

Preliminary Site Investigation 5 – 13 Louth Park Road, South Maitland New South Wales

Prepared for: Stevens Group

Report Number: J41419-R3.0 September 2019

Document Control

Document prepared by:

Environmental and Safety Professionals (ESP) 5 Newton St

3 Newton 3t

Broadmeadow, NSW, 2297

Ph. 02 4961 0790 Fx. 02 4961 0795

Document Control Record				
Report title	Preliminary Site Investigation	Preliminary Site Investigation		
Site	5-13 Louth Park Rd, South Ma	aitland NSW		
Client	Stevens Group	Stevens Group		
Report Number	J41419-R3.0			
Document Status a	and Review			
Revision	Prepared by	Reviewed by	Date issued	
1	Michael Gosling	Victor Andres Arias Espana	18/09/19	
2	Michael Gosling	Victor Andres Arias Espana	24/09/19	
3	Michael Gosling	Victor Andres Arias Espana	25/09/19	

Approval	Approval				
Author Signature	Manie	Reviewer Signature	Maffe		
Name	Michael Gosling	Name	Victor Andres Arias Espana		
Title	Environmental, Hygiene and Hazardous Materials Consultant	Title	NSW Environmental Department Head		

i

Executive Summary

ESP - Environmental and Safety Professionals has been engaged by Perception Planning on behalf of Stevens Group (the client) to carry out a Preliminary Site Investigation (PSI) at 5-13 Louth Park Road, South Maitland NSW 2320 (the site).

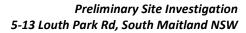
The aims of the investigation were:

- Investigate previous site land uses and potential contamination types as a result of former activities;
- Provide a discussion of present site conditions;
- Provide a desktop assessment of site contamination issues;
- Investigate the suitability of site soils with respect to potential chemical contamination at limited locations; and
- Assess the need for further investigation.

Based on the findings of the PSI, the following conclusions are provided:

- A desktop review of the site history in conjunction with the observations made during the site
 inspection and fieldwork indicated that the sources of potential soil contaminants of concern
 are likely to be due imported fill material and hazardous building materials.
- Ten boreholes were advanced using a hand auger and hand tools in a judgemental manner across the site to a maximum depth of 0.7m BGL.
- No stained or odorous soils were noted during the site inspection and subsequent sample collection. Minor amounts of ash were observed within borehole BH03 and BH10.
- Potential asbestos containing material (PACM) was observed as external wall sheeting on all dwellings on the site, as well as on several sheds and outhouses. This PACM was observed to range from good condition at 13 Louth Park Rd to poor condition at 9 Louth Park Rd. Additionally, PACM fragments and debris were identified on the ground surface adjacent to the west side of the dwelling at 9 Louth Park Rd, and appeared to have originated from the dwelling which was observed to be in poor condition. A detached shed at the rear of 9 Louth Park Rd had collapsed and appeared to contain broken PACM fragments and debris.
- Collected samples were screened in the field for the presence of volatile organic compounds (VOCs) by use of a photo-ionisation detector (PID). The results of PID field screening indicated no volatile organic compounds detected in all sample locations.
- No exceedances of the adopted human health investigation level criteria (HIL-D) were
 detected in any of the soil samples tested for Heavy metals, TRHs, BTEXN, PAHs, Phenols,
 PCBs, Herbicides and Pesticides.
- Two exceedances of the adopted ecological investigation level (EIL) were reported for zinc in BH04 and BH10. These exceedances were identified at depths greater than 0.4m BGL.
- Three exceedances of the adopted EIL were reported for benzo(a)pyrene in BH01, BH03 and BH07 and showed a decreasing trend with increasing depth below ground level.
- Following statistical appraisal of analytes reporting EIL exceedances, it was confirmed that both zinc and benzo(a)pyrene exceeded the adopted ecological investigation level in fill material on the site.

- In light of the exceedances of the adopted ecological investigation level criteria, leachate testing was conducted on select samples for zinc and PAHs to determine the leachability potential of contaminants in soil into the underlying groundwater aquifer.
- Leachate testing identified no exceedances of the aesthetic, drinking water or primary contact recreation criteria for all samples analysed. However, all samples analysed for zinc exceeded the fresh water ecological criteria.
- The site is considered suitable for commercial/industrial use provided the following recommendations are implemented.


Based on the findings of the PSI, the following recommendations are provided:

- A Detailed Site Investigation (DSI) in accordance with NSW EPA (2011) *Contaminated Sites:* Guidelines for Consultants Reporting on Contaminated Sites is required to determine the vertical delineation of chemical soil contamination, onsite groundwater chemical concentrations and assess the need for the preparation of a Remediation Action Plan (RAP).
- Any in-situ soil material required to be disposed of as part of the proposed development is to be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying waste and disposed of in a licensed facility to accept such a waste.
- A hazardous materials survey should be conducted to visually and analytically identify asbestos containing material in the existing residential infrastructure, storage areas and on the soil surface at 9 Louth Park Rd prior to demolition and earthworks. If any Asbestos containing material is identified, appropriate measures should be implemented to ensure safe and suitable removal and disposal to prevent contamination of the site and exposure to and workers or potential future residents.

Contents

Dog	cume	nt Control	i
Exe	cutiv	e Summary	ii
1.	Intr	roduction	6
1	L. 1	Background	6
1	L.2	Objectives	6
1	L.3	Scope of Works	6
2.	Site	e Conditions	8
2	2.1	Site Identification	8
2	2.2	Site Activities	8
2	2.3	Site Inspections	8
2	2.4	Topography	9
2	2.5	Summary of Site Geology, Hydrogeology and Hydrology	9
3.	Site	e History and Information Review	10
3	3.1	Surrounding Land Use	10
3	3.2	Site History	10
3	3.3	Review of Historical Photographs	10
3	3.4	Historical Title Information	11
3	3.5	NSW Environmental Protection Authority (EPA) Databases	15
3	3.6	NSW Department of Primary Industries (DPI) Office of Water Database	16
3	3.7	Previous Investigations	17
3	3.8	SafeWork NSW Hazardous Chemicals Site Search	17
4.	Cor	nceptual Site Model	18
4	1.1	Chemical Hazards and Contamination Sources	18
4	1.2	Potential Sensitive Receptors	18
4	1.3	Potential Exposure Pathways	18
4	1.4	Data Gaps	19
5.	Site	e Investigations	23
5	5.1	Soil Assessment Methodology	23
5	5.2	Soil Investigation	23
5	5.3	Field Screening and Observations	23
5	5.4	Sample Analysis	24
6.	Add	opted Guidelines	25
7.	Qua	ality Assurance & Quality control	27

	7.1	Quality Assurance Program (QA)	27
	7.2	Quality Control Program (QC)	27
	7.3	Soil Quality Control Samples	28
	7.4	Laboratory Quality Control Samples	28
	7.5	QA/QC conclusion	29
8.	In	nterpretation of Results	30
	8.1	Laboratory Results	30
	8.2	Statistical Appraisal	30
	8.3	Leachate Analysis	31
	8.4	Interpretation of Results	31
9.	C	onclusions and Recommendations	32
	9.1	Conclusions	32
	9.2	Recommendations	32
10).	Limitations	34
11	L.	References	35
12	2.	Appendices	36

Appendices

Appendix I Figures

Appendix II Site Photographs

Appendix III Historical Aerial Photographs

Appendix IV Historical Titles

Appendix V Bore Logs & Stockpiles Sampling Sheet

Appendix VI Analytical Results Tables

Appendix VII NATA Accredited Laboratory Reports and Chain of Custody Documentation

Appendix VIII EIL Calculations for Selected Metals

Appendix IX Statistical Appraisal

Appendix X PID Calibration Certificate

1. Introduction

1.1 Background

ESP - Environmental and Safety Professionals has been engaged by Perception Planning on behalf of Stevens Group (the client) to carry out a Preliminary Site Investigation (PSI) at 5-13 Louth Park Road, South Maitland NSW 2320 (the site).

ESP understands that the client has requested an environmental assessment of the site in accordance with the State Environmental Planning Policy No. 55 (SEPP 55) guidelines as part of a Development Application (DA) for the construction of a service station on the site.

1.2 Objectives

The objectives of the PSI were to:

- Investigate previous site land uses and potential contamination due to former activities;
- Provide a discussion of present site conditions;
- Provide a desktop assessment of site contamination issues;
- Investigate the suitability of site soils with respect to potential chemical contamination at limited locations; and
- Assess the need for further investigation.

1.3 Scope of Works

To achieve the investigation objectives the following works were undertaken:

- Site inspection a visual inspection was undertaken to identify any obvious potentially contaminating activities and/or potentially contaminated areas of the site subject to investigation.
- **Site history review** a historical site review, including the collection and review of information pertaining to the site's previous use, was undertaken to investigate the potential sources, types and locations of contamination.
- **Desktop review** a desktop-based review of available information which included the following work elements relevant to site:
 - Review of published geological and hydrogeological conditions;
 - Historical title search;
 - o Desktop Investigation of potentially contaminated surrounding sites; and
 - Review of NSW EPA registers.
- Soil investigations eleven (ten primary and one duplicate) soil samples were collected from
 in-situ soils on the site with the use of hand tools. Ten bore holes were advanced onsite by
 hand auger to a maximum depth of 0.7 metres below ground level. Collected samples were
 submitted for analysis to a National Association of Testing Authorities (NATA) accredited
 laboratories.
- Data Appraisal comparison of results with appropriate ecological and health-based guidelines.

• **Reporting** – documentation of all investigations, assessment works and results, including provision of appropriate conclusions and recommendations where required.

The site investigation was carried out in general accordance with the NSW Environment Protection Authority (2011) *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* and NSW Environment Protection Authority (2017) *Contaminated Land management: Guidelines for the NSW Site Auditor Scheme (3rd Edition)*.

2. Site Conditions

2.1 Site Identification

The site location is depicted on the site plan provided in Figure 1 of Appendix I. Relevant site details are tabulated below in Table 2.1.

Table 2.1 Summary of Site Details

Lot / Plan Description	Lot 1, 2, 3 & 4 DP 1109043
	Lot 17 & 18 DP 1044795
	Lot 6 DP 199882
	Lot 1 DP 794525
	Lot 1 DP 782 596
Address	5 – 13 Louth Park Road, South Maitland NSW 2320
Coordinates (MGA56) of the	Easting: 365159.616
approximate centre of the	Northing: 6376402.409
site	
Local Government Authority	Maitland City Council
Site Zoning	RU1 Primary Production
Site Area	Approximately 4,450m ²
Current Land Use	Residential

2.2 Site Activities

All lots on the site are currently owned by the Bunder family (Robert Paul Bunder, Susan Maria Bunder, Guy Bunder & Nikia Bunder), with the first lot (Lot 1 DP 794525) acquired by Guy Bunder in June 2005 and the last lot (Lot 1 & 3 DP 1109043) acquired by Susan Maria Bunder in April 2019. It is understood that three dwellings on the sites (5, 11 & 13 Louth Park Rd) are currently occupied by tenants, 7 Louth Park Rd comprises a vacant grass lot, and 9 Louth Park Rd houses an unoccupied dwelling. A review of aerial photographs (see Section 3.2.1) confirmed that since 1954 the sites have only been utilised for residential purposes.

2.3 Site Inspections

A site inspection was completed on 28 August 2019. The site has an area of approximately 4,450m².

A summary of the site inspection notes for buildings and outdoor areas are presented in Table 2.2.

Table 2.2 Summary of Site Inspection

Site owner/ occupant/s	Robert Paul Bunder, Susan Marie Bunder, Guy Bunder & Nikia Bunder
Buildings & structures condition	Four residential dwellings, six detached sheds, two detached outhouses. Dwellings & structures ranging from moderate to very poor condition.
Surface type and condition	Grass covered flat site, several trees towards the west and centre of the site. All appear in good, healthy condition.
Staining / odours	None observed
Chemical storage	None observed
Fuel storage infrastructure	None observed

Other underground infrastructure	None observed
Stressed vegetation	None observed
Soil stockpiles / debris	No stockpiled material observed. Anthropogenic debris observed within boreholes including metal, glass, concrete and brick.
Asbestos containing material	Potential asbestos containing debris was observed from Lot 4 DP 1109043. Potential asbestos containing material was observed on all dwellings.

2.4 Topography

At the time of the investigation topography was noted to comprise of relatively flat terrain. A review of site topography via Google Earth indicated elevation around 6-8 metres AHD.

2.5 Summary of Site Geology, Hydrogeology and Hydrology

Geological, hydrogeological and hydrology features at and in the vicinity of site (as reviewed on 9 September 2019) are described in Table 2.3.

Table 2.3 Summary of Geological, Hydrogeological and Hydrology

Feature		Site Description	Source
		Reference to the <i>Newcastle 1:100,000</i> Geological Series (Sheet 9132, Edition 1, 1975)	Department of Planning &
Geo	logy	Map indicates the site is described as forming	Environment,
deo	ТОБУ	in the Cainozoic era during the Quaternary	Resources & Energy
		period, comprising of gravel, sand and silt	(2019) Geological Maps
		(mapping code Qa).	data base
			NSW Department of
Acid Culp	hata Sails	The site is mapped as being within a Class 4	Environment, Climate
Acid Suip	hate Soils	Acid Sulphate Soils zone	Change & Water Acid
			Sulphate Soils maps
Surface	e Water	The closest surface water is Lynes Canal approximately 420m northeast of the site	Google Pro
		Not Disclosed	NSW DPI – Office of
	Quality		Water geospatial
			database
Regional Groundwater	Depth	3.7m at well I.D. GW028696, located approximately 20m east of the site	NSW DPI – Office of
			Water geospatial
		approximately 2011 east of the site	database
	Flow Direction	Likely towards the Northeast	Google Earth Pro

3. Site History and Information Review

3.1 Surrounding Land Use

Surrounding land uses noted at the time of the site inspection are summarised below in Table 3.1.

Table 3.1 Surrounding Land Use Summary

Location	Site/ Features
North	Residential/Commercial
East	Residential/Agricultural
South	Residential/Agricultural/Commercial
West	Residential/Commercial/Recreation

3.2 Site History

The review of site history made available for the PSI included the following:

- Review of historical aerial images;
- Historical Title Information; and
- Search of the NSW Environmental Protection Authority Databases

3.3 Review of Historical Photographs

A review of available historical photographs was conducted from images which incorporated the site and surrounding area. Historical photographs are presented in Appendix III and a chronological summary is presented in below in Table 3.2.

Table 3.2 Summary of Historical Aerial Photographs

Date	Comments	Source
1954	Residential dwellings on the sites. Rail overpass approx. 75m to the northwest of the sites. Louth Park Rd turns to the northeast and runs adjacent to the boundaries of 5 & 7 Louth Park Rd.	Spatial Services - Department of Finance, Services & Innovation
1976	No changes observed on site. More dwellings in surroundings, including dwellings opposite 5 & 7 Louth Park Rd; between Louth Park Rd and the rail overpass.	Spatial Services - Department of Finance, Services & Innovation
1993	No changes observed on site. Rail overpass has been demolished, Louth Park Rd has been straightened to its present configuration, and the New England Highway has been upgraded its present configuration. Service station established opposite Louth Park Rd.	Spatial Services - Department of Finance, Services & Innovation
23/09/2006	No changes observed on site and surroundings.	Google Earth Pro
24/08/2012	Small shed at southeast corner of Lot 1 DP 1109043 has been demolished. Large metal shed built in rear yard of 13 Louth Park Rd, with large tree formerly in the yard removed.	Google Earth Pro
11/10/2013	Front porch appears to have been built on dwelling at 9 Louth Park Rd.	Google Earth Pro
23/06/2016	Shed behind dwelling at 5 Louth Park Rd has been demolished.	Google Earth Pro
27/08/2016	Small shed has been built in southern corner of 5 Louth Park Rd.	Google Earth Pro

3.4 Historical Title Information

A historical title search was conducted by InfoTrack Pty Ltd. and a summary of the title holders with potential to cause site contamination is provided below in Table 3.3. Title search documentation is provided in Appendix IV.

Table 3.3 Summary of Relevant Historical Title Holder Information.

<u>As regards Lot 17 in D.P. 1044795</u>

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
21.01.1922	George Duke (Second-Hand Dealer)	Book 1248 No. 601
(1922 to 1946)	(& his deceased estate)	
06.06.1946	George Thomas James Eastcott (Shop Assistant)	Book 1993 No. 352
(1946 to 1946)	George Monas James Easteott (Shop Assistant)	BOOK 1993 NO. 992
12.07.1946	Eric Lyall Payne (Carpenter)	Book 1993 No. 353
(1946 to 1955)	Life Lyan Payne (Carpenter)	BOOK 1993 NO. 333
11.07.1955	Wesley Albert Freeman (Retired Slaughterman)	Book 2339 No. 993
(1955 to 1975)	(& his deceased estate)	BOOK 2339 NO. 993
05.05.1975	Stephen Robert McDonald (Skin Buyer)	Book 3188 No. 591
(1975 to 1981)	Stephen Robert Webbilaid (Skill Buyer)	BOOK 3100 NO. 331
13.03.1981	Robert Garner Watson (Labourer)	Book 3456 No. 794
	i '	Now
(1981 to 2008)	Elizabeth Ann Watson (Married Woman)	17/1044795
21.01.2008	Elizabeth Ann Watson	17/1044795
(2008 to 2016)	Liizabetii Aiiii watsoii	1//1044/33
10.02.2016	# Robert Paul Bunder	17/1044705
(2016 to date)	# NODELL Faul Dulluel	17/1044795

Denotes current registered proprietor

As regards Lot 18 in D.P. 1044795

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
03.07.1925 (1925 to 1937)	Frederick James Palin (Labourer)	Book 1392 No. 968
27.07.1937 (1937 to 1944)	Mary May Richmond Walker (Married Woman)	Book 1789 No. 874
22.08.1944 (1944 to 1946)	Clara May Eastcott (Married Woman)	Book 1949 No. 306
12.07.1946 (1946 to 1955)	Eric Lyall Payne (Carpenter)	Book 1993 No. 354
11.07.1955 (1955 to 1975)	Wesley Albert Freeman (Retired Slaughterman) (& his deceased estate)	Book 2339 No. 993
05.05.1975 (1975 to 1981)	Stephen Robert McDonald (Skin Buyer)	Book 3188 No. 591
13.03.1981 (1981 to 2015)	Robert Garner Watson (Labourer) Elizabeth Ann Watson (Married Woman)	Book 3456 No. 794 Now 18/1044795
21.11.2015 (2015 to 2016)	Elizabeth Ann Watson	18/1044795
04.02.2016 (2016 to date)	# Robert Paul Bunder	18/1044795

Denotes current registered proprietor

As regards Lot 6 in D.P. 199882

Date of		Reference to Title at	
Acquisition and	Registered Proprietor(s) & Occupations where available	Acquisition and sale	
term held		Acquisition and sale	
30.06.1921	Kate Johnston (Widow)	Book 1228 No. 482	
(1921 to 1947)	(Widow)	BOOK 1220 NO. 402	
20.08.1947	Alick William Johnston (Butcher)	Pook 2021 No. 155	
(1947 to 1950)	Catherine Jean Johnston (Married Woman)	Book 2031 No. 155	
24.11.1950	Wesley Albert Freeman (Butcher)	Book 2151 No.345	
(1950 to 1975)	(& his deceased estate)	BOOK 2131 NO.343	
05.05.1975	Stephen Robert McDonald (Skin Buyer)	Book 3188 No. 591	
(1975 to 1981)	Stephen Robert McDonaid (Skiii Buyer)	BOOK 3100 NO. 391	
13.03.1981	Robert Garner Watson (Labourer)	Book 3456 No. 794	
(1981 to 2015)	Elizabeth Ann Watson (Married Woman)	Now	
(1981 to 2013)	Liizabetii Aiiii watsoii (Marrieu woman)	6/199882	
21.11.2015	Elizabeth Ann Watson	6/199882	
(2015 to 2016)	Liizabetii Aiiii watsoii	0/133002	
04.02.2016	# Robert Paul Bunder	6/199882	
(2016 to date)	# NODELL Faul Dulluel	0/199882	

Denotes current registered proprietor

As regards Lot 1 in D.P. 794525

Date of		Reference to Title at
Acquisition and	Registered Proprietor(s) & Occupations where available	
term held		Acquisition and sale
31.05.1921	Kate Johnston (Widow)	Book 1224 No. 452
(1921 to 1927)	Rate Johnston (Widow)	BOOK 1224 NO. 432
07.06.1927	Ann Smith (Married Woman)	Book 1474 No. 296
(1927 to 1948)	Ann Smith (Married Woman)	(Book 2031 No. 155)
19.03.1948	Percival Ayliffe (Iron Worker's Assistant)	Book 2048 No. 228
(1948 to 1951)	Percival Ayline (Iron Worker's Assistant)	BOOK 2046 NO. 226
21.03.1951	Richard William Ribee (Accountant)	Book 2166 No. 101
(1951 to 1982)	Richard William Ribee (Accountant)	BOOK 2100 NO. 101
07.10.1982	Robert Noel Williams (Leading Hand)	Book 3775 No. 960
(1982 to 1990)	Lorraine June Williams (Married Woman)	Now
(1382 to 1330)	Lorraine Julie Williams (Warried Worldin)	1/794525
01.03.1990	Paratat Pty Limited	1/794525
(1990 to 2001)	Taracac F cy Emirica	1/754525
07.05.2001	Andrew John Murton	1/794525
(2001 to 2005)	Andrew John Marton	1/754525
29.06.2005	Guy Bunder	1/794525
(2005 to 2013)	Guy Bulluci	1/ / 34323
20.02.2013	# Guy Bunder	1/794525
(2013 to date)	# Nikia Bunder	1/134323

[#] Denotes current registered proprietor

As regards Lot 4 in D.P. 1109043

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale	
08.04.1925	Charles Henry English (Carter)	Vol 1383 Fol 173	
(1925 to 1962)	Lilian May English (Married Woman)		
09.02.1962	Frank Deren (Labourer)	Vol 2606 Fol 160	
(1962 to 1990)	Trank Beren (Eabourer)	VOI 2000 1 01 100	
24.04.1990	Paratat Pty Limited	Vol 3814 Fol 229	
(1990 to 2001)	raiatat rty Lilliteu	VOI 3614 FOI 229	
03.04.2001		Vol 4458 Fol 693	
(2001 to 2013)	Andrew John Murton	Now	
(2001 to 2013)		4/1109043	
20.02.2013	# Guy Bunder	4/1100042	
(2013 to date)	# Nikia Bunder	4/1109043	

[#] Denotes current registered proprietor

As regards Lot 1 in D.P. 782596

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale	
17.04.1909	Adelaide Dimmock (Married Woman)	Book 892 No. 385	
(1909 to 1965)	(& her deceased estate)	BOOK 692 NO. 363	
	Czesoaw Kolasa (Steelworker)		
10.02.1965	Now	Book 2749 No. 452	
(1965 to 1989)	Czeslaw Kolasa	BOOK 2749 NO. 452	
	(& his deceased estate)		
23.11.1989	Hammelore Kolasa (Widow)	Book 3794 No. 795	
(1989 to 2007)	Now	Now	
(1989 to 2007)	Hannelore Kolasa	1/782596	
26.11.2007	Bernhard Kolasa	1/782596	
(2007 to 2009)	(Transmission Application)	1/702590	
30.06.2009	Ty Matthew Robson	1/782596	
(2009 to 2013)	Jodie Lea Robards	1/702590	
16.08.2013	Pon Paul Taylor	1/782596	
(2013 to 2015)	Ben Paul Taylor	1//02390	
18.03.2015	# Robert Paul Bunder	1/702506	
(2015 to date)	# Nobelt Paul Bulluel	1/782596	

Denotes current registered proprietor

As regards Lots 1 and 3 in D.P. 1109043

Date of		Reference to Title at	
Acquisition and	Registered Proprietor(s) & Occupations where available	Acquisition and sale	
term held		Acquisition and sale	
01.01.1911	Victoria Murtla Butherford (Spinster)	Book 2482 No. 809	
(1911 to 1960)	Victoria Myrtle Rutherford (Spinster)	600K 2462 NO. 609	
26.09.1960	Danhna Lucy Tincon (Digger)	Book 2552 No. 511	
(1960 to 1961)	Daphne Lucy Tinson (Rigger)	BOOK 2552 NO. 511	
28.02.1961	Andras Horvath (State Spinner)	Book 2590 No. 38	
(1961 to 1964)	Rozalia Horvath (Married Woman)	BOOK 2590 NO. 38	
		Book 2712 No. 245	
30.01.1964	Karel Cerveny (Textile Worker)	Now	
(1964 to 2019)	(& her deceased estate)	1/1109043 &	
		3/1109043	
17.04.2019	Cusan Maria Dundar	1/1109043 &	
(2019 to 2019)	Susan Maria Bunder	3/1109043	
08.05.2019	# Robert Paul Bunder	1/1109043 &	
(2019 to date)	# Susan Maria Bunder	3/1109043	

Denotes current registered proprietor

Note: It is understood that John Rutherford was in ownership of this land prior to 1911, pursuant to the recitals in Book 2482 No. 809. This has not been investigated prior to 1911.

As regards Lot 2 DP 1109043

InfoTrack Pty Ltd noted that, with regards to Lot 2 DP 1109043, no computer title had been issued for this property. Based on preliminary findings, it is likely that the current owner of adjoining lands (i.e. the owner of Lot 1 DP 1109043) also occupy this land by way of possession and not by documentary ownership.

3.5 NSW Environmental Protection Authority (EPA) Databases

A search of the NSW EPA Contaminated Land Record under section 58 of the CLM Act (1997) was conducted on 9 September 2019. According to the EPA records, there were no records for the site. However, the former Maitland Gasworks approximately 750m north-west of the site has two current notices. No other sites were reported within 1 Km radius of the site.

A search of the list of contaminated sites notified to the NSW EPA under Section 60 of the Contaminated Land Management Act 1997 (CLM Act) was undertaken on 9 September 2019. The site was not listed on the contaminated site list. One site (Coles Express Service Station) located approximately 350 m north of the site was listed as not requiring Regulation under CLM Act and the former Maitland Gasworks approximately 750m northwest of the site was listed as "Contamination currently regulated under CLM Act". No other sites were listed within 1 Km radius of the site.

A search of the public register maintained by the NSW EPA under section 308 of the *Protection of the Environment Operations Act 1997* (POEO Act) was undertaken on 9 September 2019. There were no environmental protection licenses, applications, notices, audits and pollution studies identified in the register for the site. Records for Maitland City Council and Department of Primary Industries – Land were found, and a summary presented below. No other records within 1 Km radius of the site.

Table 3.4 Summary of POEO Public Register

Number	Name	Location	Туре	Status	Issue Date
10393	MAITLAND CITY	MAITLAND,	POEO	Issued	27 Jan 2000
	COUNCIL	NSW 2320	licence		
1005556	MAITLAND CITY	MAITLAND,	s.58 Licence	Issued	15 May 2001
	COUNCIL	NSW 2320	Variation		
1524567	MAITLAND CITY	MAITLAND,	s.58 Licence	Issued	06 Feb 2015
	COUNCIL	NSW 2320	Variation		
12439	STATE OF NEW SOUTH	Waterways	POEO	Surrendered	13 Feb 2007
	WALES (Department of	within the	licence		
	Primary Industries -	Hunter Valley			
	Lands)	Flood			
		Mitigation			
		Scheme,			
		MAITLAND,			
		NSW 2320			
1504670	STATE OF NEW SOUTH	Waterways	s.58 Licence	Issued	12 Sep 2012
	WALES (Department of	within the	Variation		
	Primary Industries -	Hunter Valley			
	Lands)	Flood			
		Mitigation			
		Scheme,			

		MAITLAND, NSW 2320			
1528943	STATE OF NEW SOUTH WALES (Department of Primary Industries - Lands)	Waterways within the Hunter Valley Flood Mitigation Scheme, MAITLAND, NSW 2320	s.58 Licence Variation	Issued	12 Mar 2015
1529614	STATE OF NEW SOUTH WALES (Department of Primary Industries - Lands)	Waterways within the Hunter Valley Flood Mitigation Scheme, MAITLAND, NSW 2320	s.80 Surrender of a Licence	Issued	09 Jun 2015

3.6 NSW Department of Primary Industries (DPI) Office of Water Database

A search of the DPI Office of Water Database was conducted on the 9 September 2019. The search identified a total of eight groundwater bores within a 500-metre radius to the site. A summary table is presented in Table 3.5 below.

Table 3.5 Summary of Groundwater Bores

Bore ID	License Number	Purpose	Status	SWL (m)	Final Depth (m)	Completion Date	Distance & Direction from Site
GW200409	N/A	N/A (presumed monitoring)	N/A	N/A	9.25	06/09/2004	30m West
GW200411	N/A	N/A (presumed monitoring)	N/A	N/A	8.50	07/09/2004	40m Northwest
GW200410	N/A	N/A (presumed monitoring)	N/A	N/A	2.40	06/09/2004	50m Northwest
GW028696	N/A	Not Known	N/A	3.70	9.10	01/10/1968	25m East
GW200406	N/A	N/A (presumed monitoring)	N/A	N/A	9.15	07/09/2004	70m West
GW200658	N/A	Stock, Domestic	N/A	21.60	102.00	04/12/2007	140m West
GW201106	N/A	Recreation	N/A	7.20	14.50	27/09/2007	310m West
GW060027	N/A	Irrigation	N/A	N/A	11.90	09/09/1983	310m East- Southeast

3.7 Previous Investigations

No previous investigations or reports for the site have been provided to ESP by the client. ESP understands that this 'phase 1' investigation is an initial part of development application for the property.

3.8 SafeWork NSW Hazardous Chemicals Site Search

No SafeWork NSW Hazardous Chemical register has been provided to ESP by the client, however as the current site use is residential a register is not required to be kept. ESP also conducted a visual assessment during the site investigation and no potential sources for chemical contamination were observed on the site.

4. Conceptual Site Model

In accordance with Schedule B2 – Guideline on Site Characterisation of the National Environment Protection Council (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) (as amended 2013) and to aid the investigation of the site, ESP developed a preliminary conceptual site model (CSM) assessing plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM also provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation.

4.1 Chemical Hazards and Contamination Sources

Based on site observations and available information pertaining to past site land use, Table 4.1 presents potential contamination sources and activities that may have contributed to soil, groundwater or surface water contamination at site are:

- Possible Imported fill at the site;
- Potential for pesticides being sprayed at the site; and
- Potential Building Hazardous Materials.

4.2 Potential Sensitive Receptors

For the purpose of this investigation, 'receptors' includes people, structures, utilities, ecological receptors and water supply wells that are or may be adversely affected by the contaminants of concern.

The following receptors were identified:

- Residents;
- Site workers;
- Maintenance workers;
- Lynes Canal & Wallis Creek;
- Site visitors;
- Downstream offsite residents;
- Underlying Bedrock Aquifer.

4.3 Potential Exposure Pathways

A pathway is a means by which the source (contaminants in soil or groundwater) can contact the identified receptors. Where no pathway exists, there is no risk to the receptor, because exposure cannot occur.

Based on ESP's understanding of site conditions, the potential exposure pathways and receptors are listed below and within Table 4.1.

Potential exposure pathways identified by ESP include:

- Dermal contact, inhalation (dust or vapours) or ingestion of exposed impacted soils;
- Leaching of contaminants and migration of impacted groundwater;

- Surface water run-off and sediment transport; and
- Inhalation or ingestion of exposed hazardous building materials.

4.4 Data Gaps

Based on the site investigations completed to date, the following data gaps have been identified:

- Current levels of contaminants of concern in in-situ soil including Heavy metals (As, Cd, Cr (Total), Cu, Pb, Hg, Ni, Zn), Polycyclic Aromatic Hydrocarbons (PAHs), Total Recoverable Hydrocarbons (TRHs), Benzene, Toluene, Ethylbenzene and Xylene and Naphthalene (BTEXN), Phenols and Pesticides;
- Current levels of contaminants of in groundwater including Heavy metals (As, Cd, Cr (Total), Cu, Pb, Hg, Ni, Zn), Polycyclic Aromatic Hydrocarbons (PAHs), Total Recoverable Hydrocarbons (TRHs), Benzene, Toluene, Ethylbenzene and Xylene and Naphthalene (BTEXN), Phenols and Pesticides; and
- Current hazardous building materials.

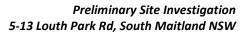


Table 4.1. Conceptual Site Model

Primary	Release	Contaminants	Potentia	Receptors	Potential	Complete	Risk	Further
Contaminant	Mechanism	of Concern	Current	Future	Exposure Pathways	Linkages		Assessment Required
			Residents, site visitors	Site users/workers, maintenance workers, site visitors	Dermal contact, inhalation (dust or vapours) or incidental ingestion of exposed impacted soils.	Yes	Moderate	Yes – Concentrations of contaminants of concern in soils required.
Imported fill	Leaching, surface runoff and sediment transport. Heavy metals, MAH, PAH, BTEXN, TRH, Phenols, Pesticides, Herbicides	MAH, PAH, fand nent Pesticides,		edrock Aquifer	Extraction and use of groundwater.			Yes – Onsite use of groundwater was not observed/reported. However, considering that there is a potential for soi contaminants to leach to groundwater, a leachate test (TCLP) is needed to determine risk to groundwater.
		Downstream (Offsite Residents	ingestion of groundwater. Migration of impacted groundwater.	Limited	Low	Yes – Offsite use of groundwater is known to be used for stock, irrigation and domestic use based on registered groundwater wells reported within 500 of the site. A leachate tes (TCLP) is needed to determine risk to offsite users.	

Primary	Release	Contaminants	Potential	Receptors	Potential	Complete	Risk	Further
Contaminant Sources	Mechanism	of Concern	Current	Future	Exposure Pathways	Linkages		Assessment Required
			Lynes Canal	& Wallis Creek	Recreational use of impacted surface water. Incidental ingestion of surface water. Ingestion of fish.			No – Contamination of the Creek unlikely due to dilution, dispersion effects and natural attenuation of organics.
			Residents, site visitors	Site users/workers, maintenance workers, site visitors	Dermal contact, inhalation (dust or vapours) or ingestion of exposed material	Yes	Moderate	Yes – Concentrations of contaminants of concern in soils required.
Potential for pesticides being sprayed or injected on soils	Leaching, surface runoff and sediment transport	OCPs, OPPs	Underlying Bedrock Aquifer		Extraction and use of groundwater. Incidental ingestion of	Limited	Low	No – Onsite use of groundwater was not observed/reported. Offsite use of groundwater unlikely as this is an area known to have reticulated water supply. No groundwater wells exist within 500m of the site.
			Downstream (Offsite Residents	groundwater.			Yes – Offsite use of groundwater is known to be used for stock, irrigation and domestic use. Groundwater wells exist within 500m of the site.

Primary	Release	Contaminants	Potentia	Receptors	Potential	Complete	Risk	Further
Contaminant Sources	Mechanism	of Concern	Current	Future	Exposure Pathways	Linkages		Assessment Required
			Lynes Canal	& Wallis Creek	Recreational use of impacted surface water. Incidental ingestion of surface water. Ingestion of			No – Contamination of the Creek unlikely due to dilution, dispersion effects and natural attenuation of organics.
Potential Building Hazardous Materials	Fire/water damage, weathering, modification	Asbestos	Site workers, maintenance workers, site visitors, residents	Residents, site visitors	Inhalation (dust) or ingestion of disturbed materials.	Limited	Moderate	Yes. Pre-demolition Hazardous Materials Survey required.

5. Site Investigations

5.1 Soil Assessment Methodology

Soil sampling techniques and reporting were undertaken with reference to Standards Australia (2005) AS4482.1 - Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds (AS4482.1) and National Environment Protection Council (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) (as amended 2013).

5.2 Soil Investigation

On 28 August and 5 September 2019, ten primary (BH01 – BH10) and one duplicate (DP_28819) soil samples were collected across the site in a judgemental manner with the use of a hand auger and hand tools to a maximum depth of 0.7 m BGL. The borehole locations are depicted in Figure 2 of Appendix I.

Samples were placed in 250ml glass sample containers, immediately sealed with a Teflon-lined screw cap lid and placed in a cool, dark environment prior to being forwarded to a NATA accredited analytical laboratory within specified holding times. Samples submitted to the laboratory were accompanied by chain of custody documentation. A copy of laboratory reports and the completed chain of custody form is presented in Appendix VII.

During advancement of the boreholes, detailed logs of subsurface conditions were recorded and are provided in Appendix V.

5.3 Field Screening and Observations

Field screening and observations recorded during the investigation are provided in the Borehole Log Field sheets in Appendix V. No stained or odorous soils were noted during the site inspection and subsequent sample collection. Minor amounts of ash were observed in boreholes BH03 and BH10.

Potential asbestos containing material (PACM) was observed as external wall sheeting on all dwellings on the site, as well as on several sheds and outhouses. This PACM was observed to range from good condition at 13 Louth Park Rd to poor condition at 9 Louth Park Rd. Additionally, PACM fragments and debris were identified on the ground surface adjacent to the west side of the dwelling at 9 Louth Park Rd, and appeared to have originated from the dwelling which was observed to be in poor condition. A detached shed at the rear of 9 Louth Park Rd had collapsed and appeared to contain broken PACM fragments and debris.

No samples of PACM were collected during the site investigation. No dwellings, sheds or outhouses were internally inspected for the presence of hazardous building materials. Recommendations for the assessment of PACM and hazardous building materials are contained within Section 9.2.

A summary of soils encountered during the investigation is provided in Table 5.1 below.

Table 5.1 Soil Classification and Description

Classification	Description	Depth Range (m)
Fill	Silty SAND – brown, moist, dense	0.0-0.6
Natural	CLAY – light grey, moist, soft	0.7

Collected samples were screened in the field for the presence of volatile organic compounds (VOCs) by use of a photo-ionisation detector (PID). Samples were collected into a plastic zip-lock bags, filled approximately halfway allowing sufficient air space (i.e. headspace) above the sample, and the headspace was measured for VOC concentration with the PID. The results of PID field screening is presented on bore logs in Appendix V and indicated no volatile organic compounds detected in all sample locations.

The site currently holds four residential dwellings, six detached sheds and two detached outhouses. These structures were observed to range from good condition in the large metal shed at the rear of 13 Louth Park Rd, to very poor condition in the dwelling, detached sheds and outhouse at 9 Louth Park Rd which appeared to be abandoned and structurally unsecure.

5.4 Sample Analysis

Analysis of collected soil samples was performed by a National Association of Testing Authorities (NATA) accredited laboratory (Eurofins MGT) in accordance with recognised analytical methodologies. Selected soil samples were submitted for analysis for all or a selection of the following parameters:

- Metals (As, Be, B, Cd, Co, Cr (Total), Cr (VI), Cu, Pb, Hg, Mn, Mo, Ni, Se, Zn);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Total Recoverable Hydrocarbons (TRHs);
- Volatile Organic Compounds (VOCs);
- Benzene, Toluene, Ethylbenzene and Xylene and Naphthalene (BTEXN);
- Phenols;
- Organochlorine Pesticides (OCPs);
- Organophosphorus Pesticides (OPPs);
- Acid Herbicides;
- Cation Exchange Capacity (CEC);
- pH; and
- TCLP analysis of specific contaminants (PAHs, Cu, Pb, Zn).

6. Adopted Guidelines

For the purpose of assessing results of soil sample analysis, primary reference has been made to soil investigation levels from National Environment Protection Council (2013) *National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) (as amended 2013*) as listed in Table 6.1.

Table 6.1 Soil Investigation Levels

Adopted Guidelines	Rationale			
	Soil Health Investigation Levels (HILs):			
	As the site is currently utilised for Residential land use and is			
	proposed to change to Industrial/Commercial land use, reported			
NEPM, 2013 Soil HILs and HSLs	analytical results were assessed against the industrial/commercial			
	criteria detailed in the NEPM 2013 (i.e. HIL-D).			
	Soil Health Screening Levels (HSLs):			
	Soil concentrations to be assessed against NEPM 2013 HSL-D			
	levels for industrial/commercial sites.			
	Ecological Investigation Levels (EILs):			
	Ecological Investigation Levels (EILs) and Ecological Screening			
	Levels (ESLs) have been adopted in accordance with the NEPM in			
	an industrial/commercial land use acceptance level.			
NEPM, 2013 Soil EILs and ESLs	Ecological Screening Levels (ESLs):			
	ESLs for aged copper, nickel and zinc were calculated in			
	accordance with the NEPM using site-specific pH and cation			
	exchange values (i.e. pH=6.3 and CEC=18.6 cmol/kg) and based on			
	low traffic adjacent site, unless stated otherwise.			

Where guidance is not provided within the above publications, reference has been made to guideline values from alternate sources.

Leachate Criteria

Where exceedances of the soil investigation levels are identified, leachate testing of soil samples will be conducted to determine the leachability potential of contaminants to the underlying groundwater aquifer and to establish potential risk to offsite receptors/groundwater users. There are currently no leachate-based criteria for soils relating to offsite impacts of leaching contaminants. In lieu of this, reference has been made to trigger levels detailed within the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZG, August 2018) and NHMRC/NRMMC *Australian Drinking Water Guidelines 2011. Version 3.5 Updated August 2018.*

Table 6.2 Leachate Investigation Levels

Adopted Guidelines	Rationale		
Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018)	Default Guideline value (DGV) for Fresh Water Based on the proximity of Wallis Creek to the assessment area, the DGV for fresh water ecosystems will be adopted for leachate assessment.		

NHMRC/NRMMC Australian Drinking Water Guidelines 2011 Version 3.5 Updated August 2018

Health-based Screening Levels (HSLs)

Based on the identification of offsite groundwater used for irrigation, recreation, stock and domestic uses, trigger values for drinking water guidelines (health and aesthetic) and primary contact recreation have been adopted.

Aesthetic Criteria

There are currently no aesthetic based criteria for soils. However, consideration has been given to the following aesthetic condition of the soil:

- Discolouration and staining;
- Offensive odours; and
- Presence of waste products (e.g. metals, plastics, building debris etc.)

7. Quality Assurance & Quality control

7.1 Quality Assurance Program (QA)

To satisfy the overall objectives of the assessment, ESP implemented a quality assurance program during the assessment which included:

- The use of appropriately trained and qualified environmental scientists or technicians to perform the works;
- Decontamination and calibration (where required) of field measurement and sampling equipment;
- The use of standardised field sheets;
- The use of chain of custody procedures to provide sample traceability during transport and handling (refer Appendix VII for completed chain of custody forms)
- Storage of collected samples in laboratory prepared containers in a cool, dark environment prior to submission to the laboratory within specified holding times;
- The use of NATA accredited laboratories for analysis of collected samples; and
- Review of quality control information provided in the laboratory reports.

Equipment Decontamination

Prior to and following collection of each sample, all non-disposable sampling equipment underwent decontamination. The decontamination process incorporated the following:

- Removal of any significant adhering soils or sediments;
- Washing of equipment with phosphate-free detergent;
- Rinsing of equipment with fresh water;
- Final rinsing of equipment with de-ionised water; and
- Air drying of equipment prior to use.

7.2 Quality Control Program (QC)

A quality control program was implemented to identify data irregularities which may be attributable to activities undertaken during the quality assurance program. Quality control samples were collected and/or tested to identify data irregularities as sourced from cross contamination, inconsistent sampling methodologies and/or laboratory analytical techniques.

Relative percentage differences (RPDs) were calculated for results from the reported sample pairs (refer equation below) and compared to the 50% limit as detailed in Australian Standard AS4482.1, 2005 to determine whether data variation is acceptable.

Relative Percentage Difference (RPD) (%) =
$$\frac{\langle Co - Cs \rangle}{\langle \frac{Co + Cs}{2} \rangle}$$
 x 100

Co = concentration obtained from the original sample.

Cs = concentration obtained from the replicate or split sample.

The quality control program performed during this assessment involved the collection and/or analyses of the following samples.

- Blind Replicate Sample replicate sample was submitted to the primary laboratory for analysis
 as two individual samples without notification to the laboratory that they have been
 replicated. Blind replicates were analysed at a target rate of one sample per twenty primary
 samples analysed.
- Laboratory Quality Control as part of their NATA Accreditation, the primary laboratory
 performed internal duplicate analysis of samples and compared them to applicable guidelines.
 Sample spikes are also conducted to assess the extent of the matrix bias (recovery interface)
 and sample to sample precision. In addition, internal laboratory blank samples are run to
 assess the potential for laboratory equipment errors.

7.3 Soil Quality Control Samples

During the PSI, laboratory analysis was conducted on a total of 10 primary soil samples and 1 blind replicate soil sample. The results of the analysis of soil quality control samples collected are provided in Analytical Results Table 2 within Appendix VI.

Blind Replicate Sample

One blind replicate sample (DP_28819) was collected during the PSI and submitted to the primary laboratory for analysis. A summary of the results is given below:

One primary (BH09_0.5) and blind replicate (DP_28819) sample were submitted for analysis
of Heavy Metals. All RPD were within the 50% limit referenced from Australian Standards
AS4482-1 (2005), with the exception of Mercury.

7.4 Laboratory Quality Control Samples

Eurofins | mgt, a National Association of Testing Authorities (NATA) accredited laboratory, was engaged as the primary laboratory. An assessment of the quality control results, including laboratory blanks, matrix spikes and duplicates has been undertaken and summarised below for the soil samples collected.

Primary Laboratory - Eurofins | mgt

A review of the quality control information contained within the laboratory report confirmed:

- All method blank samples indicated levels below the detection limit for the analytical method;
- Percentage recoveries for laboratory control samples ranged between the laboratory limits of 70% to 130% and were within acceptance limits;
- Percentage recoveries for spiked samples ranged between the laboratory limits of 70% to 130% and were within acceptance limits; and
- Relative percent differences (RPDs) RPDs for the duplicate samples were in the between the
 laboratory limits of range of < 1% to 30.0% and were within acceptance limits, with the
 exception of TRH >C34-C40. The laboratory report contained a note for this exceedance,
 stating that the RPD reported passes Eurofins | mgt's QC Acceptance Criteria as defined in
 the internal quality control review.

7.5 QA/QC conclusion

Based on the above information relating to the quality assurance/quality control program undertaken during the PSI, it is the opinion of ESP that an acceptable degree of confidence in equipment decontamination, sample collection, transport and laboratory analysis has been achieved and is satisfactory and suitable for the purposes of the assessment.

From an overall perspective it is concluded that the data set provides sufficient understanding of potential site contamination.

8. Interpretation of Results

Summaries of all analytical results compared to the relevant health based and ecological criteria are provided in Analytical Results Table 1&2 within Appendix VI and the NATA accredited laboratory reports and relevant chain of custody documentation are presented in Appendix VII.

8.1 Laboratory Results

8.1.1. Health Investigation Levels

No exceedances of the adopted human health-based criteria (HIL-D) were detected in any of the soil samples tested for Heavy metals, TRHs, BTEXN, PAHs, Phenols, PCBs, Herbicides and Pesticides.

8.1.2. Ecological Investigation Levels

No exceedances of the adopted ecological investigation level criteria (EIL) were detected in any of the soil samples tested for TRHs, BTEXN, Phenols, PCBs, Herbicides and Pesticides.

8.1.2.1. Zinc

A total of two (2) exceedances of the adopted EIL were reported. These exceedances were identified at depths greater than 0.4m BGL.

8.1.2.2. Benzo(a)pyrene

A total of three (3) exceedances of the adopted EIL were reported. These exceedances were identified in boreholes BH01, BH03 and BH07, and showed a decreasing trend with depth below ground level.

8.2 Statistical Appraisal

In accordance with the NEPM, site soil concentrations are considered to be reported below the nominated investigation level where: the average concentration of an analyte is below the relevant investigation level, no single concentration exceeds the investigation level by greater than 250% and the standard deviation does not exceed 50% of the investigation level.

Statistical analysis was conducted on zinc and benzo(a)pyrene concentrations across the site. Due to limited data for benzo(a)pyrene, statistical analysis was carried out using Excel and an online Confidence Level Calculator. Results of the statistical appraisal in fill on the site are presented below and calculations for zinc (using ProUCL 5.1) are shown in Appendix IX.

Analyte	mg/kg					Statistics						
	NEPM Ecological Criteria		Mean Conc.	Max Conc.	Standard Dev.	The average concentration is above the relevant investigation level	Standard Deviation Exceeds >50% of Investigation Level	Single value exceeds 250% of Investigation Level	95% UCL			
FILL												
Zinc	Ecological Criteria	870	598	2,700	762.3	No	Yes	Yes	1,307			
Benzo(a) pyrene	Ecological Criteria	1.4	3.6	8.9	3.58	Yes	Yes	Yes	6.64			

Table 8.2 Statistical appraisal of analytes reporting EIL/ESL exceedances in soils

Following statistical appraisal of analytes reporting EIL exceedances, it was confirmed that both zinc and benzo(a)pyrene exceeded the adopted ecological investigation level in fill material on the site.

8.3 Leachate Analysis

In light of the exceedances of the adopted ecological investigation level criteria, leachate testing was conducted on select samples for Zinc and PAHs to determine the leachability potential of contaminants in soil into the underlying groundwater aquifer.

Leachate test (TCLP analysis) of borehole samples BH01_0.1, BH07_0.3 and BH10_0.7 for PAHs reported values below detection, indicating that the leaching of benzo(a)pyrene in-situ soil is not occurring. Therefore, the risk to downstream offsite anthropogenic and ecological receptors is very low.

Leachate test (TCLP analysis) of borehole samples BH01_0.2, BH02_0.05, BH03_0.5, BH04_0.4, BH05_0.2, BH06_0.2, BH07_0.3, BH08_0.4 and BH10_0.7 for Zinc reported values below the Australian Drinking Water Guidelines aesthetic criteria and primary contact recreation for all sampling locations. However, all sampling locations were above the adopted (DGV) water quality criteria.

8.4 Interpretation of Results

ESP understands that the site will be predominantly hardstand surface and access to soil will be limited. As a result, potential health impacts on future site users is unlikely.

It is anticipated that horizontal delineation of chemical concentrations across the site will not be achieved given the exceedances of ecological criteria for zinc and benzo(a)pyrene showed no geographical confinement to any one area on the site. It is also likely that adjacent offsite soils will show similar chemical concentrations. As a result, exceedances in ecological soil criteria are likely to pose a risk to onsite ecological receptors (i.e. groundwater). Additionally, given that exceedances of the adopted leachate criteria were reported, offsite downstream impacts cannot be disregarded. The site is deemed suitable for commercial/industrial land use, provided that recommendations in Section 9.2 are implemented.

9. Conclusions and Recommendations

9.1 Conclusions

Based on the findings of the PSI, the following conclusions are provided:

- A desktop review of the site history in conjunction with the observations made during the site inspection and fieldwork indicated that the sources of potential soil contaminants of concern are likely to be due imported fill material and hazardous building materials.
- Ten boreholes were advanced using a hand auger and hand tools in a judgemental manner across the site to a maximum depth of 0.7m BGL.
- No stained or odorous soils were noted during the site inspection and subsequent sample collection. Minor amounts of ash were observed within borehole BH03 and BH10.
- Potential asbestos containing material (PACM) was observed as external wall sheeting on all dwellings on the site, as well as on several sheds and outhouses. This PACM was observed to range from good condition at 13 Louth Park Rd to poor condition at 9 Louth Park Rd. Additionally, PACM fragments and debris were identified on the ground surface adjacent to the west side of the dwelling at 9 Louth Park Rd, and appeared to have originated from the dwelling which was observed to be in poor condition. A detached shed at the rear of 9 Louth Park Rd had collapsed and appeared to contain broken PACM fragments and debris.
- Collected samples were screened in the field for the presence of volatile organic compounds (VOCs) by use of a photo-ionisation detector (PID). The results of PID field screening indicated no volatile organic compounds detected in all sample locations.
- No exceedances of the adopted human health investigation level criteria (HIL-D) were detected in any of the soil samples tested for Heavy metals, TRHs, BTEXN, PAHs, Phenols, PCBs, Herbicides and Pesticides.
- Two exceedances of the adopted ecological investigation level (EIL) were reported for zinc in BH04 and BH10. These exceedances were identified at depths greater than 0.4m BGL.
- Three exceedances of the adopted EIL were reported for benzo(a)pyrene in BH01, BH03 and BH07 and showed a decreasing trend with increasing depth below ground level.
- Following statistical appraisal of analytes reporting EIL exceedances, it was confirmed that both zinc and benzo(a)pyrene exceeded the adopted ecological investigation level in fill material on the site.
- In light of the exceedances of the adopted ecological investigation level criteria, leachate testing was conducted on select samples for zinc and PAHs to determine the leachability potential of contaminants in soil into the underlying groundwater aquifer.
- Leachate testing identified no exceedances of the aesthetic, drinking water, or primary contact recreation criteria for all samples analysed. However, all samples analysed for zinc exceeded the fresh water ecological criteria.
- The site is considered suitable for commercial/industrial use provided the following recommendations are implemented.

9.2 Recommendations

In light of the conclusions provided and to ensure the site is made suitable for the proposed industrial/commercial use the following recommendations are provided:

- A Detailed Site Investigation (DSI) in accordance with NSW EPA (2011) *Contaminated Sites:* Guidelines for Consultants Reporting on Contaminated Sites is required to determine the vertical delineation of chemical soil contamination, onsite groundwater chemical concentrations and assess the need for the preparation of a Remediation Action Plan (RAP).
- Any in-situ soil material required to be disposed of as part of the proposed development is to be classified in accordance with the NSW EPA (2014) Waste Classification Guidelines Part 1: Classifying waste and disposed of in a licensed facility to accept such a waste.
- A hazardous materials survey should be conducted to visually and analytically identify asbestos containing material in the existing residential infrastructure, storage areas and on the soil surface at 9 Louth Park Rd prior to demolition and earthworks. If any Asbestos containing material is identified, appropriate measures should be implemented to ensure safe and suitable removal and disposal to prevent contamination of the site and exposure to and workers or potential future residents.

10. Limitations

This report has been commissioned and produced for Stevens Group (the requesting client). The application or use of this report is for the sole purpose of the client and regulating authorities permitted by the client. ESP - Environmental & Safety Professionals accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. The use, application, misuse or misapplication of information (whether in part or whole) or any consequences of its use, provided by ESP is not the responsibility of ESP, its' employees, servants or agents. This report may not be reproduced, or amended in any way without prior approval by the client and ESP. This report must be read in its entirety and in conjunction with the attached documents, only applying the report in accordance with the stated aims as outlined in the introduction of this report.

The interpretation of results, conclusions and recommendations presented in this report are predominantly based on desktop review of previous reports provided by the client, site inspection and limited soil sampling.

Should further information become available regarding conditions at the site or relevant issues including previously unknown sources of contamination or detailed information relating to products previously utilised at the site, ESP reserves the right to review the report and/or additional information in the context of the additional information.

Should additional confirmation of the contamination status of soils be required beyond the locations and depths sampling conducted as part of this assessment then further soil investigation i.e. Detailed Site Investigation (DSI) would be required.

All works carried out in preparing this report have been conducted on a fully professional basis with due care and attention utilising ESP professional knowledge and understanding of relevant and current National and State Standards, Codes of Practice, Regulations and Acts. Changes in Acts, Regulations or guidance information may occur at any time resulting in conclusions contained in this report becoming invalid, incorrect or inappropriate. ESP, at its discretion, may advise the client of the potential impact of such changes but does not accept responsibility for advising of, or implications of, any such changes.

11. References

- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, ANZG (August 2018).
- Australian Standard AS 4482.1 (2005) Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds.
- Canadian Council of Ministers of the Environment (CCME) *Environmental Quality Guidelines Summary Table*.
- Department of Planning & Environment, Resources & Energy (2017) Geological Maps data base.
- National Environment Protection Council (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) (as amended 2013).
- National Health and Medical Research Council (NHMRC) & Natural Resource Management Ministerial Council (NRMMC) Australian Drinking Water Guidelines 2011, Version 3.5, Updated August 2018
- New South Wales Department of Primary Industries (DPI) Office of Water geospatial database.
- New South Wales Environmental Protection Environment Protection Authority (2017) Contaminated Land management: Guidelines for the NSW Site Auditor Scheme (3rd Edition).
- New South Wales Environmental Protection Authority Contaminated Land Management Register.
 Accessed 9 September 2019
- New South Wales Environmental Protection Authority Contaminated Sites List. Accessed 9 September 2019
- New South Wales Environmental Protection Authority *Protection of the Environment Operations*Public Register. Accessed 9 September 2019
- New South Wales Acid Sulphate Soils Management Advisory Committee (1998) *Acid Sulphate Soil Assessment Guidelines*.
- Maitland City Council (2011), Maitland City Council Environmental Plan 2011, Acid Sulfate Soils Map
 Sheet ASS_004B
- Maitland City Council (2011), Maitland City Council Environmental Plan 2011, Land Zoning Map Sheet LZN_004B
- Department of Mineral Resources (1995) Newcastle Coalfield Regional Geology 1:100,000 Geological Series Sheet 9231 Edition 1.
- New South Wales Environmental Protection Authority (2011) *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites*.
- United States Environmental Protection Agency (2017) Regional Screening Level Summary Table –
 June 2017.

12. Appendices

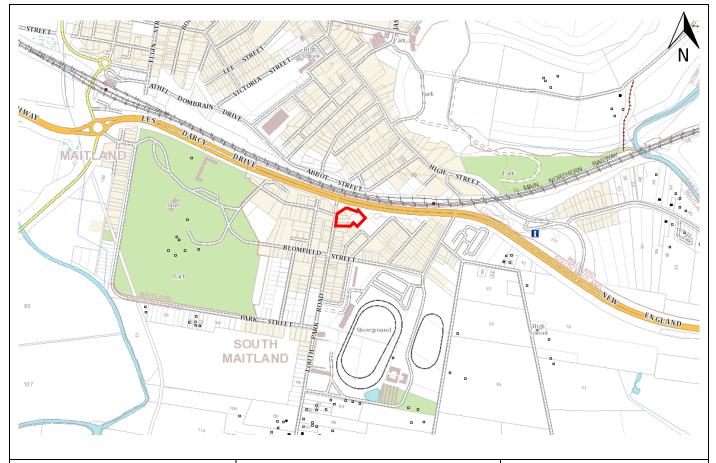
Appendix I Site Plans

Appendix II Site Photographs

Appendix III Historical Aerial Photographs

Appendix IV Historical Titles

Appendix V Bore Logs

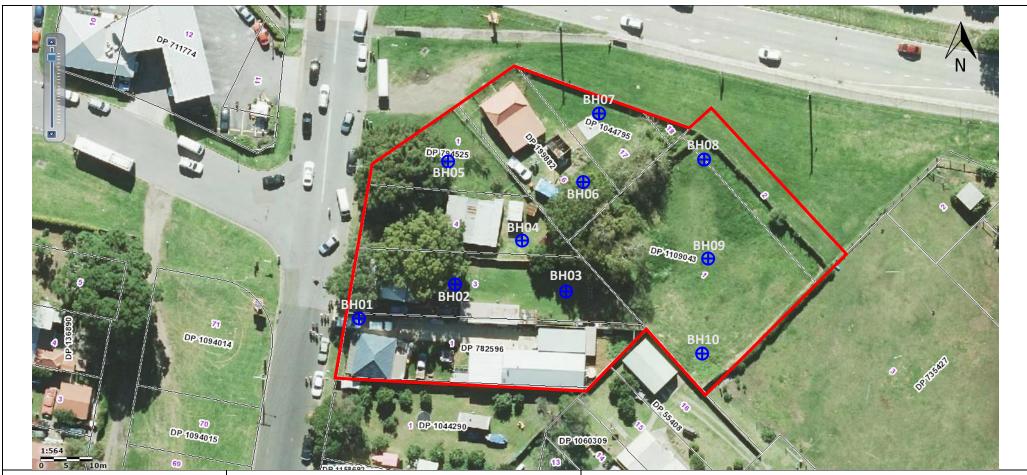

Appendix VI Analytical Results Tables

Appendix VII NATA Accredited Laboratory Reports and Chain of Custody Documentation

Appendix VIII EIL Calculations for Selected Metals

Appendix IX Statistical Appraisal

Appendix X PID Calibration Certificate


TITLE: Figure 1 – Site Locality Plan

SITE: 5 – 13 Louth Park Rd, South Maitland

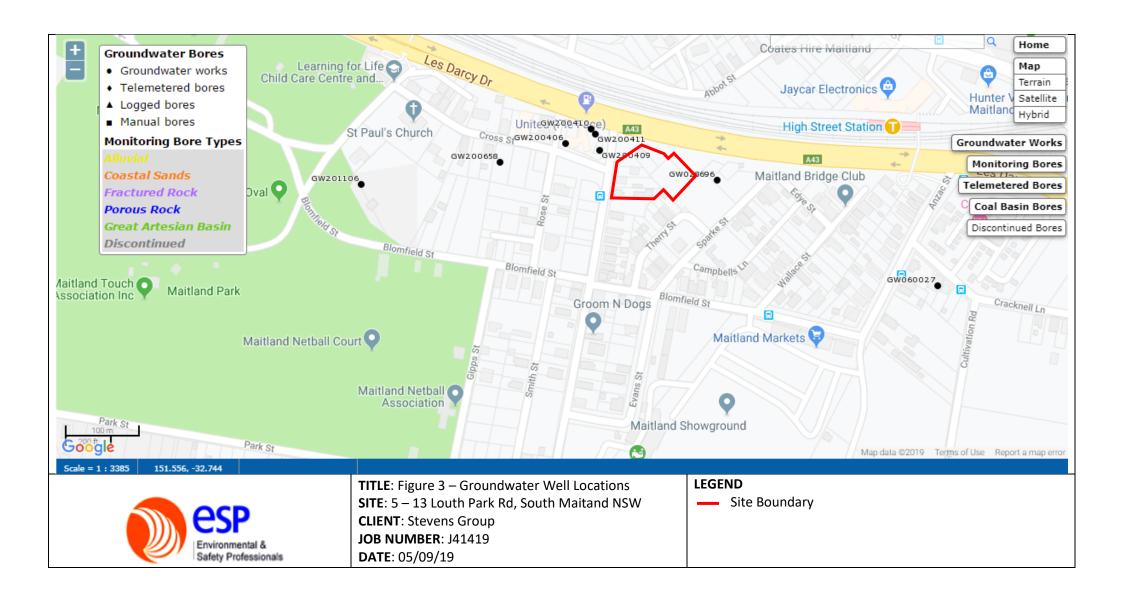
NSW

CLIENT: Stevens Group JOB NUMBER: J41419 DATE: September 2019 **REFERENCE:** Six Maps

☐ Site location

TITLE: Figure 2 – Borehole Locations

SITE: 5-13 Louth Park Rd, South Maitland NSW


CLIENT: Stevens Group **JOB NUMBER**: J41419

DATE: 05/09/19

LEGEND

Targeted Borehole

Site Boundary

Photo 1 Southwest to Northeast perspective; the site as viewed opposite Louth Park Rd.

Photo 2

West to East perspective; the site as viewed opposite Louth Park Rd.

Photo 3

West to East
perspective; dwelling
at 9 Louth Park Rd.
Unoccupied and in
poor condition.
Potential ACM on
dwelling & debris at
front of dwelling.

Photo 4

North to South perspective; north wall of dwelling at 11 Louth Park Rd. Tenanted and in moderate condition. Potential ACM on dwelling.

Photo 5

West to East perspective; shed at rear of 9 Louth Park Rd. Collapsed and in very poor condition. Potential ACM debris.

Photo 6

Southwest to Northeast perspective; borehole BH04 at rear of 9 Louth Park Rd.

Photo 7 North to South perspective; borehole BH05 at vacant 7 Louth Park Rd.

Photo 8
Southeast to
Northwest
perspective; borehole
BH07 at rear yard of 5
Louth Park Rd.

Photo 9 Northeast to Southwest perspective; rear yard of 5 Louth Park Rd. Dwelling tenanted and in moderate condition. Potential ACM on dwelling.

Photo 10 West to East

perspective; borehole BH06 in rear yard of 5 Louth Park Rd.

Photo 11

East-Southeast to
West-Northwest
perspective; dwelling
at 11 Louth Park Rd.
Dwelling tenanted and
in moderate condition.
Potential ACM on
dwelling.

Photo 12

West-Northwest to
East-Southeast
perspective; borehole
BH03 at rear of 11
Louth Park Rd.
Light ash within soil
observed.

Photo 13

Northwest to
Southeast perspective;
dwelling at 13 Louth
Park Rd. Dwelling
tenanted and in good
condition. Potential
ACM on dwelling.

Photo 14

West to East perspective; borehole BH01 at front yard/driveway of 13 Louth Park Rd.

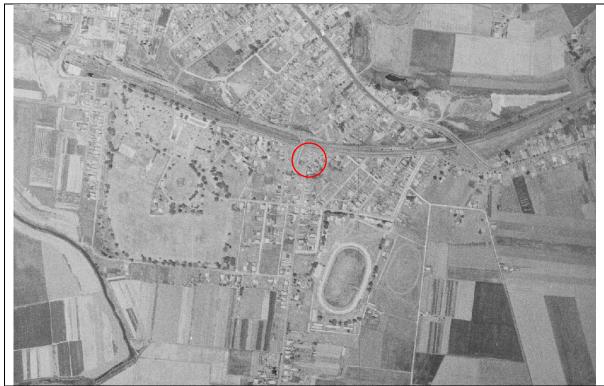

Photo 15 South to North perspective; borehole BH08 in paddock at rear of 11 Louth Park Rd.

Photo 16

West to East perspective; borehole BH10 in paddock at rear of 11 Louth Park Rd. Debris within borehole (metal, fabric, glass) and light ashy soils observed.

1954
(Source: NSW Land and Property Information)

1976 (Source: NSW Land and Property Information)

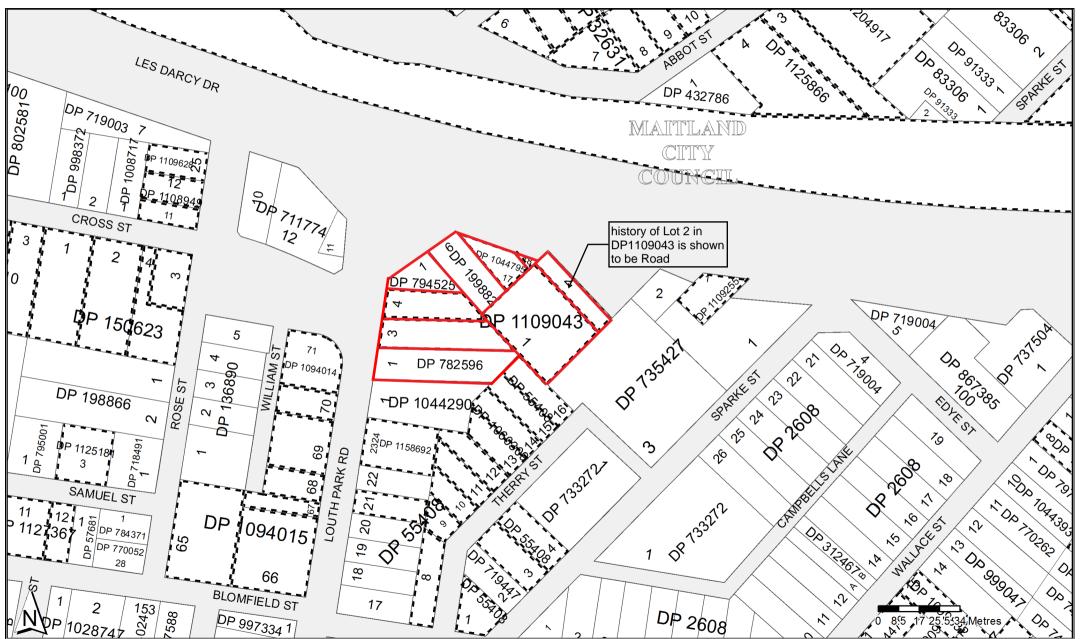
1993 (Source: NSW Land and Property Information)

23/09/2006 (Source: Google Earth Satellite Images)

24/08/2012 (Source: Google Earth Satellite Images)

11/10/2013 (Source: Google Earth Satellite Images)

23/06/2016 (Source: Google Earth Satellite Images)


27/08/2016 (Source: Google Earth Satellite Images)

Cadastral Records Enquiry Report: Lot 1 DP 1109043

Ref : maitland
Parish : MAITLAND

Locality: SOUTH MAITLAND

LGA: MAITLAND County: NORTHUMBERLAND

LAND REGISTRY

SERVICES

Page 1 of 5

ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:10AM

FOLIO: 7/199882

First Title(s): OLD SYSTEM
Prior Title(s): CA57769

Recorded	Number	Type of Instrument	C.T. Issue
18/8/1993	 CA57769	CONVERSION ACTION	FOLIO CREATED EDITION 1
5/7/1996	2283319	DISCHARGE OF MORTGAGE	EDITION 2
28/8/2002 28/8/2002	8906062 DP1044795	DEPARTMENTAL DEALING DEPOSITED PLAN	FOLIO CANCELLED

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 17/1044795

First Title(s): OLD SYSTEM
Prior Title(s): 7/199882

	Recorded	Number	Type of Instrument			C.T. I	ssue
	28/8/2002	DP1044795	DEPOSITED 1	PLAN			CREATED
	24/3/2010	AF191183	TRANSFER			EDITIO	N 1
-	17/12/2015	AK75928	DEPARTMENTA	AL DEALING			
	10/2/2016	AK48010	,,	- APPLICATION CERTIFICATE	- 0		
	4/3/2016	AK264367	TRANSFER			EDITIO	N 2

Req:R906907 /Doc:DL AF191183 /Rev:26-Mar-2010 /NSW LRS /Pgs:ALL /Prt:05-Sep-2019 10:12 /Seq:1 of 1 © Office of the Registrar-General /Src:INFOTRACK /Ref:maitland

:: 01T Form: Release: 2

TRANSFER

www.lpi.nsw.gov.au

New South Wales Real Property Act 1900 AF191183Q

		PRIVACY NOTE: this information is legally required and will	become part of the public record
	STAMP DUTY	Office of State Revenue use only	Client No: 114933643 3324 Duty: EXEMPT Trans No: 5647224 Asst details: SECTION 68(1)
			Assistants and the second seco
(A)	JORGENS HITCH	1/199882 1/1044795	OFFICE OF STATE REVENUE (N.S.W. TREASURY)
17	LODGED BY MAR 2010	Delivery Name, Address or DX and Telephone Box ESPRECN SPROPERTY SERVICES DX 885 SYDNEY 02 9210 0993	OFFICE OF STATE OF TON NOTED (N.S.W. TREASUIT 114933643
ME:	2-44.	Reference: New Caste SS	487812 MIERATION OF THE STREET
, ,	TRANSFEROR	Robert James WATSON	114933643
(D)	CONSIDERATION	The transferor acknowledges receipt of the consideration of \$ \bigcolon \text{of} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	sant to Orders metal TRAJION NOT
(E)	ESTATE	the land specified above transfers to the transferee an estate in	fee simple
` ,	SHARE	Whole	•
(G)	TRANSFERRED	Encumbrances (if applicable):	
(H)	TRANSFEREE	ELizabeth Ann WATSON	
(1)		TENANCY:	
(J)	DATE 2	21-01. 2008	
	I am personally a		correct for the purposes of the Real Act 1900 by the transferor.
	Signature of with	ess: FREDERICK Signature	of transferor: Robert Wicken
	Name of witness: Address of witnes		
	I am personally a		correct for the purposes of the Real Act 1900 by the transferee.
	Signature of with	esse Signature Signature	of transferee: Elzabeth Workow,
	Name of witness: Address of witnes	SI MAITUAND	

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 17/1044795

SEARCH DATE	TIME	EDITION NO	DATE
4/9/2019	11:07 AM	2	4/3/2016

LAND

LOT 17 IN DEPOSITED PLAN 1044795
AT SOUTH MAITLAND
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND
TITLE DIAGRAM DP1044795

FIRST SCHEDULE

ROBERT PAUL BUNDER

(T AK264367)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:10AM

FOLIO: 7/199882

First Title(s): OLD SYSTEM
Prior Title(s): CA57769

Recorded	Number	Type of Instrument	C.T. Issue
18/8/1993	CA57769	CONVERSION ACTION	FOLIO CREATED EDITION 1
5/7/1996	2283319	DISCHARGE OF MORTGAGE	EDITION 2
28/8/2002 28/8/2002	8906062 DP1044795	DEPARTMENTAL DEALING DEPOSITED PLAN	FOLIO CANCELLED

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 18/1044795

First Title(s): OLD SYSTEM
Prior Title(s): 8/199882

Recorded	Number	Type of Instrument	C.T. Issue
28/8/2002	DP1044795	DEPOSITED PLAN	FOLIO CREATED CT NOT ISSUED
14/9/2015	AJ811575	DEPARTMENTAL DEALING	
4/2/2016	AK194446	TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 1
4/3/2016	AK264367	TRANSFER	EDITION 2

/Doc:DL AK194446 /Rev:10-Feb-2016 /NSW LRS /Fgs:ALL /Prt:05-Sep-2019 10:50 /Seq:1 of 1 Office of the Registrar-General /Src:INFOTRACK /Ref:maitland

01T Form: 05-11-638 Licence: Licensee: Softdocs **Enrights Solicitors**

TRANSFER

New South Wales Real Property Act 1900

AK194446S

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Regi by this form for the establishment and maintenance of the Real Property Act Register. Seemen of made available to any person for search upon payment of a fee, if any. Office of State

NSW Treasury Office of State Revenue Office of State Revenue use only STAMP DUTY Client No: 5729416 Duty: EXEM, OT Trens No: 8514148-<u>568 (1)</u> (A) TORRENS TITLE 6/199882 and 18/1044795 CODES Name, Address or DX, Telephone, and Customer Account Number if any Document (B) LODGED BY Collection MORRIS, HAYES & EDGAR Box DX 420 SYDNEY PH: 9232-2411 LPN: 123005 B AS AGENTS FOR 201519 Reference (optional): ENRIGHT (C) TRANSFEROR ELIZABETH ANN WATSON and ROBERT GARNER WATSON and as regards the land The transferor acknowledges receipt of the consideration of \$ 1.00 (N (D)V OONSIDERATION specified above transfers to the transferee an estate in fee simple. 120359776state, 3608 (E) SHARE OTED TRANSFERRED Encumbrances (if applicable): (G) (H) TRANSFEREE ELIZABETH ANN WATSON **TENANCY:** (I) 21/11/5 DATE Certified correct for the purposes of the Real Property Act I certify I am an eligible witness and that the transferor 1900 by the transferor. signed this dealing in my presence. [See note* below] KERRY BARRASS Signature of witness: Name of witness: Address of witness: Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signatory's name: Aidan John Williams Capacity: Solicitor for the transferee (K) The transferee's solicitor certifies that the eNOS data relevant to this dealing has been submitted and

446658

stored under eNOS ID No.

Full Name: Aidan John Williams...... Signature:

^{*} s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 18/1044795

SEARCH DATE	TIME	EDITION NO	DATE
4/9/2019	11:07 AM	2	4/3/2016

LAND

LOT 18 IN DEPOSITED PLAN 1044795
AT SOUTH MAITLAND
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND
TITLE DIAGRAM DP1044795

FIRST SCHEDULE

ROBERT PAUL BUNDER

(T AK264367)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 6/199882

First Title(s): OLD SYSTEM
Prior Title(s): CA57769

Recorded	Number	Type of Instrument	C.T. Issue
18/8/1993	CA57769	CONVERSION ACTION	FOLIO CREATED EDITION 1
5/7/1996	2283319	DISCHARGE OF MORTGAGE	EDITION 2
14/9/2015	AJ811575	DEPARTMENTAL DEALING	
4/2/2016	AK194446	TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 3
4/3/2016	AK264367	TRANSFER	EDITION 4

/Doc:DL AK194446 /Rev:10-Feb-2016 /NSW LRS /Fgs:ALL /Prt:05-Sep-2019 10:50 /Seq:1 of 1 Office of the Registrar-General /Src:INFOTRACK /Ref:maitland

01T Form: 05-11-638 Licence: Licensee: Softdocs **Enrights Solicitors**

TRANSFER

New South Wales Real Property Act 1900

AK194446S

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Regi by this form for the establishment and maintenance of the Real Property Act Register. Seemen of made available to any person for search upon payment of a fee, if any. Office of State
NSW Treasury Office of State Revenue Office of State Revenue use only STAMP DUTY Client No: 5729416 Duty: EXEM, OT Trens No: 8514148-S68(1) (A) TORRENS TITLE <mark>6/199882</mark> and 18/1044795 CODES Name, Address or DX, Telephone, and Customer Account Number if any Document (B) LODGED BY Collection MORRIS, HAYES & EDGAR Box DX 420 SYDNEY PH: 9232-2411 LPN: 123005 B AS AGENTS FOR 201519 Reference (optional): ENRIGHT (C) TRANSFEROR ELIZABETH ANN WATSON and ROBERT GARNER WATSON and as regards the land The transferor acknowledges receipt of the consideration of \$ 1.00 (N (D)V OONSIDERATION specified above transfers to the transferee an estate in fee simple. 120359776state, 3608 (E) SHARE OTED TRANSFERRED Encumbrances (if applicable): (G) (H) TRANSFEREE ELIZABETH ANN WATSON **TENANCY:** (I) 21/11/5 DATE Certified correct for the purposes of the Real Property Act I certify I am an eligible witness and that the transferor 1900 by the transferor. signed this dealing in my presence. [See note* below] KERRY BARRASS Signature of witness: Name of witness: Address of witness: Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below. Signature: Signatory's name: Aidan John Williams Capacity: Solicitor for the transferee (K) The transferee's solicitor certifies that the eNOS data relevant to this dealing has been submitted and

446658

stored under eNOS ID No.

Full Name: Aidan John Williams...... Signature:

^{*} s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 6/199882

SEARCH DATE	TIME	EDITION NO	DATE
4/9/2019	11:07 AM	4	4/3/2016

LAND

LOT 6 IN DEPOSITED PLAN 199882

AT MAITLAND

LOCAL GOVERNMENT AREA MAITLAND

PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP199882

FIRST SCHEDULE

ROBERT PAUL BUNDER

(T AK264367)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 1/794525

First Title(s): OLD SYSTEM
Prior Title(s): CA40377

Recorded	Number	Type of Instrument	C.T. Issue
5/9/1989	CA40377	CONVERSION ACTION	FOLIO CREATED EDITION 1
3/7/1991	Z758032	TRANSFER	EDITION 2
21/6/2001	7706249	TRANSFER	
21/6/2001	7706250	MORTGAGE	EDITION 3
31/1/2005	AB250456	DISCHARGE OF MORTGAGE	EDITION 4
12/7/2005	AB617013	TRANSFER	
12/7/2005	AB617014	MORTGAGE	EDITION 5
20/2/2013	AH564390	DISCHARGE OF MORTGAGE	
20/2/2013	AH564391	TRANSFER	
20/2/2013	АН564392	MORTGAGE	EDITION 6
2/9/2018	AN678864	DEPARTMENTAL DEALING	EDITION 7 CORD ISSUED

*** END OF SEARCH ***

maitland

		un-2010 /NSW LRS /Pgs:ALL /Pr c:INFOTRACK /Ref:maitland	:t:Ub-Sep-2013 11.0	Z
	OPPOS OF STATE REVENU (N.S.W. TREALURY) 1980/61 // M.18	定	>	758032 F
	S SILLOD A	TRANSFER Y REAL PROPERTY ACT,	Т	Cb 1 ol X R/
	Torrens Title Refe	arence II Part Only, Delete	te Whole and Give Details	Location
DESCRIPTION OF LAND Note (a)	Folio Identifier	1/70/202	WHOLE	Parish of Maitland County of Northumberland
	See See S	است در موسد در این از این	and the second s	and progress are considered to the construction of the constructio
TRANSFEROR Note (b)	ROBERT NOEL WILLIAM	MS AND LORRAINE JUNE WILLIAM	MS	D
ESTATE Note (c)	(the abovenamed TRANSFEROR) and transfers an estate in fee simp in the land above described to the		eration of \$ 10,000.00	by the state of th
TRANSFEREE Note (d)	PARATAT PTY LIMITS	<u>ED</u>		OFFICE USE ONLY
TENANCY Note (e)	as joint tenants/tenants in com			
PRIOR ENCLIMBRANCES Note (f)	subject to the following PRIOR EN 2Qualified Title	NCUMBRANCES 1. Reservations a	and conditions if a	any contained in Crown Grant.
	We hereby certify this dealing to h	be correct for the purposes of the Real Propor		٠
EXECUTION Note (g)	Jour Male Constitution of Wilness	insteror who is personally known to me		* Milliams
	SAMIE WILLIAM Name of Witness (BLOCK L 3 ADA STREET Address and occupation of	LETTERS) T TELAKAM	d	Corraine I + Williams)
Note (g)				Signalurgui transierur
Mote 18)	Signature of Wines Name of Wittens (BLOCK L			A
en de la companya de La companya de la co	Address and occupation of	**************************************	~_WW.	Chun (S.J. BEAL)
TO BE COMPLETED	,	of Witness	100	CATION OF DOCUMENTS
BY LODGING PARTY Notes (h) and (i)	LAV FIR	IOMAS KENTION & SON, W STATIONLAS, RST FLOOR, THE CENTREPOINT,	CT OTHER	Herewith.
	SYL	DNEY. X. 435 PHONE 231 5733 33H 3 CAL - PARATAT		In L.T.O. with Produced by
OFFICE USE ONLY	Checked Passed	REGISTERED19	Secondary Directions	
	Sighed Extra Fee	- 3 JUL 1991	Delivery Directions	

		L 7706249 /Rev:25-Jun-2001 gistrar-General /Src:INFOTR		::05-Sep-2019 11:32 /Seq:1 of 1
) (111	Form: 01T		TRANSFER	7706249W
	Licence: 98M11 Edition: 0011	•	New South Wales) PRRINT ROOM PRONT ROUND WIND WANT BLOKE PRINT IN BE
	Dumon, .		Real Property Act 1900	தை (
	TTSEED DIETV	PRIVACY NOTE: this information		<u> </u>
	STAMP DUTY	Office of State Revenue use only		NEW SOUTH WALES DUTY
				17-04-2001 0000589059-001
				SECTION 80(1)-TRANSFER FIRST HOME PLUS NO DUTY PAYABLE
(4)	TO THE			CONTRACT CONSIDERATION \$ *****72.000.00
(A)	TORRENS TITLE	If appropriate, specify the part tra	ansferred Folio /	79 SUNGTENDENT LAND
~~\		Lot 1 D	P 79452°	5
(B)	LODGED BY	Delivery Name, Address or D	DX and Telephone COMPANY PIY L!D	CODES
		BO	OX 1558	∕∥T .
			122 FAX: 9262 1904	,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		Reference (optional	.l):	S (Sheriff)
(C)	TRANSFEROR		Pty Ltd (A	2100000100
	þ	PARATAT	Pty Ltd A	CN 003 386 623
(D)	CONSIDERATION	The transferor acknowledges receipt of		
(E)		the land specified above transfers t		
(F)	SHARE TRANSFERRED			
(2)				
(G) (H)	TRANSFEREE		1 2	
(H)	IKANSPENEL	Andrew Jo	LN MUR	TON
		,		
(T)				
(I)		TENANCY:		
	DATE	7 / 5 / 01		
(J)	I certify that the t	dd mm yyyy transferor, with whom I am personally	ly acquainted or as to	Certified correct for the purposes of the Real
		am otherwise satisfied, signed this tra		Property Act 1900 by the transferor
	Signature of witr	ness: Executed for	and on behalf	Signature of transferor:
	· · · · · · · · · · · · · · · · · · ·	ness: Executed for a	ntd by	E a m
				alle blacke Sest 5
	Address of witnes	ess:	sale direct	alle black \$200 000
	Ttiff, that the t	transferee, with whom I am personally	Allen Clork	re Page
	whose identity I ar	am otherwise satisfied, signed this train	ansfer in my presence.	Certified correct for the purposes of the Real Property Act 1900 by the transferee.
		ness: 5, C. Matt		Signature of transferee:
				Signature of transferee.
	Name of witness:	s: Sianey Charles Mu ess: 199 Briologes Roa Lamblen JNSh	KTON	A
	Address of witner	ss: 199 Bridges Kog	ac	If signed on the transferee's behalf by a solicitor
	New 1	Lambled UNSh	J	or licensed conveyancer, insert the signatory's
		2305,		full name and capacity below:
			Page 1 of	Je 9636.
	All handwriting t	must be in block capitals.	number additional 🔝 🗚	A set of notes on this form (01T-2) is available from Land and Property Information NSW
	All Handminne	aust of in block capitain.	hades seducurians .	from Land and Property Information NSW.

`Form: 01T Licence: 01-05-025 Licensee: Burgess Foat

TRANSFER

New South Wales AB617013Y **Real Property Act 1900** PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Ru required by this form for the establishment and maintenance of the Real Property Act Registra Softien 999 Research requires that the Register is made available to any nerson for search upon payment of a fee, if any.

NSW Treasury Register is made available to any person for search upon payment of a fee, if any. Client No: 5657113 765 Office of State Revenue use only VENDOR OLD If appropriate, specify the part transferred (A) TORRENS TITLE Certificate of Title Folio Identifier 1/794525 (1) Name, Address & DR and Telephone... (B) LODGED BY Delivery CODES LAWPOINT GALLOWAYS 1:23832N Phone: (02) 9233 1011 DX 340 SYDNEY TW 250322H (Sheriff) Reference (optional): (C) TRANSFEROR ANDREW JOHN MURTON The transferor acknowledges receipt of the consideration of \$132,500.00 and as regards (D) CONSIDERATION The land specified above transfers to the transferee an estate in fee simple. (E) ESTATE (F) SHARE TRANSFERRED (G) Encumbrances (if applicable): (H) TRANSFEREE **GUY BUNDER** (I) **TENANCY:** 29 Jane 2005

I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Signature of witness:

Address of witness: SIANE

DATE

Certified correct for the purposes of the Real Property Act 1900 by the transferor.

Signature of transferor:

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

Signature:

Signatory's name:

Damian Burgess

Signatory's capacity. Solicitor for the Transferee

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/794525

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY COMMONWEALTH BANK OF AUSTRALIA.

LAND

LOT 1 IN DEPOSITED PLAN 794525

AT MAITLAND

LOCAL GOVERNMENT AREA MAITLAND

PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP794525

FIRST SCHEDULE

GUY BUNDER NIKIA BUNDER

AS TENANTS IN COMMON IN EQUAL SHARES

(T AH564391)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- 3 AH564392 MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 1/1109043

First Title(s): OLD SYSTEM

Prior Title(s): BK 2712 NO 245

Recorded	Number	Type of Instrument	C.T. Issue
13/2/2007	DP1109043	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
13/2/2007	CA102079	CONVERSION ACTION	FOLIO CREATED CT NOT ISSUED
14/3/2007	AC993167	DEPARTMENTAL DEALING	EDITION 1
25/3/2019	AP140334	DEPARTMENTAL DEALING	
17/4/2019	AP196704	TRANSMISSION APPLICATION (EXECUTOR, ADMINISTRATOR, TRUSTEE)	
17/4/2019	AP196705	TRANSFER	EDITION 2
8/5/2019	AP238883	TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 3

*** END OF SEARCH ***

maitland

Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 3/1109043

First Title(s): OLD SYSTEM Prior Title(s): BK 2712 NO 245

Recorded	Number	Type of Instrument	C.T. Issue
13/2/2007	DP1109043	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED FOLIO CREATED CT NOT ISSUED
13/2/2007	CA102079	CONVERSION ACTION	
14/3/2007	AC993167	DEPARTMENTAL DEALING	EDITION 1
25/3/2019	AP140334	DEPARTMENTAL DEALING	
17/4/2019	AP196704	TRANSMISSION APPLICATION (EXECUTOR, ADMINISTRATOR, TRUSTEE)	
17/4/2019	AP196705	TRANSFER	EDITION 2
8/5/2019	AP238883	TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 3

System Document Identification

Form Number:01T-e Template Number: T_nsw16 ELN Document ID:10370421 ELN NOS ID: 10370422

TRANSFER

New South Wales Real Property Act 1900 **Land Registry Document Identification**

AP196705

Stamp Duty: 9570724-001

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any.

LODGED BY:

Responsible Subscriber: ARNOLD LAWYERS ABN 12568357018

Address: PO BOX 15

Maitland 2320

Telephone:

PEXA Subscriber Number: 24770
Customer Account Number: 503913V
Document Collection Box: 1W

Client Reference: Bunder & Ha

LAND TITLE REFERENCE

1/1109043 3/1109043

TRANSFEROR

SUSAN MARIA BUNDER

JENNIFER MARIA HARRISON

TRANSFEREE

SUSAN MARIA BUNDER

Tenancy: Sole Proprietor

CONSIDERATION

The transferor acknowledges receipt of the consideration of \$160,000.00

ESTATE TRANSFERRED

FEE SIMPLE

The Transferor transfers to the Transferee the Estate specified in this Instrument and acknowledges receipt of any Consideration shown.

SIGNING FOR TRANSFEROR

I certify that:

- 1. The Certifier has taken reasonable steps to ensure that this Registry Instrument or Document is correct and compliant with relevant legislation and any Prescribed Requirement.
- 2. The Certifier has retained the evidence supporting this Registry Instrument or Document.
- 3. The Certifier holds a properly completed Client Authorisation for the Conveyancing Transaction including this Registry Instrument or Document.
- 4. The Certifier has taken reasonable steps to verify the identity of the transferor.

Party Represented by Subscriber:

SUSAN MARIA BUNDER JENNIFER MARIA HARRISON

Signed By: Adam Barry Slattery

Signer Capacity: Practitioner Certifier

PEXA Signer Number: 63796

Digital Signing Certificate Number: 37153

Signed for ADAM BARRY SLATTERY ABN 12568357018

Subscriber: ARNOLD LAWYERS

Subscriber Capacity: Representative Subscriber

PEXA Subscriber Number:24770 Customer Account Number:503913

Date: 17/04/2019

SIGNING FOR TRANSFEREE

I certify that:

- 1. The Certifier has taken reasonable steps to ensure that this Registry Instrument or Document is correct and compliant with relevant legislation and any Prescribed Requirement.
- 2. The Certifier has retained the evidence supporting this Registry Instrument or Document.
- 3. The Certifier holds a properly completed Client Authorisation for the Conveyancing Transaction including this Registry Instrument or Document.
- 4. The Certifier has taken reasonable steps to verify the identity of the transferee.

Party Represented by Subscriber:

SUSAN MARIA BUNDER

Signed By: Adam Barry Slattery

PEXA Signer Number: 63796

Signer Capacity: Practitioner Certifier

Digital Signing Certificate Number: 37153

Signed for

Subscriber:

ADAM BARRY SLATTERY ABN 12568357018

ARNOLD LAWYERS

Subscriber Capacity: Representative Subscriber

PEXA Subscriber Number:24770 Customer Account Number:503913

Date: 17/04/2019

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/1109043

SEARCH DATE	TIME	EDITION NO	DATE
4/9/2019	11:07 AM	3	8/5/2019

LAND

LOT 1 IN DEPOSITED PLAN 1109043

AT SOUTH MAITLAND

LOCAL GOVERNMENT AREA MAITLAND

PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP1109043

FIRST SCHEDULE

ROBERT PAUL BUNDER
SUSAN MARIA BUNDER
AS JOINT TENANTS

(TZ AP238883)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

PRINTED ON 4/9/2019

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 3/1109043

LAND

LOT 3 IN DEPOSITED PLAN 1109043
AT SOUTH MAITLAND
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND
TITLE DIAGRAM DP1109043

FIRST SCHEDULE

ROBERT PAUL BUNDER SUSAN MARIA BUNDER

AS JOINT TENANTS

(TZ AP238883)

SECOND SCHEDULE (2 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

PRINTED ON 4/9/2019

NSWLPI_: Title Search - 2/1109043

Order ID: 61021261

Matter: maitland

Date Ordered: 9/09/2019 4:25:20 PM

Status: Error

Supplier Reference:

Completed: N/A

Ordered By:

Comments:

Error Details

22: COMPUTER FOLIO NOT CREATED UNCONVERTIBLE OLD SYSTEM LAND. FEE IS COMPRISED WITHIN CONVEYANCE BK 97 NO 811. TITLE CREATION WILL REQUIRE A DEPOSITED PLAN OF SURVEY AND A PRIMARY APPLICATION BASED UPON ADVERSE POSSESSION.

piece or parcel of land situate in West Maitland aforesaid containing by admeasurement one rood and six perches more or less being part of Lots 11, 12 and 13 on the plan exhibited at sale of a portion of the land originally granted to O'Donnell as thirty three acres COMMENCING on a fenced line forming the eastern boundary of Lots, 6, 7, 8 and 10 on the said plan, One hundred and forty feet south thirty two degrees west from its intersection by the south side of Parallel Street and bounded thence on the north east by a reserved road Twenty feet in width bearing south easterly One hundred and thirty feet on the south east by a line bearing south westerly One hundred feet on the south west by a line bearing north westerly One hundred and thirty feet and on the north west by a line bearing north easterly One hundred feet to the point of commencement the said land being described as Lot 1 on the amended plan prepared by E.L. Maitland together with all houses outhouses buildings and erections thereon and all the rights members and appurtenances hereunto belonging and also ALL

THAT piece or parcel of land situate in Louth Park Road (formerly Abbott Street)

hereby assured DO HEREBY CONVEY unto the said Purchaser in fee simple ALL THAT

Historical Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 4/1109043

First Title(s): OLD SYSTEM

Prior Title(s): BK 4458 NO 693

Recorded	Number	Type of Instrument	C.T. Issue
13/2/2007	DP1109043	DEPOSITED PLAN	LOT RECORDED FOLIO NOT CREATED
13/2/2007	CA104325	CONVERSION ACTION	FOLIO CREATED CT NOT ISSUED
14/5/2007	AD113539	DEPARTMENTAL DEALING	EDITION 1
20/2/2013	AH564389	DISCHARGE OF MORTGAGE	
20/2/2013 20/2/2013	AH564391 AH564392	TRANSFER MORTGAGE	EDITION 2
2/9/2018	AN678864	DEPARTMENTAL DEALING	EDITION 3 CORD ISSUED
28/5/2019	AP280914	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 4/1109043

NO CERTIFICATE OF TITLE HAS ISSUED FOR THE CURRENT EDITION OF THIS FOLIO. CONTROL OF THE RIGHT TO DEAL IS HELD BY COMMONWEALTH BANK OF AUSTRALIA.

LAND

LOT 4 IN DEPOSITED PLAN 1109043

AT SOUTH MAITLAND

LOCAL GOVERNMENT AREA MAITLAND

PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND

TITLE DIAGRAM DP1109043

FIRST SCHEDULE

GUY BUNDER NIKIA BUNDER

AS TENANTS IN COMMON IN EQUAL SHARES

(T AH564391)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.
- 3 AH564392 MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

PRINTED ON 4/9/2019

Title

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH

SEARCH DATE

4/9/2019 11:09AM

FOLIO: 1/782596

First Title(s): OLD SYSTEM Prior Title(s): CA43852

Recorded	Number	Type of Instrument	C.T. Issue
27/4/1990	CA43852	CONVERSION ACTION	FOLIO CREATED EDITION 1
20/6/1990	Z72800	CHANGE OF NAME	EDITION 2
29/11/2007	AD597966	TRANSMISSION APPLICATION	EDITION 3
16/7/2009 16/7/2009	AE839432 AE839433	TRANSFER MORTGAGE	EDITION 4
16/8/2013 16/8/2013 16/8/2013	AH953227 AH953228 AH953229	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE	EDITION 5
18/3/2015 18/3/2015	AJ336892 AJ336893	DISCHARGE OF MORTGAGE TRANSFER	EDITION 6

*** END OF SEARCH ***

maitland

PRINTED ON 4/9/2019

Form: 03TA Release: 2.1

TRANSMISSION APPLICATION

www.lands.nsw.gov.au

New South Wales Section 93 Real Property Act 1900

	the Register is ma	the establish ade available to	ment and maintenance of the Real any person for search upon payment	Property Act of a fee, if any.	NSW Treasury
	STAMP DUTY	Office of Sta	te Revenue use only		Client No: 44088 . 22
					Duty: \$10.00 Trans No: 4713130
					Asst details:
A)	FOLIO OF THE				
-/	REGISTER	1/782596			
В)	REGISTERED DEALING	Number		Folio of th	e Register
C)	LODGED BY	Document	Name, SERVIOD KIRSTINEON	BTRATION	CODE
		Collet BOX	DX 189 SYDNEY LLPN	1123426A	l l
		Box 582W			
			FIT 3233 1314 174 32	140 masa	———∥TA
D)	DECEASED REGISTERED PROPRIETOR	Hannelore			
E)	APPLICANT	Bernhard	KOLASA		
F)					of the deceased registered propri
	(who died on 50	October 2007) pursuant to probate		No. 119138107
			7 2007 to Bernhard KOLASA	***	
	(a certified copy	of w	nich is lodged herewith) apply to be re	gistered as prop	rictor of the estate or interest of the decea
			mentioned folio of the Register.	·	n
~ \	DATE 26	NOVEMA	BER 2007		
G)					t for the purposes of the Real Property person whose signature appears below.
				Signature:	C Laurence
					ne: Charmaine Lawrence
				Signatory's nar Signatory's cap	
Н)			INISTRATOR OR TRUSTEE		
Н)				Signatory's cap	acity: Applicant's solicitor
Н)	Ι,		of the estate of the deceased registe	Signatory's cap	onsent to this application.
Н)	I, Signature of with	ness:	of the estate of the deceased registe	Signatory's cap	acity: Applicant's solicitor
H)	Ι,	ness:	of the estate of the deceased registe	Signatory's cap	onsent to this application.
H)	Signature of witness	ness:	of the estate of the deceased registe	Signatory's cap	eacity: Applicant's solicitor consent to this application. ignature of Department of La
н)	Signature of witr Name of witness Address of witne ALL HANDWRITING Office_use.only	ness:	of the estate of the deceased registe	Signatory's cap	pacity: Applicant's solicitor ponsent to this application. ignature of

Form: 01T Release: 3.5 www.lands.nsw.gov.au

TRANSFER

New South Wales Real Property Act 1900

AE839432N

PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises th.

by this form for the establishment and maintenance of the Real Property Act Register. Section 968 RP Act requires the the Register is made available to any person for search upon payment of a fee, if any.

	STAMP DUTY	Office of Sta	ate Revenue use only	Office of State Revenue NSW Treasury Client No: 108239791 2714	
				Duty: Exempt Trans No: 5422270 Assidetails: FHP PRIVATE	
(A)	TORRENS TITLE	1/782596		DWELLING	
(B)	LODGED BY	Document Collection Box	Name, Address or DX, Telephone, and L	CSB CFPN:123832G	CODES T JT
		234.	Reference: 731997000		TJ TW
(C)	TRANSFEROR	Bernhard	Kolasa		

(D) CONSIDERATION The transferor acknowledges receipt of the consideration of \$ 160,000.00

and as regards

ESTATE (E)

the above land transfers to the transferee an estate in fee simple

SHARE (F) **TRANSFERRED**

(G) Encumbrances (if applicable):

TRANSFEREE

Ty Matthew Robson and Jodie Lea Robards

(1)

DATE

30/06/2009

(J) I certify that the person(s) signing opposite, with whom I am personally acquainted or as to whose identity I am otherwise satisfied, signed this instrument in my presence.

Certified correct for the purposes of the Real Property Act 1900 by the transferor.

Signature of witness:

Signature of transferor:

Name of witness:

Address of witness:

P616R-KIR (QP. 9 CHURCH (†

Certified correct for the purposes of the Real Property Act 1900 by the person whose signature appears below.

Signature:

Signatory's name: Signatory's capacity:

Megan Jane Ferris transferee's licensed conveyancer

BKalone

Form: 01T RANSFER Licence: 01-05-025 Licensee: LEAP Legal Software Pty Limited **New South Wales** Firm name: Greenhills Conveyancing Real Property Act 1900 AH953228Y PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the I by this form for the establishment and maintenance of the Real Property the Register is made available to any person for search upon payment of a fee, if any. Office of State Revenue NSW Treasury STAMP DUTY.. Office of State Revenue use only Client No: 98829742 2179 Duty: 10.00 Trans No: 7209954-01 **TORRENS TITLE** 1/782596 **LODGED BY** Name, Address or DX, Telephone, and Customer Account Number if any (B) Document CODES Collection BOX 155S Box LegalStream LLPN: 123846 E Tel: 9231 0122 Fax: 9233 641 Reference: **TRANSFEROR** JODIE LEA ROBARDS and TY MATTHEW ROBSON CONSIDERATION (D) The transferor acknowledges receipt of the consideration of \$244,000.00 and as regards ESTATE the abovementioned land transfers to the transferee an estate in fee simple SHARE **TRANSFERRED** (G) Encumbrances (if applicable): **TRANSFEREE** BEN PAUL TAYLOR TENANCY: (I) DATE I certify I am an eligible witness and that the transferor Certified correct for the purposes of the Real Property Act signed this dealing in my presence. 1900 by the transferor. [See note* below] Signature of witness: Nicole Leiper

Address of witness: 9 Elgin Street

Maitland NSW 2320. Signature of transferor

The transferee's licensed conveyancer certifies that the eNOS data relevant to this dealing has been submitted and stored under 466091 eNOS ID No. Full name: Kylie Greenwood Signature:

(K)

Certified correct for the purposes of the Real Property Act 1900 on behalf of the transferee by the person whose

Kylie Greenwood

Licensed Conveyancer for the Transferee

signature appears below.

Signature:

Signatory's name:

Signatory's capacity:

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1/782596

LAND

LOT 1 IN DEPOSITED PLAN 782596
AT WEST MAITLAND
LOCAL GOVERNMENT AREA MAITLAND
PARISH OF MAITLAND COUNTY OF NORTHUMBERLAND
TITLE DIAGRAM DP782596

FIRST SCHEDULE

ROBERT PAUL BUNDER

(T AJ336893)

SECOND SCHEDULE (3 NOTIFICATIONS)

- 1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
- 2 QUALIFIED TITLE. CAUTION PURSUANT TO SECTION 28J(1) AND 28J(1A) OF THE REAL PROPERTY ACT, 1900. ENTERED 27.4.1990 BK 3794 NO 795
- LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

maitland

PRINTED ON 4/9/2019

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

30117	ACE TIPE.	G1033 DICELLITO	IVILLII	טט: nanu A	lugei
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1					
0.2		FILL – Dry, Brown, Dense, Silt/Gravel	0.0	BH01_0.2	No Obvious Odour
0.2	~~~~	Borehole Terminated 0.2m BGL			
0.3					
0.4					
0.5					
0.6					
0.7					
0.8					
0.9					
1.0					

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

JUNI	ACE TIPE	Olass Dilleling	IVILIII	טט: nanu A	lugei
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0	*****	Grass			
		FILL – Moist, Brown, Dense, Sand/Silt	0.0	BH02_0.05	No Obvious Odour
0.1		Borehole Terminated 0.05m BGL			
0.2					
0.2_	-				
0.3	-				
0.4	-				
0.5	-				
0.6	_				
0.7	-				
0.8					
0.9					
1.0					
	1				I

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	SURFACE TYPE: Grass DRILLING METHOD: Hand Auger				
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1		FILL – Moist, Brown, Dense, Silt/Sand	0.0	-	No Obvious Odour
0.2					
0.3					
0.4					
0.5		FILL – Moist, Brown/Grey, Dense, Silt/Clay/Gravel	0.0	BH03_0.5	No Obvious Odour Light ash
		Borehole Terminated 0.5m BGL			
0.6					
0.7	-				
0.8					
0.9					
1.0					

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	SURFACE TYPE: Grass DRILLING METHOD: Hand Auger				
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1					
0.2					
0.3					
0.4		FILL – Dry, Brown, Dense, Sand/Silt	0.0	BH04_0.4	No Obvious Odour
		Borehole Terminated 0.4m BGL			
0.5					
0.6					
0.7					
0.8					
0.9					
1.0					

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	SURFACE TYPE: Grass DRILLING METHOD: Hand Auger					
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes	
0.0		Grass				
0.1	*****					
					No Obvious Odour	
0.2	****	FILL – Dry, Brown, Dense, Sand/Silt	0.0	BH05_0.2	Minor Glass	
		Borehole Terminated 0.2m BGL				
0.3						
0.3	-					
0.4	-					
0.5						
0.6	-					
0.7	-					
0.8_	_					
0.9	-					
1.0						

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	SURFACE TYPE: Grass DRILLING METHOD: Hand Auger				
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0	· · · · · · · · · · · · · · · · · · ·	Grass			
0.1					No Obvious Odour
0.2		FILL – Dry, Brown, Dense, Sand/Silt	0.0	BH06_0.2	Concrete/tile fragments
		Borehole Terminated 0.2m BGL			
0.3	-				
0.4	-				
0.5	-				
0.6	_				
0.7	-				
0.8					
0.9	-				
1.0					

JOB NUMBER: J41419 **DATE:** 28/08/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	SURFACE TYPE: Grass DRILLING METHOD: Hand Auger					
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes	
0.0		Grass				
0.1						
0.2						
0.3		FILL – Moist, Brown, Dense, Sand/Silt/Clay Borehole Terminated 0.3m BGL	0.0	BH07_0.3	No Obvious Odour	
		Borenole Terminated 0.5m bgt				
0.4	-					
0.5	-					
0.6	-					
0.7						
0.8						
0.9						
1.0						
<u> </u>			•			

JOB NUMBER: J41419 **DATE:** 05/09/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

301117	ACE TIPE.	O1833	IVILIII	טט: nanu A	lugei
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1					
0.2					
0.3					
0.4		FILL – Moist, Brown, Dense, Sand/Silt/Clay	0.0	BH08_0.4	No Obvious Odour
0.5		Borehole Terminated 0.4m BGL			
0.6					
0.7					
0.8					
0.9					
1.0					

JOB NUMBER: J41419 **DATE:** 05/09/2019

CLIENT: Stevens Group

LOGGED: M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

DRILLER: M Gosling

SURF	ACE TYPE:	Grass DRILLING	METH	OD: Hand A	luger
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1					
0.2					
0.3				DU00 0 5	No Object to A Object
0.4		FILL – Moist, Brown, Dense, Sand/Silt/Clay	0.0	BH09_0.5 DP_28819	No Obvious Odour Duplicate sample collected
0.5		Borehole Terminated 0.4m BGL			
0.6					
0.7	-				
0.8					
0.9					
1.0					

JOB NUMBER: J41419 **DATE:** 05/09/2019

CLIENT: Stevens Group **LOGGED:** M Gosling

SITE ADDRESS: 5 – 13 Louth Park Rd, South Maitland

SURFACE TYPE: Grass DRILLING METHOD: Hand Auger

DRILLER: M Gosling

SURF	ACE TYPE:	Grass DRILLING	METH	DD: Hand A	luger
Depth (m)	Graphic	Soil Description	PID (ppm)	Field Sample #	Other Notes
0.0		Grass			
0.1					
0.2		FILL – Moist, Brown, Dense, Silt/Sand	0.0	-	No Obvious Odour
0.3					
0.4					
0.5					
0.6					No Obvious Odour Debris (Glass Jar, Glass fragments, Fabric, Metal wire/fragments & Metal Horseshoe)
0.7		FILL – Moist, Brown, Dense, Silt/Sand/Clay Borehole Terminated 0.7m BGL	0.0	BH10_0.7	Light ash
0.8					
1.0					

Analytical Results Table 1 Soil Results

Site: 5 - 13 Louth Park Rd, South Maitland NSW

Job No: J41419

				Metals																	Anions	pН	CEC	PhenoIs		
Sample Identification	Sample Date	Laboratory Report Number	Description	Arsenic	Beryllium	Boron	Cadmium	Chromium	Hexavalent chromium	Cobalt	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc	Cyanide	Hd	Cation exchange capacity	Phenol	Pentachlorophenol	Cresols
Ecological - Commerc	ial/Industrial ⁺			160	^8	^^130	^22	320	^1.4	^300	320	1,800	^4,000	^24	^40	440	^2.9	^40	^300	870	^8	-	-	-	-	-
Human Health - Comm	ercial/Industrial D			3,000	500	300,000	900	*1,800,000	3,600	4,000	240,000	1,500	60,000	730	*5,800	6,000	10,000	*5,800	*700,000	400,000	1,500	-	-	240,000	660	25,000
BH01_0.2	28-Aug-19	N19-Au43189	Fill - Silty SAND	5.5	-	-	< 0.4	20	-	-	27	470	-	0.1	< 5	23	< 2	< 0.2	13	160	-	-	-	-	-	-
BH02_0.05	28-Aug-19	N19-Au43190	Fill - Silty SAND	4.7	-	-	0.8	24	-	-	46	1000	-	0.2	< 5	25	< 2	0.3	19	350	-	6.3	6.8	-	-	-
BH03_0.5	28-Aug-19	N19-Au43191	Fill - Silty SAND	4.7	< 2	< 10	< 0.4	12	< 1	5.8	30	630	140	0.2	-	15	< 2	-	-	130	< 5	-	-	< 0.5	< 1	< 0.6
BH04_0.4	28-Aug-19	N19-Au43192	Fill - Silty SAND	6.5	-	-	1.1	33	-	-	290	960	-	1.3	< 5	68	< 2	0.8	95	1000	-	-	-	-	-	-
BH05_0.2	28-Aug-19	N19-Au43193	Fill - Silty SAND	16	-	-	1.6	30	-	-	94	1400	-	0.7	< 5	35	< 2	0.8	57	800	-	6.6	19	-	-	-
BH06_0.2	28-Aug-19	N19-Au43194	Fill - Silty SAND	5.3		-	2	27	-	-	80	880	-	0.2	< 5	36	< 2	0.3	27	540	-	-	-	-	-	-
BH07_0.3	28-Aug-19	N19-Au43195	Fill - Silty SAND	4.2	-	-	0.6	35	-	-	49	320	-	0.3	< 5	33	< 2	< 0.2	13	570	-	-	-	-	-	-
BH08_0.4	05-Sep-19	N19-Se07023	Fill - Silty SAND	4.2	-	-	< 0.4	47	-	-	34	83	-	0.2	< 5	47	< 2	< 0.2	< 10	150	-	-	-	-	-	-
BH09_0.5	05-Sep-19	N19-Se07024	Fill - Silty SAND	3.7	-	-	< 0.4	44			28	38	-	< 0.1	< 5	44	< 2	< 0.2	<10	89	-	6.1	30	-	-	-
DP_28819	05-Sep-19	N19-Se07022	Fill - Silty SAND	3.9		-	< 0.4	46	-	-	29	46	-	0.1	< 5	47	< 2	< 0.2	< 10	94	-	-	-	-	-	-
BH10_0.7	05-Sep-19	N19-Se07025	Fill - Silty SAND	7.1	-	-	2.4	69	-	-	140	1500	-	0.3	< 5	58	< 2	0.6	38	2700	-	-	-	-	-	-

NOTE: All criteria are adopted from NEPM (2013) and all values are reported in mg/kg, unless stated otherwise.

*EILs for metals (aged) were calculated using conservative soil properties (ph 4.5; CEC 5 cmol/kg; clay content 1 %) and Victorian low traffic ABC, unless stated otherwise.

OR

*Refer to Appendices for site-specific Ecological Investigation Level calculations for chromium, copper, nickel and zinc.

^ CCME Canadian Environmental Quality Guidelines Summary Table - Soil Quality Guidelines.

^^ Dragun (1998) The Soil Chemistry of Hazardous Materials, Table 3.1.

* US EPA Regional Screening Levels Traditional Summary Table, June 2017.

** Direct contact values from Friebel & Nadebaum (2011) Health screening levels for petroleum hydrocarbons in soil and groundwater: summary, CRC CARE Technical Report 10.

*** Standards Australia (2009) AS2159-2009 Piling - Design and Installation .

#Laboratory limit of reporting adopted in lieu of applicable guideline

Analytical Results Table 1 Soil Results

Site: 5 - 13 Louth Park Rd, South Maitland NSW

Job No: J41419

				MAH				PAH				TRH (199	19)	TRH						PCB	OCP					
Sample Identification	Sample Date	Laboratory Report Number	Description	Benzene	Toluene	Ethylbenzene	Xylenes	Benzo(a)pyrene	Benzo(a)pyrene TEQ	Naphthalene	PAH (total)	ТКН (С6-С9)	ткн (С10-С36)	ткн (се-С10)	TRH - F1	ткн (с10-С16)	TRH - F2	ТRН (С16-С34)	TRH (C34-C40)	PCB (total)	Aldrin + dieldrin	рот	DDT + DDD + DDE	Chlordane (total)	Heptachlor	Endosulfan
Ecological - Commerci	ial/Industrial+			75	135	165	180	1.4	-	370	-	-	1	-	215	-	170	1,700	3,300	-	-	640	-	-	-	-
Human Health - Comm				**430	**99,000	**27,000	**81,000	-	40	**11,000	4,000	-	-	**26,000	-	**20,000	-	**27,000	**38,000	7	45	-	3,600	530	50	2,000
BH01_0.2	28-Aug-19	N19-Au43189	Fill - Silty SAND	-	-	-	-	8.9	14	< 0.5	114.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02_0.05	28-Aug-19	N19-Au43190	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03_0.5	28-Aug-19	N19-Au43191	Fill - Silty SAND	< 0.1	< 0.1	< 0.1	< 0.3	1.9	3	< 0.5	23	< 20	163	< 20	< 20	< 50	< 50	120	< 100	< 0.1	< 0.1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05
BH04_0.4	28-Aug-19	N19-Au43192	Fill - Silty SAND	< 0.1	< 0.1	< 0.1	< 0.3	-	-	-	-	< 20	205	< 20	< 20	< 50	< 50	160	< 100	-	-	-	-	-	-	-
BH05_0.2	28-Aug-19	N19-Au43193	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06_0.2	28-Aug-19	N19-Au43194	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07_0.3	28-Aug-19	N19-Au43195	Fill - Silty SAND	-	-	-	-	2.5	3.8	< 0.5	26.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08_0.4	05-Sep-19	N19-Se07023	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09_0.5	05-Sep-19	N19-Se07024	Fill - Silty SAND	< 0.1	< 0.1	< 0.1	< 0.3	1.1	1.9	< 0.5	12.8	< 20	< 50	< 20	< 20	< 50	< 50	< 100	< 100	-	-	-	-	-	-	-
DP_28819	05-Sep-19	N19-Se07022	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10_0.7	05-Sep-19	N19-Se07025	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NOTE: All criteria are adopted from NEPM (2013) and all values are reported in mg/kg, unless stated otherwise.

*EILs for metals (aged) were calculated using conservative soil properties (ph 4.5; CEC 5 cmol/kg; clay content 1 %) and Victorian low traffic ABC, unless stated otherwise.

OI

*Refer to Appendices for site-specific Ecological Investigation Level calculations for chromium, copper, nickel and zinc.

^ CCME Canadian Environmental Quality Guidelines Summary Table - Soil Quality Guidelines.

^^ Dragun (1998) The Soil Chemistry of Hazardous Materials, Table 3.1.

* US EPA Regional Screening Levels Traditional Summary Table, June 2017.

** Direct contact values from Friebel & Nadebaum (2011) Health screening levels for petroleum hydrocarbons in soil and groundwater: summary, CRC CARE Technical Report 10.

*** Standards Australia (2009) AS2159-2009 Piling - Design and Installation .

#Laboratory limit of reporting adopted in lieu of applicable guideline

Analytical Results Table 1 Soil Results

Site: 5 - 13 Louth Park Rd, South Maitland NSW

Job No: J4141

									OPP	Herbicide	es					Other Pe	sticides
Sample Identification	Sample Date	Laboratory Report Number	Description	Endrin	Hexachlorobenzene (HCB)	Methoxychlor	Mirex	Toxaphene	Chlorpyrifos	2,4,5-T	2,4-D	MCPA	МСРВ	Месоргор	Picloram	Atrazine	Bifenthrin
Ecological - Commerc	ial/Industrial+			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Human Health - Comm				100	80	2,500	100	160	2,000	5,000	9,000	5,000	5,000	5,000	35,000	2,500	4,500
BH01_0.2	28-Aug-19	N19-Au43189	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH02_0.05	28-Aug-19	N19-Au43190	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03_0.5	28-Aug-19	N19-Au43191	Fill - Silty SAND	< 0.05	< 0.05	< 0.05	< 0.05	< 1	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.2	< 0.05
BH04_0.4	28-Aug-19	N19-Au43192	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05_0.2	28-Aug-19	N19-Au43193	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06_0.2	28-Aug-19	N19-Au43194	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07_0.3	28-Aug-19	N19-Au43195	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH08_0.4	05-Sep-19	N19-Se07023	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09_0.5	05-Sep-19	N19-Se07024	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DP_28819	05-Sep-19	N19-Se07022	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH10_0.7	05-Sep-19	N19-Se07025	Fill - Silty SAND	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NOTE: All criteria are adopted from NEPM (2013) and all values are reported in mg/kg, unless stated otherwise.

*EILs for metals (aged) were calculated using conservative soil properties (ph 4.5; CEC 5 cmol/kg; clay content 1 %) and Victorian low traffic ABC, unless stated otherwise.

OF

*Refer to Appendices for site-specific Ecological Investigation Level calculations for chromium, copper, nickel and zinc.

^ CCME Canadian Environmental Quality Guidelines Summary Table - Soil Quality Guidelines.

^^ Dragun (1998) The Soil Chemistry of Hazardous Materials, Table 3.1.

* US EPA Regional Screening Levels Traditional Summary Table, June 2017.

** Direct contact values from Friebel & Nadebaum (2011) Health screening levels for petroleum hydrocarbons in soil and groundwater: summary, CRC CARE Technical Report 10.

*** Standards Australia (2009) AS2159-2009 Piling - Design and Installation .

#Laboratory limit of reporting adopted in lieu of applicable guideline

Analytical Results Table 2

Leachate Results Site:

5 - 13 Louth Park Rd, South Maitland

Job No: J41419

		Zinc						PA	Н						
Sample I dentification	Description	Zinc	Benzo(a)anthracene	Benzo(a)pyrene	Benzolg.,h.jlperylene	Benzo(k)fluoroanthene	C hrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	РАН (total)
Maintenance of Fresh Water Ecosy	stem	0.008	0.0005	0.0001	0.00005	0.00005	0.0002	-	0.001	0.003	0.00005	0.016	0.0006	0.000025	-
Australian Drinking Water Guidelines	Health Criteria	-	0.000012	0.00001	-	0.0003 14	0.003 14	0.000003	0.08 14	0.029 14	0.000034	-	-	0.012 14	-
Australian Drinking Water Guidelines	Aesthetic Criteria	3	-		-	-	-	-	-	-	-	-	-	-	-
Primary Contact Recreation		5		0.01	-			-				-	-		-
BH01_0.2	Leachate	0.34	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BH02_0.05	Leachate	0.86	-	-	-	-	-	-	-	-	-	-	-	-	-
BH03_0.5	Leachate	0.59	-	-	-	-	-	-	-	-	-	-	-	-	-
BH04_0.4	Leachate	2.1	-	-	-	-	-	-	-	-	-	-	-	-	-
BH05_0.2	Leachate	1.7	-	-	-	-	-	-	-	-	-	-	-	-	-
BH06_0.2	Leachate	1.4	-	-	-	-	-	-	-	-	-	-	-	-	-
BH07_0.3	Leachate	1.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BH08_0.4	Leachate	0.28	-	-	-	-	-	-	-	-	-	-	-	-	-
BH09_0.5	Leachate		-	-	-	-	-	-	-	-	-	-	-	-	-
BH10_0.7	Leachate	0.29	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

NOTE: All criteria and laboratory results are reported in mg/L unless stated otherwise

(1) Adopted vapour intrusion health screening levels are in consideration of clay as the predominant soil texture and groundwater depths ranging between 4 and 8 mbgl

^{**} Criteria values converted from nitrate as NO3 to nitrate as N using a factor of 0.2257 where applicable, and rounded.

*** Criteria values converted from nitrite as NO2 to nitrite as N using a factor of 0.3040 where applicable, and rounded.

[^] Criteria values converted from sulphate as SO4 to sulphate as S using a factor of 0.3333 where applicable, and rounded.

Analytical Results Table 3 Quality Control Results

Site: 5 - 13 Louth Park Rd, South Maitland

Job No: J41419

				Metals															
Sample identification	Sample Date	Laboratory Report Number	Description	Arsenic	Beryllium	Boron	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc
Blind Replicates																			
BH09_0.5	43713	N19-Se07024	Fill - Silty SAND	3.7		-	< 0.4	44	-	28	38		< 0.1	< 5	44	< 2	< 0.2	< 10	89
DP_28819	43713	N19-Se07022	Fill - Silty SAND	3.9	٠	-	< 0.4	46	-	29	46	٠	0.1	< 5	47	< 2	< 0.2	< 10	94
	R	PD		5.26	-	-	0.00	4.44	-	3.51	19.05	-	66.67	0.00	6.59	0.00	0.00	0.00	5.46

NOTE: All criteria and laboratory results are reported in mg/kg or mg/L unless stated otherwise.

NA - Not Applicable since different detection limits reported between labs.

Calculating the RPD by halving the detection limit has reported an RPD to exceed the 50% limit referenced from AS4482,1 (2005).

82.35 RPD Exceeds 50% limit referenced from AS4482,1 (2005).

ESP Environmental Unit 8, 2 Bolton Street Sydenham NSW 2044

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Michael Gosling

Report 674016-S
Project name MAITLAND PSI
Project ID J41419

Project ID J41419
Received Date Aug 29, 2019

Client Sample ID			BH01_0.2	BH02_0.05	BH03_0.5	BH04_0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N19-Au43189	N19-Au43190	N19-Au43191	N19-Au43192
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	< 20	< 20
TRH C10-C14	20	mg/kg	-	-	< 20	< 20
TRH C15-C28	50	mg/kg	-	-	110	130
TRH C29-C36	50	mg/kg	-	=	53	75
TRH C10-C36 (Total)	50	mg/kg	-	-	163	205
ВТЕХ						
Benzene	0.1	mg/kg	-	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	-	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	99	96
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
₩âphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
ነየዋH >C10-C16 less Naphthalene (F2)	50	mg/kg	-	-	< 50	< 50
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
竹幣H C6-C10 less BTEX (F1)	20	mg/kg	-	-	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	14	-	2.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	14	-	2.8	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	14	-	3.0	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	0.9	-	< 0.5	-
Anthracene	0.5	mg/kg	1.6	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	7.7	-	1.5	-
Benzo(a)pyrene	0.5	mg/kg	8.9	-	1.9	-
Benzo(b&j)fluoranthene	0.5	mg/kg	8.2	-	1.2	-
Benzo(g.h.i)perylene	0.5	mg/kg	8.2	-	1.3	-
Benzo(k)fluoranthene	0.5	mg/kg	7.5	-	1.4	-
Chrysene	0.5	mg/kg	8.6	-	1.7	-
Dibenz(a.h)anthracene	0.5	mg/kg	2.1	-	< 0.5	-
Fluoranthene	0.5	mg/kg	23	-	5.0	-
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	6.4	-	1.9	-

Client Sample ID			BH01_0.2	BH02_0.05	BH03_0.5	BH04_0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N19-Au43189	N19-Au43190	N19-Au43191	N19-Au43192
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	•	•				
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5	-
Phenanthrene	0.5	mg/kg	8.4	-	2.0	-
Pyrene	0.5	mg/kg	23	-	5.1	-
Total PAH*	0.5	mg/kg	114.5	-	23	-
2-Fluorobiphenyl (surr.)	1	%	69	-	76	-
p-Terphenyl-d14 (surr.)	1	%	57	-	88	-
Organochlorine Pesticides	•	•				
Bifenthrin	0.05	mg/kg	-	-	< 0.05	-
Organophosphorus Pesticides		,				
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Polychlorinated Biphenyls		, <i>J</i> J				
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	83	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	81	-
Triazines						
Atrazine	0.2	mg/kg	-	-	< 0.2	-
Total Recoverable Hydrocarbons - 2013 NEP	M Fractions					
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	120	160
TRH >C34-C40	100	mg/kg	-	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	120	160
NEPM 2013 Acid Herbicides						
Picloram	0.5	mg/kg	-	-	< 0.5	-
2.4-D	0.5	mg/kg	-	-	< 0.5	-
2.4.5-T	0.5	mg/kg	-	-	< 0.5	-
MCPA	0.5	mg/kg	-	=	< 0.5	-
МСРВ	0.5	mg/kg	-	-	< 0.5	-
Mecoprop	0.5	mg/kg	-	-	< 0.5	-
Warfarin (surr.)	1	%	-	-	100	-
NEPM 2013 Organochlorine Pesticides						
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Mirex	0.01	mg/kg	-	-	< 0.01	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-

Client Sample ID			BH01_0.2	BH02_0.05	BH03_0.5	BH04_0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N19-Au43189	N19-Au43190	N19-Au43191	N19-Au43192
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit				
NEPM 2013 Organochlorine Pesticides		•				
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Dibutylchlorendate (surr.)	1	%	-	-	83	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	81	-
NEPM 2013 PhenoIs						
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	< 0.2	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	< 0.4	-
Pentachlorophenol	1	mg/kg	-	-	< 1	-
Phenol	0.5	mg/kg	-	-	< 0.5	-
Phenol-d6 (surr.)	1	%	-	-	73	-
Chromium (hexavalent)	1	mg/kg	-	-	< 1	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	31	-	-
Cyanide (free)	5	mg/kg	-	-	< 5	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	6.3	-	-
% Moisture	1	%	6.2	4.4	17	18
Heavy Metals						
Arsenic	2	mg/kg	5.5	4.7	4.7	6.5
Beryllium	2	mg/kg	-	-	< 2	-
Boron	10	mg/kg	-	-	< 10	-
Cadmium	0.4	mg/kg	< 0.4	0.8	< 0.4	1.1
Chromium	5	mg/kg	20	24	12	33
Cobalt	5	mg/kg	-	-	5.8	-
Copper	5	mg/kg	27	46	30	290
Lead	5	mg/kg	470	1000	630	960
Manganese	5	mg/kg	-	-	140	-
Mercury	0.1	mg/kg	0.1	0.2	0.2	1.3
Molybdenum	5	mg/kg	< 5	< 5	-	< 5
Nickel	5	mg/kg	23	25	15	68
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	0.3	-	0.8
Tin	10	mg/kg	13	19	-	95
Zinc	5	mg/kg	160	350	130	1000
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	6.8	-	-

Client Sample ID			BH05_0.2	BH06_0.2	BH07_0.3
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			N19-Au43193	N19-Au43194	N19-Au43195
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	3.3
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	3.5
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	3.8
Acenaphthene	0.5	mg/kg	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5

sample Matrix Surofins Sample No. Date Sampled	LOR		Soil N19-Au43193	Soil	Soil		
·	LOR		N19-Au43193				
ate Sampled	LOR		,	N19-Au43194	N19-Au43195		
	LOR		Aug 28, 2019	Aug 28, 2019	Aug 28, 2019		
est/Reference		Unit					
Polycyclic Aromatic Hydrocarbons							
unthracene	0.5	mg/kg	-	-	< 0.5		
Benz(a)anthracene	0.5	mg/kg	-	-	1.9		
Benzo(a)pyrene	0.5	mg/kg	-	-	2.5		
Penzo(b&j)fluoranthene	0.5	mg/kg	-	-	2.1		
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	2.0		
Benzo(k)fluoranthene	0.5	mg/kg	-	-	1.7		
Chrysene	0.5	mg/kg	-	-	2.2		
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5		
luoranthene	0.5	mg/kg	-	-	5.4		
luorene	0.5	mg/kg	-	-	< 0.5		
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	1.7		
laphthalene	0.5	mg/kg	-	-	< 0.5		
Phenanthrene	0.5	mg/kg	-	-	1.9		
yrene	0.5	mg/kg	-	-	5.5		
otal PAH*	0.5	mg/kg	-	-	26.9		
-Fluorobiphenyl (surr.)	1	%	-	-	63		
-Terphenyl-d14 (surr.)	1	%	-	-	55		
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	120	-	-		
H (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.6	-	-		
6 Moisture	1	%	10	7.6	13		
leavy Metals		•					
rsenic	2	mg/kg	16	5.3	4.2		
Cadmium	0.4	mg/kg	1.6	2.0	0.6		
Chromium	5	mg/kg	30	27	35		
Copper	5	mg/kg	94	80	49		
ead	5	mg/kg	1400	880	320		
Mercury	0.1	mg/kg	0.7	0.2	0.3		
Nolybdenum	5	mg/kg	< 5	< 5	< 5		
lickel	5	mg/kg	35	36	33		
Selenium	2	mg/kg	< 2	< 2	< 2		
ilver	0.2	mg/kg	0.8	0.3	< 0.2		
in .	10	mg/kg	57	27	13		
linc	5	mg/kg	800	540	570		
Cation Exchange Capacity							
Cation Exchange Capacity	0.05	meq/100g	19	-	-		

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 03, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding Me	thyl Mercury/PBDE		
BTEX	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Organophosphorus Pesticides	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS (USEPA 8081)			
Polychlorinated Biphenyls	Melbourne	Sep 03, 2019	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
Triazines	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2080			
NEPM 2013 Acid Herbicides	Melbourne	Sep 03, 2019	14 Days
- Method: MGT 530			
NEPM 2013 Organochlorine Pesticides	Melbourne	Sep 03, 2019	14 Days
- Method: USEPA 8081 Organochlorine Pesticides			
NEPM 2013 Phenols	Melbourne	Sep 03, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Chromium (hexavalent)	Melbourne	Sep 03, 2019	28 Days
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- USEPA3060)			
Cyanide (free)	Melbourne	Sep 05, 2019	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
NEPM 2013 Metals : Metals M12	Melbourne	Sep 03, 2019	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Heavy Metals	Melbourne	Sep 03, 2019	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Metals IWRG 621 : Metals M12	Melbourne	Sep 03, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Sep 03, 2019	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Sep 05, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Sep 03, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
% Moisture	Melbourne	Aug 29, 2019	14 Days
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

02 9554 7033

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

ESP Laboratories NSW

Address:

Unit 8, 2 Bolton Street

Sydenham

NSW 2044

Project Name:

MAITLAND PSI

Project ID:

J41419

 Order No.:
 Received:
 Aug 29, 2019 3:00 PM

 Report #:
 674016
 Due:
 Sep 5, 2019

 Report #:
 674016
 Due:
 Sep 5, 2019

 Phone:
 02 9519 2125
 Priority:
 5 Day

Contact Name: Michael Gosling

Eurofins Analytical Services Manager : Andrew Black

Sample Detail					pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals IWRG 621 : Metals M12	втех	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons	
Melb	Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	
		- NATA Site # 1											
		y - NATA Site #											
		NATA Site # 237	36										
Exte	rnal Laboratory			Г	1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH01_0.2	Aug 28, 2019		Soil	N19-Au43189		Х	Х		Х			
2	BH02_0.05	Aug 28, 2019		Soil	N19-Au43190	Х		Х		Х	Х		
3	BH03_0.5	Aug 28, 2019		Soil	N19-Au43191					Х		Х	
4	BH04_0.4	Aug 28, 2019		Soil	N19-Au43192			Х	Х	Х			Х
5	BH05_0.2	Aug 28, 2019		Soil	N19-Au43193	Х		Х		Х	Х		
6	BH06_0.2	Aug 28, 2019		Soil	N19-Au43194			Х		Х			
7	BH07_0.3	Aug 28, 2019		Soil	N19-Au43195		Х	Х		Х			
Test	Counts					2	2	6	1	7	2	1	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/k: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		'		1	
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank	, ,				
втех					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ons				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	, ,			•	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Bifenthrin	mg/kg	< 0.05	0.05	Pass	
Method Blank	<u> </u>				
Organophosphorus Pesticides					
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Method Blank	, , ,			•	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1	
Triazines					
Atrazine	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		, , , , , , , , , , , , , , , , , , , ,			
NEPM 2013 Acid Herbicides					
Picloram	mg/kg	< 0.5	0.5	Pass	
2.4-D	mg/kg	< 0.5	0.5	Pass	
2.4.5-T	mg/kg	< 0.5	0.5	Pass	
MCPA	mg/kg	< 0.5	0.5	Pass	
MCPB	mg/kg	< 0.5	0.5	Pass	
Mecoprop	mg/kg	< 0.5	0.5	Pass	
Method Blank					
NEPM 2013 Organochlorine Pesticides		<u> </u>			
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Mirex	mg/kg	< 0.01	0.01	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1		Pass	
Method Blank		 		T	
NEPM 2013 Phenois					
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
Pentachlorophenol	mg/kg	< 1	1	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank		1		Τ_	
Chromium (hexavalent)	mg/kg	< 1	1	Pass	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Cyanide (free)	mg/kg	< 5	5	Pass	
Method Blank				T	
Heavy Metals		+ - +		-	-
Arsenic	mg/kg	< 2	2	Pass	-
Beryllium	mg/kg	< 2	2	Pass	
Boron	mg/kg	< 10	10	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	-
Copper	mg/kg	< 5	5	Pass	<u> </u>
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Mercury	mg/kg	< 0.1	0.1	Pass	
Molybdenum	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	19,9	1.0		1 466	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	122	70-130	Pass	
TRH C10-C14	%	78	70-130	Pass	
LCS - % Recovery	/0	70	70-130	Fass	
BTEX		T T			
	0/	100	70.420	Door	
Benzene	%	100	70-130	Pass	
Toluene	%	108	70-130	Pass	
Ethylbenzene	%	105	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
Xylenes - Total	%	106	70-130	Pass	
LCS - % Recovery		T T		ı	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1				
Naphthalene	%	110	70-130	Pass	
TRH C6-C10	%	107	70-130	Pass	
LCS - % Recovery		T T	<u> </u>	_	
Polycyclic Aromatic Hydrocarbons	1				
Acenaphthene	%	89	70-130	Pass	
Acenaphthylene	%	91	70-130	Pass	
Anthracene	%	95	70-130	Pass	
Benz(a)anthracene	%	81	70-130	Pass	
Benzo(a)pyrene	%	83	70-130	Pass	
Benzo(b&j)fluoranthene	%	81	70-130	Pass	
Benzo(g.h.i)perylene	%	93	70-130	Pass	
Benzo(k)fluoranthene	%	88	70-130	Pass	
Chrysene	%	95	70-130	Pass	
Dibenz(a.h)anthracene	%	84	70-130	Pass	
Fluoranthene	%	90	70-130	Pass	
Fluorene	%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	87	70-130	Pass	
Naphthalene	%	89	70-130	Pass	
Phenanthrene	%	87	70-130	Pass	
Pyrene	%	91	70-130	Pass	
LCS - % Recovery	1			1 5.55	
Organochlorine Pesticides					
Bifenthrin	%	70	70-130	Pass	
LCS - % Recovery	,,,,		, , , , , , , , , , , , , , , , , , , ,	, . 455	
Polychlorinated Biphenyls					
Aroclor-1260	%	93	70-130	Pass	
LCS - % Recovery	1 /0		70-130	1 433	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
	0/	74	70 120	Poor	
TRH >C10-C16	%	74	70-130	Pass	
LCS - % Recovery					
NEPM 2013 Acid Herbicides	0/	405	70.400	Desir	
Picloram	%	105	70-130	Pass	
2.4-D	%	75	70-130	Pass	
2.4.5-T	%	73	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
MCPA			%	75		70-130	Pass	
MCPB			%	74		70-130	Pass	
Mecoprop			%	96		70-130	Pass	
LCS - % Recovery								
NEPM 2013 Organochlorine Pestici	ides							
Endosulfan sulphate			%	82		70-130	Pass	
Mirex			%	112		70-130	Pass	
4.4'-DDD			%	123		70-130	Pass	
4.4'-DDE			%	117		70-130	Pass	
4.4'-DDT			%	84		70-130	Pass	
Aldrin			%	108		70-130	Pass	
Chlordanes - Total			%	112		70-130	Pass	
Dieldrin			%	123		70-130	Pass	
Endosulfan I			%	99		70-130	Pass	
Endosulfan II			%	108		70-130	Pass	
Endrin			%	91		70-130	Pass	
Heptachlor			%	94		70-130	Pass	
Hexachlorobenzene			%	120		70-130	Pass	
Methoxychlor			%	72		70-130	Pass	
LCS - % Recovery			,,	, , _		70 100	1 400	
NEPM 2013 Phenois								
2-Methylphenol (o-Cresol)			%	108		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	112		30-130	Pass	
Pentachlorophenol			%	91		30-130	Pass	
Phenol			%	106		30-130	Pass	
LCS - % Recovery			/0	100		30-130	1 033	
Chromium (hexavalent)			%	99		70-130	Pass	
LCS - % Recovery			/0] 99		70-130	rass	
Heavy Metals								
Arsenic			%	117		80-120	Pass	
Beryllium			%	107		80-120	Pass	
Boron			%	107		80-120	Pass	
Cadmium			%	107		80-120	Pass	
				117				
Chromium			%			80-120	Pass	
Cobalt			%	118		80-120	Pass	
Copper			%	119		80-120	Pass	
Lead			%	120		80-120	Pass	
Manganese			%	118		80-120	Pass	
Mercury			%	110		75-125	Pass	
Molybdenum			%	118		80-120	Pass	
Nickel			%	117		80-120	Pass	
Selenium			%	107		80-120	Pass	
Silver			%	104		80-120	Pass	
Tin			%	118		80-120	Pass	
Zinc			%	116		80-120	Pass	:
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons		1		Result 1				
Acenaphthene	M19-Se00074	NCP	%	93		70-130	Pass	
Acenaphthylene	M19-Se00074	NCP	%	99		70-130	Pass	
Anthracene	M19-Se00074	NCP	%	97		70-130	Pass	
Benz(a)anthracene	M19-Se00074	NCP	%	106		70-130	Pass	
Benzo(a)pyrene	M19-Se00074	NCP	%	110		70-130	Pass	
Benzo(b&j)fluoranthene	M19-Se00074	NCP	%	106		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene	M19-Se00074	NCP	%	112	70-130	Pass	
Benzo(k)fluoranthene	M19-Se00074	NCP	%	104	70-130	Pass	
Chrysene	M19-Se00074	NCP	%	117	70-130	Pass	
Dibenz(a.h)anthracene	M19-Se00074	NCP	%	100	70-130	Pass	
Fluoranthene	M19-Se00074	NCP	%	107	70-130	Pass	
Fluorene	M19-Se00074	NCP	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-Se00074	NCP	%	104	70-130	Pass	
Naphthalene	M19-Se00074	NCP	%	94	70-130	Pass	
Phenanthrene	M19-Se00074	NCP	%	90	70-130	Pass	
Pyrene	M19-Se00074	NCP	%	109	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S19-Au43410	NCP	%	103	75-125	Pass	
Cadmium	S19-Au43410	NCP	%	84	75-125	Pass	
Chromium	S19-Au43410	NCP	%	102	75-125	Pass	
Copper	S19-Au43410	NCP	%	104	75-125	Pass	
Lead	S19-Au43410	NCP	%	107	75-125	Pass	
Mercury	S19-Au43410	NCP	%	99	70-130	Pass	
Molybdenum	S19-Au43410	NCP	%	105	75-125	Pass	
Nickel	S19-Au43410	NCP	%	101	75-125	Pass	
Selenium	S19-Au43410	NCP	%	107	75-125	Pass	
Silver	S19-Au43410	NCP	%	84	75-125	Pass	
Tin	S19-Au43410	NCP	%	105	75-125	Pass	
Zinc	S19-Au43410	NCP	<u> </u>	94	75-125	Pass	
Spike - % Recovery	319-Au43410	INCF	70	94	75-125	Fass	
<u> </u>	a 1000 NEDM Front	ione		Popult 1			
Total Recoverable Hydrocarbon			0/	Result 1	70.400	Dana	
TRH C6-C9	M19-Au44053	NCP	%	86	70-130	Pass	
TRH C10-C14	M19-Au43346	NCP	%	90	70-130	Pass	
Spike - % Recovery				D			-
BTEX	1440 1 44050	NOD	0/	Result 1	70.400	_	
Benzene	M19-Au44053	NCP	%	86	70-130	Pass	
Toluene	M19-Au44053	NCP	%	93	70-130	Pass	
Ethylbenzene	M19-Au44053	NCP	%	93	70-130	Pass	
m&p-Xylenes	M19-Au44053	NCP	%	96	70-130	Pass	
o-Xylene	M19-Au44053	NCP	%	99	70-130	Pass	-
Xylenes - Total	M19-Au44053	NCP	%	97	70-130	Pass	
Spike - % Recovery				 		T	
Total Recoverable Hydrocarbons				Result 1			
Naphthalene	M19-Au44053	NCP	%	84	70-130	Pass	
TRH C6-C10	M19-Au44053	NCP	%	76	70-130	Pass	
Spike - % Recovery				1		<u> </u>	
Polychlorinated Biphenyls		1		Result 1			
Aroclor-1016	M19-Au43206	NCP	%	77	70-130	Pass	
Aroclor-1260	M19-Au43206	NCP	%	101	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	M19-Au43346	NCP	%	82	70-130	Pass	
Spike - % Recovery							
NEPM 2013 Acid Herbicides		_		Result 1			
Picloram	B19-Se00585	NCP	%	103	70-130	Pass	
2.4-D	B19-Se00585	NCP	%	76	70-130	Pass	
MCPA	B19-Se00585	NCP	%	74	70-130	Pass	
МСРВ	B19-Se00585	NCP	%	73	70-130	Pass	
Spike - % Recovery	,						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
NEPM 2013 Phenols				Result 1					
2-Methylphenol (o-Cresol)	M19-Au43205	NCP	%	99			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M19-Au43205	NCP	%	107			30-130	Pass	
Pentachlorophenol	M19-Au43205	NCP	%	47			30-130	Pass	
Phenol	M19-Au43205	NCP	%	98			30-130	Pass	
Spike - % Recovery									
				Result 1					
Chromium (hexavalent)	M19-Au41224	NCP	%	116			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Beryllium	S19-Au43410	NCP	%	93			75-125	Pass	
Boron	S19-Au43410	NCP	%	87			75-125	Pass	
Cobalt	S19-Au43410	NCP	%	103			75-125	Pass	
Manganese	S19-Au43410	NCP	%	102			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							<u>'</u>		
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M19-Se00073	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
	1			Result 1	Result 2	RPD			
% Moisture	B19-Au43182	NCP	%	18	19	4.0	30%	Pass	
Duplicate				_					
Heavy Metals	_	1		Result 1	Result 2	RPD			
Arsenic	S19-Au43410	NCP	mg/kg	3.5	3.5	1.0	30%	Pass	
Cadmium	S19-Au43410	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S19-Au43410	NCP	mg/kg	5.6	5.7	3.0	30%	Pass	
Copper	S19-Au43410	NCP	mg/kg	5.5	5.5	<1	30%	Pass	
Lead	S19-Au43410	NCP	mg/kg	19	19	1.0	30%	Pass	
Mercury	S19-Au43410	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	S19-Au43410	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	S19-Au43410	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	S19-Au43410	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	S19-Au43410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	S19-Au43410	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	S19-Au43410	NCP	mg/kg	34	35	2.0	30%	Pass	

Duplicate					,				
	1	1		Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S19-JI49770	NCP	uS/cm	45	39	14	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S19-JI49770	NCP	pH Units	7.3	7.1	pass	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	S19-Se03124	NCP	meq/100g	12	11	6.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S19-Au43408	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S19-Au42786	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S19-Au42786	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S19-Au42786	NCP	mg/kg	110	110	4.0	30%	Pass	
Duplicate					1				
ВТЕХ	r	1		Result 1	Result 2	RPD			
Benzene	S19-Au43408	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S19-Au43408	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S19-Au43408	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S19-Au43408	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S19-Au43408	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S19-Au43408	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	i e		Result 1	Result 2	RPD			
Naphthalene	S19-Au43408	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S19-Au43408	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides	<u> </u>	ı		Result 1	Result 2	RPD			
Bifenthrin	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate					1				
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Chlorpyrifos	M19-Au43205	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Triazines				Result 1	Result 2	RPD	222/	+_ +	
Atrazine	M19-Au43205	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0040 NEDM F1	•		Danilla	D 11 0	DDD			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	200/	Dana	
TRH >C10-C16	S19-Au42786	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH > C16-C34	S19-Au42786	NCP NCP	mg/kg	110		2.0	30%	Pass	
TRH >C34-C40 Duplicate	S19-Au42786	INCP	mg/kg	120		11	30%	Pass	
NEPM 2013 Acid Herbicides				Result 1	Result 2	RPD			
Picloram	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-D	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
2.4.5-T	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPB	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	B19-Se00584	NCP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
Duplicate	1 510 0600004	1401	i iiig/kg	<u> </u>	\ 0.0	<u> </u>	30 /0	1 433	
NEPM 2013 Organochlorine Pestic	ides			Result 1	Result 2	RPD			
Endosulfan sulphate	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Mirex	M19-Au43205	NCP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
4.4'-DDD	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
/ WMIIII	WITO AUTOLUJ	1401	i iig/i\g	\ 0.00	\ 0.00		JU /0	1 000	

Duplicate									
NEPM 2013 Organochlorine Pesti	cides			Result 1	Result 2	RPD		\Box	
Chlordanes - Total	M19-Au43205	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Dieldrin	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M19-Au43205	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
NEPM 2013 Phenols				Result 1	Result 2	RPD			
2-Methylphenol (o-Cresol)	M19-Au43205	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M19-Au43205	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Pentachlorophenol	M19-Au43205	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	M19-Au43205	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	M19-Au45045	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Beryllium	M19-Au43426	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M19-Au43426	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Cobalt	M19-Au43426	NCP	mg/kg	27	28	4.0	30%	Pass	
Manganese	M19-Au43426	NCP	mg/kg	480	550	14	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Andrew Black Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kav Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and to style production arring from this report. This document shall not be reporteduced except in full and relates only to the letems tested. Unless indicated otherwise, the testes were performed on the samples as received.

Report Number: 674016-S

□2 Day* [US Day

Laboratory Use Only

Received By

_ SYD | BNE | MEL | PER | ADL (NEW) DAR SYD | BNE | MEL | PER | ADL | NEW | DAR

Signature Signature

Date

Time Time

Temperature Report No

ESP Environmental Unit 8, 2 Bolton Street Sydenham NSW 2044

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Michael Gosling

Report 675269-S
Project name MAITLAND PSI

Project ID J41419
Received Date Sep 05, 2019

Client Sample ID			DP_28819	BH08_0.4	BH09_0.5	BH10_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N19-Se07022	N19-Se07023	N19-Se07024	N19-Se07025
Date Sampled			Sep 05, 2019	Sep 05, 2019	Sep 05, 2019	Sep 05, 2019
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-	-
втех	•					
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	112	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
₩âphthalene	0.5	mg/kg	-	< 0.5	-	-
↑↑RH >C10-C16 less Naphthalene (F2)	50	mg/kg	-	< 50	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
竹幣H C6-C10 less BTEX (F1)	20	mg/kg	-	< 20	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	1.4
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	1.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.9
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	0.8
Benzo(a)pyrene	0.5	mg/kg	-	-	-	1.1
Benzo(b&j)fluoranthene	0.5	mg/kg	-	-	-	0.7
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	0.7
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	0.9
Chrysene	0.5	mg/kg	-	-	-	1.1
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	3.3
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5

Client Sample ID			DP_28819	BH08_0.4	BH09_0.5	BH10_0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N19-Se07022	N19-Se07023	N19-Se07024	N19-Se07025
Date Sampled			Sep 05, 2019	Sep 05, 2019	Sep 05, 2019	Sep 05, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	0.8
Pyrene	0.5	mg/kg	-	-	_	3.4
Total PAH*	0.5	mg/kg	-	-	_	12.8
2-Fluorobiphenyl (surr.)	1	%	-	-	-	82
p-Terphenyl-d14 (surr.)	1	%	-	-	-	110
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions	·				
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	50	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	6.1	-
% Moisture	1	%	19	21	20	22
Heavy Metals						
Arsenic	2	mg/kg	3.9	4.2	3.7	7.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	2.4
Chromium	5	mg/kg	46	47	44	69
Copper	5	mg/kg	29	34	28	140
Lead	5	mg/kg	46	83	38	1500
Mercury	0.1	mg/kg	0.1	0.2	< 0.1	0.3
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	47	47	44	58
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	0.6
Tin	10	mg/kg	< 10	< 10	< 10	38
Zinc	5	mg/kg	94	150	89	2700
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	30	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Testing Site Melbourne	Extracted Sep 06, 2019	Holding Time 14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 06, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 06, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Sep 06, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 06, 2019	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Sep 06, 2019	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals IWRG 621 : Metals M12	Melbourne	Sep 06, 2019	28 Days
- Method:			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Sep 06, 2019	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Sep 09, 2019	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Melbourne	Sep 05, 2019	14 Days

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

02 9554 7033

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

ESP Laboratories NSW

Address:

Unit 8, 2 Bolton Street

Sydenham

NSW 2044

Project Name:

MAITLAND PSI

Project ID: J41419

Order No.: Received: Sep 5, 2019 11:07 AM Report #:

675269 Due: Sep 12, 2019 02 9519 2125 Priority: 5 Day

> Michael Gosling **Contact Name:**

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Metals IWRG 621 : Metals M12	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217									
Brisl	bane Laborator	y - NATA Site #	20794									
Perti	h Laboratory - N	NATA Site # 237	36									
Exte	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	DP_28819 Sep 05, 2019 Soil N19-Se07022							Х		Х		
2	BH08_0.4	Sep 05, 2019		Soil	N19-Se07023			Х	Х	Х		Х
3	BH09_0.5	Sep 05, 2019		Soil	N19-Se07024	Х		Х		Х	Х	
4	BH10_0.7	Sep 05, 2019		Soil	N19-Se07025		Х	Х		Х		
Test	Counts					1	1	4	1	4	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

Date Reported: Sep 12, 2019

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	ıs				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank				•	
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	, ,			•	
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ıs				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	1 0 0			•	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	<u> </u>				
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	ıs				
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	1 0 0				
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank		<u>'</u>			
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Molybdenum	mg/kg	< 5	5	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery			· · · · · · · · · · · · · · · · · · ·		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	i				
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	89	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	99	70-130	Pass	
Toluene	%	111	70-130	Pass	
Ethylbenzene	%	116	70-130	Pass	
m&p-Xylenes	%	98	70-130	Pass	
Xylenes - Total	%	98	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	i				
Naphthalene	%	95	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	114	70-130	Pass	
Acenaphthylene	%	119	70-130	Pass	
Anthracene	%	110	70-130	Pass	
Benz(a)anthracene	%	102	70-130	Pass	
Benzo(a)pyrene	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	%	130	70-130	Pass	
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	127	70-130	Pass	
Chrysene	%	126	70-130	Pass	
Dibenz(a.h)anthracene	%	102	70-130	Pass	
Fluoranthene	%	130	70-130	Pass	
Fluorene	%	111	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	90	70-130	Pass	
Naphthalene	%	124	70-130	Pass	
Phenanthrene	%	105	70-130	Pass	
Pyrene	%	124	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	84	70-130	Pass	
LCS - % Recovery					
Heavy Metals				_	
Arsenic	%	111	80-120	Pass	
Cadmium	%	91	80-120	Pass	
Chromium	%	112	80-120	Pass	
Copper	%	106	80-120	Pass	
Lead	%	112	80-120	Pass	
Mercury	%	96	75-125	Pass	
Molybdenum	%	109	80-120	Pass	
Nickel	%	108	80-120	Pass	<u> </u>

Т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Selenium			%	111		80-120	Pass	
Silver			%	85		80-120	Pass	
Tin			%	111		80-120	Pass	
Zinc			%	111		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S19-Se07908	NCP	%	89		75-125	Pass	
Cadmium	S19-Se07908	NCP	%	94		75-125	Pass	
Chromium	S19-Se07908	NCP	%	89		75-125	Pass	
Copper	S19-Se07908	NCP	%	88		75-125	Pass	
Lead	S19-Se07908	NCP	%	102		75-125	Pass	
Mercury	S19-Se07908	NCP	%	105		70-130	Pass	
Molybdenum	S19-Se07908	NCP	%	88		75-125	Pass	
Nickel	S19-Se07908	NCP	%	86		75-125	Pass	
Selenium	S19-Se07908	NCP	%	89		75-125	Pass	
Silver	S19-Se07908	NCP	%	83		75-125	Pass	
Tin	S19-Se07908	NCP	%	89		75-125	Pass	
Zinc	S19-Se07908	NCP	%	93		75-125	Pass	
Spike - % Recovery	319-3607900	INCF	70	<u> 93</u>		75-125	Fass	
Total Recoverable Hydrocarb	one - 1000 NEDM Fract	ione		Result 1		T		
TRH C6-C9	M19-Se08379	NCP	%	100		70-130	Pass	
TRH C0-C9	M19-Se06379	NCP	%	77				
	10119-5605415	INCP	70	11		70-130	Pass	
Spike - % Recovery BTEX				Decult 4				
	M40 C-09270	NCP	%	Result 1		70.120	Door	
Benzene	M19-Se08379	t		103		70-130	Pass	
Toluene	M19-Se08379	NCP	%	94		70-130	Pass	
Ethylbenzene	M19-Se08379	NCP	%	99		70-130	Pass	
m&p-Xylenes	M19-Se08379	NCP	%	85		70-130	Pass	
o-Xylene	M19-Se08379	NCP	%	85		70-130	Pass	
Xylenes - Total	M19-Se08379	NCP	%	85		70-130	Pass	
Spike - % Recovery	ana 2012 NEDM Frank			Decult 4				
Total Recoverable Hydrocarb			0/	Result 1		70.400	D	
Naphthalene	M19-Se08379	NCP	%	95		70-130	Pass	
TRH C6-C10	M19-Se08379	NCP	%	97		70-130	Pass	
Spike - % Recovery	2010 NEDU E			D 11.4	Т	T		
Total Recoverable Hydrocarb			0/	Result 1		70.400	D	
TRH >C10-C16	M19-Se05415	NCP	%	72		70-130	Pass	
Spike - % Recovery	ul			Decult 4				
Polycyclic Aromatic Hydroca		NOD	0/	Result 1		70.400	D	
Acenaphthene	S19-Se07268	NCP	%	105		70-130	Pass	
Acenaphthylene	S19-Se07268	NCP	%	108		70-130	Pass	
Anthracene	S19-Se07268	NCP	%	104		70-130	Pass	
Benz(a)anthracene	S19-Se07268	NCP	%	93		70-130	Pass	
Benzo(a)pyrene	S19-Se07268	NCP	%	101		70-130	Pass	
Benzo(b&j)fluoranthene	S19-Se07268	NCP	%	119		70-130	Pass	
Benzo(g.h.i)perylene	S19-Se07268	NCP	%	89		70-130	Pass	
Benzo(k)fluoranthene	S19-Se07268	NCP	%	118		70-130	Pass	
Chrysene	S19-Se07268	NCP	%	119		70-130	Pass	
Dibenz(a.h)anthracene	S19-Se07268	NCP	%	96		70-130	Pass	
Fluoranthene	S19-Se07268	NCP	%	123		70-130	Pass	
Fluorene	S19-Se07268	NCP	%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S19-Se07268	NCP	%	90		70-130	Pass	
Naphthalene	S19-Se07268	NCP	%	114		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	S19-Se07268	NCP	%	96			70-130	Pass	
Pyrene	S19-Se07268	NCP	%	124			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
	r	1	ı	Result 1	Result 2	RPD			
% Moisture	M19-Se06469	NCP	%	57	56	2.0	30%	Pass	
Duplicate				ı	1		ı		
Heavy Metals	T		1	Result 1	Result 2	RPD			
Arsenic	M19-Se08714	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M19-Se08714	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M19-Se08714	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M19-Se08714	NCP	mg/kg	21	21	<1	30%	Pass	
Lead	M19-Se08714	NCP	mg/kg	7.2	7.4	2.0	30%	Pass	
Mercury	M19-Se08714	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M19-Se08714	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M19-Se08714	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M19-Se08714	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M19-Se08714	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	M19-Se08714	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M19-Se08714	NCP	mg/kg	32	32	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Se08378	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M19-Se09959	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M19-Se09959	NCP	mg/kg	140	160	14	30%	Pass	
TRH C29-C36	M19-Se09959	NCP	mg/kg	140	190	29	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M19-Se08378	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M19-Se08378	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M19-Se08378	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M19-Se08378	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M19-Se08378	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M19-Se08378	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-Se08378	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M19-Se08378	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M19-Se09959	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M19-Se09959	NCP	mg/kg	220	270	20	30%	Pass	
TRH >C34-C40	M19-Se09959	NCP	mg/kg	150	230	44	30%	Fail	Q15
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	N19-Se07024	СР	uS/cm	50	52	3.5	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	N19-Se07024	СР	pH Units	6.1	6.1	pass	30%	Pass	
Duplicate									
Cation Exchange Capacity		•		Result 1	Result 2	RPD			
Cation Exchange Capacity	M19-Se07914	NCP	meq/100g	13	14	6.0	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocar	rbons			Result 1	Result 2	RPD			
Acenaphthene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M19-Se08592	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Andrew Black Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kay Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine be liable for consequential damages including, but not limited to, lost profits, damages for failure to me the deadlines and lost production arising from this records. This document in other personal descent in full and relates only to the lems tested. Unless the clearly characteristic where performed on the samples as received.

Page fof 1 QS3009_R5 Mo	_aboratory Use Only		Method of Shipment		10		8	7	6	Ch.	BHI	BHO	· BHO8	DP	- F	Quote ID No	Purchase Order		Special Direction	Phone No	Contact Name		Address	Company	H H
OS3009_T6 Mcdified by, S. Kojima Approved by: Dr. R.Symons Approved on 2 November 2016		Received By	Courier (#								BH10-0-7	BH09-0.5	8 -0.4	DP_28819	Client Sample ID					(02) 4			5 New	ESP – Environmenta	AIN OF CUST
mons Approved on 2 November 2016	71100	ot: AB) Пн	Total Counts							4		5/9/19	THE STATE OF THE S	Date					(02) 4961 0790		2000	5 Newton street	ESP – Environmental & Safety Professionals	CHAIN OF CUSTODY RECORD
	Sydlays	SYDIBN	☐ Hand Delivered	7							X	X	X	Solid	Matrix	(Note.	Where me	itals are rec	Analysi µested, plea	S se specify 1	otal" or "Fi	tered")	Project Name	Project No	02 9900 84
	SYD BNE MEL PER ADL NEW DAR	SYD I BNE I MEL I PER I ADLI NEW JOAR	☐ Postal								×	X				А Н Н							Mailland	J41419	Jydn ey Laboratory Unit F3 Bid F. 16 Mars Rd. Lane Cove West, NSW 2056 02 9900 8400 EnviroSampleNSW@eurofins.com
	INEW DAR	NEW WAR	Name									X	X		C	EC Rt							Isd par	2	ve West, NSW 2066 @eurofins.com
	Signature	Signature											X			TE.									Unit 1.2: 07 3902
	NAME OF THE PARTY	0																					Report Format	Project Manager	Prisbane Laboratory Unit 1.21 Smallwood Pl., Murarie, QLD 4172 07 3902 4600 Enviro Sample OLD @eurofins con
Submission of samples to:	SIL	1	Signature																					3	, QLD 4172 Qeurofins com
he laboratory will be deemed as	Date	Date																					L	hostina	Unit 2, 9 08 9251
acceptance of Eurolins) mgt Stand	T C	7																							Perth Laboratory Unt 2, 91 Leach Highway. Kewdale WA 6105 08 9251 9600 EnviroSample WA@eurofins.com
tard Tems ar	Time	Till	Date													250 128	L Plasti ImL Pla 5mL Pla	stic stic		Ç	Email for Results		Relinquished by		lale WA 6105 A@eurofins.com
ess agreed otherwise. Accepy of	ŧ	5	,														. Amber IOml.via . Amber Jar			Containers	ills in a second	10°	by C		☐ Melba 2 King 03 856
Loopy of Eurodins (mig! Standard Ferns a	Report No	7	Time												Other Sample	□Other (□3 Day*	□1 Day*	Ovemight (9am)*	FIT AT	S Comment	ر او	200		Melbourne Laboratory 2 Kingston Town Close: Cakleigh, VIC 3166 03 8564 5000 EnviroSampleVic@eurofins.com
and Conditions is available on reg	With the same of t														Sample Comments / DG Hazard Warning	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 Day	☐ 2 Day*	(9am)*	Turn Around Requirements	Jahr Co	はすう			igh, VIC 3166
Tuest C	20																			i i					

ESP Environmental Unit 8, 2 Bolton Street Sydenham NSW 2044

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Victor Arias

Report 676767-S
Project name MAITLAND PSI

Project ID J41419
Received Date Sep 12, 2019

Client Sample ID			BH10_0.7
Sample Matrix			Soil
Eurofins Sample No.			M19-Se20380
Date Sampled			Aug 28, 2019
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPN	/ Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	53
TRH C29-C36	50	mg/kg	77
TRH C10-C36 (Total)	50	mg/kg	130
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72
Total Recoverable Hydrocarbons - 2013 NEPN	// Fractions		
₩aphthalene	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
竹幣H C6-C10 less BTEX (F1)	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
™RH >C10-C16 less Naphthalene (F2)	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	100
% Moisture	1	%	22

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Sep 13, 2019	14 Days
BTEX	Melbourne	Sep 13, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 13, 2019	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 13, 2019	
- Method: LTM-ORG-2010 TRH C6-C40			
% Moisture	Melbourne	Sep 12, 2019	14 Days

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

ESP Laboratories NSW

Address:

Unit 8, 2 Bolton Street

Sydenham NSW 2044

Project Name: Project ID:

MAITLAND PSI

J41419

Order No.: Report #:

676767

Phone: Fax:

02 9519 2125 02 9554 7033

Received:

Sep 12, 2019 3:39 PM

Due: Sep 19, 2019 Priority: 5 Day

Contact Name: Victor Arias

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Copper	Lead	Zinc	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals IWRG 621 : Metals M12	Moisture Set	Eurofins mgt Suite B1
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
Exte	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH01_0.2	Aug 28, 2019		US Leachate	M19-Se20369				Х	Х			
2	BH07_0.3	Aug 28, 2019		US Leachate	M19-Se20370				Х	Х			
3	BH01_0.2	Aug 28, 2019		US Leachate	M19-Se20371	Х	Х	Х		Х			
4	BH02_0.05	Aug 28, 2019		US Leachate	M19-Se20372	Х	Х	Х		Х			
5	BH03_0.5	Aug 28, 2019		US Leachate	M19-Se20373	Х	Х	Х		Х			
6	BH04_0.4	Aug 28, 2019		US Leachate	M19-Se20374	Х	Х	Х		Х			
7	BH05_0.2	Aug 28, 2019		US Leachate	M19-Se20375	Х	Х	Х		Х			
8	BH06_0.2	Aug 28, 2019		US Leachate	M19-Se20376	Х	Х	Х		Х			
9	BH07_0.3	Aug 28, 2019		US Leachate	M19-Se20377	Х	Х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

ESP Laboratories NSW

Unit 8, 2 Bolton Street Sydenham

Sydenham NSW 2044

Project Name: Project ID:

Address:

MAITLAND PSI

J41419

Order No.:

Report #:

676767

Phone: Fax:

02 9519 2125 02 9554 7033 **Received:** Sep 12, 2019 3:39 PM

Due: Sep 19, 2019

Priority: 5 Day
Contact Name: Victor Arias

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Copper	Lead	Zinc	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals IWRG 621 : Metals M12	Moisture Set	Eurofins mgt Suite B1
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
10	BH10_0.7	Aug 28, 2019		US Leachate	M19-Se20378				Х	Х	Х		
11	BH08_0.4	Aug 28, 2019		US Leachate	M19-Se20379			Х		Х			
12	BH10_0.7	Aug 28, 2019		Soil	M19-Se20380							Х	Х
Test	Counts					7	7	8	3	11	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions						
TRH C6-C9			mg/kg	< 20		20	Pass	
TRH C10-C14			mg/kg	< 20		20	Pass	
TRH C15-C28			mg/kg	< 50		50	Pass	
TRH C29-C36			mg/kg	< 50		50	Pass	
Method Blank								
BTEX								
Benzene			mg/kg	< 0.1		0.1	Pass	
Toluene			mg/kg	< 0.1		0.1	Pass	
Ethylbenzene			mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes			mg/kg	< 0.2		0.2	Pass	
o-Xylene			mg/kg	< 0.1		0.1	Pass	
Xylenes - Total			mg/kg	< 0.3		0.3	Pass	
Method Blank			, ,					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
Naphthalene			mg/kg	< 0.5		0.5	Pass	
TRH C6-C10			mg/kg	< 20		20	Pass	
TRH >C10-C16			mg/kg	< 50		50	Pass	
TRH >C16-C34			mg/kg	< 100		100	Pass	
TRH >C34-C40			mg/kg	< 100		100	Pass	
LCS - % Recovery			mg/kg	100		100	1 433	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ione						
TRH C6-C9	1555 IVET WITTEC		%	94		70-130	Pass	
TRH C10-C14			// //////////////////////////////////	74		70-130	Pass	
LCS - % Recovery			70	, , , ,		70 130	1 433	
BTEX								
Benzene			%	100		70-130	Pass	
Toluene			<u> </u>	103		70-130	Pass	
			<u> </u>	91		70-130	Pass	
Ethylbenzene								
m&p-Xylenes			%	103		70-130	Pass	
Xylenes - Total			%	96		70-130	Pass	
LCS - % Recovery	2040 NEDM 5	•						
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/	407		70.100		
Naphthalene			%	107		70-130	Pass	
TRH C6-C10			%	97		70-130	Pass	
TRH >C10-C16 Test	Lab Sample ID	QA Source	% Units	70 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Spike - % Recovery		Jource				Lillits	Lillits	Joue
Total Recoverable Hydrocarbons -	1000 NEDM Front	ione		Result 1				
<u>, </u>	M19-Se19538	NCP	0/	94		70.420	Desa	
TRH C6-C9 TRH C10-C14		1	%			70-130	Pass	
	M19-Se18022	NCP	%	101		70-130	Pass	
Spike - % Recovery				Dog::lt 4				
BTEX	M40 0-40500	NOD	0/	Result 1		70.400	Dari	
Benzene	M19-Se19538	NCP	%	91		70-130	Pass	
Toluene	M19-Se19538	NCP	%	114		70-130	Pass	
Ethylbenzene	M19-Se19538	NCP	%	97		70-130	Pass	
		NCP	%	82	1	70-130	Pass	Í
m&p-Xylenes	M19-Se19538	1					_	
	M19-Se19538 M19-Se19538 M19-Se19538	NCP NCP	% %	80 82		70-130 70-130	Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M19-Se19538	NCP	%	96			70-130	Pass	
TRH C6-C10	M19-Se19538	NCP	%	124			70-130	Pass	
TRH >C10-C16	M19-Se18022	NCP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M19-Se19287	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M19-Se19287	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M19-Se19287	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M19-Se19287	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	M19-Se19287	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M19-Se19287	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M19-Se19287	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M19-Se19287	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M19-Se19287	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M19-Se19287	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M19-Se19287	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M19-Se19287	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M19-Se19287	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M19-Se19287	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M19-Se19287	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M19-Se20380	CP	%	22	22	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Andrew Black Analytical Services Manager Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequent and the client, or any other person or company resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequent and any expensed.

ESP Environmental Unit 8, 2 Bolton Street Sydenham NSW 2044

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Victor Arias

Report 676767-L
Project name MAITLAND PSI

Project ID J41419
Received Date Sep 12, 2019

Client Sample ID			BH01_0.2	BH07_0.3	BH01_0.2	BH02_0.05
Sample Matrix			US Leachate	US Leachate	US Leachate	US Leachate
Eurofins Sample No.			M19-Se20369	M19-Se20370	M19-Se20371	M19-Se20372
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		•				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	-	-
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	-	-
Anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
≌enzo(b&j)fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	-	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Chrysene	0.001	mg/L	< 0.001	< 0.001	-	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	-	-
Fluorene	0.001	mg/L	< 0.001	< 0.001	-	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Naphthalene	0.001	mg/L	< 0.001	< 0.001	-	-
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	-	-
Pyrene	0.001	mg/L	< 0.001	< 0.001	-	-
Total PAH*	0.001	mg/L	< 0.001	< 0.001	-	-
2-Fluorobiphenyl (surr.)	1	%	67	73	-	-
p-Terphenyl-d14 (surr.)	1	%	54	50	=	=
Heavy Metals						
Copper	0.01	mg/L	-	-	< 0.01	< 0.01
Lead	0.01	mg/L	-	-	0.03	0.21
Zinc	0.01	mg/L	-	-	0.34	0.86
USA Leaching Procedure						
ଥିachate Fluid		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.5	6.4	6.4	6.5
pH (Leachate fluid)	0.1	pH Units	5.1	5.1	5.1	5.1
pH (off)	0.1	pH Units	5.1	5.1	5.1	5.0
pH (USA HCI addition)	0.1	pH Units	1.6	1.6	1.7	1.6

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH03_0.5 US Leachate M19-Se20373 Aug 28, 2019	BH04_0.4 US Leachate M19-Se20374 Aug 28, 2019	BH05_0.2 US Leachate M19-Se20375 Aug 28, 2019	BH06_0.2 US Leachate M19-Se20376 Aug 28, 2019
Test/Reference	LOR	Unit				
Heavy Metals						
Copper	0.01	mg/L	< 0.01	< 0.01	0.02	0.04
Lead	0.01	mg/L	0.48	0.13	0.13	0.08
Zinc	0.01	mg/L	0.59	2.1	1.7	1.4
USA Leaching Procedure						
ଥିeachate Fluid		comment	1.0	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.4	6.7	6.6	6.6
pH (Leachate fluid)	0.1	pH Units	5.1	5.1	5.1	5.1
pH (off)	0.1	pH Units	5.0	5.1	5.1	5.1
pH (USA HCl addition)	0.1	pH Units	1.5	1.6	1.6	1.5

Client Sample ID			BH07_0.3	BH10_0.7	BH08_0.4
Sample Matrix			US Leachate	US Leachate	US Leachate
Eurofins Sample No.			M19-Se20377	M19-Se20378	M19-Se20379
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	·	•			
Acenaphthene	0.001	mg/L	-	< 0.001	-
Acenaphthylene	0.001	mg/L	-	< 0.001	-
Anthracene	0.001	mg/L	-	< 0.001	-
Benz(a)anthracene	0.001	mg/L	-	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	-	< 0.001	-
Benzo(b&j)fluoranthene	0.001	mg/L	-	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	-	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	-	< 0.001	-
Chrysene	0.001	mg/L	-	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	-	< 0.001	-
Fluoranthene	0.001	mg/L	-	< 0.001	-
Fluorene	0.001	mg/L	-	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	-	< 0.001	-
Naphthalene	0.001	mg/L	-	< 0.001	-
Phenanthrene	0.001	mg/L	-	< 0.001	-
Pyrene	0.001	mg/L	-	< 0.001	-
Total PAH*	0.001	mg/L	-	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	-	70	-
p-Terphenyl-d14 (surr.)	1	%	-	71	-
Heavy Metals					
Arsenic	0.01	mg/L	-	< 0.01	-
Cadmium	0.005	mg/L	-	< 0.005	-
Chromium	0.01	mg/L	-	< 0.01	-
Copper	0.01	mg/L	< 0.01	< 0.01	-
Lead	0.01	mg/L	0.04	< 0.01	-
Mercury	0.001	mg/L	-	< 0.001	-
Molybdenum	0.01	mg/L	-	< 0.01	-
Nickel	0.01	mg/L	-	0.02	-
Selenium	0.05	mg/L	-	< 0.05	-
Silver	0.05	mg/L	-	< 0.05	-
Tin	0.2	mg/L	-	< 0.2	-
Zinc	0.01	mg/L	1.2	0.29	0.28

Client Sample ID			BH07_0.3	BH10_0.7	BH08_0.4
Sample Matrix			US Leachate	US Leachate	US Leachate
Eurofins Sample No.			M19-Se20377	M19-Se20378	M19-Se20379
Date Sampled			Aug 28, 2019	Aug 28, 2019	Aug 28, 2019
Test/Reference	LOR	Unit			
USA Leaching Procedure					
ଥିachate Fluid		comment	1.0	1.0	1.0
pH (initial)	0.1	pH Units	6.8	6.4	6.9
pH (Leachate fluid)	0.1	pH Units	5.1	5.1	5.1
pH (off)	0.1	pH Units	5.1	6.0	5.1
pH (USA HCI addition)	0.1	pH Units	1.5	1.6	1.5

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 13, 2019	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals IWRG 621 : Metals M12	Melbourne	Sep 13, 2019	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Heavy Metals	Melbourne	Sep 13, 2019	180 Days

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

Address:

ESP Laboratories NSW

Unit 8, 2 Bolton Street Sydenham

NSW 2044

Project Name:

MAITLAND PSI

Project ID: J41419 Order No.:

Phone:

Fax:

Report #: 676767

02 9519 2125 02 9554 7033

Received:

Sep 12, 2019 3:39 PM

Due: Sep 19, 2019 Priority: 5 Day

Contact Name: Victor Arias

Eurofins Analytical Services Manager: Andrew Black

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Lead	Zinc	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals IWRG 621 : Metals M12	Moisture Set	Eurofins mgt Suite B1
Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laborator	y - NATA Site#	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
Exte	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH01_0.2	Aug 28, 2019		US Leachate	M19-Se20369				Х	Х			
2	BH07_0.3	Aug 28, 2019		US Leachate	M19-Se20370				Х	Х			
3	BH01_0.2	Aug 28, 2019		US Leachate	M19-Se20371	Х	Х	Х		Х			
4	BH02_0.05	Aug 28, 2019		US Leachate	M19-Se20372	Х	Х	Х		Х			
5	BH03_0.5	Aug 28, 2019		US Leachate	M19-Se20373	Х	Х	Х		Х			
6	BH04_0.4	Aug 28, 2019		US Leachate	M19-Se20374	Х	Х	Х		Х			
7	BH05_0.2	Aug 28, 2019		US Leachate	M19-Se20375	Х	Х	Х		Х			
8	BH06_0.2	Aug 28, 2019		US Leachate	M19-Se20376	Х	Х	Х		Х			
9	BH07_0.3	Aug 28, 2019		US Leachate	M19-Se20377	Х	Χ	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

ESP Laboratories NSW

Address:

Unit 8, 2 Bolton Street

Sydenham NSW 2044

Project Name: Project ID: MAITLAND PSI

J41419

Order No.:

Phone:

Report #:

676767 02 9519 2125

Fax: 02 9554 7033

Received:

Sep 12, 2019 3:39 PM

Due: Sep 19, 2019

Priority: 5 Day
Contact Name: Victor Arias

Eurofins Analytical Services Manager: Andrew Black

		Sa	Sample Detail				Lead	Zinc	Polycyclic Aromatic Hydrocarbons	USA Leaching Procedure	Metals IWRG 621 : Metals M12	Moisture Set	Eurofins mgt Suite B1
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laboratory	y - NATA Site #	20794										
Pert	Perth Laboratory - NATA Site # 23736												
10	BH10_0.7	Aug 28, 2019		US Leachate	M19-Se20378				Х	Х	Х		
11	BH08_0.4	Aug 28, 2019		US Leachate	M19-Se20379			Х		Х			
12	BH10_0.7	Aug 28, 2019		Soil	M19-Se20380							Х	Х
Test	Counts					7	7	8	3	11	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.

10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Arsenic			mg/L	< 0.01			0.01	Pass	
Cadmium			mg/L	< 0.005			0.005	Pass	
Chromium			mg/L	< 0.01			0.01	Pass	
Copper			mg/L	< 0.01			0.01	Pass	
Lead			mg/L	< 0.01			0.01	Pass	
Mercury			mg/L	< 0.001			0.001	Pass	
Molybdenum			mg/L	< 0.01			0.01	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
Selenium			mg/L	< 0.05			0.05	Pass	
Silver			mg/L	< 0.05			0.05	Pass	
Tin			mg/L	< 0.2			0.2	Pass	
Zinc			mg/L	< 0.01			0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Polycyclic Aromatic Hydrocarbon	s			Result 1					
Acenaphthene	M19-Se10098	NCP	%	97			70-130	Pass	
Acenaphthylene	M19-Se10098	NCP	%	96			70-130	Pass	
Anthracene	M19-Se10098	NCP	%	80			70-130	Pass	
Benz(a)anthracene	M19-Se10098	NCP	%	98			70-130	Pass	
Benzo(a)pyrene	M19-Se10098	NCP	%	116			70-130	Pass	
Benzo(b&j)fluoranthene	M19-Se10098	NCP	%	103			70-130	Pass	
Benzo(g.h.i)perylene	M19-Se10098	NCP	%	75			70-130	Pass	
Benzo(k)fluoranthene	M19-Se10098	NCP	%	111			70-130	Pass	
Chrysene	M19-Se10098	NCP	%	115			70-130	Pass	
Dibenz(a.h)anthracene	M19-Se10098	NCP	%	83			70-130	Pass	
Fluoranthene	M19-Se10098	NCP	%	101			70-130	Pass	
Fluorene	M19-Se10098	NCP	%	102			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M19-Se10098	NCP	%	78			70-130	Pass	
Naphthalene	M19-Se10098	NCP	%	88			70-130	Pass	
Phenanthrene	M19-Se10098	NCP	%	101			70-130	Pass	
Pyrene	M19-Se10098	NCP	%	104			70-130	Pass	
Spike - % Recovery				,					
Heavy Metals				Result 1					
Copper	M19-Se20371	СР	%	95			75-125	Pass	
Lead	M19-Se20371	СР	%	99			75-125	Pass	
Zinc	M19-Se20371	СР	%	117			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Fluoranthene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	M19-Se10097	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Copper	M19-Se20371	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Lead	M19-Se20371	CP	mg/L	0.03	0.03	6.0	30%	Pass	
Zinc	M19-Se20371	CP	mg/L	0.34	0.34	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M19-Se20195	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Cadmium	M19-Se20195	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chromium	M19-Se20195	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Mercury	M19-Se20195	NCP	mg/L	0.002	< 0.001	86	30%	Fail	Q08
Molybdenum	M19-Se20195	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Nickel	M19-Se20195	NCP	mg/L	0.15	0.13	12	30%	Pass	
Selenium	M19-Se20195	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Silver	M19-Se20195	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Tin	M19-Se20195	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other C01

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q08

Authorised By

Andrew Black Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Enviro Sample Vic

From:

Andrew Black

Sent:

Thursday, 12 September 2019 3:45 PM

To:

Enviro Sample Vic

Subject:

5 DAY TAT ADDITIONAL: FW: Eurofins Test Results - Report 674016 : Site

MAITLAND PSI (J41419)

5 DAY TAT additional testing thanks team

From: Victor Arias [mailto:varias@esplabs.com.au]
Sent: Thursday, 12 September 2019 3:39 PM

To: Andrew Black

Subject: RE: Eurofins Test Results - Report 674016 : Site MAITLAND PSI (141419)

EXTERNAL EMAIL*

Hi Andrew,

Could you request the lab the following analysis:

- 1. Leaching test (TCLP) for Report 674016-S as follows:
- PAH→ samples BH01_0.2; BH07_0.3
- Lead, Zinc & Copper → BH01_0.2; BH02_0.05; BH03_0.5; BH04_0.4; BH05_0.2; BH06_0.2; BH07_0.3
- 2. Leaching test (TCLP) for Report 675269-S
- PAH & M12 → Sample BH10_0.7
- Zinc → sample BH08_0.4
- 3. Soil testing for Report 675269-S
- TRH & BTEXN (suite B1)→ sample BH10_0.7

These samples are from the same location so please process as one.

Thanks.

Au4389-91214 Au43195-91214 Au43190-91214 Au43191-91214 Au43192-91214 Au43193-91214 Au43194-91214

Se07025-91302 Se07023-

PS: please send me a copy of report 675269-S as I have only found it in online results.

Cheers,

Dr. Victor Arias | NSW Environmental Department Head

ESP - Environmental & Safety Professionals

esp Engrephyte h

5 Newton street | Broadmeadow | NSW 2292 Phone: 02 4961 0790 | Mobile: 0425 833 133

Email: varias@esplabs.com.au
Web: environet.com.au

Click here to report this email as spam.

ScannedByWebsenseForEurofins

Ecological Investigation Level Calculation Spreadsheet - Copper

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver
thiourea method) (values from 0 to 100
cmolc/kg dwt)
18.6
Enter soil pH (calcium chloride method)
(values from 1 to 14)
6.3
Enter organic carbon content (%OC)
(values from 0 to 50%)
1
Below needed to calculate fresh and aged
ABCs
Managered background concentration
Measured background concentration (mg/kg). Leave blank if no measured value
(mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW
Enter traffic volume (high or low)
low
Estimated ABC (aged)*
, G ,

^{*}Estimated ambient background concentrations (ABC) for aged contamination adopted from Table 58, Schedule B5c of the *National Environmental Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013).

Outputs							
Land use	Cu soil-specific EILs						
	(mg contaminant/kg dry soil)						
	Fresh	Aged					
National parks and areas of high conservation value	#NUM!	90					
Urban residential and open public spaces	#NUM!	230					
Commercial and industrial	#NUM!	320					

Ecological Investigation Level Calculation Spreadsheet - Copper

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver
thiourea method) (values from 0 to 100 cmolc/kg dwt)
18.6
10.0
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for aged ABCs only
Enter State (or closest State)
NSW Enter traffic volume (high or low)
low
Estimated ABC (aged)*
20

^{*}Estimated ambient background concentrations (ABC) for aged contamination adopted from Table 58, Schedule B5c of the *National Environmental Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013).

Outputs			
Land use	Ni soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	50	
Urban residential and open public spaces	#NUM!	260	
Commercial and industrial	#NUM!	440	

Ecological Investigation Level Calculation Spreadsheet - Copper

Inputs				
Select contaminant from list below				
Zn				
Below needed to calculate fresh and aged ACLs				
Enter cation exchange capacity (silver				
thiourea method) (values from 0 to 100 cmolc/kg dwt)				
and the second s				
18.6				
Enter soil pH (calcium chloride method) (values from 1 to 14)				
6.3				
Below needed to calculate fresh and aged ABCs				
Measured background concentration (mg/kg). Leave blank if no measured value				
or for fresh ABCs only				
Enter iron content (aqua regia method)				
(values from 0 to 50%) to obtain estimate of background concentration				
or for aged ABCs only				
Enter State (or closest State)				
NSW				
Enter traffic volume (high or low)				
low				
Estimated ABC (aged)*				
20				

^{*}Estimated ambient background concentrations (ABC) for aged contamination adopted from Table 58, Schedule B5c of the *National Environmental Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013).

Outputs			
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	190	
Urban residential and open public spaces	#NUM!	590	
Commercial and industrial	#NUM!	870	

	UCL Statis	stics for Unc	ensored Full Data Sets	
User Selected Options	.1			
Date/Time of Computation		.00.47 DM		
From File	ProUCL 5.117/09/2019 1:09:47 PM WorkSheet.xls			
Full Precision				
Confidence Coefficient	OFF			
Number of Bootstrap Operations	95% 2000			
Number of Bootstrap Operations	2000			
nc				
		General	Statistics	
Total	Number of Observations	11	Number of Distinct Observations	11
			Number of Missing Observations	1
	Minimum	89	Mean	598.5
-	Maximum	2700	Median	350
	SD	762.3	Std. Error of Mean	229.8
	Coefficient of Variation	1.274	Skewness	2.428
		Normal C	GOF Test	
S	Shapiro Wilk Test Statistic	0.689	Shapiro Wilk GOF Test	
5% S	hapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.252	Lilliefors GOF Test	
5	% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level	
	Data Not	Normal at 5	% Significance Level	
	As	suming Norr	nal Distribution	
95% No	As ormal UCL	suming Norr		
95% No		suming Norr	nal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	1156
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	1156 1043
95% No	ormal UCL	1015	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	
95% No	ormal UCL 95% Student's-t UCL	1015 Gamma (95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test	
95% No	95% Student's-t UCL A-D Test Statistic	1015 Gamma 0	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	1043
95% No	95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	1015 Gamma 0 0.489 0.752	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	1043
95% No	95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	1015 Gamma (0.489 0.752 0.219	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	1043
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.489 0.752 0.219 0.262	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	1043
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.489 0.752 0.219 0.262	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	1043
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	1015 Gamma 0 0.489 0.752 0.219 0.262 Gamma Dis	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Level Statistics	1043
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.489 0.752 0.219 0.262 r Gamma Dis	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Level Statistics k star (bias corrected MLE)	ce Level
95% No	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE)	Gamma 0.489 0.752 0.219 0.262 Gamma Dis Gamma 0.998 599.7	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	1043 ce Level 0.786 761
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma 0.489 0.752 0.219 0.262 r Gamma Dis	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.786 761
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE)	Gamma 0.489 0.752 0.219 0.262 Gamma Dis Gamma 0.998 599.7	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant Stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.786 761 17.3 674.9
M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected)	Gamma 0.489 0.752 0.219 0.262 Gamma Dis	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	0.786 761 17.3 674.9
M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma 0.489 0.752 0.219 0.262 r Gamma Dis	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significant Stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.786 761 17.3 674.9
M	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) LE Mean (bias corrected)	Gamma 0.489 0.752 0.219 0.262 Gamma Dis Gamma 0.998 599.7 21.95 598.5	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	0.786 761 17.3

Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.203	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level		
Data appear	Lognormal	at 5% Significance Level		
	Lognorma	al Statistics		
Minimum of Logged Data	4.489	Mean of logged Data	5.81	
Maximum of Logged Data	7.901	SD of logged Data	1.10	
Assi	uming Logno	ormal Distribution		
95% H-UCL	1910	90% Chebyshev (MVUE) UCL	1185	
95% Chebyshev (MVUE) UCL	1462	97.5% Chebyshev (MVUE) UCL	1847	
99% Chebyshev (MVUE) UCL	2603			
•	etric Distribu	tion Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
**		Distribution at 5% Significance Level tribution Free UCLs		
**		· ·	1015	
Nonpar	rametric Dis	tribution Free UCLs	1015 1545	
Nonpar 95% CLT UCL	rametric Dis	tribution Free UCLs 95% Jackknife UCL		
Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	976.5 958.6	tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1545	
Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	976.5 958.6 2465	tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1545	
Nonpai 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	976.5 958.6 2465	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	1545 1019	
Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	976.5 958.6 2465 1149 1288 2034	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	1545 1019 1600	
Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	976.5 958.6 2465 1149 1288 2034	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1545 1019 1600	
Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	976.5 958.6 2465 1149 1288 2034 Suggested	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1545 1019 1600 2885	
Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	976.5 958.6 2465 1149 1288 2034 Suggested 1307	95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1545 1019 1600 2885	

Equipment Calibration Form MiniRAE 3000 PID

Enqip #: 501136

Company: ESP Environmental & Safety

Consultant: Dr. Victor Arias

PO#: PO-0029

Equipment calibrated/checked by Technician: Andrea Hill DARRIN ARTHUR,

UNIT IDENTIFICATION			
Model Number	PGM 7320		
Serial Number	592-910882		
Unit Type	MiniRAE PID		

INSPECTION RECORD / CONDITION REPORT					
Inlet Flow Adequate/Clear		Pump 502			
Alarm limits	High	100 ppm	Low	25 ppm	

	CALIBRATION	DETAILS	
Sensor	Span Gas	Value	Reading
0.7.0	Isobutylene	100 ppm	99.9 ppm
PID	Air	0 ppm	0 ppm
Calibration Successful			

OC Signature

Calibration date: 09/04/19