considered acceptable.

The following table presents the RPD results for the duplicate collected and pairs of results obtained above the laboratory detection limits.

LOR Chemical EBH2 RPD% BD1 <2 Arsenic 6.8 3.4 67 < 0.4 Cadmium < 0.4 < 0.4 <5 Chromium 40 86 16 <5 <5 Copper <5 <5 10 Lead <5 < 0.1 Mercury < 0.1 < 0.1 <5 Nickel 5.3 <5 <5 23 Zinc 11 71

Table 19: Relative Percentage Difference against EBH2 and BD1

Adapted from Eurofins Certificate of Analysis 876159-S (Appendix D)

The RPD for the duplicate samples analysed by the primary laboratory (Eurofins MGT) were between 67 % and 86 %. RPD values could not be determined for Cadmium, Copper, Lead, Mercury, and Nickel as they were below the laboratory reporting limits. Based on the laboratory QA/QC and the duplicate results the data is considered suitable for use in this environmental assessment of the site.

10.3.2 Trip Spike

The trip spike sample assesses the loss of volatile compounds through field handling and transport procedures. The trip spike is a sand sample spiked with a known concentration of BTEX by the analytical laboratory. The sample is transported to and from the site with the primary samples and is analysed to determine the percentage of BTEX recovered.

Upon analysis, the recovery rates were between 94% and 100% of the known concentration (refer to Table 20). Therefore, the field and transport procedures were considered satisfactory for minimising the potential loss of volatile compounds from the primary samples.

Ethyl-Sample Benzene Toluene o-Xylene m+p Xylene benzene 99 Trip Spike 100 96 94 95 Assessment 70 - 13070 - 13070 - 13070 - 13070 - 130Criteria

Table 20. Trip Spike Recovery (%)

Adapted from Eurofins Certificate of Analysis 876159-S (Appendix D)

10.3.3 Trip Blank

The trip blank sample assesses the potential for the primary sample to be affected by external and environmental factors during transport between the site and laboratory. The trip blank sample consists of blank sand which is transported to and from the site and laboratory with the primary samples.

Upon analysis, no concentrations of BTEX were detected (refer to Table 21). As such, there is a minimal potential for cross-contamination to have occurred during the field and trip handling procedures.

Analyte	ТВ
Benzene	<0.1
Toluene	<0.1
Ethylbenzene	<0.1
o-Xylene	<0.1
m+p Xylene	<0.2

Table 21. Trip Blank Sample Results (mg/kg)

Adapted from Eurofins Certificate of Analysis 876159-S (Appendix D)

11. DISCUSSION

The historical review indicated residential usage of the site since at least 1974. The historical information indicates that the site has been used as for cattle farming purposes. Several stockpiles with broken vehicle parts, farming and household wastes have been observed on the farming zone since 2007. The site inspection indicated that multiple stockpiles, sheds, and parked cars may pose environmental contamination concerns to the surrounding soil.

The soil sampling and analysis program conducted as part of the PSI indicates that there is no widespread significant soil contamination across the site. The analytical results for all chemicals assessed were below the adopted site assessment criteria for the assessment.

A summary of the laboratory results is presented as the following:

- The laboratory analysis detected concentrations of arsenic, chromium, lead, nickel, and zinc within the soil samples recovered. All detected concentrations were reported by the laboratory to have concentrations within the adopted Site Assessment Criteria (SAC) Health Investigation Levels (HIL A) and Ecological Investigation Levels (EIL).
- No concentrations of cadmium, copper, and mercury were detected and were therefore below the adopted site assessment criteria (HIL A and EIL).
- No concentrations of OCP/OPP were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of Total PAH and Naphthalene were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of TRH were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL, ESL and ML).
- No concentrations of BTEX were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (HSL and ESL).
- No concentrations of Phenols were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No concentrations of PCB were detected above the limit of reporting (LOR) and were therefore within Site Assessment Criteria (SAC).
- No Asbestos was detected above the reporting limit of 0.001% w/w in the samples analysed and were therefore within the Site Assessment Criteria (SAC).

12. CONCLUSIONS AND RECOMMENDATIONS

The PSI conducted at 176 Wollombi Road, Farley, NSW 2320 was undertaken by Geotesta to investigate the likelihood of the presence of contamination on the site.

Based on the assessment undertaken, the following conclusions and recommendations can be made:

- The limited soil sampling and analysis program conducted indicated a **low** risk of soil and groundwater contamination. It is the opinion of Geotesta Pty Ltd that the site is suitable for the proposed low density residential development pending on the results of an additional Data Gap Contamination Assessment.
- Due to the existence of a significant data-gap in this investigation, a further Data Gap Contamination Assessment post demolition of the existing structures/dwellings is required to address further potential areas of concern (main emphasis on the footprint of the structures/dwellings) identified in the AECs and to determine if any contamination hotspots exist around the existing dwelling.

DOCUMENT CONTROL

Date	Version	Report Prepared By:	Report Reviewed and Issued by:
18 May 2022	Rev (0)	Ngoc Thang Pham	Victor Kirpichnikov
		BEng MSc PhD	MEnv Studies, Bsc (Hons), WHS Cert IV
		Geological Engineer	Senior Environmental Consultant

13. REFERENCES

NSW Department of Mineral Resources, (1991) Penrith 1:100,000 Geological Sheet 9030.

Bureau of Meteorology (2017), <u>www.bom.gov.au</u>.

EPA NSW, http://www.epa.nsw.gov.au/prclmapp/aboutregister.aspx.

NEPC (1999, amended 2013) National Environmental Protection (Assessment of Site Contamination) Measure (ASC NEPM, 1999 amended 2013).

NSW Department of Environment & Heritage (NSW soil and land information), www.environment.nsw.gov.au.

NSW EPA (2014) Waste Classification Guidelines, Part 1: Classifying waste.

NSW EPA (2020) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Land.

Standards Australia (2005) AS4482.1 2nd Edition: Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil – Part 1: Non-Volatile and Semi-Volatile Compounds.

NSW EPA (2017) 3rd Ed. Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme

WA DoH (2009) Guidelines for the Assessment, Remediation and Management of Asbestoscontaminated Sites in Western Australia.

State Environmental Planning Policy No 55 (1979), Environmental Planning and Assessment Act 1979.

Standards Australia, 2005. Guide to the sampling and Investigation of Potentially Contaminated Soil, Part 1: Non-volatile and Semi-volatile compounds. AS 4482.1

Lotsearch, 176 Wollombi Road, Farley, NSW 2320, Ref# LS031836 EP, 06 May 2022

Eurofins, 30 March 2022, Certificate of Analysis 876159-S, prepared for GEOTESTA

Eurofins, 30 March 2022, Certificate of Analysis 876159-AID, prepared for GEOTESTA

Information about this report

The report contains the results of a contamination investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

Test Hole Logging

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information.

Groundwater

Unless otherwise indicated, the water levels presented on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeability (i.e. depending on response time of the measuring instrument). Further, variations of this level could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate instrumentation techniques and monitoring programmes.

Interpretation of Results

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data. Generalized, idealized or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

Change in Conditions

Local variations or anomalies in the generalized ground conditions do occur in the natural environment, particularly between discrete test hole locations. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural forces.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GEOTESTA for appropriate assessment and comment.

Environmental Verification

Verification of the environmental/contamination assumptions and/or model is an integral part of the design process-investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system or to conduct monitoring as a result of this natural variability. Allowance for verification by geotechnical personnel accordingly should be recognized and programmed during construction.

Reproduction of Reports

Where it is desired to reproduce, the information contained in our contamination report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions should include at least all of the relevant test hole and test data, together with the appropriate standard description sheets and remarks made in the written report of a factual or descriptive nature. Reports are the subject of copyright and shall not be reproduced either totally or in part without the express permission of Geotesta.

Appendix A Photographic Log


Photograph 1: The residential dwelling viewed from the southeast.

Photograph 2: The residential dwelling viewed from the north.

Photograph 3: The residential dwelling viewed from the northeast.

Photograph 4: Farming area viewed from the southwest.

Appendix B Borehole Logs

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.5	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, brown	Moist-Wet	Poorly Compacted	
0.5-0.7	CI	Silty CLAY: medium plasticity, orange brown	Moist	Stiff	EBH1 at 0.5m EBH1 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.4	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, dark brown	Moist	Poor Compacted	
0.4-1.1	CI	Silty CLAY: medium plasticity, orange brown, mottled red; trace sandstone	Moist	Firm to Stiff	EBH2 and BD1 at 0.6m EIL at 1.0m EBH2 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, brown, trace sand and gravel	Moist	Poorly Compacted	
0.2-1.4	CI	Silty CLAY: medium plasticity, grey, mottled brown	Dry-Moist	Firm to Hard	EBH3 at 0.5m EBH3 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.2	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, brown	Moist-Wet	Poorly Compacted	
0.2-0.4	CI	Silty CLAY: medium plasticity, orange brown	Moist	Stiff	EBH4 at 0.3m EBH4 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.3	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, brown	Moist-Wet	Poorly Compacted	
0.3-0.5	CI	Silty CLAY: medium plasticity, orange brown	Moist	Stiff	EBH5 at 0.4m EBH5 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.3	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, dark brown	Moist	Poor Compacted	
0.3-0.5	CI	Silty CLAY: medium plasticity, orange brown, mottled red; trace sandstone	Moist	Firm to Stiff	EBH6 at 0.4m EBH6 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.4	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, dark brown	Moist	Poor Compacted	
0.4-0.5	CI	Silty CLAY: medium plasticity, orange brown, mottled red; trace sandstone	Moist	Firm to Stiff	EBH7 at 0.4m EBH7 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Depth (m)	Symbol	Material Description	Moisture	Consistency/Density	Field Notes
0.0-0.3	FILL	TOPSOIL/FILL: Silty CLAY, medium plasticity, brown, trace sand and gravel	Moist	Poorly Compacted	
0.3-0.5	CI	Silty CLAY: medium plasticity, grey, mottled brown	Dry-Moist	Firm to Hard	EBH8 at 0.5m EBH8 7mm Sieved Asbestos at 0.1m Groundwater not encountered

Appendix C Lotsearch

Date: 06 May 2022 08:01:42

Reference: LS031836 EP

Address: 176 Wollombi Road, Farley, NSW 2320

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

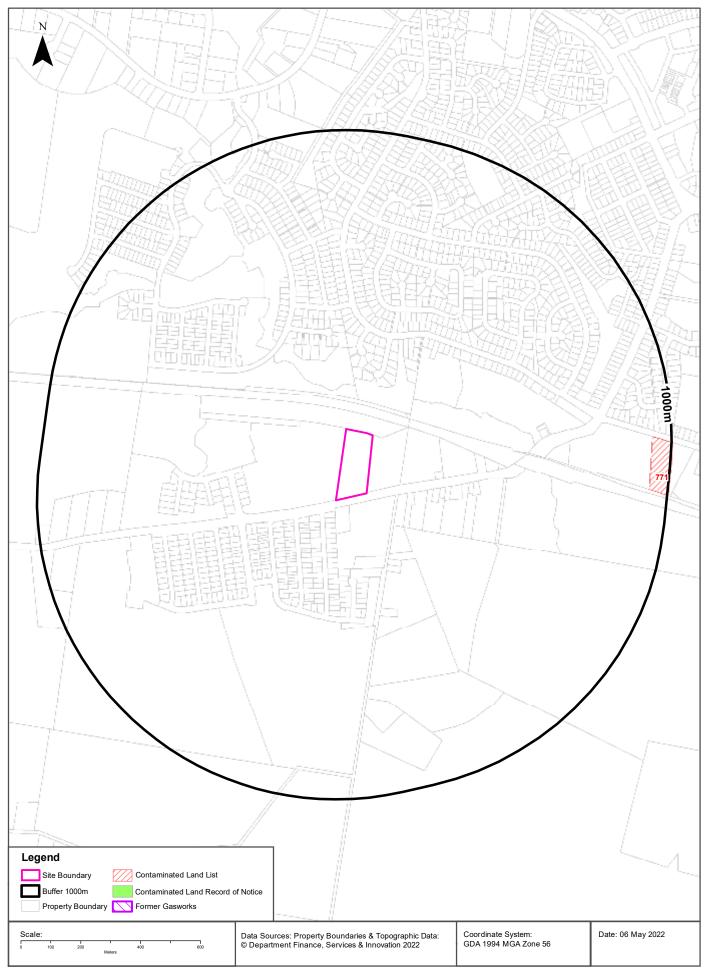
Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Customer Service - Spatial Services	06/04/2022	06/04/2022	Quarterly	-	-	-	-
Topographic Data	NSW Department of Customer Service - Spatial Services	25/06/2019	25/06/2019	Annually	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	19/04/2022	11/04/2022	Monthly	1000m	0	0	1
Contaminated Land Records of Notice	Environment Protection Authority	05/04/2022	05/04/2022	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	02/03/2022	14/07/2021	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	03/05/2022	14/07/2021	Monthly	2000m	0	0	1
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/04/2022	06/04/2022	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	03/03/2022	03/03/2022	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	16/02/2022	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	05/04/2022	05/04/2022	Monthly	1000m	0	2	2
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	05/04/2022	05/04/2022	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	05/04/2022	05/04/2022	Monthly	1000m	0	5	7
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	0	0
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	0	8
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Points of Interest	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	1	4
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Major Easements	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	5
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	10/02/2022	31/12/2021	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	Annually	1000m	2	2	2
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	28/03/2022	23/02/2018	Annually	1000m	0	0	0
National Groundwater Information System (NGIS) Boreholes	Bureau of Meteorology; Water NSW	24/01/2022	24/01/2022	Annually	2000m	0	0	5

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features On-site	No. Features within 100m	No. Features within Buffer
NSW Seamless Geology Single Layer: Rock Units	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	1	1	6
NSW Seamless Geology – Single Layer: Trendlines	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
NSW Seamless Geology – Single Layer: Geological Boundaries and Faults	Department of Regional NSW	17/02/2022	01/05/2021	Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	1
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annually	1000m	1	1	3
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	06/04/2022	18/02/2022	Monthly	500m	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	1	1	2
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	1
Current Mining Titles	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	20/04/2022	20/04/2022	Monthly	1000m	7	7	8
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	15/11/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	15/11/2021	05/11/2021	Monthly	1000m	1	4	21
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	06/04/2022	25/03/2022	Monthly	1000m	0	1	3
Bush Fire Prone Land	NSW Rural Fire Service	03/05/2022	08/12/2021	Weekly	1000m	2	2	4
Lower Hunter and Central Coast Regional Vegetation Survey	NSW Office of Environment & Heritage	28/02/2015	16/11/2009	As required	1000m	0	1	10
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	28/03/2022	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annually	1000m	0	1	2
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	0	2	7
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	03/05/2022	03/05/2022	Weekly	10000m	-	-	-

Site Diagram 176 Wollombi Road, Farley, NSW 2320



Contaminated Land

176 Wollombi Road, Farley, NSW 2320

Contaminated Land

176 Wollombi Road, Farley, NSW 2320

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
771	Former Ausgrid Depot	Green Street	Telarah	Other Industry	Regulation under CLM Act not required	Current EPA List	Premise Match	930m	East

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

176 Wollombi Road, Farley, NSW 2320

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

176 Wollombi Road, Farley, NSW 2320

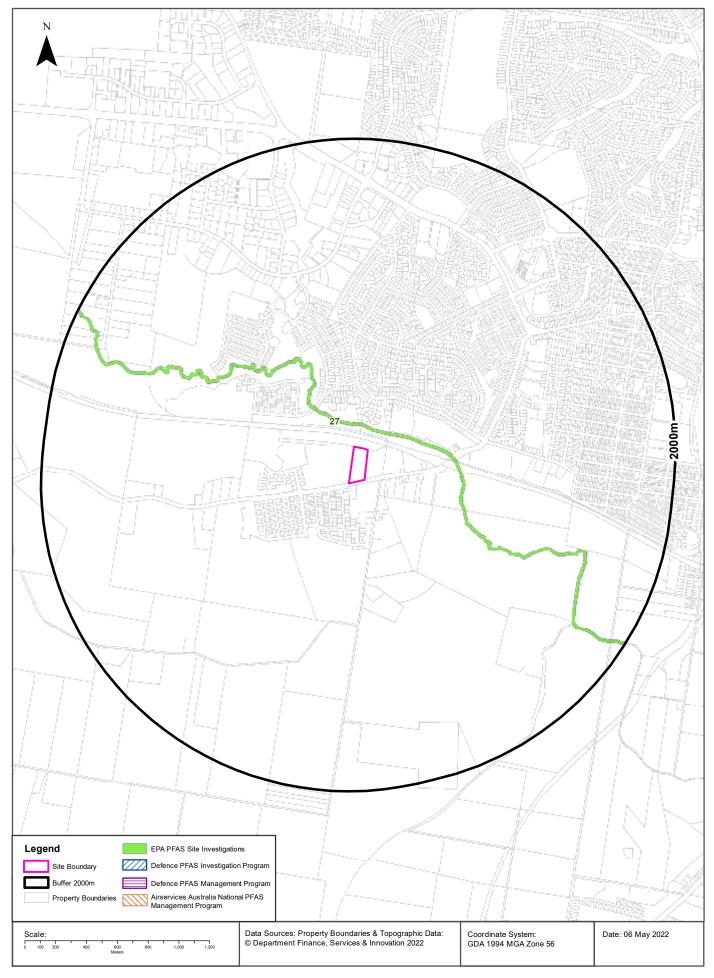
National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities


National Liquid Fuel Facilties within the dataset buffer:

! !	Map ld	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
1	N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs 176 Wollombi Road, Farley, NSW 2320

PFAS Investigation & Management Programs

176 Wollombi Road, Farley, NSW 2320

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
27	Rutherford, Truegain	62 Kyle St, Rutherford NSW 2320 + Stoney, Fishery & Wallis Creeks downstream	Network of Features	118m	North East

EPA PFAS Investigation Program: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

176 Wollombi Road, Farley, NSW 2320

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

176 Wollombi Road, Farley, NSW 2320

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- · Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

176 Wollombi Road, Farley, NSW 2320

EPA Activities

176 Wollombi Road, Farley, NSW 2320

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
10393	MAITLAND CITY COUNCIL	ALL WATERBODIES IN THE MAITLAND LOCAL GOVERNMENT AREA		MAITLAND	Other activities	Network of Features	23m	West
3142	AUSTRALIAN RAIL TRACK CORPORATION LIMITED		AUSTRALIAN RAIL TRACK CORPORATION (ARTC) NETWORK, SYDNEY, NSW 2001		Railway systems activities	Network of Features	64m	North

POEO Licence Data Source: Environment Protection Authority
© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

176 Wollombi Road, Farley, NSW 2320

EPA Activities

176 Wollombi Road, Farley, NSW 2320

Delicensed Activities still regulated by the EPA

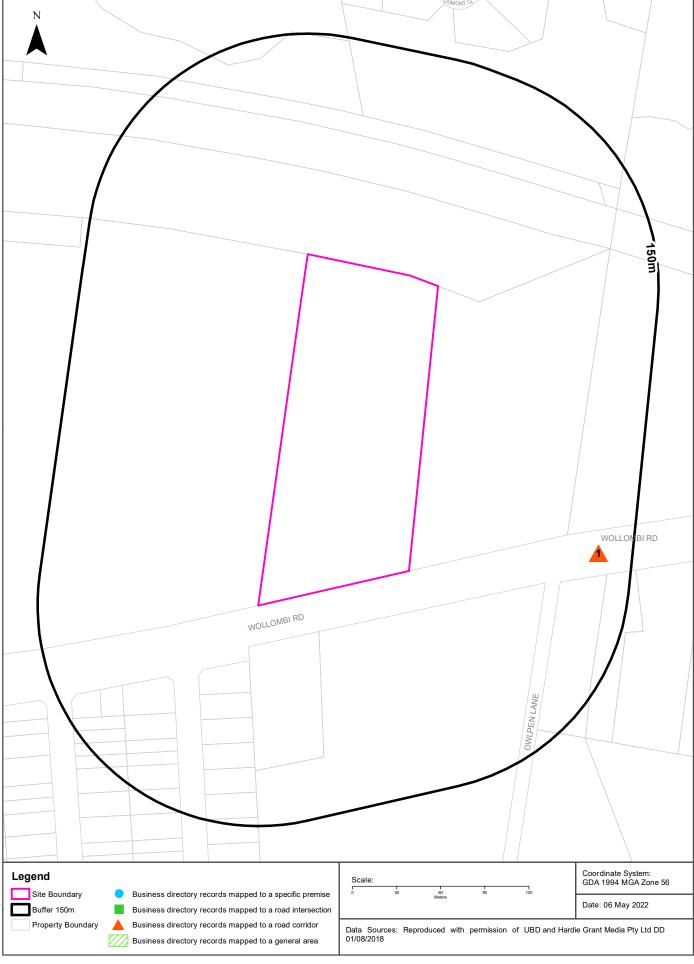
Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	23m	West
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	23m	West
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	23m	West
13319	AUSTRALIAN RAIL TRACK CORPORATION LIMITED	Maitland to Minimbah Third Track, Main Northern Railway, MAITLAND	Surrendered	16/11/2010	Crushing, grinding or separating; Extractive Activities	Network of Features	61m	North
13319	AUSTRALIAN RAIL TRACK CORPORATION LIMITED	Maitland to Minimbah Third Track, Main Northern Railway, MAITLAND	Surrendered	16/11/2010	Railway systems activities	Network of Features	61m	North
12439	STATE OF NEW SOUTH WALES (Department of Primary Industries - Lands)	Soil Conservation Service, Waterways within the Hunter Valley Flood Mitigation Scheme, MAITLAND	Surrendered	13/02/2007	Other Activities - Application of Herbicides	Area Match	413m	South East
12092	AUSGRID OPERATOR PARTNERSHIP	AUSGRID Maitland Depot, 35 Green Street, RUTHERFORD	Surrendered	18/08/2004	Waste storage - hazardous, restricted solid, liquid, clinical and related waste and asbestos waste	Premise Match	575m	East

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

176 Wollombi Road, Farley, NSW 2320

Historical Business Directories

176 Wollombi Road, Farley, NSW 2320

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	EARTH MOVING & ROAD MAKING CONTRACTORS	Lloyd, J. H., 27 Farley Rd., Rutherford	638394	1970	Road Match	103m
	EARTH MOVING MACHINERY HIRERS	Lloyd, J. H., 27 Farley Rd., Rutherford	638398	1970	Road Match	103m
	GRAVEL, SAND & SOIL SUPPLIES	Lloyd, J. H., 27 Farley Rd., Rutherford	638569	1970	Road Match	103m
	ELECTRICAL CONTRACTORS &/OR ELECTRICIANS	James, E. R., Great Northern Rd., Rutherford	125607	1950	Road Match	103m
	FRUITERERS & GREENGROCERS-RETAIL	Richards, J. B., Great Northern Rd., Rutherford	125706	1950	Road Match	103m
	GROCERS & GENERAL STOREKEEPERS	Richards, Mrs. J. B., Great Northern Rd., Rutherford	125801	1950	Road Match	103m
	HABERDASHERY-RETAIL	Richards, Mrs. J. B., Great Northern Rd., Rutherford	125825	1950	Road Match	103m
	MILK BARS &/OR CONFECTIONERS	Richards, Mrs. J. B., Great Northern Rd., Rutherford	126027	1950	Road Match	103m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Historical Business Directories

176 Wollombi Road, Farley, NSW 2320

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

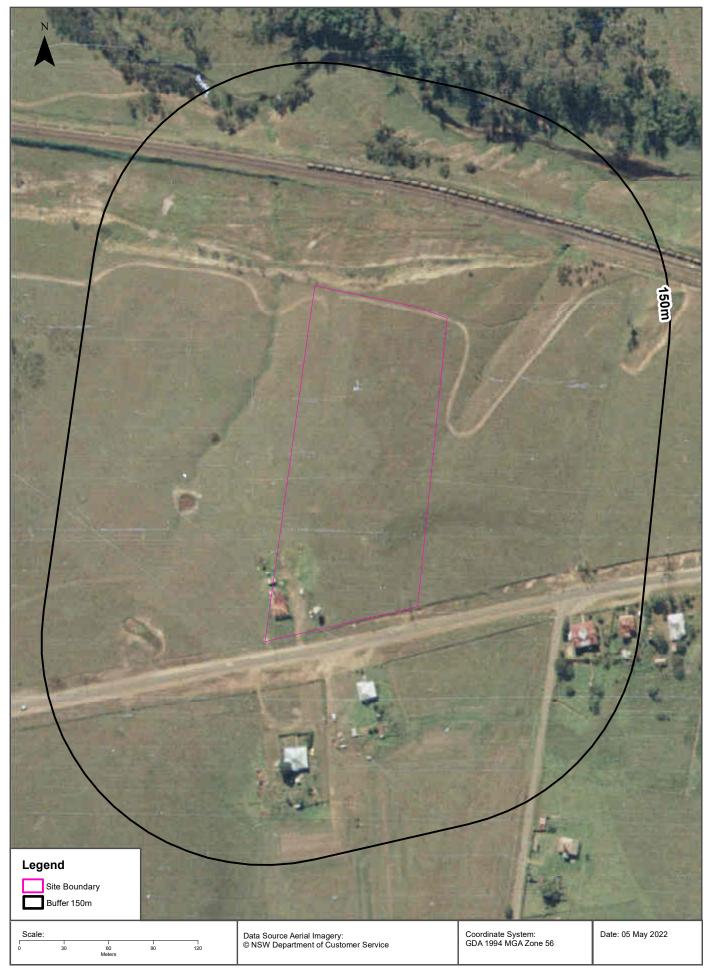
Aerial Imagery 2021 176 Wollombi Road, Farley, NSW 2320

Aerial Imagery 2015 176 Wollombi Road, Farley, NSW 2320

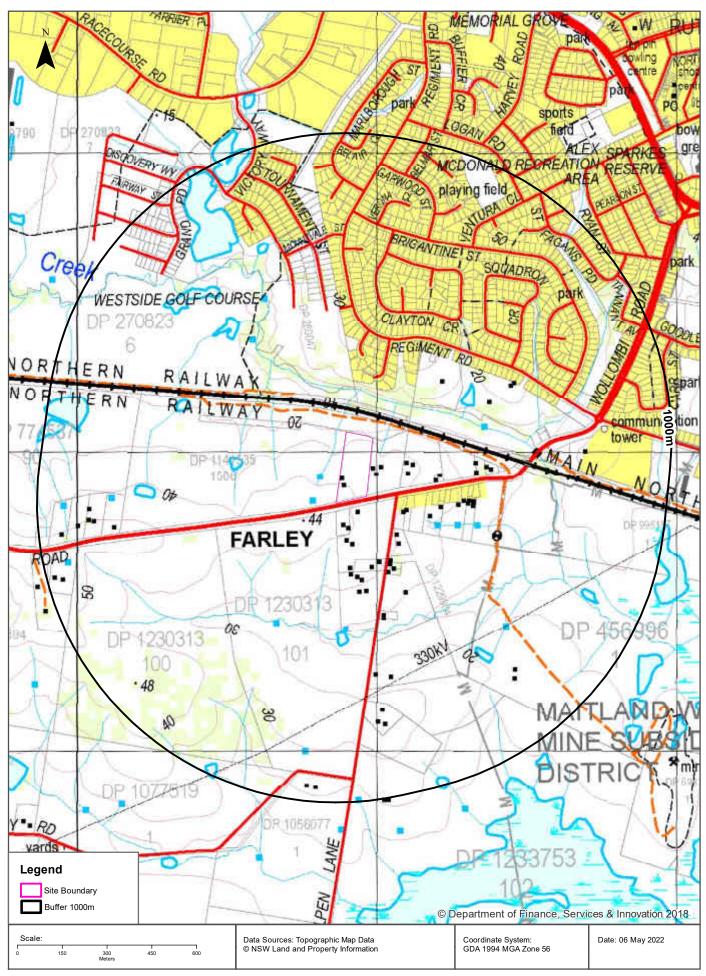
Aerial Imagery 2010 176 Wollombi Road, Farley, NSW 2320

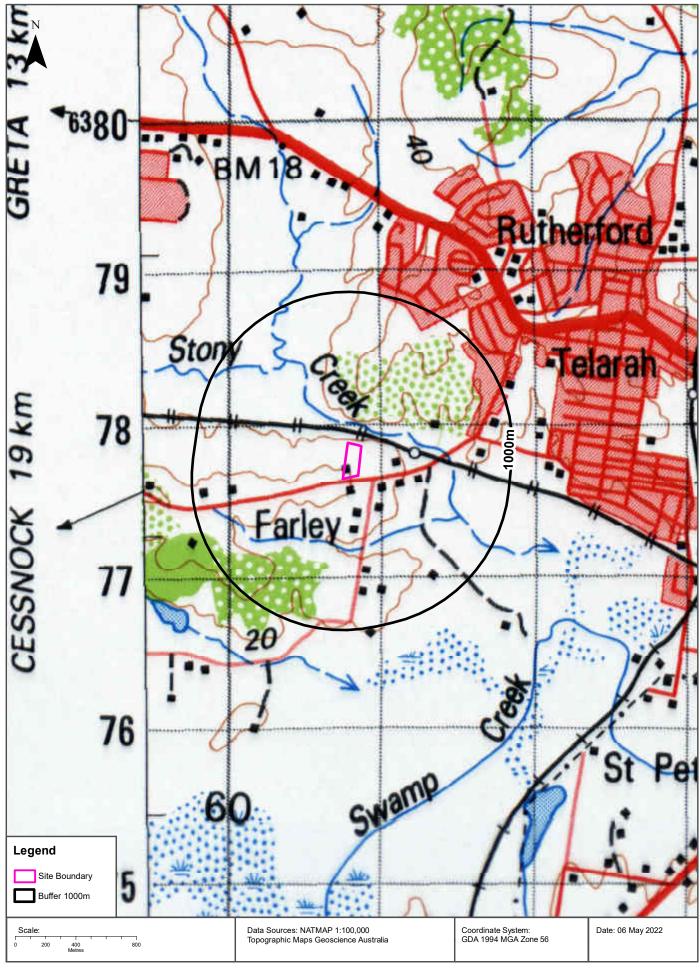
Aerial Imagery 2001 176 Wollombi Road, Farley, NSW 2320

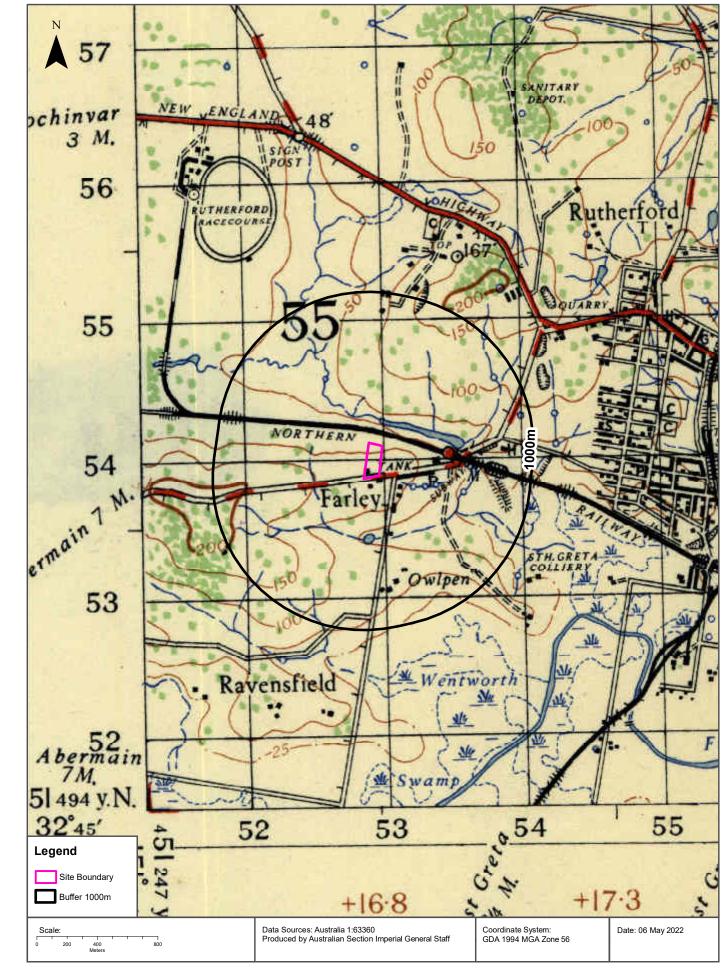
Aerial Imagery 1993 176 Wollombi Road, Farley, NSW 2320

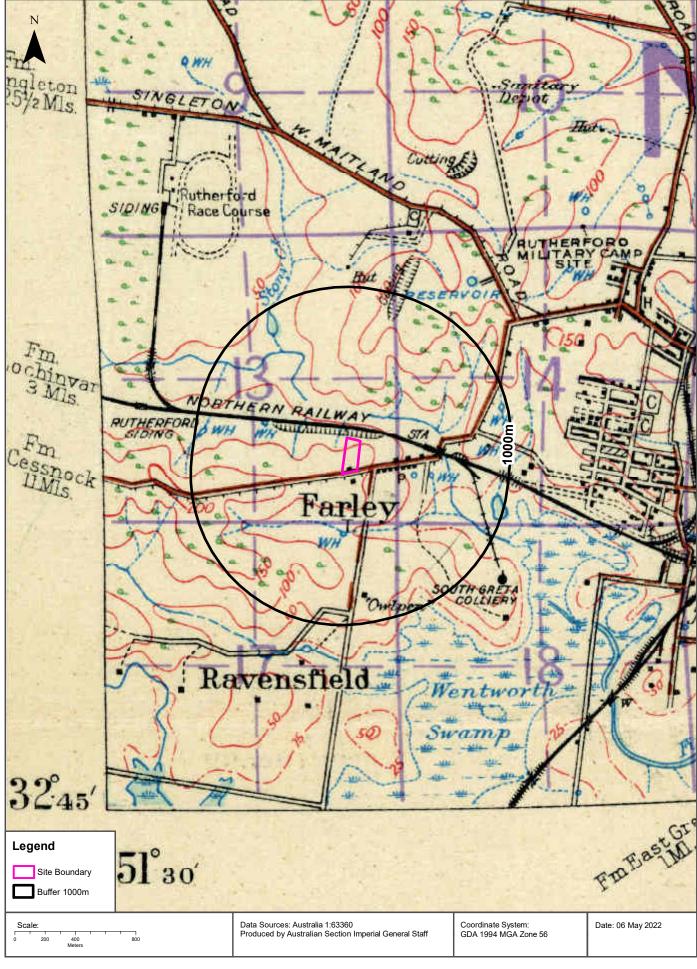

Aerial Imagery 1983 176 Wollombi Road, Farley, NSW 2320

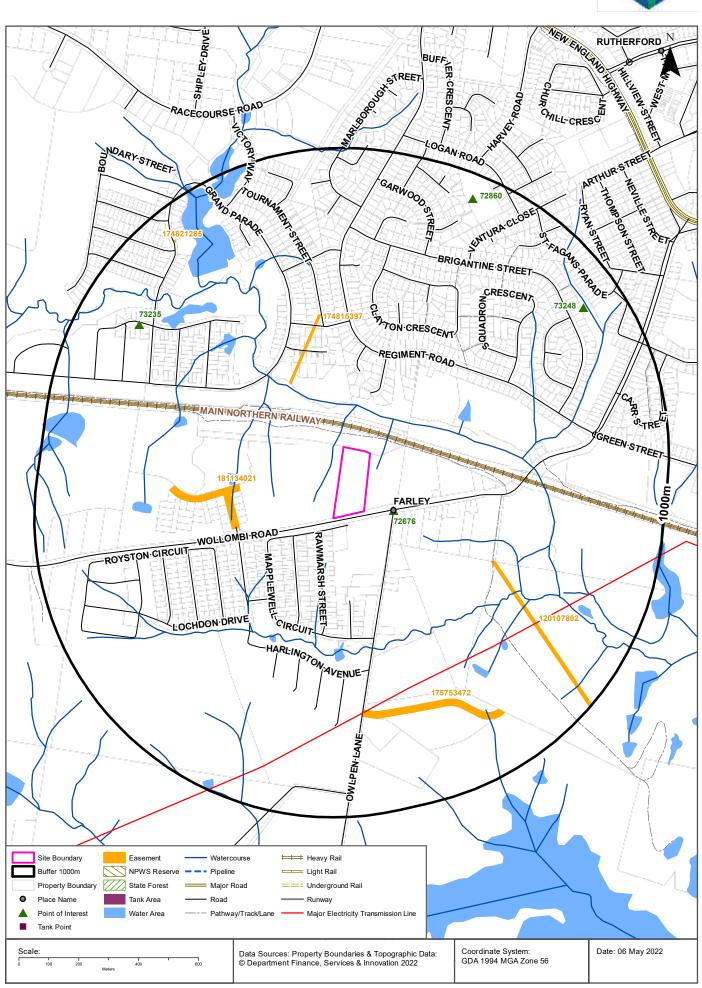
Aerial Imagery 1976 176 Wollombi Road, Farley, NSW 2320




Topographic Map 2015


Historical Map 1981


Historical Map c.1942



Historical Map c.1925

176 Wollombi Road, Farley, NSW 2320

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
72676	Village	FARLEY	99m	South East
73235	Golf Course	WESTSIDE GOLF COURSE	796m	North West
73248	Park	Park	865m	North East
72860	Sports Field	PLAYING FIELD	920m	North East

Topographic Data Source: © Land and Property Information (2015)

 $Creative\ Commons\ 3.0\ \ \textcircled{o}\ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$

176 Wollombi Road, Farley, NSW 2320

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
174815397	Primary	Right of way	6m	274m	North
181134021	Primary	Right of way	Var	315m	West
120107802	Primary	Undefined		458m	South East
175753472	Primary	Right of way	21m	650m	South
174821285	Primary	Right of way	4.75m	887m	North West

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

176 Wollombi Road, Farley, NSW 2320

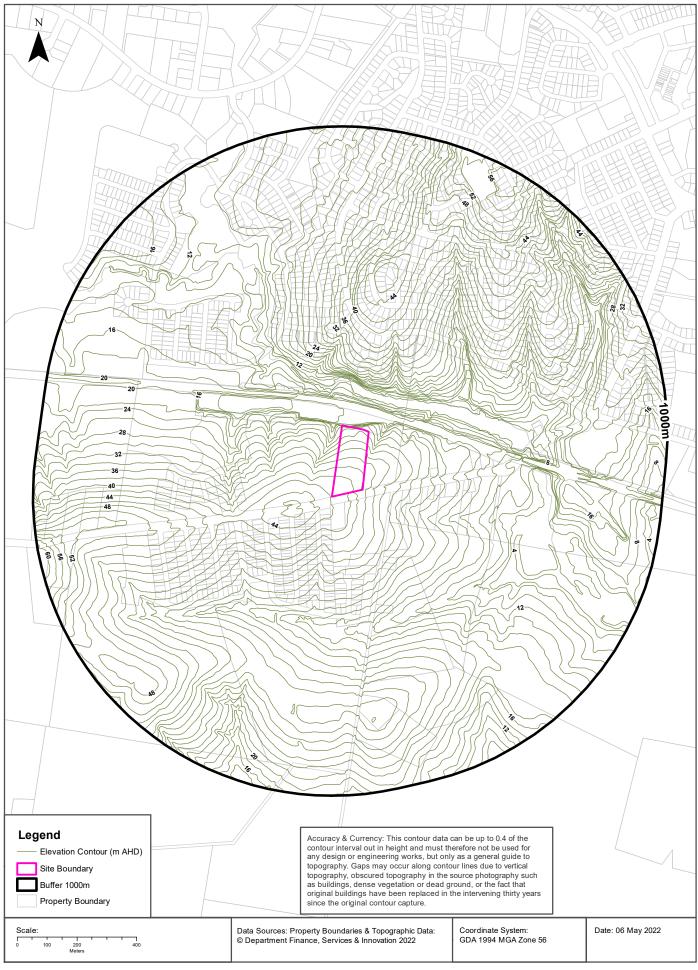
State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves


What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

176 Wollombi Road, Farley, NSW 2320

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Fractured or fissured, extensive aquifers of low to moderate productivity	0m	On-site
Porous, extensive highly productive aquifers	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018

Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source: NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

176 Wollombi Road, Farley, NSW 2320

Groundwater Boreholes

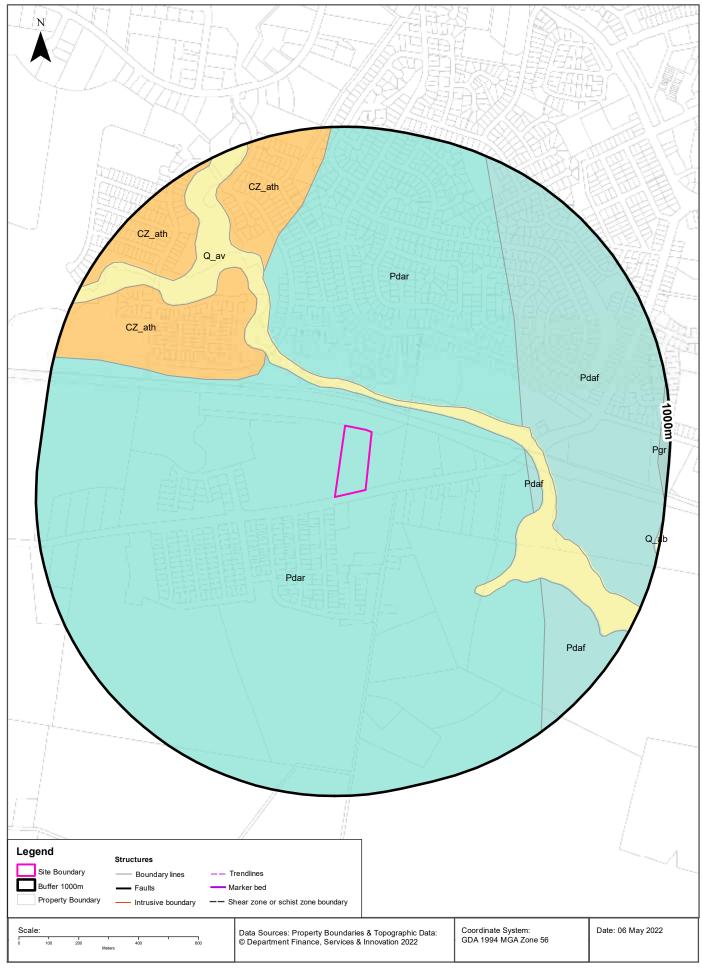
Boreholes within the dataset buffer:

NGIS Bore ID	NSW Bore ID	Bore Type	Status	Drill Date	Bore Depth (m)	Reference Elevation		Salinity (mg/L)	Yield (L/s)	SWL (mbgl)	Distance	Direction
10098876	GW201353	Monitoring	Functional	03/12/2009	6.20		AHD				551m	East
10103728	GW201357	Monitoring	Functional	03/12/2009	6.00		AHD				622m	East
10006592	GW202694	Monitoring	Functional	16/08/2011	7.45		AHD				1535m	North East
10012762	GW202692	Monitoring	Functional	16/08/2011	9.00		AHD				1567m	North East
10100572	GW202693	Monitoring	Functional	16/08/2011	7.50		AHD				1568m	North East

Borehole Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

176 Wollombi Road, Farley, NSW 2320


Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

NGIS Bore ID	Drillers Log	Distance	Direction
10098876	0.00m-1.50m Sandy Clay, grey, fine 1.50m-6.20m Sandy Clay, grey yellow, fine	551m	East
10103728	0.00m-0.20m Clayey Sand, brown, fine-medium 0.20m-6.00m Sandy Clay, light brown-light grey, fine-medium	622m	East
10006592	0.00m-0.50m Silty Clay; grey mottled red, dry, very high plasticity 0.50m-2.50m Silt, Sandy; trace sand, red, dry, low plasticity 2.50m-6.50m Silt, Clayey; red, dry, medium plasticity, @ 7m brown, @ 7.45m refusal	1535m	North East
10012762	0.00m-0.50m Silty Clay; red, dry, low plasticity 0.50m-1.00m Silty Clay; brown, moist, very high plasticity 1.00m-2.00m Silty Clay; dark brown 2.00m-3.50m Silty Clay; light brown 3.50m-8.00m Silt, Clayey; red, dry, trace plasticity 8.00m-9.00m Silty Clay; grey, dry, high plasticity, @9m refusal	1567m	North East
10100572	0.00m-1.00m Silt, Clayey; brown, dry, trace plasticity, @1m trace gravel 1.00m-7.50m Silty Clay; brown, dry, high plasticity, @3m brown-grey, @4.5m grey, mottled red, @5m grey, @6.5m brown, @7.5m refu	1568m	North East

Drill Log Data Source: Bureau of Meteorology; Water NSW. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology

176 Wollombi Road, Farley, NSW 2320

Geological Units

What are the Geological Units within the dataset buffer?

Unit Code	Unit Name	Description	Unit Stratigraphy	Age	Dominant Lithology	Distance
Pdar	Rutherford Formation	Siltstone, marl and minor sandstone.	/Dalwood Group//Rutherford Formation//	Permian (base) to Permian (top)	Siltstone	0m
Q_av	Alluvial valley deposits	Silt, clay, (fluvially deposited) lithic to quartz-lithic sand, gravel.	/Alluvium//Alluvial valley deposits//	Quaternary (base) to Now (top)	Clastic sediment	107m
CZ_ath	Alluvial terrace deposits - high-stand facies	High-level terrace deposits of sand and gravel.	/Alluvium//Alluvial terrace deposits/Alluvial terrace deposits - high-stand facies/	Neogene (base) to Now (top)	Sand	338m
Pdaf	Farley Formation	Poorly sorted, light- and dark-grey, micaceous sandy siltstone, silty sandstone, mudstone and shale; sporadic thin limestone near Pokolbin; abundant marine fossils.	/Dalwood Group//Farley Formation//	Permian (base) to Lopingian (top)	Siltstone	504m
Pgr	Greta Coal Measures	Sandstone, siltstone, pellet claystone, coal, chert, sporadic conglomerate.	/Greta Coal Measures////	Permian (base) to Permian (top)	Sandstone	963m
Q_ab	Alluvial backswamp deposits	Organic-rich mud, peat, silt, clay.	/Alluvium//Alluvial backswamp deposits//	Quaternary (base) to Now (top)	Organic rich sediment	982m

Linear Geological Structures

What are the Dyke, Sill, Fracture, Lineament and Vein trendlines within the dataset buffer?

Map ID	Feature Description	Map Sheet Name	Distance
No Features			

What are the Faults, Shear zones or Schist zones, Intrusive boundaries & Marker beds within the dataset buffer?

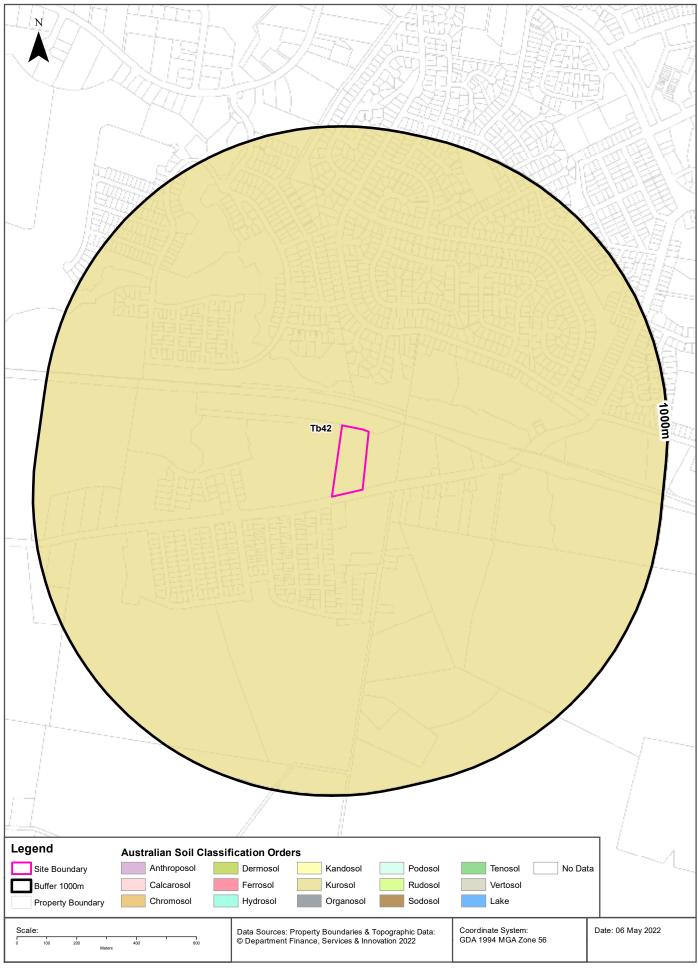
Map ID	Boundary Type	Description	Map Sheet Name	Distance
No Features				

Geological Data Source: Statewide Seamless Geology v2.1, Department of Regional NSW Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Naturally Occurring Asbestos Potential

176 Wollombi Road, Farley, NSW 2320

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

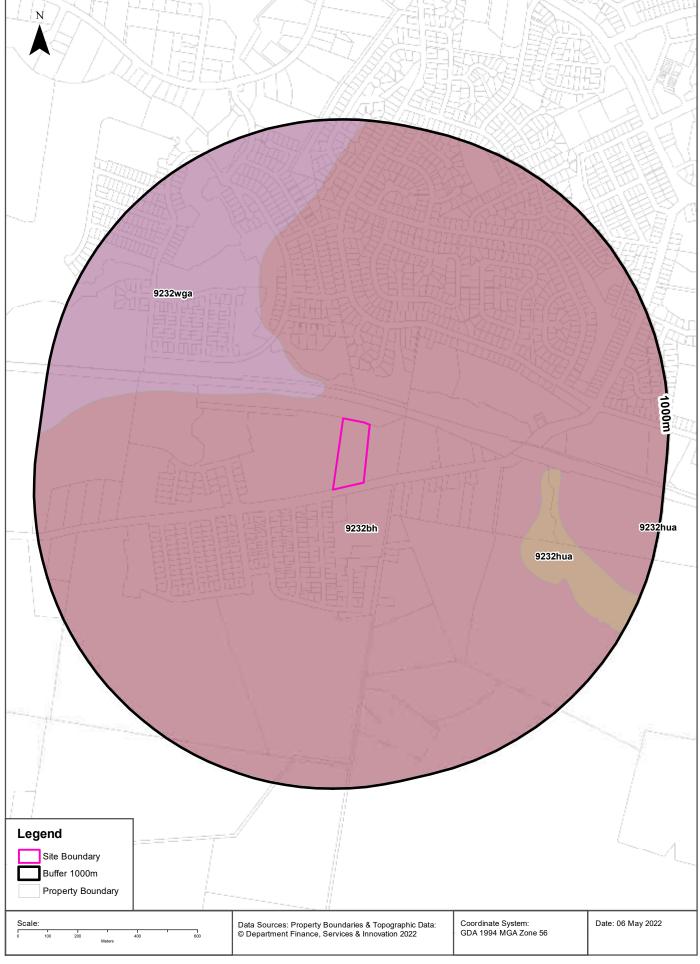
Atlas of Australian Soils

Soils

176 Wollombi Road, Farley, NSW 2320

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Tb42	Kurosol	Undulating to hilly with a general ridge, slope, and valley sequence throughout; some outcropping sandstone or conglomerate on the ridges, occasionally some escarpments: chief soils are hard acidic yellow mottled soils (Dy3.41), possibly with (Dy3.42). Associated are: narrow ridges of shallow (Dy3.41) and (Dr3.41) soils, both often containing ironstone gravel; (Dr2.41) soils on broader ridges some broad sandy flats of (Dy5.81) soils containing ironstone gravels; dunes of (Uc1.2) soils on local sand deposits; and various undescribed soils along the streams where salinity is a common local feature.	0m	On-site

Atlas of Australian Soils Data Source: CSIRO

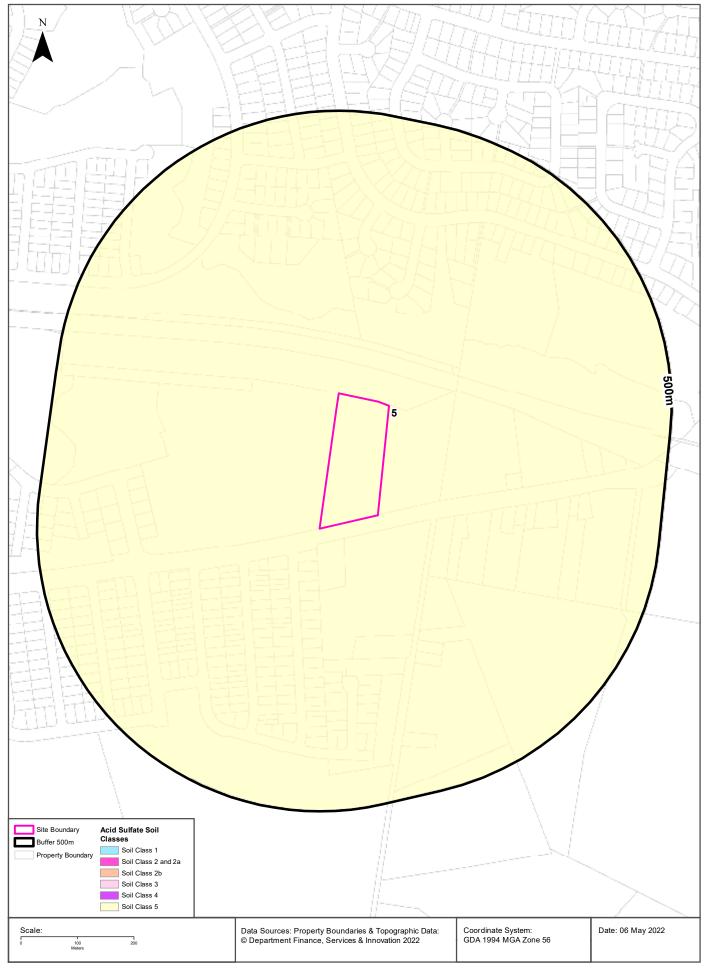
 $\label{lem:commons} \textbf{Creative Commons 4.0 @ Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en} \\$

Soil Landscapes of Central and Eastern NSW

Soils

176 Wollombi Road, Farley, NSW 2320

Soil Landscapes of Central and Eastern NSW


Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>9232bh</u>	Bolwarra Heights	0m	On-site
<u>9232wga</u>	Wallalong variant a	108m	North West
<u>9232hua</u>	Hunter variant a	563m	South East

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Acid Sulfate Soils

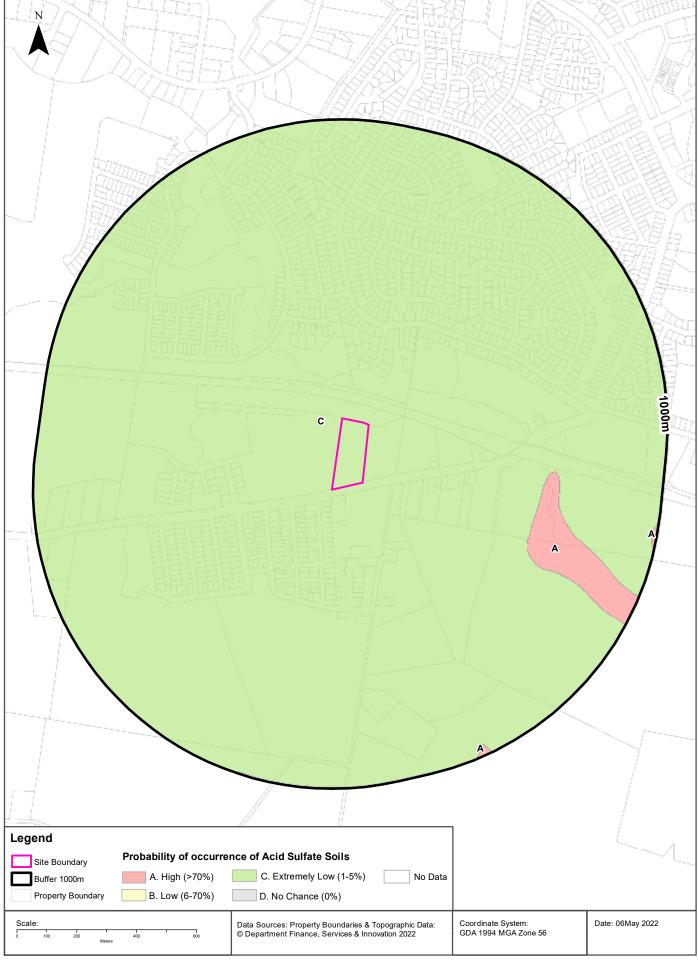
Acid Sulfate Soils

176 Wollombi Road, Farley, NSW 2320

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
5	Works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk	Maitland Local Environmental Plan 2011


If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
None				

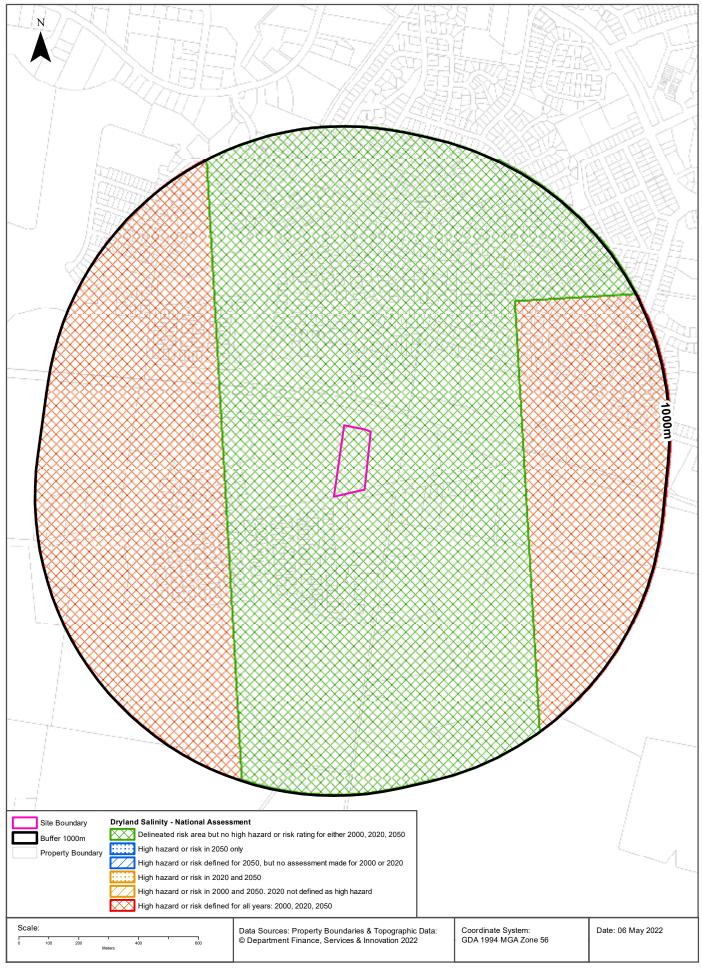
NSW Crown Copyright - Planning and Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

176 Wollombi Road, Farley, NSW 2320

Atlas of Australian Acid Sulfate Soils


Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m	On-site
Α	High Probability of occurrence. >70% chance of occurrence.	961m	South East

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

Dryland Salinity

176 Wollombi Road, Farley, NSW 2320

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

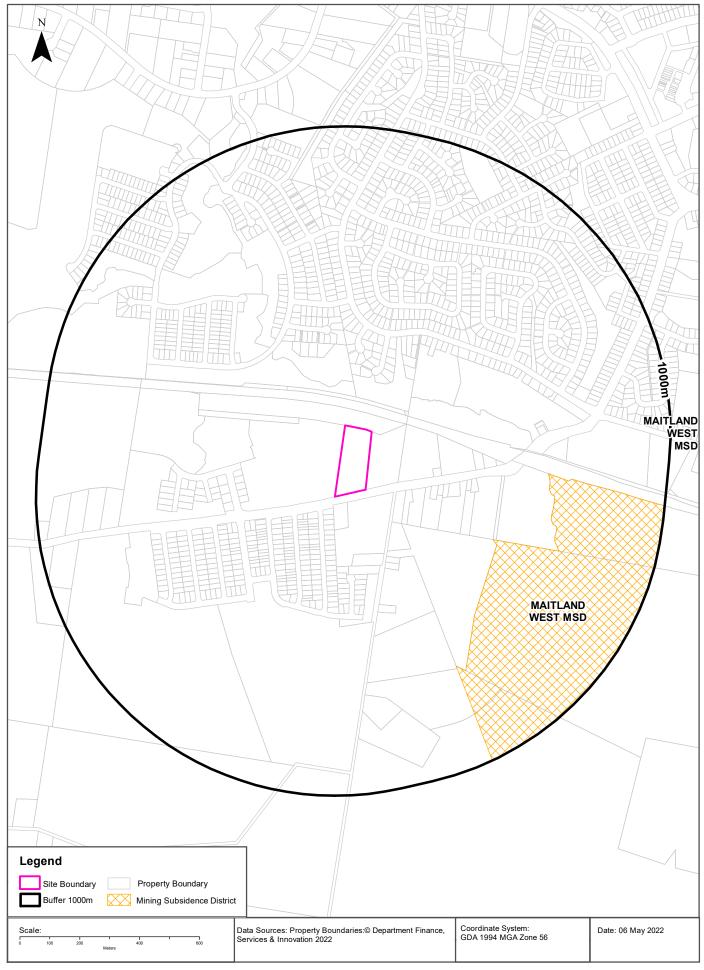
Yes

Is there Dryland Salinity - National Assessment data within the dataset buffer?

Yes

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
Delineated risk area but no high hazard or risk rating	Delineated risk area but no high hazard or risk rating	Delineated risk area but no high hazard or risk rating	0m	On-site
High hazard or risk	High hazard or risk	High hazard or risk	363m	West


Dryland Salinity Data Source: National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining Subsidence Districts 176 Wollombi Road, Farley, NSW 2320

Mining

176 Wollombi Road, Farley, NSW 2320

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
MAITLAND WEST	458m	South East

Mining Subsidence District Data Source: © Land and Property Information (2016)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

176 Wollombi Road, Farley, NSW 2320

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

176 Wollombi Road, Farley, NSW 2320

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

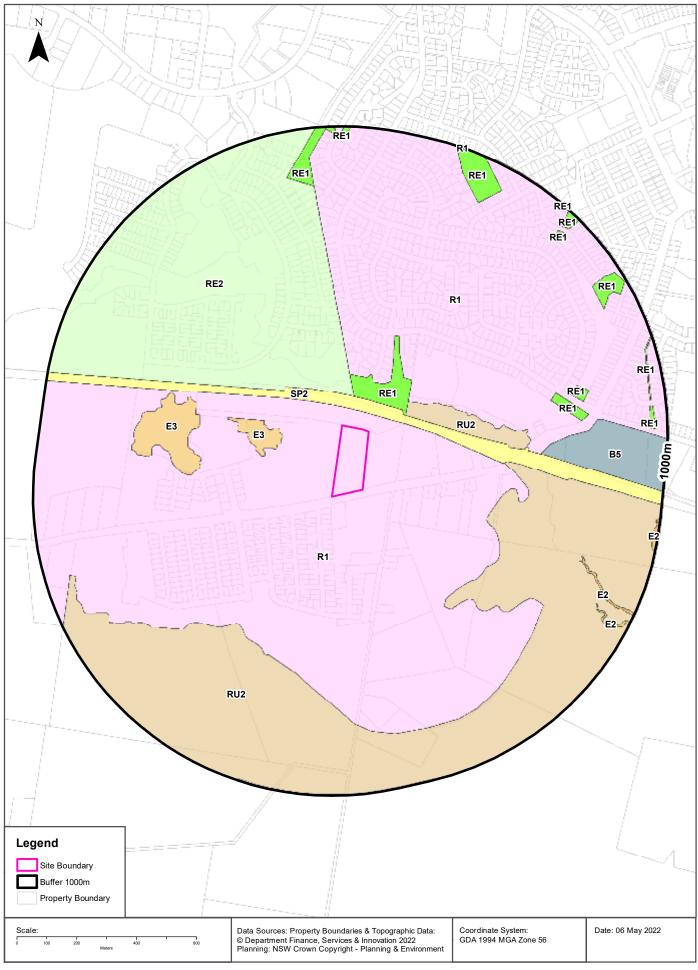
Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0267	SYDNEY OIL CO (NSW) PTY LTD, MANVANE PTY LTD AUSTRALIA NL, BASE RESOURCES LTD, SEAHAWK OIL AUSTRALIA NL, READING & BATES	20/01/1984	6/07/2015	PETROLEUM	Petroleum	0m	On-site
PEL0088	PLANET EXPLORATION COMPANY PTY LTD			PETROLEUM	Petroleum	0m	On-site
PEL0174	NSW OIL AND GAS COMPANY NL			PETROLEUM	Petroleum	0m	On-site
PEL0209	EARTH RESOURCES AUSTRALIA PTY LTD			PETROLEUM	Petroleum	0m	On-site
PEL0235	EASTMET LTD	17/04/1980		PETROLEUM	Petroleum	0m	On-site
PPL0006	PLANET EXPLORATION	15/05/1905		PETROLEUM	Petroleum	0m	On-site
PEL267	AGL UPSTREAM INVESTMENTS PTY LIMITED			MINERALS		0m	On-site
AUTH0391	SOUTH MAITLAND COLLIERIES PTY LIMITED	29 Apr 1987	29 Apr 1991	COAL	Coal	445m	South East

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

176 Wollombi Road, Farley, NSW 2320

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

EPI Planning Zones 176 Wollombi Road, Farley, NSW 2320

Environmental Planning Instrument

176 Wollombi Road, Farley, NSW 2320

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R1	General Residential		Maitland Local Environmental Plan 2011	18/01/2013	18/01/2013	16/07/2021	Amendment No 1	0m	On-site
SP2	Infrastructure	Railway	Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		54m	North East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		97m	North East
RE2	Private Recreation		Maitland Local Environmental Plan 2011	25/08/2017	25/08/2017	16/07/2021	Amendment No 21	100m	North West
RU2	Rural Landscape		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		132m	East
R1	General Residential		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		161m	North East
E3	Environmental Management		Maitland Local Environmental Plan 2011	18/01/2013	18/01/2013	16/07/2021	Amendment No 1	192m	West
RU2	Rural Landscape		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		424m	South East
E3	Environmental Management		Maitland Local Environmental Plan 2011	18/01/2013	18/01/2013	16/07/2021	Amendment No 1	451m	West
B5	Business Development		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		575m	East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		614m	East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		681m	East
E2	Environmental Conservation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		762m	South East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	25/08/2017	25/08/2017	16/07/2021	Amendment No 21	803m	North
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		846m	North East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		885m	North East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		889m	North East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		935m	East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		941m	North East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		942m	East
RE1	Public Recreation		Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	16/07/2021		965m	North

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

176 Wollombi Road, Farley, NSW 2320

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
l119	Government Railway	Item - General	Local	Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	14/01/2022	56m	North East
189	Government Railway (Station Masters House)	Item - General	Local	Maitland Local Environmental Plan 2011	14/01/2022	14/01/2022	14/01/2022	376m	East
188	Owlpen	Item - General	Local	Maitland Local Environmental Plan 2011	16/12/2011	16/12/2011	14/01/2022	662m	South

Heritage Data Source: NSW Crown Copyright - Planning & Environment

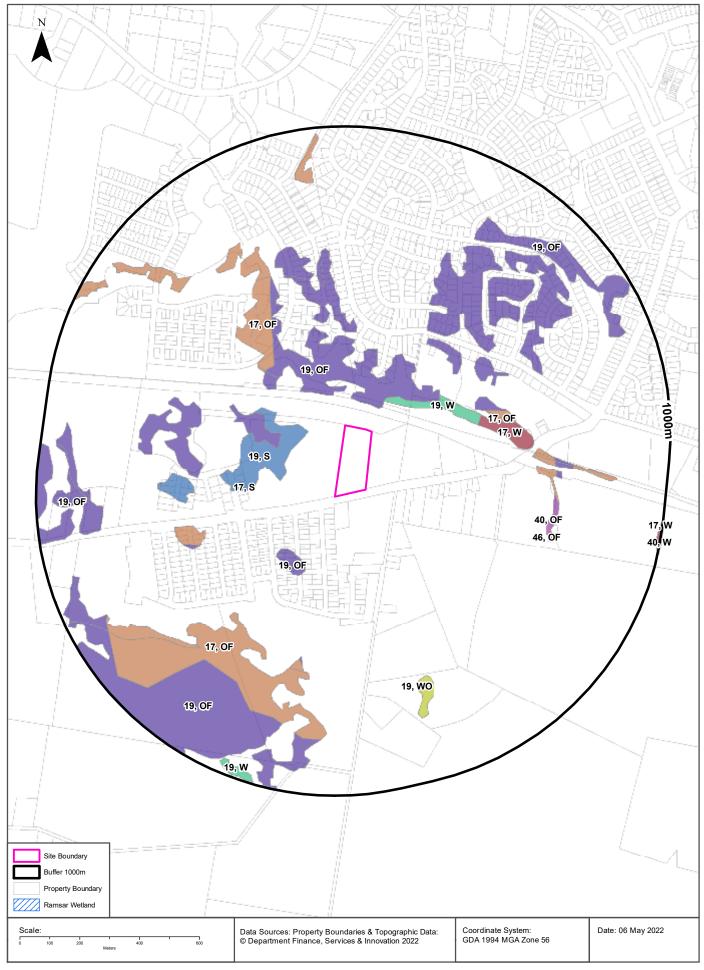
Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

176 Wollombi Road, Farley, NSW 2320

Bush Fire Prone Land


What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 3	0m	On-site
Vegetation Buffer	0m	On-site
Vegetation Category 1	505m	South West
Vegetation Category 2	741m	South

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

176 Wollombi Road, Farley, NSW 2320

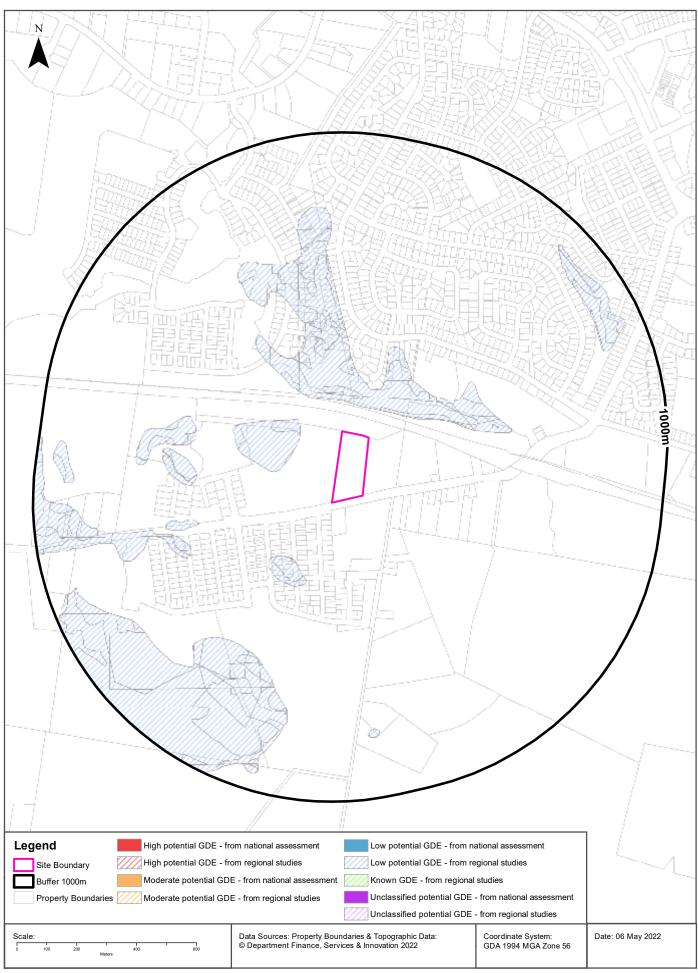
Lower Hunter and Central Coast Regional Vegetation Survey

What vegetation from the Lower Hunter and Central Coast Regional Survey exists within the dataset buffer?

Map Id	Unit Desc	Canopy Code	Canopy Cover	Species	Distance	Direction
19	Hunter Lowland Redgum Forest	OF	Mid Dense (Open Forest) 50- <100% cover	E. tereticornis / E. punctata / E. crebra / A. floribunda / C. maculata	78m	North
19	Hunter Lowland Redgum Forest	W	Wetland	E. tereticornis / E. punctata / E. crebra / A. floribunda / C. maculata	107m	North East
19	Hunter Lowland Redgum Forest	S	Scrub	E. tereticornis / E. punctata / E. crebra / A. floribunda / C. maculata	119m	West
17	Lower Hunter Spotted Gum - Ironbark Forest	S	Scrub	C. maculata / E. fibrosa / E. punctata	296m	West
17	Lower Hunter Spotted Gum - Ironbark Forest	OF	Mid Dense (Open Forest) 50- <100% cover	C. maculata / E. fibrosa / E. punctata	311m	North West
17	Lower Hunter Spotted Gum - Ironbark Forest	W	Wetland	C. maculata / E. fibrosa / E. punctata	353m	East
46	Freshwater Wetland Complex	OF	Mid Dense (Open Forest) 50- <100% cover	Ludwigia peploides subsp montevidensis / Paspalum distichum / Eleocharis sphacelata / Juncus usitatus	612m	East
40	Swamp Oak Rushland Forest	OF	Mid Dense (Open Forest) 50- <100% cover	C. glauca / Melaleuca ericifolia / Baumea juncea	614m	East
19	Hunter Lowland Redgum Forest	WO	Sparse (Woodland) 20-<50% cover	E. tereticornis / E. punctata / E. crebra / A. floribunda / C. maculata	653m	South
40	Swamp Oak Rushland Forest	W	Wetland	C. glauca / Melaleuca ericifolia / Baumea juncea	991m	East

Lower Hunter and Central Coast Regional Vegetation Survey: NSW Office of Environment and Heritage

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

176 Wollombi Road, Farley, NSW 2320

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	Low potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		90m	North
Terrestrial	Low potential GDE - from regional studies	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		849m	North East

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

176 Wollombi Road, Farley, NSW 2320

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	6	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		90m	North
Terrestrial	7	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		95m	South West
Terrestrial	5	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		122m	South West
Terrestrial	8	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		138m	South West
Terrestrial	10	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		207m	North West
Terrestrial	4	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		233m	South West
Terrestrial	8	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		849m	North East

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

176 Wollombi Road, Farley, NSW 2320

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Litoria littlejohni	Littlejohn's Tree Frog	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Ardenna pacifica	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Endangered	
Animalia	Aves	Calyptorhynchus banksii samueli	Red-tailed Black- Cockatoo (inland subspecies)	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Cuculus optatus	Oriental Cuckoo	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Irediparra gallinacea	Comb-crested Jacana	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius minutus	Little Curlew	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Petroica phoenicea	Flame Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pezoporus wallicus wallicus	Eastern Ground Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Thinornis cucullatus cucullatus	Eastern Hooded Dotterel	Critically Endangered	Not Sensitive	Vulnerable	
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia			Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascogale tapoatafa	Brush-tailed Phascogale	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Acacia bakeri	Marblewood	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bynoeana	Bynoe's Wattle	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Cymbidium canaliculatum	Tiger Orchid	Endangered Population	Category 2	Not Listed	
Plantae	Flora	Eucalyptus camaldulensis	River Red Gum	Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus glaucina	Slaty Red Gum	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus parramattensis subsp. decadens		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Persoonia pauciflora	North Rothbury Persoonia	Critically Endangered	Category 3	Critically Endangered	
Plantae	Flora	Pterostylis chaetophora		Vulnerable	Category 2	Not Listed	
Plantae	Flora	Pterostylis gibbosa	Illawarra Greenhood	Endangered	Category 2	Endangered	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rutidosis heterogama	Heath Wrinklewort	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	

Data does not include NSW category 1 sensitive species. NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix D Laboratory Documentation

met

(c) Sydney
Unit Pai- 6 Building Filips Mars Road Care Dove
Phys. 1-859 2600 stop . net _nwireSampleNSW@pairs6rs.com.an

Fig. Brisbane
Online/Snaledd Pace of nace
Prote Holf 2002 4900
Eiral Freinbange/LDgeweithssemau

Mel bourne
2 Krigdon Town Close, Dekelijn, VIU 2106
Phore, HG18 8564 2000
Enal Englishern averanter Mercelling

Chilens	DETAILS			Ц			Ł				CHA	AIN	OF	CUS	STC	DY	RE	COR	D											
				Cin	ita de Mari	ue.	_	- 0	debor Kir	p chirlkov	707.1	Volene	1013-	Joonson		Purdan	a Diretor		DU 3.3			_					Fage	1	0' (
cmia	y Name: Geotesta										_								NET1						0001	lumner :				
Mice A	attress: Unit 08, 20	0-22 Founds	y Road,	_	jest Man	-		- 4	istor Kir	pichalkas	/Di. I	yoman	ımaə :	dezyar		r-ROII-:			NE11	li4					Euror	uvr müq	quote l	D:		
Seve	n Hills 2147			Ľm:	all for re-	sults :		¥	k age:	otesia,c	om,aı	u mb	(dige)	rtesta	a.co	rRauH:	i Game	:	175 %	Vəlləm	b Road	Fsrely			Outer	¢1out to	त्त्वाः			
Phor	e: 452454418										Analy	ites			_		_			_	_	_	Bolne us	annun held	ing filmes (v	illi con	ect pros	arvet proj		
	Directions & Commonts :			1					1 1			7 1	110				1	-	-	_		_		Lor Legre	Informació	bugged	!'e bli			
						Ш											ш					Weg	lers.					50	ls	
				4	8	11		- 1		1.1							11				CMAHIN			14 days	6	X, MA	. voc			14 33
				1	40	ш									ш.						PAH DIE	anda 18	diades	Coars	15	-LPAH	Prera:	4 Festers	ESI .	14 Ju
_				-	1 - NEPM 8	11	ш	- 1	20	11				1 1			1 1				y Metals			5 nie 1hs	H	sing Met.	abi			6 mag
				1	123				TZH.º										-		ury Criv			As days		emy C				25 (4)
				+	800			- 11	32								ш		H		denteg cat Nilstes, N		at h	24 nears		trebio o _i	الدرا أمرأ	re		72.16.
					1 5 0	Wetal MB			ond Votetile	1 1										_	, suitatte, is a - Táb., i		m/ Pi	2 days		che				28 ca,
	Local Manufacture 1			100		2								1 1							8 - 100, 1 05 000	975		7 days				I still LCX	108	24 n.
TIGLGIE	ingliDI wither ballot maintains			품	Ascestos ID Guidelines -	ž			2										-			_		1/ 3/45	1 //2	LP, TG.	ր			/ kbi k
\neg	Sample ID	Cinto	Matrix	100	262	Heavy	0	1 5	EX ag	-1-1				1.4					G ₀	ntalna	S.	_	_			_		_		
	Sample iu		типр	878	186	뿐	8	품 불	7 h					1 1					-	SOCE	2632	1,65	90m ja a	The dilector	a. 200mi	deed.	lar	. ca :	Sample com	ements:
1.	FWH	28/03/2022	Soil	X	X																		7 , , , , ,		Lugira	Pare .	X	×	Jmm siew	ed for
2	EBH2	29/03/2022	Sat	Х																							X	х	Jimm skete	
3	EBHS	29/03/2022	Sof	Х	Ι,Χ																						X	Ж	Zoron mayor	ec for
4	D8H4	29/03/2022	Sol	×	X	\perp																					Х	X	7mm save	ed for
6	EBH5	29/03/2022	Sot	X			X	X :	X																		х	х	7) PMD # 959	ed lor
6	Fulk	2903/2022	Sol	X	X		-	-			-			-													х	Ж	7mm siew	ed for
7	E8H7	26/03/2022	Sol	X	X		-	-			-			1	_												Х	X	7mm sieve	ed for
В	HBH8	28/03/2027	501 Gp1	X	X		-	-			-	-	-	-	_	-	\perp	-									Х	Х	From Liese	od tur
10	DD4 El:	29/03/2022 29/03/2023	Soil	+	-	X	-	-	\rightarrow	\rightarrow	-	-		-	-1	1		_						4			х	1		
11	TupSpite and Trip Dlank	29/03/2022	CAGC	+	-	^	-	-	×	-	-	-	+	-	-	-	-					_	-			_	Х			
12	ropalmerane (Tip dia ik	\$ 10 Q 20 10 Z	GAGG	+	_		-	-	1^	\rightarrow	-	1	+	\rightarrow	-	-	\vdash	+	-	-			-	-					S X GAUL	winter
13		!		-	-	1	-	-	1 1		-	1	-	4	-	-1-	-	-	-	_		_			_	_				
14		f																												
15																														
19				Т				T	T	TI																			_	_
17														1									-	-	-1	-	-			
13		1																										1		
19																														
20																														
21							-	-																						
20				-	_	\vdash	-	-	11	-																				
24				-		\vdash	-	-	++	\perp	-	-	-			-														
25			_	-	-	+	+	-	+	+	-	-	-	\vdash	\rightarrow	-	-													
20				+	-	1			1	-	-	-	-	Lurr	MITTER	ad hme	-	_	-				_	4						
lingui	had By: Victor Kirp	chnikov	Resen	end fly			भ <i>न्</i> या	Seat		_	+-	_	_		-1-4-		_		-			_	Matha	od CVf Shipma	ent				Тефреневие од 2	anhal:
rie a T		Dillinov	Date 6	K									2 Q/			DAY					ourle:								12.3	
	me: 29/03/22				OF	m		3	120	2000							_				and Dello	AI-MI						1	Réport reumber:	
ignet er	s:		Signal		2	, . ,	-	1	130	20/2	6 DA	r (Z	100	ar [_				12		catól Consign a	numbe.							87-6	100

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills NSW 2147

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Victor Kirpichnikov (GEOTESTA)

Report 876159-S

Project name 176 WOLLOMBI ROAD FARELY

Project ID NE1164
Received Date Mar 30, 2022

Client Sample ID			EBH1	EBH2	ЕВН3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66709	S22-Ma66710	S22-Ma66711	S22-Ma66712
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	LOIT	Offic				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX		1 3 3				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	86	115	106	103
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Semple ID			EBU	EDUO	EDITO	EDIM
Client Sample ID			EBH1	EBH2	EBH3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66709	S22-Ma66710	S22-Ma66711	S22-Ma66712
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	96	100	94	99
p-Terphenyl-d14 (surr.)	1	%	109	119	114	112
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	93	101	80	84
Tetrachloro-m-xylene (surr.)	1	%	102	123	99	102
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			EBH1	EBH2	ЕВН3	EBH4
· ·			1	1	Soil	ŀ
Sample Matrix			Soil	Soil		Soil
Eurofins Sample No.			S22-Ma66709	S22-Ma66710	S22-Ma66711	S22-Ma66712
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	96	127	106	102
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	93	101	80	84
Tetrachloro-m-xylene (surr.)	1	%	102	123	99	102
Phenols (Halogenated)						
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	< 1	< 1	< 1

Client Sample ID			EBH1	EBH2	ЕВН3	EBH4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66709	S22-Ma66710	S22-Ma66711	S22-Ma66712
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Nitrophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	88	104	86	85
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals						
Arsenic	2	mg/kg	< 2	6.8	16	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	40	59	< 5
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	< 5	10	13	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	5.3	< 5	< 5
Zinc	5	mg/kg	< 5	23	18	< 5
% Moisture	1	%	19	17	18	23

Client Sample ID Sample Matrix Eurofins Sample No.			EBH5 Soil S22-Ma66713	EBH6 Soil S22-Ma66714	EBH7 Soil S22-Ma66715	EBH8 Soil S22-Ma66716
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

		1				
Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66713	S22-Ma66714	S22-Ma66715	S22-Ma66716
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	105	104	90	112
Polycyclic Aromatic Hydrocarbons	·	•				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	79	87	112	100
p-Terphenyl-d14 (surr.)	1	%	99	96	119	119
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
•						< 0.05
Heptachlor Heptachlor epoxide	0.05 0.05	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.0

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66713	S22-Ma66714	S22-Ma66715	S22-Ma66716
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit	mai 20, 2022	a. 20, 2022	a. 20, 2022	20, 2022
Organochlorine Pesticides	LOIT	Offic				
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.03	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	65	75	97	94
Tetrachloro-m-xylene (surr.)	1	%	90	98	129	111
Organophosphorus Pesticides	<u> </u>	70	- 55	30	120	
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dimethoate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
EPN	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	84	92	112	110

Client Sample ID			EBH5	EBH6	EBH7	EBH8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66713	S22-Ma66714	S22-Ma66715	S22-Ma66716
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	65	75	97	94
Tetrachloro-m-xylene (surr.)	1	%	90	98	129	111
Phenols (Halogenated)	1	1				
2-Chlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	< 1	< 1	< 1
Pentachlorophenol	1	mg/kg	< 1	< 1	< 1	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	< 10	< 10	< 10
Total Halogenated Phenol*	I	mg/kg	<1	< 1	< 1	< 1
Phenols (non-Halogenated)	00		00	00		
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	< 20	< 20	< 20
2-Methyl-4.6-dinitrophenol	5 1	mg/kg	< 5 < 1	< 5 < 1	< 5 < 1	< 5 < 1
2-Nitrophenol 2.4-Dimethylphenol	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.2	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
4-Nitrophenol	5	mg/kg	< 5	< 5	< 5	< 5
Dinoseb	20	mg/kg	< 20	< 20	< 20	< 20
Phenol	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenol-d6 (surr.)	1	%	75	83	91	92
Total Non-Halogenated Phenol*	20	mg/kg	< 20	< 20	< 20	< 20
Heavy Metals		<u> </u>				
Arsenic	2	mg/kg	3.2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.7	< 5	< 5	< 5
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	14	< 5	< 5	5.8
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	7.9	< 5	< 5	11
% Moisture	1	%	22	20	20	26
% Clay	1	%	6.0	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	40	-	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.2	-	-	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	5.2	_	_	_

Report Number: 876159-S

Client Sample ID			BD1	EIL	TRIP BLANK	TRIP SPIKE
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S22-Ma66717	S22-Ma66718	S22-Ma66719	S22-Ma66720
Date Sampled			Mar 29, 2022	Mar 29, 2022	Mar 29, 2022	Mar 29, 2022
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	ļ -					
TRH C6-C9	20	mg/kg	-	-	< 20	-
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	-
ВТЕХ						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total*	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	76	-
Heavy Metals						
Arsenic	2	mg/kg	3.4	3.7	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	16	18	-	-
Copper	5	mg/kg	< 5	< 5	-	-
Lead	5	mg/kg	< 5	5.3	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	< 5	< 5	-	-
Zinc	5	mg/kg	11	12	-	-
% Moisture	1	%	17	19	-	-
TRH C6-C10	1	%	-	-	-	96
Total Recoverable Hydrocarbons						
Naphthalene	1	%	-	-	-	84
TRH C6-C9	1	%	-	-	-	97
ВТЕХ						
Benzene	1	%	-	-	-	100
Ethylbenzene	1	%	-	-	-	96
m&p-Xylenes	1	%	-	-	-	95
o-Xylene	1	%	-	-	-	94
Toluene	1	%	-	-	-	99
Xylenes - Total	1	%	-	-	-	95
4-Bromofluorobenzene (surr.)	1	%	-	-	-	126

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Table 11 to 12 to	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Sydney	Apr 05, 2022	14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Cyuncy	7 pr 00, 2022	11 Dayo
Total Recoverable Hydrocarbons	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	<i>- - - - - - - - - -</i>	p. 00, 2022	
BTEX	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	-,,	p, -	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	• •	•	•
Polycyclic Aromatic Hydrocarbons	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water		•	-
Phenols (Halogenated)	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Apr 05, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B15			
Organochlorine Pesticides	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Sydney	Apr 05, 2022	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Sydney	Apr 05, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Mar 31, 2022	14 Days
- Method: LTM-GEN-7080 Moisture			
% Clay	Brisbane	Apr 06, 2022	14 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Apr 05, 2022	7 Days
- Method: LTM-GEN-7090 pH by ISE			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Apr 07, 2022	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Apr 07, 2022	28 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Phone: +61 2 9900 8400

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954 Christchurch

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name:

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road

Seven Hills

NSW 2147

Project Name:

Address:

176 WOLLOMBI ROAD FARELY

Project ID:

NE1164

Order No.: Report #:

876159

1300852 216

Phone: Fax:

Received: Mar 30, 2022 5:00 PM

Due: Apr 6, 2022 **Priority:** 5 Day

Contact Name: Victor Kirpichnikov (GEOTESTA)

Eurofins Analytical Services Manager: Asim Khan

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melk	ourne Laborate	ory - NATA # 12	61 Site # 125	34							Х	Х				
Syd	ney Laboratory	- NATA # 1261	Site # 18217				Х	Х	Х	Х	Х	Х	Х	Х	Х	
Bris	bane Laborator	y - NATA # 126 ⁻	1 Site # 2079	4		Х										1
May	field Laboratory	/ - NATA # 1261	Site # 25079)												1
Pert	h Laboratory - I	NATA # 2377 Sit	te # 2370													1
Exte	rnal Laboratory	<u>'</u>														1
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	EBH1	Mar 29, 2022		Soil	S22-Ma66709		Х			Х	Х		Х			
2	EBH2	Mar 29, 2022		Soil	S22-Ma66710		Х			Х	Х		Х			
3	EBH3	Mar 29, 2022		Soil	S22-Ma66711		Х			Х	Х		Х			
4	EBH4	Mar 29, 2022		Soil	S22-Ma66712		Х			Х	Х		Х			
5	EBH5	Mar 29, 2022		Soil	S22-Ma66713	Х	Х	Х		Х	Х	Х	Х			
6	EBH6	Mar 29, 2022		Soil	S22-Ma66714		Х			Х	Х		Х			1
7	EBH7	Mar 29, 2022		Soil	S22-Ma66715		Х			Х	Х		Х		$oxed{oxed}$	
8	EBH8	Mar 29, 2022		Soil	S22-Ma66716		Х			Х	Х		Х			
9	BD1	Mar 29, 2022		Soil	S22-Ma66717				Х		Х					

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 179 Magowar Road 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road

Seven Hills

NSW 2147

Project Name:

Address:

176 WOLLOMBI ROAD FARELY

Project ID:

NE1164

Order No.:

Report #: 876159 1300852 216

Phone: Fax:

Received: Mar 30, 2022 5:00 PM

Due: Apr 6, 2022 **Priority:** 5 Day

Victor Kirpichnikov (GEOTESTA) **Contact Name:**

Eurofins Analytical Services Manager: Asim Khan

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							Х	Х			
	ney Laboratory						Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator					Х									
	field Laboratory			<u> </u>											
	h Laboratory - N		te # 2370												
	rnal Laboratory			I	1										
10	EIL	Mar 29, 2022		Soil	S22-Ma66718				Х		Х				
11	TRIP BLANK	Mar 29, 2022		Soil	S22-Ma66719									Х	
12	TRIP SPIKE	Mar 29, 2022		Soil	S22-Ma66720										Х
13	TRIP SPIKE LAB	Mar 29, 2022		Soil	S22-Ma66721										Х
Test	Counts					1	8	1	2	8	10	1	8	1	2

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/k: milligrams per kilogram mg/L: milligrams per litre $\mu g/L$: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data

Eurofins Environment Testing 179 Magowar Road, Girraween NSW, Australia, 2066

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank				•	
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	Ing/Ng	V 0.0	0.0	1 400	
Polycyclic Aromatic Hydrocarbons				Τ	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene		< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg				
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Total PAH*	mg/kg	-	0.5	N/A	
Method Blank		1		İ	
Organochlorine Pesticides	1			 	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
•			0.2		
Demeton-S	mg/kg	< 0.2		Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank	19				
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1246 Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
ALUGUI 1404	j ilig/Kg	< 0.1	U.I	газэ	I

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Phenols (Halogenated)					
2-Chlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
2.4.5-Trichlorophenol	mg/kg	< 1	1	Pass	
2.4.6-Trichlorophenol	mg/kg	< 1	1	Pass	
2.6-Dichlorophenol	mg/kg	< 0.5	0.5	Pass	
4-Chloro-3-methylphenol	mg/kg	< 1	1	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Tetrachlorophenols - Total	mg/kg	< 10	10	Pass	
Method Blank	155			1 555	
Phenols (non-Halogenated)					
2-Cyclohexyl-4.6-dinitrophenol	mg/kg	< 20	20	Pass	
2-Methyl-4.6-dinitrophenol	mg/kg	< 5	5	Pass	
2-Nitrophenol	mg/kg	< 1	1	Pass	
2.4-Dimethylphenol	mg/kg	< 0.5	0.5	Pass	
2.4-Dinitrophenol	mg/kg	< 5	5	Pass	
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
4-Nitrophenol	mg/kg	< 5	5	Pass	
Dinoseb		< 20	20	Pass	
Phenol	mg/kg		0.5		
	mg/kg	< 0.5	0.5	Pass	
Method Blank				Ι	
Heavy Metals				D	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank			1 1	l _	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank				ı	
Cation Exchange Capacity					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery				I	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	106	70-130	Pass	
TRH C10-C14	%	86	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	105	70-130	Pass	
TRH >C10-C16	%	82	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	94	70-130	Pass	
Toluene	%	83	70-130	Pass	
Ethylbenzene	%	90	70-130	Pass	
m&p-Xylenes	%	99	70-130	Pass	
o-Xylene	%	94	70-130	Pass	
Xylenes - Total*	%	97	70-130	Pass	
LCS - % Recovery					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	120	70-130	Pass	
Acenaphthylene	%	116	70-130	Pass	
Anthracene	%	109	70-130	Pass	
Benz(a)anthracene	%	105	70-130	Pass	
Benzo(a)pyrene	%	112	70-130	Pass	
Benzo(b&j)fluoranthene	%	111	70-130	Pass	
Benzo(g.h.i)perylene	%	109	70-130	Pass	
Benzo(k)fluoranthene	%	125	70-130	Pass	
Chrysene	%	115	70-130	Pass	
Dibenz(a.h)anthracene	%	124	70-130	Pass	
Fluoranthene	%	101	70-130	Pass	
Fluorene	%	114	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	123	70-130	Pass	
Naphthalene	%	130	70-130	Pass	
Phenanthrene	%	112	70-130	Pass	
Pyrene	%	107	70-130	Pass	
LCS - % Recovery	<u> </u>				
Organochlorine Pesticides					
Chlordanes - Total	%	129	70-130	Pass	
4.4'-DDD	%	126	70-130	Pass	
4.4'-DDE	%	110	70-130	Pass	
4.4'-DDT	%	100	70-130	Pass	
a-HCH	%	117	70-130	Pass	
Aldrin	%	123	70-130	Pass	
b-HCH	%	119	70-130	Pass	
d-HCH	%	105	70-130	Pass	
Dieldrin	%	91	70-130	Pass	
Endosulfan I	%	117	70-130	Pass	
Endosulfan II	%	116	70-130	Pass	
Endosulfan sulphate	%	97	70-130	Pass	
Endrin	%	97	70-130	Pass	
		84	70-130		
Endrin aldehyde	%	106	70-130	Pass	
Endrin ketone	%			Pass	
g-HCH (Lindane)	%	116	70-130	Pass	
Heptachlor	%	90	70-130	Pass	
Heptachlor epoxide	%	117	70-130	Pass	
Hexachlorobenzene	%	121	70-130	Pass	-
Methoxychlor	%	115	70-130	Pass	
LCS - % Recovery		T T		I	-
Organophosphorus Pesticides				_	
Diazinon	%	96	70-130	Pass	
Dimethoate	%	86	70-130	Pass	
Ethion	%	98	70-130	Pass	-
Fenitrothion	%	117	70-130	Pass	-
Methyl parathion	%	121	70-130	Pass	
Mevinphos	%	98	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls	1				
Aroclor-1016	%	113	70-130	Pass	
Aroclor-1260	%	129	70-130	Pass	
LCS - % Recovery					
Phenois (Halogenated)					
2-Chlorophenol	%	113	25-140	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
2.4-Dichlorophenol			%	103		25-140	Pass	
2.4.5-Trichlorophenol			%	106		25-140	Pass	
2.4.6-Trichlorophenol			%	116		25-140	Pass	
2.6-Dichlorophenol			%	99		25-140	Pass	
4-Chloro-3-methylphenol			%	106		25-140	Pass	
Pentachlorophenol			%	82		25-140	Pass	
Tetrachlorophenols - Total			%	87		25-140	Pass	
LCS - % Recovery			,,,	0,		20 110	1 400	
Phenois (non-Halogenated)								
2-Methyl-4.6-dinitrophenol			%	79		25-140	Pass	
2-Nitrophenol			%	103		25-140	Pass	
· ·						25-140	Pass	
2.4-Dimethylphenol			%	105				
2.4-Dinitrophenol			%	76		25-140	Pass	
2-Methylphenol (o-Cresol)			%	119		25-140	Pass	
3&4-Methylphenol (m&p-Cresol)			%	125		25-140	Pass	
4-Nitrophenol			%	86		25-140	Pass	
Dinoseb			%	88		25-140	Pass	
Phenol			%	110		25-140	Pass	
LCS - % Recovery				T		I		
Heavy Metals								
Arsenic			%	115		80-120	Pass	
Cadmium			%	110		80-120	Pass	
Chromium			%	112		80-120	Pass	
Copper			%	112		80-120	Pass	
Lead			%	115		80-120	Pass	
Mercury			%	111		80-120	Pass	
Nickel			%	114		80-120	Pass	
Zinc			%	111		80-120	Pass	
LCS - % Recovery				•				
% Clay			%	95		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	T T	i		
Total Recoverable Hydrocarbons	S			Result 1				
TRH C10-C14	S22-Ma65904	NCP	%	74		70-130	Pass	
TRH >C10-C16	S22-Ma65904	NCP	%	71		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Endrin aldehyde	S22-Ap0002861	NCP	%	79		70-130	Pass	
Spike - % Recovery								
Phenols (Halogenated)				Result 1				
Pentachlorophenol	S22-Ap0006086	NCP	%	72		30-130	Pass	
Spike - % Recovery								
Phenols (non-Halogenated)				Result 1				
2-Cyclohexyl-4.6-dinitrophenol	S22-Ap0006086	NCP	%	71		30-130	Pass	
2-Methyl-4.6-dinitrophenol	S22-Ap0022442	NCP	%	101		30-130	Pass	
2.4-Dinitrophenol	S22-Ap0022442	NCP	%	76		70-130	Pass	
4-Nitrophenol	S22-Ap0006086	NCP	%	83		30-130	Pass	
Spike - % Recovery	OZZ APOUUUUU	1401	/6			1 00 100	1 433	
Heavy Metals				Result 1				
Arsenic	S22-Ap0012463	NCP	%	102		75-125	Pass	
	· ·			1				
Chromium	S22-Ap0012463	NCP	%	105		75-125	Pass	
Chromium	S22-Ap0012463	NCP	%	86		75-125	Pass	
Copper	S22-Fe47741	NCP	%	101		75-125	Pass	
Lead	S22-Ap0012463	NCP	%	83	1	75-125	Pass	Ī

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Mercury	S22-Ap0012463	NCP	%	99		75-125	Pass	
Nickel	S22-Ap0012463	NCP	%	92		75-125	Pass	
Zinc	S22-Fe47741	NCP	%	96		75-125	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbon	s			Result 1				
Acenaphthene	S22-Ma66711	CP	%	90		70-130	Pass	
Acenaphthylene	S22-Ma66711	CP	%	94		70-130	Pass	
Anthracene	S22-Ma66711	СР	%	78		70-130	Pass	
Benz(a)anthracene	S22-Ma66711	СР	%	105		70-130	Pass	
Benzo(a)pyrene	S22-Ma66711	СР	%	90		70-130	Pass	
Benzo(b&j)fluoranthene	S22-Ma66711	СР	%	88		70-130	Pass	
Benzo(g.h.i)perylene	S22-Ma66711	СР	%	78		70-130	Pass	
Benzo(k)fluoranthene	S22-Ma66711	СР	%	94		70-130	Pass	
Chrysene	S22-Ma66711	CP	%	107		70-130	Pass	
Dibenz(a.h)anthracene	S22-Ma66711	CP	%	91		70-130	Pass	
Fluoranthene	S22-Ma66711	CP	%	85		70-130	Pass	
Fluorene	S22-Ma66711	CP	%	94		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S22-Ma66711	CP	<u> </u>	87		70-130	Pass	
Naphthalene	S22-Ma66711	CP	<u>~</u> %	90		70-130	Pass	
Phenanthrene	S22-Ma66711	CP	<u>~</u> %	80		70-130	Pass	
Pyrene Or Barrana	S22-Ma66711	CP	%	89		70-130	Pass	
Spike - % Recovery				D 11.4	T			
Organochlorine Pesticides				Result 1		- 0.400	_	
Chlordanes - Total	S22-Ma66711	CP	%	99		70-130	Pass	
4.4'-DDD	S22-Ma66711	CP	%	80		70-130	Pass	
4.4'-DDE	S22-Ma66711	CP	%	93		70-130	Pass	
4.4'-DDT	S22-Ma66711	CP	%	79		70-130	Pass	
a-HCH	S22-Ma66711	CP	%	98		70-130	Pass	
Aldrin	S22-Ma66711	CP	%	89		70-130	Pass	
b-HCH	S22-Ma66711	CP	%	95		70-130	Pass	
d-HCH	S22-Ma66711	CP	%	101		70-130	Pass	
Dieldrin	S22-Ma66711	CP	%	106		70-130	Pass	
Endosulfan I	S22-Ma66711	CP	%	89		70-130	Pass	
Endosulfan II	S22-Ma66711	CP	%	74		70-130	Pass	
Endosulfan sulphate	S22-Ma66711	CP	%	84		70-130	Pass	
Endrin	S22-Ma66711	CP	%	87		70-130	Pass	
Endrin ketone	S22-Ma66711	CP	%	83		70-130	Pass	
g-HCH (Lindane)	S22-Ma66711	CP	%	85		70-130	Pass	
Heptachlor	S22-Ma66711	CP	%	107		70-130	Pass	
Heptachlor epoxide	S22-Ma66711	CP	%	99		70-130	Pass	
Hexachlorobenzene	S22-Ma66711	СР	%	101		70-130	Pass	
Methoxychlor	S22-Ma66711	СР	%	75		70-130	Pass	
Spike - % Recovery								
Organophosphorus Pesticides				Result 1				
Diazinon	S22-Ma66711	СР	%	93		70-130	Pass	
Dimethoate	S22-Ma66711	CP	%	75		70-130	Pass	
Ethion	S22-Ma66711	CP	%	85		70-130	Pass	
Fenitrothion	S22-Ma66711	CP	// 6	98		70-130	Pass	
Methyl parathion	S22-Ma66711	CP	/ %	105		70-130	Pass	
Mevinphos	S22-Ma66711	CP	%	99		70-130	Pass	
Spike - % Recovery	022-IVIA00/11	l OF	/0	<u> </u>		10-130	1 000	
<u> </u>				Docult 1				
Polychlorinated Biphenyls	C00 M-00711	OB I	0/	Result 1		70.100	D	
Aroclor-1016	S22-Ma66711	CP	%	85		70-130	Pass	
Aroclor-1260	S22-Ma66711	CP	%	88		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T	T				
Phenols (Halogenated)	1	1		Result 1					
2-Chlorophenol	S22-Ma66711	CP	%	80			30-130	Pass	
2.4-Dichlorophenol	S22-Ma66711	CP	%	76			30-130	Pass	
2.4.5-Trichlorophenol	S22-Ma66711	CP	%	74			30-130	Pass	
2.4.6-Trichlorophenol	S22-Ma66711	CP	%	88			30-130	Pass	
2.6-Dichlorophenol	S22-Ma66711	CP	%	74			30-130	Pass	
4-Chloro-3-methylphenol	S22-Ma66711	CP	%	75			30-130	Pass	
Tetrachlorophenols - Total	S22-Ma66711	CP	%	77			30-130	Pass	
Spike - % Recovery				T					
Phenols (non-Halogenated)	ı	1		Result 1					
2-Nitrophenol	S22-Ma66711	CP	%	72			30-130	Pass	
2.4-Dimethylphenol	S22-Ma66711	CP	%	75			30-130	Pass	
2-Methylphenol (o-Cresol)	S22-Ma66711	CP	%	86			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	S22-Ma66711	CP	%	91			30-130	Pass	
Dinoseb	S22-Ma66711	CP	%	76			30-130	Pass	
Phenol	S22-Ma66711	CP	%	82			30-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	ı	1		Result 1					
TRH C6-C9	S22-Ma66712	CP	%	93			70-130	Pass	
Naphthalene	S22-Ma66712	CP	%	105			70-130	Pass	
TRH C6-C10	S22-Ma66712	CP	%	86			70-130	Pass	
Spike - % Recovery				I					
BTEX	ı	1		Result 1					
Benzene	S22-Ma66712	CP	%	85			70-130	Pass	
Toluene	S22-Ma66712	CP	%	93			70-130	Pass	
Ethylbenzene	S22-Ma66712	CP	%	93			70-130	Pass	
m&p-Xylenes	S22-Ma66712	CP	%	93			70-130	Pass	
o-Xylene	S22-Ma66712	CP	%	94			70-130	Pass	
Xylenes - Total*	S22-Ma66712	CP	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-Ma66709	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S22-Ma65903	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S22-Ma65903	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S22-Ma65903	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Naphthalene	S22-Ma66709	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Ma66709	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S22-Ma65903	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S22-Ma65903	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S22-Ma65903	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
BTEX	1			Result 1	Result 2	RPD			
Benzene	S22-Ma66709	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Ma66709	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Ma66709	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Ma66709	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Ma66709	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Ma66709	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Toxaphene	S22-Ma66621	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Dunlingto									
Duplicate					- II - I		I		
Polycyclic Aromatic Hydrocarbor			T ,	Result 1	Result 2	RPD	222	+	
Acenaphthene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Ma66710	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate	OLL WIGOUT 10	01	i ilig/ilig	1 0.00	V 0.00		0070	1 433	
Organophosphorus Pesticides				Result 1	Result 2	RPD		T	
Azinphos-methyl	S22-Ma66710	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S22-Ma66710	CP					30%	Pass	
Coumaphos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
•			mg/kg	< 2	< 2	<u><1</u>	1		
Demeton-S	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Demeton-O	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
•				Dogult 1	Decult 0	RPD	I		
Organophosphorus Pesticides	C00 M-00710	СР		Result 1	Result 2	<1	30%	Pass	
Ethoprop Ethyl parathion	S22-Ma66710 S22-Ma66710	CP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<u> </u>	30%	Pass	
		CP		< 0.2	1	<u> </u>	30%		
Fenitrothion Fensulfothion	S22-Ma66710	CP	mg/kg		< 0.2	<u> </u>	30%	Pass	
	S22-Ma66710		mg/kg	< 0.2	< 0.2			Pass	
Fenthion	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S22-Ma66710	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S22-Ma66710	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls	_			Result 1	Result 2	RPD			
Aroclor-1016	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S22-Ma66710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S22-Ma66710	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S22-Ma66710	СР	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S22-Ma66710	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S22-Ma66710	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S22-Ma66710	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S22-Ma66710	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate			199				3373	1 3.00	
Phenols (non-Halogenated)				Result 1	Result 2	RPD			
2-Cyclohexyl-4.6-dinitrophenol	S22-Ma66710	CP	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S22-Ma66710	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Nitrophenol	S22-Ma66710	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.4-Dimethylphenol	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S22-Ma66710	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S22-Ma66710	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)		CP							
	S22-Ma66710	CP CP	mg/kg	< 0.4	< 0.4	<u><1</u>	30%	Pass	
4-Nitrophenol	S22-Ma66710		mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S22-Ma66710	CP	mg/kg	< 20	< 20	<u><1</u>	30%	Pass	
Phenol	S22-Ma66710	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Dunlicate									
Duplicate Duplicate	_			D. 11. 1	D. ".	DDC			
Polycyclic Aromatic Hydrocarbon		0.0	T ,	Result 1	Result 2	RPD	000/	<u> </u>	
Acenaphthene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	i
4.4'-DDD	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S22-Ma66712	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S22-Ma66712	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S22-Ma66712	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S22-Ma66712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate	322-Wa00712	_ Oi	i iig/kg	< 0.03	V 0.03		30 /8	1 ass	
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Azinphos-methyl	S22-Ma66712	СР	ma/ka	< 0.2			30%	Pass	
	S22-Ma66712	CP	mg/kg		< 0.2	<1	30%		
Bolstar			mg/kg	< 0.2		<1		Pass	
Chlorenvirtee	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S22-Ma66712	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
•				Dogult 1	Decult 0	RPD	I		
Organophosphorus Pesticides	C00 M-00710	СР		Result 1	Result 2	<1	30%	Pass	
Ethoprop Ethyl parathion	S22-Ma66712 S22-Ma66712	CP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<u> </u>	30%	Pass	
		CP		< 0.2	1	<u> </u>	30%		
Fenitrothion	S22-Ma66712		mg/kg		< 0.2			Pass	
Fensulfothion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S22-Ma66712	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S22-Ma66712	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	<u> </u>
Terbufos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls	.			Result 1	Result 2	RPD			
Aroclor-1016	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S22-Ma66712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Phenols (Halogenated)				Result 1	Result 2	RPD			
2-Chlorophenol	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dichlorophenol	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-Trichlorophenol	S22-Ma66712	СР	mg/kg	< 1	< 1	<1	30%	Pass	
2.4.6-Trichlorophenol	S22-Ma66712	CP	mg/kg	< 1	< 1	<1	30%	Pass	
2.6-Dichlorophenol	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Chloro-3-methylphenol	S22-Ma66712	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Pentachlorophenol	S22-Ma66712	CP	mg/kg	<1	< 1	<1	30%	Pass	
Tetrachlorophenols - Total	S22-Ma66712	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate			9/119			31		1 400	
Phenois (non-Halogenated)				Result 1	Result 2	RPD		T	
2-Cyclohexyl-4.6-dinitrophenol	S22-Ma66712	СР	mg/kg	< 20	< 20	<1	30%	Pass	
2-Methyl-4.6-dinitrophenol	S22-Ma66712	CP		1			30%	Pass	
2-Nitrophenol	S22-Ma66712	CP	mg/kg	< 5	< 5	<u><1</u>	30%	Pass	
•		CP	mg/kg	< 1	< 1	<u><1</u>			
2.4-Dimethylphenol	S22-Ma66712		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-Dinitrophenol	S22-Ma66712	CP	mg/kg	< 5	< 5	<1	30%	Pass	
2-Methylphenol (o-Cresol)	S22-Ma66712	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	S22-Ma66712	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
4-Nitrophenol	S22-Ma66712	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Dinoseb	S22-Ma66712	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Phenol	S22-Ma66712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Ma66712	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S22-Ma66712	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Ma66712	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S22-Ma66712	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S22-Ma66712	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S22-Ma66712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Ma66712	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S22-Ma66712	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S22-Ma66713	CP	%	22	21	5.0	30%	Pass	
% Clay	N22-Ma56961	NCP	%	12	12	<1	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	M22-Ap0010524	NCP	uS/cm	130	130	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S22-Ma65668	NCP	pH Units	5.8	5.8	<1	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	M22-Ap0011157	NCP	meq/100g	7.6	8.4	11	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S22-Ma66715	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S22-Ma66715	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S22-Ma66715	CP	mg/kg	< 5	5.1	29	30%	Pass	
Copper	S22-Ma66715	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S22-Ma66715	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S22-Ma66715	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S22-Ma66715	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S22-Ma66715	CP	mg/kg	< 5	6.8	52	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S22-Ma66716	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S22-Ma66716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Ma66716	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate					,				
втех	, ,			Result 1	Result 2	RPD		1	
Benzene	S22-Ma66716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Ma66716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Ma66716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Ma66716	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Ma66716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Ma66716	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Hannah Mawbey Analytical Services Manager Gabriele Cordero Senior Analyst (NSW) Sayeed Abu Senior Analyst (NSW) Jonathon Angell Senior Analyst (NSW) Mary Makarios Senior Analyst (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road Seven Hills **NSW 2147**

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Victor Kirpichnikov (GEOTESTA) Attention:

Report 876159-AID

176 WOLLOMBI ROAD FARELY **Project Name**

Project ID NE1164

Received Date Mar 30, 2022 **Date Reported** Apr 13, 2022

Methodology:

Asbestos Fibre Identification

Conducted in accordance with the Australian Standard AS 4964 - 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral **Fibres**

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the

optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-

sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH

Project Name 176 WOLLOMBI ROAD FARELY

Project ID NE1164

Date SampledMar 29, 2022Report876159-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
EBH1	22-Ma66709	Mar 29, 2022	Approximate Sample 705g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH2	22-Ma66710	Mar 29, 2022	Approximate Sample 678g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH3	22-Ma66711	Mar 29, 2022	Approximate Sample 869g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH4	22-Ma66712	Mar 29, 2022	Approximate Sample 792g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH5	22-Ma66713	Mar 29, 2022	Approximate Sample 867g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH6	22-Ma66714	Mar 29, 2022	Approximate Sample 596g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH7	22-Ma66715	Mar 29, 2022	Approximate Sample 862g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
EBH8	22-Ma66716	Mar 29, 2022	Approximate Sample 874g Sample consisted of: Brown fine-grained clayey soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyMar 31, 2022Indefinite

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

Phone: +61 2 9900 8400

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road

Seven Hills NSW 2147

Project Name:

176 WOLLOMBI ROAD FARELY

Project ID:

Address:

NE1164

Order No.: Report #:

876159 1300852 216

Phone: Fax:

Received: Mar 30, 2022 5:00 PM

Due: Apr 6, 2022 **Priority:** 5 Day

Contact Name: Victor Kirpichnikov (GEOTESTA)

Eurofins Analytical Services Manager: Asim Khan

	Sample Detail							pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254											Х	Х			
Sydney Laboratory - NATA # 1261 Site # 18217							Х	Х	Х	Х	Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794						Х									
May	field Laboratory	/ - NATA # 1261	Site # 25079												
Pert	h Laboratory - I	NATA # 2377 Si	te # 2370												
Exte	rnal Laboratory	<u> </u>			_										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	EBH1	Mar 29, 2022		Soil	S22-Ma66709		Х			Х	Х		Х		
2	EBH2	Mar 29, 2022		Soil	S22-Ma66710		Х			Х	Х		Х		
3	EBH3	Mar 29, 2022		Soil	S22-Ma66711		Х			Х	Х		Х		
4	EBH4	Mar 29, 2022		Soil	S22-Ma66712		Х			Х	Х		Х		
5	EBH5	Mar 29, 2022		Soil	S22-Ma66713	Х	Х	Х		Х	Х	Х	Х		
6	EBH6	Mar 29, 2022		Soil	S22-Ma66714		Х			Х	Х		Х		
7	EBH7	Mar 29, 2022		Soil	S22-Ma66715		Х			Х	Х		Х		
8	EBH8	Mar 29, 2022	Soil S22-Ma66716				Х			Х	Х		Х	$ldsymbol{ld}}}}}}$	
9	BD1	Mar 29, 2022	Soil S22-Ma66717						Х		Х				

Eurofins Environment Testing Australia Pty Ltd

Sydney

179 Magowar Road

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Girraween NSW 2066 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 2 9900 8400 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone: +64 9 526 45 51

Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

Geotesta Pty Ltd (NSW) Unit 6, 20/22 Foundry Road

Seven Hills

NSW 2147

Project Name:

176 WOLLOMBI ROAD FARELY

Project ID:

NE1164

Order No.: Report #:

876159 1300852 216

Phone: Fax:

Received: Mar 30, 2022 5:00 PM

Due: Apr 6, 2022 **Priority:** 5 Day

Victor Kirpichnikov (GEOTESTA) **Contact Name:**

IANZ # 1327

Eurofins Analytical Services Manager: Asim Khan

Sample Detail					% Clay	Asbestos - WA guidelines	pH (1:5 Aqueous extract at 25°C as rec.)	Metals M8	Eurofins Suite B15	Moisture Set	Cation Exchange Capacity	Eurofins Suite B7A	BTEXN and Volatile TRH	BTEXN and Volatile TRH	
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							Х	Х			
Sydı	ney Laboratory	- NATA # 1261	Site # 18217				Х	Х	Χ	Χ	Х	Х	Х	Χ	Х
Bris	oane Laborator	y - NATA # 126 ⁻	Site # 20794	1		Х									
May	ield Laboratory	- NATA # 1261	Site # 25079												
Pert	n Laboratory - N	NATA # 2377 Sit	te # 2370												
External Laboratory															
10	EIL	Mar 29, 2022		Soil	S22-Ma66718				Χ		Х				
11	TRIP BLANK	Mar 29, 2022		Soil	S22-Ma66719									Χ	
12	12 TRIP SPIKE Mar 29, 2022 Soil S22-Ma66720														Χ
Test	Test Counts							1	2	8	10	1	8	1	1

Page 5 of 7

Internal Quality Control Review and Glossary General

- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated
- 3 Samples were analysed on an 'as received' basis.
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- Information identified on this report with the colour orange indicates sections of the report not covered by the laboratory's scope of NATA accreditation.
- 6 This report replaces any interim results previously issued.

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) % w/w:

F/fld

Airborne fibre filter loading as Fibres (N) per Fields counted (n)
Airborne fibre reported concentration as Fibres per millillitre of air drawn over the sampler membrane (C) F/mL

Mass, e.g. of whole sample (\mathbf{M}) or asbestos-containing find within the sample (\mathbf{m}) Concentration in grams per kilogram g, kg

g/kg L. mL

Volume, e.g. of air as measured in AFM (V = r x t)
Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) L/min

Time (t), e.g. of air sample collection period min

Calculations

 $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{p}\right) \times \left(\frac{1}{p}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{p}\right) \times \left(\frac{1}{p}\right)$ Airborne Fibre Concentration:

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times P_A)}{M}$ Weighted Average (of asbestos): $\%_{WA} = \sum_{r} \frac{(m \times P_A)_x}{r}$

Terms

Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P_A). %asbestos

Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the ACM

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.

Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable AF

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable"

AFM Airborne Fibre Monitoring, e.g. by the MFM.

Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004. Amosite

AS Australian Standard.

Asbestos Content (as asbestos) Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w)

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004

COC

Crocidolite Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.

Dry Sample is dried by heating prior to analysis.

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become FA

friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre ID Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.

HSG248 UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).

HSG264 UK HSE HSG264, Asbestos: The Survey Guide (2012).

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

Limit of Reporting. LOR

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)]. National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).

NEPM (also ASC NEPM) Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004. Organic

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

ы м Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.

Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004. SMF

SRA Sample Receipt Advice

Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix. Trace Analysis

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication,

UMF Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004.

May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Weighted Average Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wa).

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 876159-AID