

TRAFFIC AND PARKING IMPACT ASSESSMENT OF THE PROPOSED SHOPPING CENTRE AT 20 HERITAGE DRIVE, CHISHOLM

Address: Shop 7, 720 Old Princes Highway Sutherland NSW 2232 Postal: P.O Box 66 Sutherland NSW 1499

Telephone: (02) 9521 7199
Web: www.mclarentraffic.com.au
Email: admin@mclarentraffic.com.au

Division of RAMTRANS Australia ABN: 45067491678 RPEQ: 19457

Transport Planning, Traffic Impact Assessments, Road Safety Audits, Expert Witness

Development Type: Proposed Shopping Centre

Site Address: 20 Heritage Drive, Chisholm

Prepared for: Revelop

Document reference: 210550.01FB

Status	Issue	Prepared By	Checked By	Date
Draft	Α	ММ	ME	1 December 2021
Draft	В	ММ	ME	13 December 2021
Final	Α	ММ	ME	13 December 2021
Final	В	ММ	ME	23 December 2021

Please be aware that all information and material contained in this report is the property of McLaren Traffic Engineering. The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or if to be implied as being made to any third party. Any third party wishing to distribute this document in whole or in part for personal or commercial use must obtain written confirmation from McLaren Traffic Engineering prior to doing so. Failure to obtain written permission may constitute an infringement of copyright and may be liable for legal action.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Description and Scale of Development	1
1.2	State Environmental Planning Policy (Infrastructure) 2007	
1.3	Site Description	
1.4	Site Context	
2	EXISTING TRAFFIC AND PARKING CONDITIONS	4
2.1	Road Hierarchy	4
	2.1.1 Heritage Drive	
	2.1.2 Settlers Boulevard	
	2.1.4 Raymond Terrace Road	
2.2	Existing Traffic Management	5
2.3	Existing Traffic Environment	5
	2.3.1 Existing Road Performance	
2.4	Public Transport	
2.5	Future Road and Infrastructure Upgrades	
2.6	Thornton North Urban Release Area Ultimate Development Scenario	
3	PARKING ASSESSMENT	16
3.1	Council Parking Requirement	
3.2	TfNSW Parking Requirement	
3.3	Disabled Parking	
3.4	Bicycle & Motorcycle Parking Requirements	
3.5 3.6	Servicing & LoadingCar Park Design & Compliance	
3.7	Subdivision Design & Compliance	
3.8	Pedestrian & Cycleway Considerations	
3.9	Provision of bus & Taxi facilities	
4	TRAFFIC ASSESSMENT	35
4.1	Traffic Generation	35
4.2	Traffic Assignment	40
4.3	Traffic Impact	
4.4	Midblock Assessment & Pedestrian Assessment & Signalised Intersection	44
5	CONCLUSION	47

1 INTRODUCTION

M^cLaren Traffic Engineering was commissioned by *Revelop* to provide a Traffic and Parking Impact Assessment of the Proposed Shopping Centre at 20 Heritage Drive, Chisholm as depicted in **Annexure A**.

1.1 Description and Scale of Development

The proposed development and subdivision has the following characteristics relevant to traffic and parking:

- A mixed-use development containing the following land uses:
 - A supermarket of 3,912m² gross floor area (GFA) (includes home delivery area, loading dock and direct to boot), with a 3,500m² gross leasable floor area (GLFA) (not including direct to boot, home delivery area and loading dock);
 - Liquor premises (retail) of 185m² GFA / GLFA;
 - o A major retail premises of 1,500m² GFA / GLFA;
 - Various secondary retail premises of 3,695m² GFA / GLFA;
 - A tavern premises of 890m² GFA / GLFA;
 - Medical centre premises of 745m² GFA / GLFA;
 - A kiosk (food and drink premises) of 160m² GFA / GLFA;
 - A child care centre accommodating 112 children;
 - A gym premises of 8,00m² GFA;
 - A swim school of 1,040m² GFA;
 - Car wash area of 475m² GFA / GLFA.
- Associated at-grade car parking area accommodating 535 car parking spaces with vehicular access provided via a two-way driveway from Heritage Drive, entry only driveway from Tigerhawk Drive (left in only) and a two-way driveway restricted to left in / left out on Settlers Boulevard:
 - 10 x parent / pram car parking spaces;
 - 10 x disabled car parking spaces;
 - 515 standard car parking spaces.
- Six (6) pick-up parking space to facilitate the Woolworths direct to boot service;
- Associated basement parking area accommodating 126 car parking spaces with vehicular access via Heritage Drive:
 - 4 x disabled car parking spaces;
 - 5 x electric vehicle car parking spaces;
 - 117 x standard car parking spaces.

- An access road (referred to as the Link Road) is proposed between Heritage Drive and Settlers Boulevard, separating the mixed-use development and the residential subdivision and provides vehicular access to:
 - The proposed link road to the residential subdivision;
 - The loading and servicing area for the mixed-use development;
 - An additional 21 angled car parking spaces fronting of shopping centre.

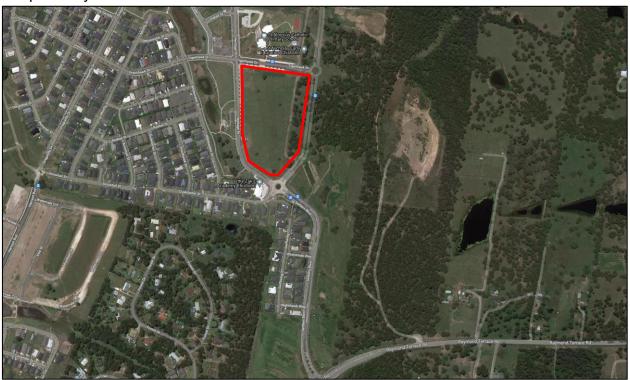
It is noted that the following development scale has been approved by Maitland City Council under *DA 18-1526* on the subject site:

- A mixed-use development of 6,325m² gross floor area (GFA) containing the following land uses:
 - A supermarket of 3,800m² GFA;
 - o Retail premises of 1,425m² GFA;
 - Food and drink premises of 1,000m² GFA;
 - Café premises of 100m² GFA;
 - Medical centre premises of 580m² GFA.
- Associated at-grade car parking are accommodating 434 car parking spaces.

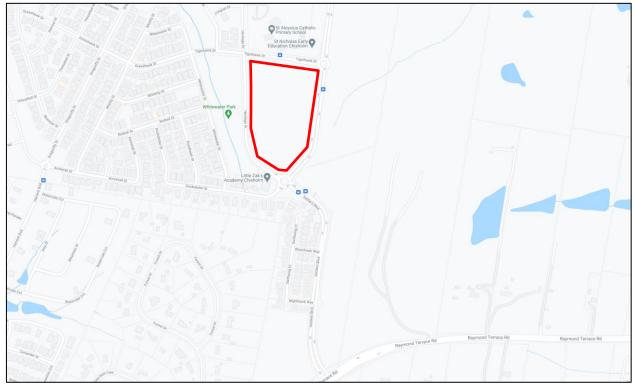
1.2 State Environmental Planning Policy (Infrastructure) 2007

The proposed development does qualify as a traffic generating development with relevant size and/or capacity under *Clause 104* of the *SEPP (Infrastructure) 2007*. Accordingly, formal referral to Transport for New South Wales (TfNSW) is necessary in conjunction with assessment of the application by Maitland Council officers.

1.3 Site Description


The subject development involves the development of a currently vacant lot which is currently zoned *B1: Neighbourhood Centre* and *R1: General Residential* under the *Maitland Local Environmental Plan 2011*. The site is surrounded by existing roads on all frontages, with Heritage Drive to the west, Tigerhawk Drive to the north and Settlers Boulevard to the west.

The site is generally surrounded by residential subdivision developments to the west and south with St Aloysius Catholic Primary School located directly to the north of the site and vacant land and bushland to the east. Raymond Terrace Road, facilitating traffic flow eastbound and westbound is located approximately 620m to the south of the site.


1.4 Site Context

The location of the site is shown on an aerial photo and a street map in **Figure 1** and **Figure 2** respectively.

Site Location

FIGURE 1: SITE CONTEXT - AERIAL PHOTO

Site Location

FIGURE 2: SITE CONTEXT - STREET MAP

2 EXISTING TRAFFIC AND PARKING CONDITIONS

2.1 Road Hierarchy

The road network servicing the site has characteristics as described in the following subsections.

2.1.1 Heritage Drive

- Unclassified LOCAL Road;
- Approximately 12m wide two-way carriageway (one lane in each direction) and a linemarked kerbside parking lane on both sides of the road;
- Signposted 50km/h speed limit;
- Unrestricted kerbside parking permitted along both sides of the road within a linemarked kerbside parking lane;
- Provision of a shared path within the verge on both sides of the road.

2.1.2 Settlers Boulevard

- Unclassified LOCAL Road;
- Approximately 19m wide two-way carriageway (one lane in each direction), a linemarked bicycle lane and a line-marked kerbside parking lane on both sides of the road, divided by a central landscaped median of approximately 3m width;
- Signposted 50km/h speed limit, with 40km/h school zone restrictions;
- Unrestricted kerbside parking permitted along both sides of the road within a linemarked kerbside parking lane.
- Provision of a shared path within the verge on both sides of the road.

2.1.3 Tigerhawk Drive

- Unclassified LOCAL Road;
- Approximately 16m wide two-way carriageway (one lane in each direction), a linemarked bicycle lane and a line-marked kerbside parking lane on both sides of the road;
- Signposted 50km/h speed limit, with 40km/h school zone restrictions;
- Unrestricted kerbside parking permitted along both sides of the road within a linemarked kerbside parking lane.

2.1.4 Raymond Terrace Road

- TfNSW Classified STATE ARTERIAL Road (No. 104);
- Approximately 10m to 27m wide two-way carriageway within near vicinity of the site facilitating one (1) to two (2) lanes in each direction;
 - o Carriageway typically accommodates one (1) lane in each direction;

- Widens to two (2) lanes plus auxiliary turn lanes in each direction within close proximity to Settlers Boulevard.
- Signposted 80km/h speed limit;
- Line-marked bicycle lane on both sides of the road within close proximity to Settlers Boulevard;
- No provision of kerbside parking facilities on either side of the road.

2.2 Existing Traffic Management

- Roundabout controlled intersection of Heritage Drive / Settlers Boulevard / Duskdater Street;
- Roundabout controlled intersection of Settlers Boulevard / Tigerhawk Drive;
- Give-way sign controlled intersection of Heritage Drive / Tigerhawk Drive;
- Signal controlled intersection of Settlers Boulevard / Raymond Terrace Drive;
- Existing junction of Heritage Drive / Proposed Access Lane (to be constructed);
- Existing junction of Settlers Drive / Greenling Drive (to be constructed);
- Indented blistered pedestrian crossing on Tigerhawk Drive along the northern boundary of the site.

2.3 Existing Traffic Environment

Intersection traffic surveys were conducted by The *Transport Planning Partnership (TTPP)* within a Traffic Report dated 27 June 2018 (referred to as the *TTPA Report*), prepared for the same site. Data was collected at key intersections within the vicinity of the site between 7:00am to 9:00am, and between 3:00pm to 6:00pm on Thursday 22 March 2018, and between 10:00am to 1:00pm on Saturday 24 March 2018 representing a typical operating weekday and weekend. The survey results are shown in **Annexure B** for reference, with the intersections surveyed listed as follows:

- Settlers Boulevard / Raymond Terrace Road;
- Harvest Boulevard / Raymond Terrace Road;
- Heritage Drive / Settlers Boulevard / Duskdarter Street;
- Heritage Drive / Tigerhawk Drive;
- Dragonfly Drive / Grasshawk Drive.

It should be noted that due to the NSW lockdown, it has not been possible to undertake updated traffic surveys.

2.3.1 Existing Road Performance

The performance of the surrounding intersections under the existing traffic conditions has been assessed using SIDRA INTERSECTION 9.0, **Table 1** summarises the resultant intersection performance data, with full SIDRA results reproduced in **Annexure C**.

TABLE 1: EXISTING INTERSECTION PERFORMANCES (SIDRA INTERSECTION 9.0)

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	Level of Service ⁽³⁾⁽⁴⁾	Control Type	Worst Movement	
		EXISTIN	IG PERFORMA	NCE			
Settlers Boulevard	AM	0.46	21.9	В		N/A	
/ Raymond	PM	0.35	15.9	В	Signals	N/A	
Terrace	Weekend	0.26	15.8	В		N/A	
Harvest Boulevard	AM	0.40	10.1	Α		N/A	
/ Raymond	PM	0.48	10.8	Α	Signals	N/A	
Terrace	Weekend	0.35	9.9	Α		N/A	
	AM	0.25	5.2 (Worst: 11.1)	A (Worst: B)		RT from	
Settlers Boulevard / Heritage Drive / Duskdarter Street	PM	0.12	4.3 (Worst: 10.2)	A (Worst: B)	Roundabout	Settlers Boulevard	
	Weekend	0.08	4.5 (Worst: 9.8)	A (Worst: A)		(E)	
	AM	0.23	3.9 (Worst: 8.6)	N/A (Worst: A)			
Heritage Drive / Tigerhawk Drive	PM	0.10	3.8 (Worst: 6.8)	N/A (Worst: A)	Priority	RT from Tigerhawk Drive (W)	
	Weekend	0.10	4.2 (Worst: 6.1)	N/A (Worst: A)		2	
Grasshawk Drive / Dragonfly Drive	AM	0.04	4.4 (Worst: 6.0)	N/A (Worst: A)			
	PM	0.06	4.8 (Worst: 5.9)	N/A (Worst: A)	Priority	RT from Grasshawk Drive (E)	
NOTES:	Weekend	0.05	4.8 (Worst: 5.7)	N/A (Worst: A)		z (=)	

NOTES:

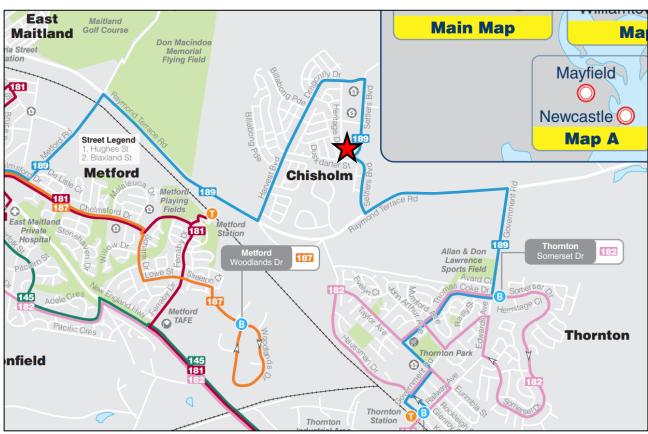
As shown above, the relevant intersections are currently performing at a high level of efficiency, with a Level of Service (LoS) "A" or "B" conditions in both the AM, PM & weekend peak hour periods. The level of service "A" and "B" performance is characterised by low approach delays and spare capacity.

⁽¹⁾ The Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

⁽²⁾ The average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.

⁽³⁾ The Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.

⁽⁴⁾ No overall Level of Service is provided for Give Way, Priority and Stop controlled intersections as the low delays associated with the dominant movements skew the average delay of the intersection. The Level of Service of the worst approach is an indicator of the operation of the intersection, with a worse Level of Service corresponding to long delays and reduced safety outcomes for that approach.



Whilst all assessed intersections are operating at an acceptable LoS, the surrounding area is subject to significant traffic growth as a result of being located within the Thornton North Urban Release Area. Further details in relation to the Thornton North Urban Release Area is outlined in **Section 2.5**.

2.4 Public Transport

The subject site has access to a number of existing bus stops including one (1) on Tigerhawk Drive along the northern boundary of the site, two (2) on Settlers Boulevard (ID: 232282 and ID: 232225) along the eastern boundary of the site and two (2) on Settlers Boulevard (ID: 2322215 and ID: 2322118) located approximately 100m to the south of the site. All of the aforementioned bus stops service existing route 189 (Stockland Green Hills to Thornton via Chisholm) provided by Hunter Valley Buses.

There are no train stations within an accessible distance from the subject site. The location of the site subject to the surrounding public transport network is shown in **Figure 3**.

Site Location

FIGURE 3: PUBLIC TRANSPORT NETWORK MAP

2.5 Future Road and Infrastructure Upgrades

As mentioned previously the subject site is located within the Thornton North Urban Release area and is subject to ongoing change within the subdivision as a result of the creation of additional housing and local infrastructure.

Section 7 of the Maitland Council Development Control Plan (MDCP) Part F – Urban Release Areas outlines that the Thornton North Urban Release area comprises a total area of 900 hectares of land with an residential yield of approximately 5,000 lots. The extent of the Thornton North Urban Release area is shown in **Figure 4** below, extracted from MDCP Part F.

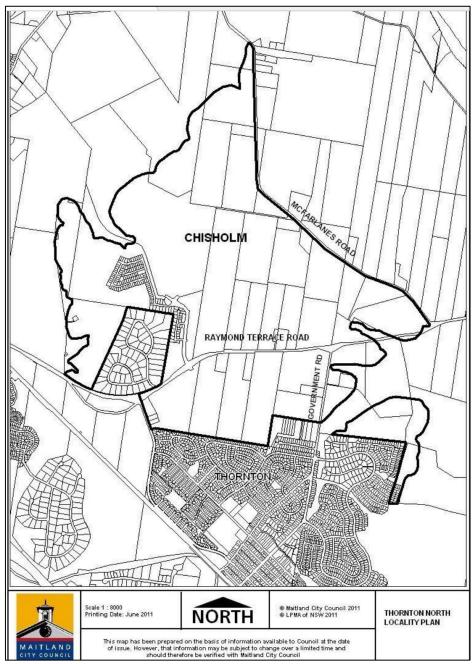


FIGURE 4: THORNTON NORTH LOCALITY PLAN - FIGURE 28 OF MDCP PART F

To support the growth within the Thornton North Urban Release Area the *Thornton North Section 94 Contributions Plan 2008* was developed, which outlines the following infrastructure upgrades as shown in **Figure 5**.

Thornton Nort	th Road &	c Traffic Facilities				
Facilities		Location	Description	Est. Capital Cost	Est. Land Cost	Total Cost
	TN36	Raymond Terrace Road Haussman Drive Thornton Road McFarlanes Road Government Road Raymond Terrace Road / Harve Raymond Terrace Road / Hauss	Harvest Boulevard to Haussman Drive	\$5,992,357	\$767,604	\$6,759,961
	TN37	Daymand Tarrasa Dand	Haussman Drive to Settlers Boulevard	\$10,896,727	\$303,002	\$11,199,729
	TN38	Raymond Terrace Road	Settlers Boulevard to Government Road	\$6,969,829	\$1,212,007	\$8,181,836
	TN36 TN37 TN38 TN39 des TN40 Haussman Drive TN41 Thornton Road TN42 McFarlanes Road Raym TN43 Government Road Raym TN45 Raymond Terrace Road / Harvest Bo TN45 Raymond Terrace Road / Harvest Bo TN46 Raymond Terrace Road / Haussman TN46 Raymond Terrace Road / Haussman TN46 Raymond Terrace Road / Settlers Boulevard TN48 Raymond Terrace Road / McFarlanes TN49 McFarlanes Road / Settlers Boulevard TN50 Haussman Drive / Taylor Avenue TN51 Railway Avenue / Glenroy Street TN52 Huntingdale Drive / Thornton Drive TN53 Thornton Road / Glenwood Drive TN54 Government Road / Hillgate Drive TN55 Settlers Boulevard (additional 4.0m v	Government Road to McFarlanes Road	\$6,984,612	\$686,804	\$7,671,416	
	TN40	Haussman Drive	Raymond Terrace Road to Railway Avenue	\$14,503,670	\$3,313,871	\$17,817,541
	TN41	Thornton Road	Railway Avenue to Glenwood Drive	\$7,151,104	\$59,828	\$7,210,932
	TN42	McFarlanes Road	Raymond Terrace Road to TN49	\$6,349,640	\$579,568	\$6,929,208
Т	TN43	Government Road	Raymond Terrace Road to Somerset Drive	\$1,674,814	\$246,651	\$1,921,465
	TN44	Raymond Terrace Road / Hai	vest Boulevard	\$1,216,758	\$0	\$1,216,758
	TN45	Raymond Terrace Road / Ha	\$2,020,919	\$0	\$2,020,919	
	TN46	Raymond Terrace Road / Set	\$1,246,019	\$0	\$1,246,019	
TN36 TN37 TN38 TN39 Road Upgrades TN40 Haussm TN41 Thornto TN42 McFarla TN43 Governr TN45 Raymon TN46 Raymon TN46 Raymon TN47 Raymon TN48 Raymon TN48 Raymon TN49 McFarla TN50 Haussm TN51 Railway TN52 Hunting TN53 Thornto TN54 Governr TN54 Governr TN55 Governr TN55 Governr TN55 Settlers	TN47	Raymond Terrace Road / Go	vernment Road	\$2,140,733	\$0	\$2,140,733
	Raymond Terrace Road / Mc	Farlanes Road	\$1,432,678	\$0	\$1,432,678	
	McFarlanes Road / Settlers B	oulevard	\$1,179,791	\$0	\$1,179,791	
intersections	TN50	Haussman Drive / Taylor Ave	nue	\$1,981,514	\$4,944	\$1,986,458
	TN51	Railway Avenue / Glenroy Str	eet	\$3,794,138	\$2,197,475	\$5,991,613
	TN52	Huntingdale Drive / Thornton	n Drive	\$1,137,841	\$0	\$1,137,841
	TN53			\$3,678,586	\$498,199	\$4,176,785
	TN54	Government Road / Thorncli	ffe Avenue / Darlaston Avenue	\$641,324	\$0	\$641,324
	TN55	Government Road / Hillgate	Drive	\$641,324	\$0	\$641,324
TN53 TN54 TN55	TN56	Settlers Boulevard (additional	l 4.0m wide median)	\$1,354,847	\$754,000	\$2,108,847
TVCVV ROBUS	TN57	Fringe Road (additional 6.0m	reserve, 1.5m for shared way and 2.5m parking lane)	\$2,583,849	\$120,000	\$2,703,849
TOTAL				\$85,573,074	\$10,743,953	\$96,317,027

FIGURE 5: THORNTON NORTH SECTION 94 CONTRIBUTIONS PLAN – ROAD INFRASTRUCTURE

The planned road infrastructure shown above, was supported by the *Thornton North Master Plan Traffic Impact Assessment Volume 3* prepared by *Parsons Brinckerhoff* dated August 2003 (**PB Report**). From Council's website, a number of road infrastructure upgrades have been completed as shown in **Figure 6** below.

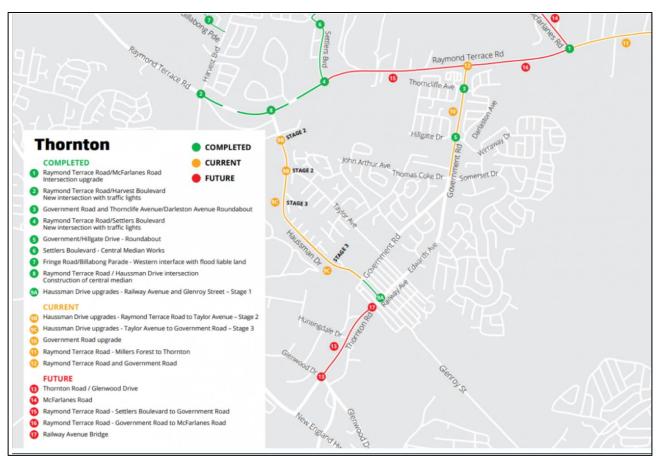


FIGURE 6: THORNTON ROAD NETWORK UPGRADE PROGRESS - MAITLAND COUNCIL

Critical intersections of Settlers Boulevard / Raymond Terrance Road and Raymond Terrace Road / Harvest Boulevard have been fully constructed to support the growth within the area. The **PB Report** does not assess non-residential uses such as the shopping centre developments and schools. As such consideration needs to be provided to the ultimate development scenario when all residential developments have been constructed and occupied in addition to the traffic generated by the proposed development.

2.6 Thornton North Urban Release Area Ultimate Development Scenario

Reference is made to the *TTPA Report* which adopted the following with consideration to additional residential development yield yet to be constructed at the time of the traffic surveys (2018):

- Additional 720 residential lots within the Waterford County Precinct, generally to be located along the eastern side of the Waterford County estate, east of Settlers Boulevard;
- Additional 2,500 residential lots within the North Thorton Urban Release Area to be located east of Waterford County Precinct.

To provide site context, the Figure 32 from Section 7 of the Maitland Council Development Control Plan (MDCP) Part F – Urban Release Areas is reproduced in **Figure 7** below.

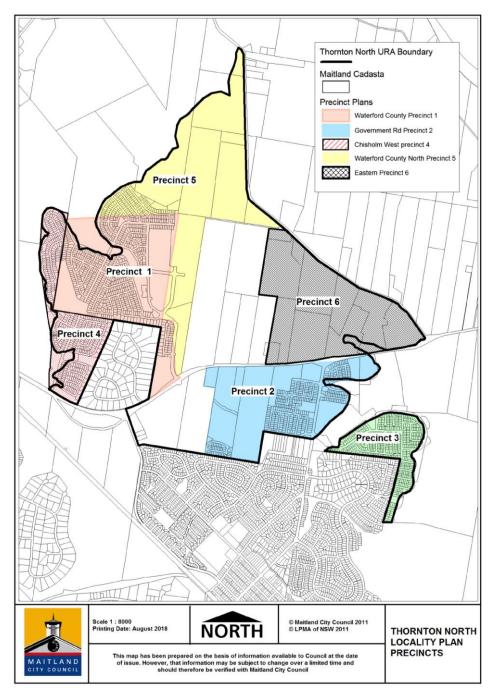


FIGURE 7: THORNTON NORTH PRECINCT PLAN - COUNCIL DCP

With reference to **Figure 7** above, Precincts 1, 4 and 5 are assumed to provide an additional residential yield of 720 residential dwellings (with the majority being within Precinct 5) and Precincts 2, 3 and 6 are assumed to provide an additional residential yield of 2,500 lots.

The general road hierarchy for the Thornton North Urban Release area is shown in **Figure 8** below which shows the following road connections:

 Precincts 2 and 3 will have access to Raymond Terrace Road via Government Road and Hillgate Drive (left in / left out);

- Precinct 6 will have access to Raymond Terrace Road via a forth leg connection to Government Road. In addition, a connection to M^cfarlanes Road will be made to Precinct 6 with a local road connection to Waterford County Precinct 1 and 5.
- Precincts 1 and 4 will have a local road connection to Raymond Terrace Road via the extension of Harvest Boulevard which has been constructed.

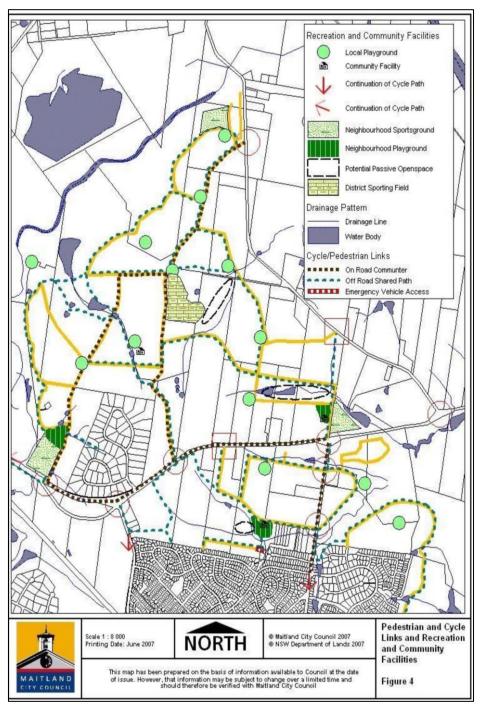


FIGURE 8: ROAD HIERARCHY, PEDESTRIAN AND CYCLE LINKS - COUNCIL DCP

In view of the above, the traffic conditions within close proximity to the site will change as a result of additional residential developments. The **PB Report** does not provide clear directional distributions of the external traffic generated by the Thornton North Urban

Release Area. Upon review of *Table 5.2* of the **PB Report**, the following distribution can be derived:

Inbound:

- 65% from the south;
- 30% from the west;
- 5% from the north and east.

Outbound:

- 60% to the south;
- 25% to the west;
- 15% to the north and east.

Based upon the above, the remaining development yield within the Thornton North Urban Release area is expected to generate vehicle trips as shown in **Table 2** below.

It should be noted that the peak hour residential traffic generation rate on the weekend has been estimated based upon the comparison of the traffic volumes from the weekday to the weekend survey. The observed traffic volumes into and out of the subdivision on the weekend is roughly 64% of that of the weekday. As such, the traffic generation on the weekend will be 64% of the PM peak hour traffic generation rate.

TABLE 2: ESTIMATED TRAFFIC GENERATION – THORNTON NORTH URBAN RELEASE AREA

Land Use	Precinct	Scale	Time Period	Traffic Generation Rate	Traffic Generation (1)(2)
			AM Peak	0.71 per dwelling	511 (102 in, 409 out
	1, 4 & 5	720 lots	PM Peak	0.78 per dwelling	562 (450 in, 112 out)
			Weekend	0.5 per dwelling	360 (180 in, 180 out)
Residential	2,3,6	2,500 lots	AM Peak	0.71 per dwelling	1,775 (355 in, 1,420 out)
			PM Peak	0.78 per dwelling	1,950 (1,560 in, 390 out)
			Weekend	0.5 per dwelling	1,250 (625 in, 625 out)
			AM Peak		2,286
TOTAL	-		PM Peak	-	2,512
N (1) 200(Weekend		1,610

Note: (1) 20% inbound, 80% outbound in AM peak hour and 80% inbound, 20% outbound in PM peak hour. (2) 50% inbound, 50% outbound in weekend peak hour period

As shown above, the Thornton North Urban Release Area is anticipated to generate 2,286 vehicle trips in the AM peak hour period, 2,512 vehicle trips during the PM peak hour periods and 1,610 vehicle trips during the weekend peak hour period.

The additional vehicle trips noted above have been added to the traffic surveys undertaken in 2018 to provide a base case scenario of the ultimate development yield as a result of the Thornton North Urban Release Area. It is assumed that 80% of the traffic generated by Precincts 1,4 & 5 will utilise the intersection of Raymond Terrace Road / Settlers Boulevard and 20% will utilise the intersection of Raymond Terrace Road / Harvest Boulevard for a conservative assessment.

The resulting intersection performance of critical intersections is summarised in **Table 3**, with detailed SIDRA outputs provided in **Annexure C** for reference.

TABLE 3: INTERSECTION PERFORMANCES (SIDRA INTERSECTION 9.0) – ULTIMATE RESIDENTIAL YIELD

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	Level of Service ⁽³⁾⁽⁴⁾	Control Type	Worst Movement	
THORI	NTON NORT	TH URBAN REL	EASE AREA UL	TIMATE DEVE	ELOPMENT YII	ELD	
Settlers	AM	0.67	24.1	В		N/A	
Boulevard / Raymond	PM	0.64	15.1	В	Signals	N/A	
Terrace	Weekend	0.43	16.7	В		N/A	
Harvest	AM	0.53	12.3	Α		N/A	
Boulevard / Raymond	PM	0.80	16.2	В	Signals	N/A	
Terrace	Weekend	0.50	11.4	Α		N/A	
Settlers Boulevard /	АМ	0.30	5.8 (Worst: 11.1)	A (Worst: B)		RT from Settlers Boulevard (E)	
Heritage Drive / Duskdarter Street	PM	0.29	6.7 (Worst: 11.7)	A (Worst: B)	Roundabout	RT from Duskdarter Street (W)	
	Weekend	0.15	5.7 (Worst: 10.4)	A (Worst: B)			
	AM	0.23	3.9 (Worst: 8.6)	N/A (Worst: A)			
Heritage Drive / Tigerhawk Drive	PM	0.10	3.8 (Worst: 6.8)	N/A (Worst: A)	Priority	RT from Tigerhawk Drive (W)	
	Weekend	0.10	4.2 (Worst: 6.1)	N/A (Worst: A)		51176 (11)	
	AM	0.01	2.5 (Worst: 6.6)	N/A (Worst: A)			
Grasshawk Drive / Dragonfly Drive	PM	0.06	2.7 (Worst: 6.6)	N/A (Worst: A)	Priority	RT from Grasshawk	
NOTES:	Weekend	0.05	3.1 (Worst: 6.1)	N/A (Worst: A)		Drive (E)	

NOTES:

As shown above, with consideration to the full development yield of the Thornton North Urban Release area the relevant intersections are forecast to operate at a high level of efficiency, with a Level of Service (LoS) "A" or "B" conditions in both the AM, PM and weekend peak hour periods. The level of service "A" and "B" performance is characterised by low approach delays and spare capacity.

It should be noted that the above assessment would include the traffic generated from the residential subdivision proposed as part of this development application.

⁽¹⁾ The Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

⁽²⁾ The average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.

⁽³⁾ The Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.

⁽⁴⁾ No overall Level of Service is provided for Give Way, Priority and Stop controlled intersections as the low delays associated with the dominant movements skew the average delay of the intersection. The Level of Service of the worst approach is an indicator of the operation of the intersection, with a worse Level of Service corresponding to long delays and reduced safety outcomes for that approach.

3 PARKING ASSESSMENT

3.1 Council Parking Requirement

Reference is made to the *Maitland Development Control Plan 2011 – Part C – Design Guidelines* which designates the following parking rates applicable to the proposed development:

C.11 - Vehicular Access & Car Parking

2. General Requirements

2.2 Calculation of Parking Requirements

b) Mixed Uses

For developments incorporating different categories of uses, a separate calculation will be made for each component and then added together to provide the total parking requirement. Any departure from this method will only be considered where it is demonstrated that the peak demand for each land use component of the development is staggered. In this regard the applicant should submit a parking profile showing the cumulative parking demand by time-of-day.

c) Calculation of Numbers

Where the calculation results in a fraction of a space, the total number of parking spaces required will be the next highest whole number.

Appendix A Car Parking Requirements for Specific Land Uses

Childcare Centre

1 space per 4 children in attendance or there part of.

Drive In Take Away Food Outlets

(premises which cater for customers being able to park on-site, get take away service, seating provided for on-site consumption and the addition of a drive through facility)

1 space per 8m² GFA plus

1 space per 3 seats

An exclusive area for queuing of cars for a drive through facility is required (queue length of 5 to 12 cars measured from pick up point). There should also be a minimum of four car parking spaces for cars queued from the ordering point. Provision should also be made for car/trailer combinations at strategic locations

Dwelling Houses

Minimum of 1 space

Registered Clubs/ Pubs

(including sexual entertainment establishments)

Outside the Maitland CBD.

1 space per 10m² of public or licensed floor area (bar, lounge, dining room, games room) shall be provided.

Gymnasium

7.5 spaces per 100m² GFA.

Restaurants, take-away food and drink premises

1 space per 6.5m² service area or

1 space per 3 seats

WHICHEVER IS GREATER

A food outlet which provides no seating will also be assessed as a "shop".

Shops

(Shops greater than 1000m² include supermarkets, department stores, regional shopping complexes etc)

Shops less than 1000m² – 1 space per 25m2 GFA.

Shops greater than 1000m² – 1 space per 16m2 GFA

Business Premises and Office Premises

1 space per 40m² GFA

It is noted that the Maitland DCP does not provide car parking rates for medical centre uses and as such, reference is made to the *RTA Guide to Traffic Generating Developments 2002* as adopted by TfNSW which designates the following parking rates applicable to this use:

5.12.2 Extended hours medical centres

4 per 100 m² gross floor area

Further, neither Council's DCP nor the TfNSW Guide provide car parking rates for swim school developments. As such, a first principles assessment of the parking demands has been conducted, assuming a rate of two (2) car parking spaces per child on-site at any one

time. This accounts for the cross over of consecutive classes (i.e. two class are on-site at any one time).

It is noted that the residential subdivision requires the provision of minimum one (1) car parking space per residential dwelling proposed as part of the development. The quantum of residential dwellings is not known at this stage, with the car parking required by the residential subdivision to be deduced at a later stage. It is expected that all parking for the residential component will be capable of being provided on each individual lot.

Table 4 presents the parking requirements of the proposal according to applicable car parking rates as extracted from Council's DCP and the TfNSW Guide.

TABLE 4: COUNCIL DCP PARKING RATES

Land Use	Scale	Document	Rate	Spaces Required	
Supermarket	3,912m ² GFA	DCP			
Liquor	185m ² GFA	DCP	1 per 16m ² GFA	349.8	
Major Retail	1,500m ² GFA	DCP			
Shops	3,695m ² GFA	DCP	1 per 25m ² GFA	147.8	
Tavern	890m² GFA	DCP	1 per 10m ² LFA	89	
Medical Centre	745m ² GFA	TfNSW	4 per 100m ² GFA	29.8	
Food and Drink Premises	160m² GFA	DCP	1 per 25m² GFA	6.4	
Child Care Centre	112 children	DCP	1 per 4 children	28	
Gymnasium	8,00m ² GFA	DCP	7.5 per 100m ² GFA	60	
Swim School	Swim School 1,040m² GFA 20 children per class First Principles		2 per child	40	
Car Wash	475m ² GFA	475m ² GFA DCP		11.9	
TOTAL	-	-	-	762.7 (763)	

As shown, strict application of the DCP requires the provision of **763** car parking spaces. The proposed plans detail the provision of **682** car parking spaces including the **21** spaces along the New Link Road, resulting in a numerical shortfall of **81** parking spaces from Council's DCP requirements.

It should be noted that Council's DCP parking rates are generally applicable to standalone developments and do not consider cross utilisation of car parking of different uses or consideration to different peak parking periods. As such, the parking required by the proposed development will been assessed against the *RTA Guide to Traffic Generating Developments 2002* which considers cross utilisation of retail uses.

As per Council's DCP, for mixed use developments any variation to the above provision of parking must demonstrate via a parking demand profile which shows the cumulative peak parking periods of the various uses throughout the day are staggered and do not overlap.

Considering this, it is evident that some land uses will not overlap with one another, particularly the following:

- The child care centre will not operate on weekends;
- Gymnasiums and swim schools do not operate at their peaks on weekends;
- Taverns peak parking periods occur in the afternoon.

Considering this, a parking demand profile has been provided with reference to the following data and documents:

- RTA Land Use Data Shopping Centres 1991 by Arup Transportation Planning:
 - Only sites with no access to public transport have been relied upon (total 10 sites).
- M^CLaren Traffic Engineering personal experience with Taverns / Pubs which includes detailed regressions analysis including patron counts for up to 10 different taverns / pubs.
- Trip Generation and Parking Demand Surveys of Gymnasiums Data and Analysis Report prepared by People Trans dated 27 November 2014:
 - Includes data for four (4) Gymnasiums.

Using the above data, the typical parking profile for a shopping centre, gymnasium and taverns has been developed for a weekday and weekend period. Using Council's parking requirements as outlined in **Table 4**, the parking demand of the proposed development is shown in **Figure 9** and **Figure 10** below.

It should be noted that the shopping centre profile has included the parking requirements for the supermarket, liquor, major retail, shops, medical centre, food and drink premises, fast food premises and car wash.

FIGURE 9: WEEKDAY PARKING PROFILE - COUNCIL DCP

As shown above, the shopping centre, tavern and gymnasium portion of the development is expected to demand **590** car parking spaces during weekdays, although this does not consider the parking demand generated by the swim school or child care centre. Including the parking demand of the swim school and child care centre results in a total anticipated parking demand of **658** (590 + 28 + 40). A further reduction could be applied as the peak parking demand occurs at 12pm, when parents are not at the child care centre. Hence, a further reduction of 14 spaces (half of 28, being staff vehicles) can be applied, resulting in the parking demand of **644** car parking spaces. The proposed development provides **682** car parking spaces, including the parking along the New Link Road, resulting in a surplus of **38** car parking spaces over the expected peak parking demand.

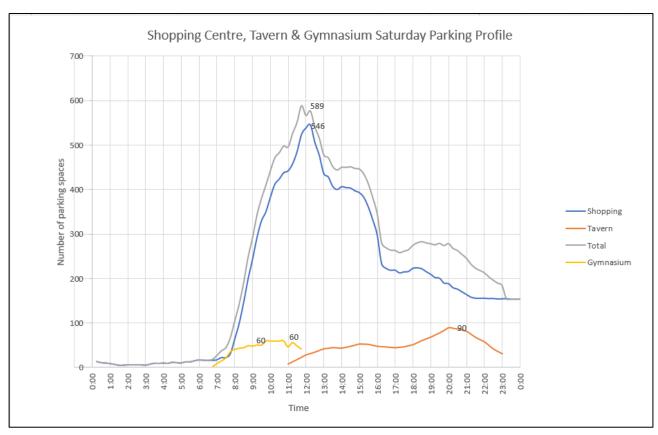


FIGURE 10: WEEKEND PARKING PROFILE - COUNCIL DCP

As shown above, the shopping centre, tavern and gymnasium portion of the development is expected to demand **589** car parking space on weekends, although this does not consider the parking generated by the swim school if it operates on weekends. Including the parking demand associated with the swim school, the proposed development will result in an anticipated parking demand of **629** (589 + 40) car parking spaces. The proposed development provides **682** car parking spaces, including the parking along the New Link Road, resulting in a surplus of **53** car parking spaces over the expected peak parking demand.

It is evident from the above, that the peak parking demand periods of the various uses of the site do not directly overlap, such that a reduction in parking based upon the peak operating periods of the site can be supported. Not only this, but there is also potential to further reduce the car parking demand of the site from Council's DCP parking requirements.

As noted previously, Council's DCP parking rates are generally applicable to standalone developments and do not consider cross utilisation of car parking between similar uses. To consider this, the parking required by the proposed development will be assessed against the *RTA Guide to Traffic Generating Developments 2002* which considers parking demand for shopping centres based upon various retail categories.

3.2 TfNSW Parking Requirement

Due to the large nature of the proposed mixed-use development, reference is made to the RTA Guide to Traffic Generating Developments 2002 and more recent supplements as adopted by TfNSW, which contains car parking rates based upon surveys undertaken of similar sized developments and takes into consideration the cross utilisation of car parking between various land uses within shopping centres. The applicable shopping centre car parking model is extracted below:

5.7.1 Shopping centres.

Peak Parking = 24 A(S) + 40 A(F) + 42 A(SM) + 45 A(SS) + 9 A(OM)Demand (per 1,000m2).

where:

- A(S): Slow Trade GLFA, includes major Department stores such as David Jones and Grace Brothers, furniture, electrical and utility goods stores.
- A(F): Faster Trade GLFA, includes discount department stores such as K-Mart and Target, together with larger specialist stores such as Fosseys.
- A(SM): Supermarket GLFA, includes stores such as Franklins and large fruit markets.
- A(SS): Speciality Shops and Secondary retail GLFA, includes speciality shops and take-away stores such as McDonalds. These stores are grouped since they tend not be primary attractors to the centre.

A(OM): Offices, medical GLFA.

5.9.2 Gymnasiums.

Metropolitan sub-regional areas.

minimum provision: 4.5 spaces per 100m² GFA.

Desirable provision: 7.5 spaces per 100m² GFA.

5.12.3 Child care centres

One space for every four children in attendance

Further, it is noted that the TfNSW Guide does not provide car parking rates for tavern developments and as such, the appropriate DCP rates have been applied. Similarly, neither Council's DCP nor the TfNSW Guide provide car parking rates for swim school developments. As such, a first principles assessment of the parking demands has been conducted, assuming a rate of two (2) car parking spaces per child on-site at any one time.

This accounts for the crossover of consecutive classes (i.e. two class are on-site at any one time).

Table 5 presents the parking requirements of the proposal according to applicable car parking rates as extracted from the TfNSW Guide.

TABLE 5: TFNSW / DCP PARKING RATES

Land Use	Document	Туре	Scale	Rate	Spaces Required
Supermarket	TfNSW	A(SM)	3,500m² GLFA	4.2 per 100m ² GLFA	147
Liquor	TfNSW	A(SM)	185m² GLFA	4.2 per 100m ² GLFA	7.8
Major Retail	TfNSW	A(F)	1,500m² GLFA	4.0 per 100m ² GLFA	60
Shops	TfNSW	A(SS)	3,695m² GLFA	4.5 per 100m ² GLFA	166.3
Tavern	DCP	-	890m ² GFA	1 per 10m ² LFA	89
Medical Centre	TfNSW	A(OM)	745m² GLFA	0.9 per 100m ² GFA	6.7
Food and Drink Premises	TfNSW	A(SS)	160m² GLFA	4.5 per 100m ² GLFA	7.2
Child Care Centre	DCP / TFNSW	-	112 children	1 per 4 children	28
Gymnasium	TfNSW	-	800m ² GFA	7.5 per 100m ² GFA	60
Swim School	First Principles	-	1,040m² GFA 20 children	2 per child	40
Car Wash	TfNSW	A(OM)	475m² GLFA	0.9 per 100m ² GFA	4.3
TOTAL	-	-	-	-	616.3 (617)

As shown, strict application of the TfNSW Guide requires the provision of **617** car parking spaces. The proposed plans detail the provision of **682** car parking spaces including the parking along the New Link Road, resulting in a numerical surplus of **65** parking spaces.

Similar to **Section 3.1**, the above parking requirements do not consider the different peak parking demands of the various land uses. The methodology for the parking profile as outlined in **Section 3.1** has been reproduced using the parking requirements shown in

Table 5 above, with the results shown in Figure 11 & Figure 12

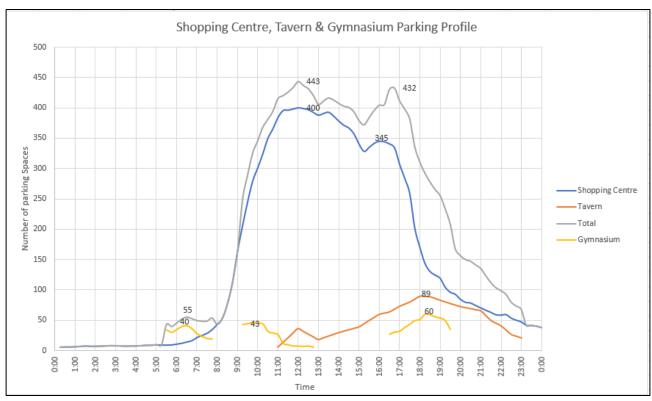


FIGURE 11: WEEKDAY PARKING PROFILE - TFNSW DATA

As shown above, the shopping centre, tavern and gymnasium portion of the development is expected to demand **443** car parking spaces during weekdays, although this does not consider the parking demand generated by the swim school or child care centre. Including the parking demand of the swim school and child care centre results in a total anticipated parking demand of **511** (443 + 28 + 40). A further reduction could be applied as the peak parking demand occurs at 12pm, when parents are not at the child care centre. Hence, a further reduction of 14 spaces (half of 28, being staff vehicles) can be applied, resulting in the parking demand of **497** car parking spaces. The proposed development provides **682** car parking spaces including the parking along the New Link Road, resulting in a surplus of **185** car parking spaces, meeting the anticipated parking demand of the site on weekdays.

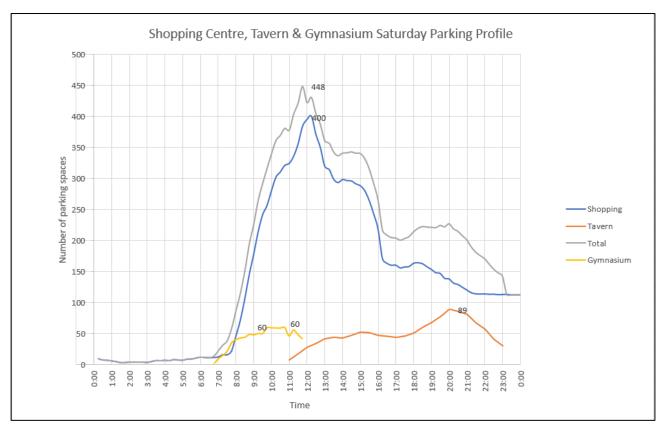


FIGURE 12: WEEKEND PARKING PROFILE - TFNSW DATA

As shown above, the shopping centre, tavern and gymnasium portion of the development is expected to demand **448** car parking space on weekends, although this does not consider the parking generated by the swim school if it operates on weekends. Including the parking demand associated with the swim school, the proposed development will result in an anticipated parking demand of **488** (448 + 40) car parking spaces. The proposed development provides **682** car parking spaces, including the parking along the New Link Road, resulting in a surplus of **194** car parking spaces.

In view of the above, the provision of **661** on-site car parking spaces in addition to the **21** on-street spaces provided along the New Link Road exceeds the anticipated parking demand of the proposed development.

3.3 Disabled Parking

The Maitland Council DCP (Part C – Design Guidelines) makes reference to the Building Code of Australia (BCA) for the provision of disabled car parking, in addition to adopting an enhanced disabled car parking provision for particular land uses. The council requires the following provision of disabled car parking spaces for large retail complexes:

Large Retail complexes > 100 spaces

Three spaces per one hundred car parking spaces

Reference is made to *Table D3.5* of the *Building Code of Australia* (BCA) as part of the *National Construction Code 2019* (NCC) which categorises the proposed uses as a building class with an associated disabled car parking rate as extracted below:

Class 5 – 1 space for every 100 carparking spaces or part thereof.

Uses: Medical Centre

Class 6 – 1 space for every 50 carparking spaces or part thereof.

Uses: Supermarket, Retail Premises, Tavern, Fast Food Premises, Gymnasium, Swim School

Class 9b – 1 space for every 100 carparking spaces or part thereof.

Uses: Child Care Centre

The Class 6 disabled car parking rate of one (1) disabled space per 50 car parking spaces has been applied to the whole development, which therefore requires the provision of **14** (661/50) disabled car parking spaces.

The proposed car parking layout details the provision of **14** disabled car parking spaces as per with *AS2890.6:2009*, complying with BCA requirements. Consideration should be made to relocating one (1) disabled car parking space to be near the entrance of the gymnasium and child care centre.

3.4 Bicycle & Motorcycle Parking Requirements

The Maitland Council DCP 2011 states the following with respect to the provision of bicycle facilities:

Provision is to be made for cyclists via the installation of bicycle parking facilities in accordance with Australian Standard AS 2890.3:1993 – Bicycle Parking Facilities and AUSTROADS Guide to Traffic Engineering, Part 14.

AS2890.3:1993 does not outline any provision of bicycle facilities for developments, as such reference is made to AUSTROADS Guide to Traffic Engineering Practice – Part 14 which outlines the following bicycle provision:

Swimming Pool

Visitors – 2 per 20m² of pool area

Hotel

Staff – 1 per 25m² bar floor area & 1 per 100m² lounge area

Visitor – 1 per 25m² bar floor area & 1 per 100m² lounge area

Consulting Rooms

Staff – 1 per 8 practitioners

Visitor – 1 per 4 practitioners

Drive-In Shopping Centre

Staff – 1 per 300m² sales floor

Visitor – 1 per 500m² sales floor

Take-away

Staff - 1 per 100m² GFA

Visitor – 1 per 50m² GFA

Shop

Staff – 1 per 300m² sales floor

Visitor – 1 per 500m² sales floor over 1,000m²

Based upon the above, the recommended bicycle provision based upon *AUSTROADS Guide to Traffic Engineering Practice – Part 14* is shown in **Table 6** below. It should be noted that the assessment has been undertaken based upon GLFA.

TABLE 6: AUSTROADS BICYCLE PARKING REQUIREMENTS

Land Use	Scale	Rate	Spaces Required
Supermarket	3,500m ²	Staff – 1 per 300m² sales floor	11.7
Supermarket	GLFA	Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² Staff – 1 per 25m² bar floor area & 1 per 100m² lounge area Visitor – 1 per 25m² bar floor area & 1 per 100m² lounge area Staff – 1 per 8 practitioners Visitor – 1 per 4 practitioners Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² N/A N/A N/A Visitors – 2 per 20m² of pool area	7
Liquor	185m²	Staff – 1 per 300m ² sales floor	0.6
Liquoi	GLFA	Visitor – 1 per 500m² sales floor	0.4
Major Potail	1,500m ²	Staff – 1 per 300m² sales floor	5
Major Retail	GLFA	Visitor – 1 per 500m² sales floor	3
	3,695m ²	Staff – 1 per 300m² sales floor	12.3
Shops	GLFA	Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Staff – 1 per 500m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² Staff – 1 per 25m² bar floor area & 1 per 100m² lounge area Visitor – 1 per 25m² bar floor area & 1 per 100m² lounge area Staff – 1 per 8 practitioners Visitor – 1 per 4 practitioners Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² N/A N/A Visitors – 2 per 20m² of pool area N/A Staff	5.4
T	2002 054	Staff – 1 per 25m² bar floor area & 1 per 100m² lounge area	8.9
Tavern	890m ² GFA		8.9
Medical Centre ⁽¹⁾	745m ²	745m ² Staff – 1 per 8 practitioners	
Medical Certife	GLFA	Visitor – 1 per 4 practitioners	2
Food and Drink	160m ²	Staff – 1 per 300m² sales floor	0.5
Premises	GLFA	Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor Visitor – 1 per 500m² sales floor Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² Staff – 1 per 25m² bar floor area & 1 per 100m² lounge area Visitor – 1 per 25m² bar floor area & 1 per 100m² lounge area Staff – 1 per 8 practitioners Visitor – 1 per 4 practitioners Staff – 1 per 300m² sales floor Visitor – 1 per 500m² sales floor over 1,000m² N/A N/A N/A Staff Staff	0
Child Care Centre	112 children	N/A	N/A
Gymnasium	8,00m ² GFA	N/A	N/A
Swim School	1,040m² GFA 115m² pool	Visitors – 2 per 20m² of pool area	11.5
Car Wash	475m² GLFA	N/A	N/A
TOTAL		Staff	40
Note: 1 – assumed 8 practiti	•	Visitor	38

Note: 1 – assumed 8 practitioners

As shown above, the proposed development requires the provision of **78** bicycle spaces, split 40 staff and 38 visitors. It is recommended that bicycle parking be provided throughout the development. There is sufficient room on-site to provide these facilities and it can be a condition of consent.

Council's DCP does not require the provision of motorcycle parking. No motorcycle has been provided, satisfying Council requirements.

3.5 Servicing & Loading

The Maitland City Council DCP Part C – Section 4 does not outline the provision of loading facilities for the proposed development, but states that the number and dimensions of the on-site loading bays must be designed having regard to the nature and scale of the proposed development.

Considering the above, it is expected that a variety of loading facilities will be required for the proposed development considering the various proposed uses and number of tenancies proposed. The largest servicing vehicle expected to travel to and from the site is a 20m length Articulated Vehicle. In addition to this it is expected that smaller loading facilities will be required to service the development, including the following vehicles:

- B99 delivery Van;
- 6.4m length Small Rigid Vehicle;
- 8.8m length Medium Rigid Vehicle;
- 12.5m length Heavy Rigid Vehicle.

It is expected that deliveries to and from the site will be undertaken from the loading dock, via the New Link Road for the shopping centre. Smaller delivery vehicles, such as B99 delivery vans may undertake loading from the on-site car park for the child care centre, swim school and gymnasium. Typically swim schools and gymnasiums do not require ongoing loading facilities after the initial fit out, whilst child care centres typically operate with deliveries conducted by B99 delivery vans.

The capacity of the loading dock from the New Link Road can accommodate parking for three (3) x 20m length Articulated Vehicle spaces (two on the western side and one on the eastern side).

To ensure the loading dock is managed by on-site tenants, it is recommended that a loading dock management plan be prepared as part of the conditions of consent. Swept path testing has been undertaken into and out of all the critical loading spaces and is reproduced in **Annexure D** for reference.

The haulage route to and from the loading dock will consist of entry via Heritage Drive or Settlers Boulevard via the New Link Road and egress onto Settlers Boulevard and undertaking a U-turn at the roundabout intersection of Tigerhawk Drive / Settlers Boulevard. Swept path testing has been undertaken for the haulage route and is reproduced in **Annexure D** for reference.

3.6 Car Park Design & Compliance

The car parking layout of the mixed-use development as depicted in **Annexure A**, has been assessed to achieve the relevant clauses and objectives of *AS2890.1:2004*, *AS2890.2:2002* and *AS2890.6:2009*. Swept path testing has been undertaken and are reproduced within **Annexure D** for reference. The design of the on-site conditions achieves the following:

The proposed car parking and vehicular access design achieves the following:

- Separated entry and exit driveways, with minimum widths of 3.6m, facilitating access to Settlers Boulevard:
 - Restricted to left in / left out.
- 6.4m width exit driveway and 4.4m width entry driveway facilitating access to / from Heritage Drive:
- 5.7m entry only driveway from Tigerhawk Drive;
- 18.6m width two-way driveway facilitating access to the New Link Road;
- Pedestrian sight triangle of 2m by 2.5m at the property boundary at all relevant driveways;
- Minimum 6.6m width parking aisles with 2.6m wide visitor spaces (User Class 3A);
- Compliant ramp grades not exceeding 20% and no grade change greater than 12.5%;
- Minimum 5.4m length, 2.6m width spaces for parents / visitors;
- Minimum 5.4m length, 2.4m width disabled spaces with adjacent associated 5.4m length, 2.4m width shared space;
- Minimum 0.3m clearance to high objects from trafficable areas;
- Minimum headroom of 2.2m for general circulation and 2.5m headroom clearance provided over disabled and adaptable parking areas.

Whilst the plans have been assessed to comply with the relevant standards, it is usual and expected that a design certificate be required at the Construction Certificate stage to account for any changes following the development application.

3.7 Subdivision Design & Compliance

Reference is made to *Maitland City Council Engineering Standards – Road Design* and *Maitland Council Development Control Plan 2011 Part C – Design Guideline* which provides the following design requirements for subdivisions as shown in **Figure 13** & **Figure 14** below:

Road Type	Max. No. Lots	ReserveWidth (m)	Carriageway or kerb –kerb (m)
Access Place	10	17	8
Local - Minor	20	17	8
Local - Secondary	50	17	8
Local - Primary	100	17	8
Collector	200	17	8
Distributor - Secondary	400	20	11
Distributor - Primary	800	22	11
Arterial or Sub- Arterial	> 800	24	13
Rural Residential (1c)	per above	20	7.5
Rural Residential (1d)	per above	20	per categories above
Rural – Minor	50	20	8
Industrial	10	20	11
Industrial	> 10	22	13

FIGURE 13: MAITLAND COUNCIL DCP PART C

ROAD TYPE	MAX NO. LOTS	RESERVE WIDTH (m) ^a	CARRIAGEWAY / KERB-KERB (m) ^b	ON-ROAD BICYCLE FACILITY	FOOTWAY VERGE (m) ^c	KERB ^d	FOOTPATH (1.5m WIDE) ^e	DESIGN ESA ^f
Local – Place ^I	10	17	8	Mixed	4.5	Rolled	As Required	1 x10 ⁵
Local – Access ¹	20	17	8	Mixed	4.5	Rolled	One side	1 x10 ⁵
Local – Secondary ^I	50	17	8	Mixed	4.5	Rolled	One side	2 x10 ⁵
Local - Primary ^I	100	17	8	Mixed	4.5	Rolled	One side	5 ×10 ⁵
Collector - Secondary ¹	200	17	8	Mixed (Parking)	4.5	Upright	One side	1 x10 ⁶
Collector - Primary N	300	20	11	Mixed (Parking) P	4.5	Upright	One side	1.5 x10 ⁶
Distributor –Secondary ^v	400	23	14	Mixed (Parking) ^p	4.5	Upright	Both sides	2 x10 ⁶
Distributor - Primary ^{m v}	500	24	15 ^q	1.5m Lane	4.5	Upright	Both sides	5 x10 ⁶
Sub-Arterial ⁿ	3500	24.4	15.4 ^r	1.7m Lane ^s	4.5	Upright	Both sides	1 x10 ⁷ min
Industrial - Secondary	10 ^g	22	13	Mixed	4.5	Upright	As Required	5 x10 ⁶
Industrial - Primary	> 10	22	13	Mixed	4.5	Upright	As Required	1x10 ⁷
School Bus/Public Route °			9min / 12min					2/5 x10 ⁶ min
Business / School Precinct			15.4	1.7m Lane	5.5 min ^h	Upright		1 x10 ⁷ min

FIGURE 14: MAITLAND CITY COUNCIL ENGINEERING STANDARDS - ROAD DESIGN

As shown above, residential subdivisions local roads require a road reserve of 17m. The New Link Road providing access between Settlers Boulevard and Heritage Drive is not outlined within Council's Road hierarchy, but would operate similar to a low scale industrial road as a result of the proposed loading dock for the shopping centre. As such, the minimum design for an industrial road is a 20m to 22m road reserve.

Council's pre-DA comments for the subject development dated 12 August 2021 provided a recommendation to match the existing stub road near Heritage Drive, being a 4.5m wide verge, 12m wide carriageway and a 5.5m verge, resulting in a road reserve of 22m.

The proposed plans detail the New Link road with a 22m wide road reserve, designed in accordance with Council's pre-DA comments.

3.8 Pedestrian & Cycleway Considerations

Reference is made to Section 7 of the Maitland Council Development Control Plan (MDCP) Part F – Urban Release Areas – Chisholm Neighbour Centre, which outlines the objective of the development is to provide pedestrian and cycle routes that connect the neighbourhood centre to the surrounding residential neighbourhood and local features such as the primary school; open spaces and community uses.

Figure 8 outlines the Council indicative cycleway links from the centre to the surrounding residential areas and community facilities. Tigerhawk Drive and Settlers Boulevard along the site frontage provides existing on-road and off road cycling facilities, whilst Heritage Drive provides an existing off-road shared path.

The New Link Road based upon Council's Road Design (**Figure 14**) outlines the provision of a mixed on-road bicycles facilities. Hence, no dedicated on-road bicycle lanes are required along the New Link Road. Consideration should be made to continuing the shared path along the New Link Road on both sides of the road between Heritage Drive and Settlers Boulevard. Based upon the above the development achieves the objectives of Council's DCP by providing connectivity to the greater bicycle network.

The area of influence for the proposed development for pedestrian connectivity relates to the ability for the centre to provide safe pedestrian access to and from the site from the surrounding road network, particularly along the site frontages. Council requires the following with respect to pedestrian / cycle refuges:

The intersection of Tigerhawk and Heritage Drives shall be upgraded to cater for pedestrian safety, bus and heavy vehicles and traffic movements. Traffic lights are envisaged for this intersection

Pedestrian/cycle refuges, or greater, shall be provided on public roads including a central connection across Heritage Drive to the Riparian Corridor.

Existing pedestrian facilities within close proximity to the site are outlined below:

- Tigerhawk Drive is provided with an existing signalised pedestrian crossing which provides direct pedestrian connectivity to the north;
- The roundabout intersection of Heritage Drive / Duskdarter Street / Settlers Boulevard provides pedestrian refuge facilities on the approach to all legs;

• The roundabout intersection of Tigerhawk Drive / Settlers Boulevard provides pedestrian refuge facilities on the approach to all legs.

Based upon the existing facilities, the proposed development has existing pedestrian connectivity directly to the north, east and south of the site. There are currently no existing pedestrian facilities that enables access to the west, across Heritage Drive. As part of this report investigation will be made into pedestrian infrastructure across Heritage Drive and also if the intersection of Heritage Drive / Tigerhawk Drive is required to be upgraded to a signalised intersection which is envisaged by Council for this intersection. It is relevant to note that the upgrade of Heritage Drive / Tigerhawk Drive is not part of the Section 94 Contributions as outlined in **Figure 5**. The detailed assessment is outlined in **Section 4.4**.

3.9 Provision of bus & Taxi facilities

Reference is made to Section 7 of the Maitland Council Development Control Plan (MDCP)
Part F – Urban Release Areas – Chisholm Neighbour Centre which outlines the following
for bus and taxi facilities:

There are no specific requirements as provision of public facilities and services is already controlled by other provisions in the Maitland Local Environmental Plan 2011 and the Maitland Development Control Plan 2011.

Notwithstanding the above, Council's DCP outlines locations of bus setdown facilities as part of the principle Plan for the shopping centre. The council plan is shown in **Figure 15** below.

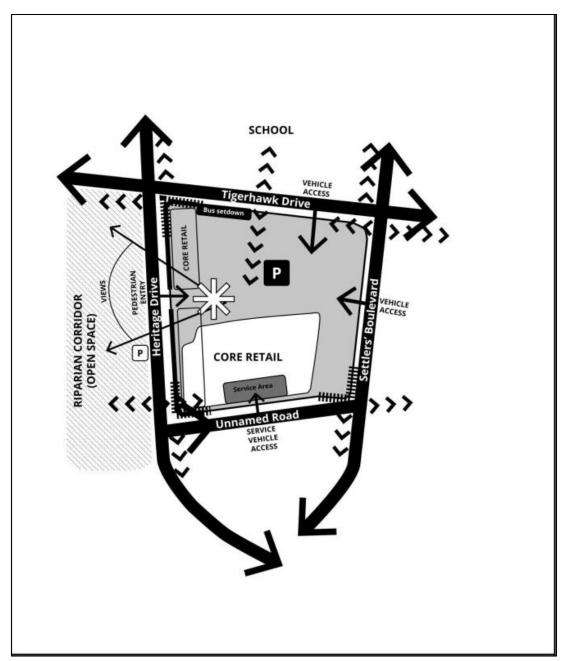


FIGURE 15: MAITLAND COUNCIL DCP - CHISHOLM CENTRE PRINCIPLE PLAN

As part of the proposed development considering the above, it is anticipated that bus and taxi facilities will be provided along Tigerhawk Drive fronting the proposed development site. Any bus and taxi facilities should be located after the proposed entry only driveway from Tigerhawk Drive. It is expected that public bus and taxi facilities will also utilise the school frontage for drop-off and pick-up outside of school hours and on weekends.

4 TRAFFIC ASSESSMENT

The impact of the expected traffic generation levels associated with the subject proposal is discussed in the following sub-sections.

4.1 Traffic Generation

Traffic generation rates for the relevant land uses are provided in the *RTA Guide to Traffic Generating Developments (2002)* as adopted by Transport for New South Wales (TfNSW) and recent supplements and are as follows:

3.6.1 Shopping centres.

Thursday:

$$V(P) = 20 \ A(S) + 51 \ A(F) + 155 \ A(SM) + 46 \ A(SS) + 22 \ A(OM)$$

Friday:
 $V(P) = 11 \ A(S) + 23 \ A(F) + 138 \ A(SM) + 56 \ A(SS) + 5 \ A(OM)$
Saturday:

PVT = 38 A(S) + 13 A(F) + 147 A(SM) + 107 A(SS)

(vehicle trips per 1000m2)

where:

A(S): Slow Trade GLFA, includes major Department stores such as David Jones and Grace Brothers, furniture, electrical and utility goods stores.

A(F): Faster Trade GLFA, includes discount department stores such as K-Mart and Target, together with larger specialist stores such as Fosseys.

A(SM): Supermarket GLFA, includes stores such as Franklins and large fruit markets.

A(SS): Speciality Shops and Secondary retail GLFA, includes speciality shops and take-away stores such as McDonalds. These stores are grouped since they tend not be primary attractors to the centre.

A(OM): Offices, medical GLFA.

3.7.3 Clubs.

evening peak period traffic generation of 10 veh/hr/100 m2 licensed floor area

3.8.2 Gymnasiums.

Metropolitan Sub Regional Areas.

Evening Peak Hour Vehicle Trips = 9 trips per 100m2 GFA.

3.11.3 Child care centres

Long-day care

7.00-9.00am 0.8 peak vehicle trips per child

4.00-6.00pm 0.7 peak vehicle trips per child

It is noted that that the TfNSW Guide does not provide traffic generation rates for swim school developments and as such, a first principles assessment has been conducted. This is based on a traffic generation rate of two (2) trips per child on-site at any one time (i.e. one trip inbound and one trip outbound within a single hour) based upon the occurrence of one swimming lesson per hour.

Further, it is assumed that the shopping centre exhibits a traffic generation in the AM peak hour period of 50% of the PM peak hour (consistent with **Figure 11**) and the tavern is closed during the AM peak hour period. The traffic generation of the gymnasium in the AM peak hour period will be 70% (6.3 trips per 100m² GFA) of the PM peak hour traffic generation, which is based upon the **Figure 11**.

To consider shared vehicle trips between the shopping centre, gymnasium, child care centre and swim school, a conservative 10% discount will be applied to the gymnasium, child care centre and swim school traffic generation to account for multi-purpose trips which are not included within the shopping centre model.

The resulting traffic generation in the weekday AM and PM peak hour period and midday weekend peak hour period is summarised **Table 7**, **Table 8** and **Table 9**.

TABLE 7: ESTIMATED WEEKDAY PM PEAK HOUR TRAFFIC GENERATION OF SHOPPING CENTRE

Land Use	Scale	Rate	Vehicle Trips	Directional Split ⁽¹⁾
	Р	M Peak Hour Period		
Supermarket	3,500m ² GLFA	155 A(SM) per 1000m ²	543	271 in, 272 out
Liquor	185m² GLFA	155 A(SM) per 1000m ²	29	14 in, 15 out
Major Retail	1,500m ² GLFA	51 A(F) per 1000m ²	77	38 in, 39 out
Shops	3,695m ² GLFA	46 A(SS) per 1000m ²	170	85 in, 85 out
Tavern	890m ² GFA	10 per 100m ² LFA	89	45 in, 44 out
Medical Centre	745m ² GLFA	22 A(OM) per 1000m ²	16	8 in, 8 out
Food and Drink Premises	160m ² GLFA	46 A(SS) per 1000m ²	7	3 in, 4 out
Child Care Centre ⁽²⁾	112 children	0.7 trips per child	78	39 in, 39 out
Gymnasium ⁽²⁾	800m ² GFA	9 per 100m ² GFA	65	32 in, 33 out
Swim School ⁽²⁾	1,040m² GLFA 20 children	2 trips per child	36	18 in, 18 out
Car Wash	475m ² GLFA	22 A(OM) per 1000m ²	11	5 in, 6 out
TOTAL	is EOO/ inhound and EOO	-	1,121	558 in, 563 out

Note: 1 – Directional split is 50% inbound and 50% outbound

^{2 - 10%} discount due to shared vehicle trips

TABLE 8: ESTIMATED WEEKDAY AM PEAK HOUR TRAFFIC GENERATION OF SHOPPING CENTRE

Land Use	Scale	Rate	Vehicle Trips	Directional Split ⁽¹⁾
	Α	M Peak Hour Period		
Supermarket	3,500m ² GLFA	77.5 A(SM) per 1000m ²	272	136 in, 136 out
Liquor	185m² GLFA	77.5 A(SM) per 1000m ²	14	7 in, 7 out
Major Retail	1,500m ² GLFA	25.5 A(F) per 1000m ²	39	20 in, 19 out
Shops	3,695m ² GLFA	23 A(SS) per 1000m ²	85	43 in, 42 out
Tavern	890m ² GFA	Closed	0	0 in, 0 out
Medical Centre	745m ² GLFA	11 A(OM) per 1000m ²	8	4 in, 4 out
Food and Drink Premises	160m ² GLFA	23 A(SS) per 1000m ²	4	2 in, 2 out
Child Care Centre ⁽²⁾	112 children	0.8 trips per child	90	45 in, 45 out
Gymnasium ⁽²⁾	800m ² GFA	6.3 per 100m ² GFA	45	23 in, 22 out
Swim School ⁽²⁾	1,040m² GLFA 20 children	2 trips per child	36	18 in, 18 out
Car Wash	475m ² GLFA	11 A(OM) per 1000m ²	5	3 in, 2 out
TOTAL	= in E00/ inhound and E00	-	598	301 in, 297 out

Note: 1 – Directional split is 50% inbound and 50% outbound

^{2 - 10%} discount due to shared vehicle trips

TABLE 9: ESTIMATED WEEKEND MIDDAY PEAK HOUR TRAFFIC GENERATION OF SHOPPING CENTRE

Land Use	Scale	Rate	Vehicle Trips	Directional Split ⁽¹⁾
	Weeken	d Midday Peak Hour P	eriod	
Supermarket	3,500m ² GLFA	147 A(SM) per 1000m ²	514	257 in, 257 out
Liquor	185m ² GLFA	147 A(SM) per 1000m ²	27	14 in, 13 out
Major Retail	1,500m ² GLFA	13 A(F) per 1000m ²	20	10 in, 10 out
Shops	3,695m ² GLFA	107 A(SS) per 1000m ²	396	198 in, 198 out
Tavern	890m² GFA	10 per 100m ² LFA	89	45 in, 44 out
Medical Centre	745m ² GLFA	2 per 100m ² GFA ⁽²⁾	15	8 in, 7 out
Food and Drink Premises	160m ² GLFA	107 A(SS) per 1000m ²	17	9 in, 8 out
Child Care Centre ⁽³⁾	112 children	N/A	N/A	0 in, 0 out
Gymnasium ⁽³⁾	800m ² GFA	9 per 100m ² GFA	65	33 in, 32 out
Swim School ⁽³⁾	1,040m² GLFA 20 children	2 trips per child	36	18 in, 18 out
Car Wash	475m ² GLFA	2 per 100m ²	10	5 in, 5 out
TOTAL	-	-	1,189	597 in, 592 out

Note: 1 - Directional split is 50% inbound and 50% outbound

As shown above, the proposed development is anticipated to generate 598, 1,121 and 1,189 two-way vehicle trips during the AM (301, 297 out), PM (558 in, 563 out) and midday weekday (597 in, 592 out) respectively.

Furthermore, shopping centres typically have a degree of linked trips which can potentially reduce the overall trip generation of the development. A linked trip is a trip taken as a side-track from another trip. For example, a resident travelling to the centre on the way home from work. The *RTA Guide to Traffic Generating Developments 2002* suggests an average of 20%, although no discount will be applied as a result of linked trips. This is a direct result of the adoption of the residential traffic generation rate as shown in **Table 2**, which does not consider internal trips to the subdivision, such as those trips made to local shopping centres. As such, no discount as a result of linked trips will be made to the estimated traffic generation as outlined in **Table 7**, **Table 8** and **Table 9**

^{2 -} Based upon an office rate within the TfNSW Guide

^{3 - 10%} discount due to shared vehicle trips

4.2 Traffic Assignment

Reference is made to the *Chisholm Plaza Economic Impact Assessment* dated November 2021, prepared by *Ethos Urban* which outlines that there will be four areas catchment areas as shown in **Figure 16**.

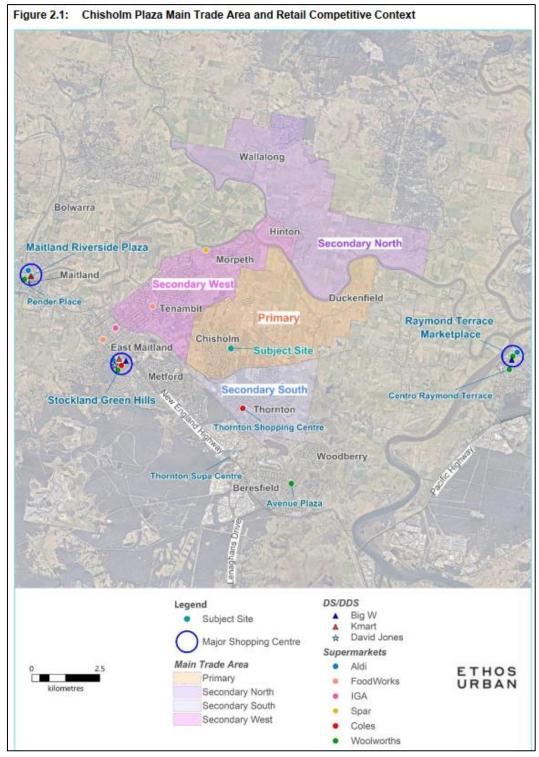


FIGURE 16: FIGURE 2.1 OF CHISHOLM PLAZA ECONOMIC IMPACT ASSESSMENT DATED NOVEMBER 2021, PREPARED BY ETHOS URBAN

Considering the anticipated population density of the four (4) areas shown in **Figure 16** above and the proximity of the areas to alternative shopping areas, the following trip distribution has been assumed:

- 75% to and from the primary trade area being the Thornton North Urban Release Area:
 - 25% from Precinct 6 (Figure 7), with a 50/50 split travelling to and from the site via Raymond Terrace Road and the local subdivision connection
 - 25% from Precinct 5 (Figure 7), with a 75/25 split travelling to and from the site from the north and south respectively.
 - 25% from Precinct 1 & 4 (Figure 7), with 100% travelling via Grasshawk Drive and onto Heritage Drive or Tigerhawk Drive.
- 25% to and from the site from Thornton (Secondary south) and Tenambit (secondary west):
 - o Thornton:
 - 50% to / from the site via Government Road;
 - 50% to and from the site via Haussman Drive.
 - o Tenambit:
 - 100% to and from the site via Raymond Terrace Road.

A high-level distribution of traffic to the site is shown in **Figure 17**, with outbound traffic being the same but in reverse direction.

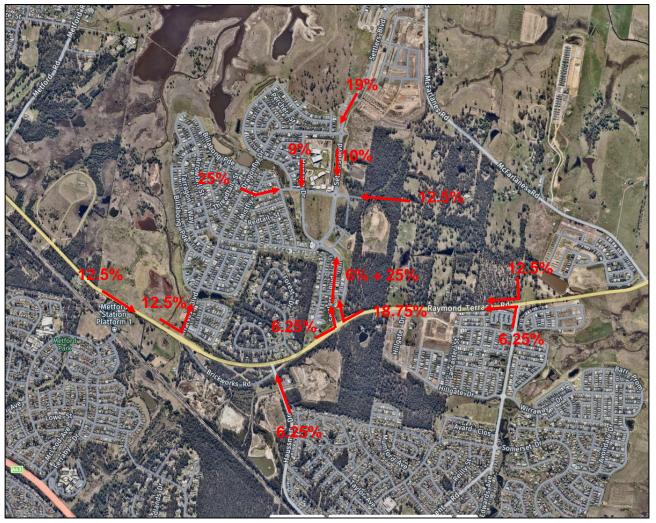


FIGURE 17: ADOPTED INBOUND TRIP DISTRIBUTION

Based upon the above, the following distribution of traffic into and out of the site will occur:

- 22.5% of traffic entering the site via the Tigerhawk Drive access and departing the site via Settlers Boulevard;
- 31% of traffic entering the site via Settlers Boulevard and departing the site via Heritage Drive / Settlers Boulevard via a U-turn at the roundabout of Tigerhawk Drive / Settlers Boulevard;
- 46.5% of traffic entering the site via Heritage Drive, with 9% leaving the site via Settlers Boulevard and 37.5% departing the site via Heritage Drive.

4.3 Traffic Impact

The traffic generation outlined in **Section 4.1** & **4.2** above has been added to the existing traffic volumes recorded. SIDRA INTERSECTION 9.0 was used to assess the intersections performance. The purpose of this assessment is to compare the existing intersection operations to the future scenario under the increased traffic load. The results of this assessment are shown in **Table 10**, with detailed SIDRA outputs provided in **Annexure C** for reference.

TABLE 10: INTERSECTION PERFORMANCE (SIDRA INTERSECTION 9.0)

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/vehicle)	Level of Service ⁽³⁾⁽⁴⁾	Control Type	Worst Movement
THO	DRNTON NORTH	I URBAN RELEA	-	MATE DEVELO	PMENT YIELD	
Settlers Boulevard	AM	0.67	24.1	В		N/A
/ Raymond	PM	0.64	15.1	В	Signals	N/A
Terrace	Weekend	0.43	16.7	В		N/A
Harvest	AM	0.53	12.3	Α		N/A
Boulevard /	PM	0.80	16.2	В	Signals	N/A
Raymond Terrace	Weekend	0.50	11.4	Α]	N/A
Settlers Boulevard	AM	0.30	5.8 (Worst: 11.1)	A (Worst: B)		RT from Settlers Boulevard (E)
/ Heritage Drive / Duskdarter Street	PM	0.29	6.7 (Worst: 11.7)	A (Worst: B)	Roundabout	RT from Duskdarter
	Weekend	0.15	5.7 (Worst: 10.4)	A (Worst: B)		Street (W)
	AM	0.23	3.9 (Worst: 8.6)	N/A (Worst: A)		RT from
Heritage Drive / Tigerhawk Drive	PM	0.10	3.8 (Worst: 6.8)	N/A (Worst: A)	Priority	Tigerhawk Drive (W)
	Weekend	0.10	4.2 (Worst: 6.1)	N/A (Worst: A)		. ,
	AM	0.01	2.5 (Worst: 6.6)	N/A (Worst: A)		RT from
Grasshawk Drive / Dragonfly Drive	PM	0.06	2.7 (Worst: 6.6)	N/A (Worst: A)	Priority	Grasshawk Drive (E)
	Weekend	0.05	3.1 (Worst: 6.1)	N/A (Worst: A)		
THORNTON	NORTH URBAN			ı	IELD + DEVEL	
Settlers Boulevard	AM	0.73	25.2	В		N/A
/ Raymond Terrace	PM	0.75	19.2	В	Signals	N/A
Terrace	Weekend	0.56	20.7	В		N/A
Harvest	AM	0.53	13.0	Α -		N/A
Boulevard / Raymond Terrace	PM	0.82	17.9	В	Signals	N/A
Raymond Terrace	Weekend AM	0.55	6.3 (Worst: 11.4)	A (Worst: B)		N/A RT from Duskdarter
Settlers Boulevard / Heritage Drive /	PM	0.39	7.2	A	Roundabout	Street (W) RT from
Duskdarter Street	Weekend	0.26	(Worst: 13.0) 6.4	(Worst: B)		Duskdarter Street (W)
	AM	0.44	(Worst: 11.3) 5.3 (Worst: 11.1)	(Worst: B) N/A (Worst: B)		
Heritage Drive / Tigerhawk Drive	PM	0.41	5.7 (Worst: 9.2)	N/A (Worst: A)	Priority	RT from Tigerhawk
.5	Weekend	0.41	5.7 (Worst: 8.2)	N/A (Worst: A)		Drive (W)
	AM	0.10	4.2 (Worst: 7.6)	N/A (Worst: A)		_
Grasshawk Drive / Dragonfly Drive	PM	0.22	5.2 (Worst: 9.4)	N/A (Worst: A)	Priority	RT from Grasshawk Drive (E)
	Weekend	0.20	5.5 (Worst: 8.4)	N/A (Worst: A)		

Notes: Refer to Table 3

As shown, the assessed signalised intersections operate at a Level of Service "A" and "B" condition, with roundabout intersections and priority controlled intersection operating with a worst turn movement of Level of Service "B" condition. This indicates acceptable delays, with spare capacity. The proposed development is therefore fully supportable on traffic flow efficiency grounds.

4.4 Midblock Assessment & Pedestrian Assessment & Signalised Intersection

As mentioned in **Section 3.8**, an investigation will be made into if Tigerhawk Drive / Hertiage Drive is required to be upgraded to a signalised intersection and if the midblock of Heritage Drive requires the provision of pedestrian facilities to the west of the site.

A summary of the midblock two-way traffic flows surrounding the site are provided in **Table 11** below for each of assessment.

TABLE 11: MIDBLOCK TRAFFIC FLOWS

Site Road				Traffic Flow	
Frontage	Location	Direction	Thursday AM Peak	Thursday PM Peak	Weekend Peak
	South of	Northbound	350	379	359
	Tigerhawk	Southbound	458	417	393
	Drive	Two-way	808	796	752
Heritage	North of	Northbound	196	66	51
Drive	Tigerhawk	Southbound	229	139	80
	Drive	Two-way	425	205	131
		Northbound	241	169	130
	South of site driveway	Southbound	367	252	205
	amomay	Two-way	608	421	335
	East of	Eastbound	92	22	9
	Heritage Drive	Westbound	65	30	3
Tigerhawk	Dilve	Two-way	157	52	12
Drive	West of	Eastbound	278	289	323
	Heritage	Westbound	176	316	312
	Drive	Two-way	454	605	635

4.4.1 Tigerhawk Drive / Heritage Drive

Reference is made to *TfNSW Traffic Signal Design: Section 2 – Warrants* which outlines the following with respect to when a signalised intersection should be installed:

a) Traffic Demand

For each of four one-hour periods of an average day:

- (i) The major road flow exceeds 600 vehicles / hour in each direction; and
- (ii) The minor road flow exceeds 200 vehicles / hour in one direction
- b) Continuous Traffic:

For each of four one-hour periods of an average day

- (i) The major road flow exceeds 900 vehicles / hour in each direction;
- (ii) The minor rod flow exceeds 100 vehicles / hour in one direction; and
- c) Pedestrian safety:

For each of four one-hour periods of an average day

- (i) The pedestrian flow crossing the major road exceeds 150 persons/hour; and
- (ii) The major road flow exceeds 600 vehicles / hour in each direction or, where there is a central median of at least 1.2m wide, 10000 vehicles / hour in each direction

With reference to the above the approach traffic flows of all legs do not exceed 600 vehicles per hour in any one peak hour period at the intersection of Tigerhawk Drive / Heritage Drive. Hence, based upon this, the forecast traffic flows at the intersection of Tigerhawk Drive / Heritage Drive do not warrant an upgrade to a signalised intersection.

4.4.2 <u>Heritage Drive – Midblock Assessment</u>

Reference is made to *Section 4.3.4* of the *RTA Guide to Traffic Generating Developments* 2002 which outlines typical threshold limits for consideration to pedestrian safety. A limit of 300 vehicles per hour is required for aged pedestrians to safely cross the average street.

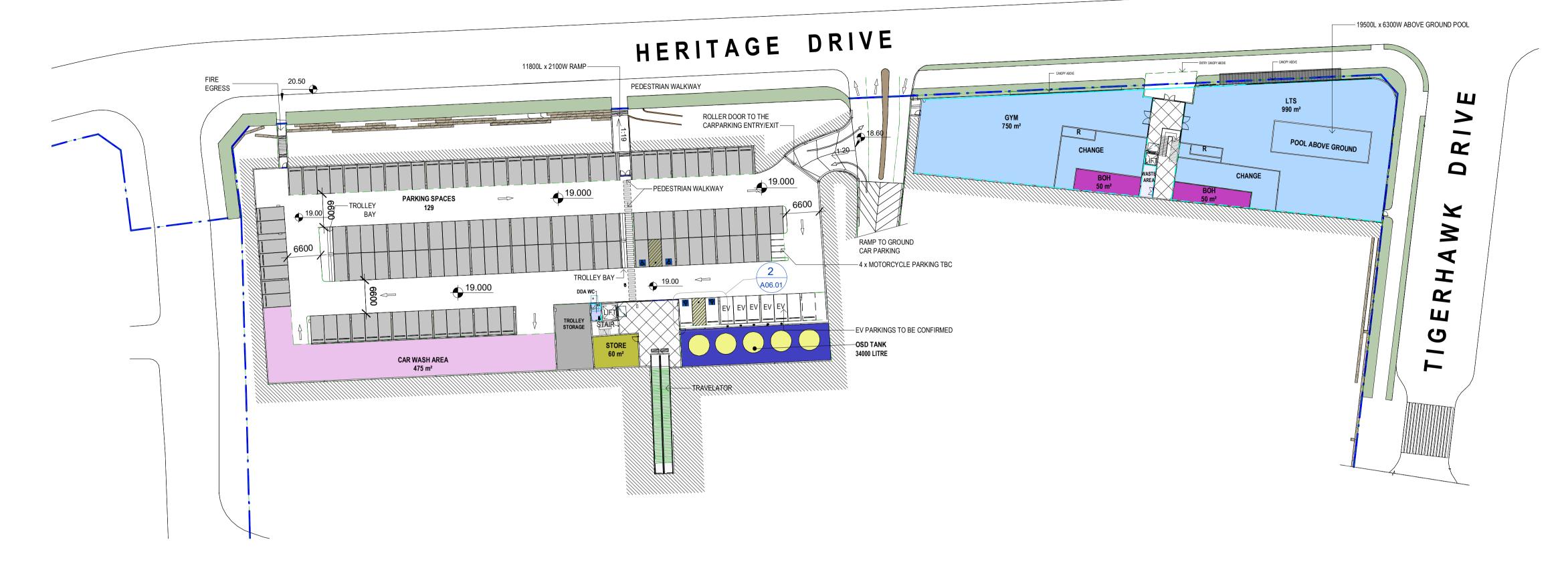
The forecast traffic flow within Heritage Drive is forecast to exceed 300 vehicle trips in a single one hour peak hour period, with a forecast traffic flow in the range of 752 to 800 two-way vehicle trips to the north of the site driveway and a forecast traffic flow of 335 to 608 two-way vehicle trips to the south of the site driveway.

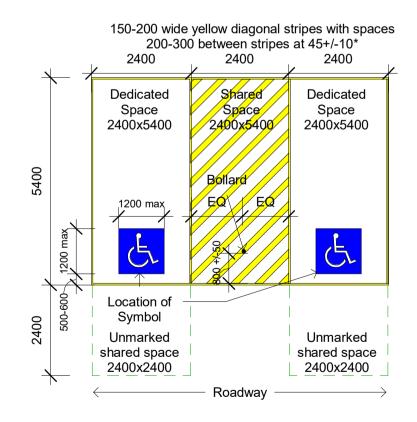
Considering the above, it is recommended that a pedestrian refuge be provided and located within Heritage Drive to safely accommodate pedestrians travelling to and from the site from the west. It is recommended that the refuge be located to the south of the site driveway, due to the lower traffic flows, but also as this provides a direct link to the shopping centre.

5 **CONCLUSION**

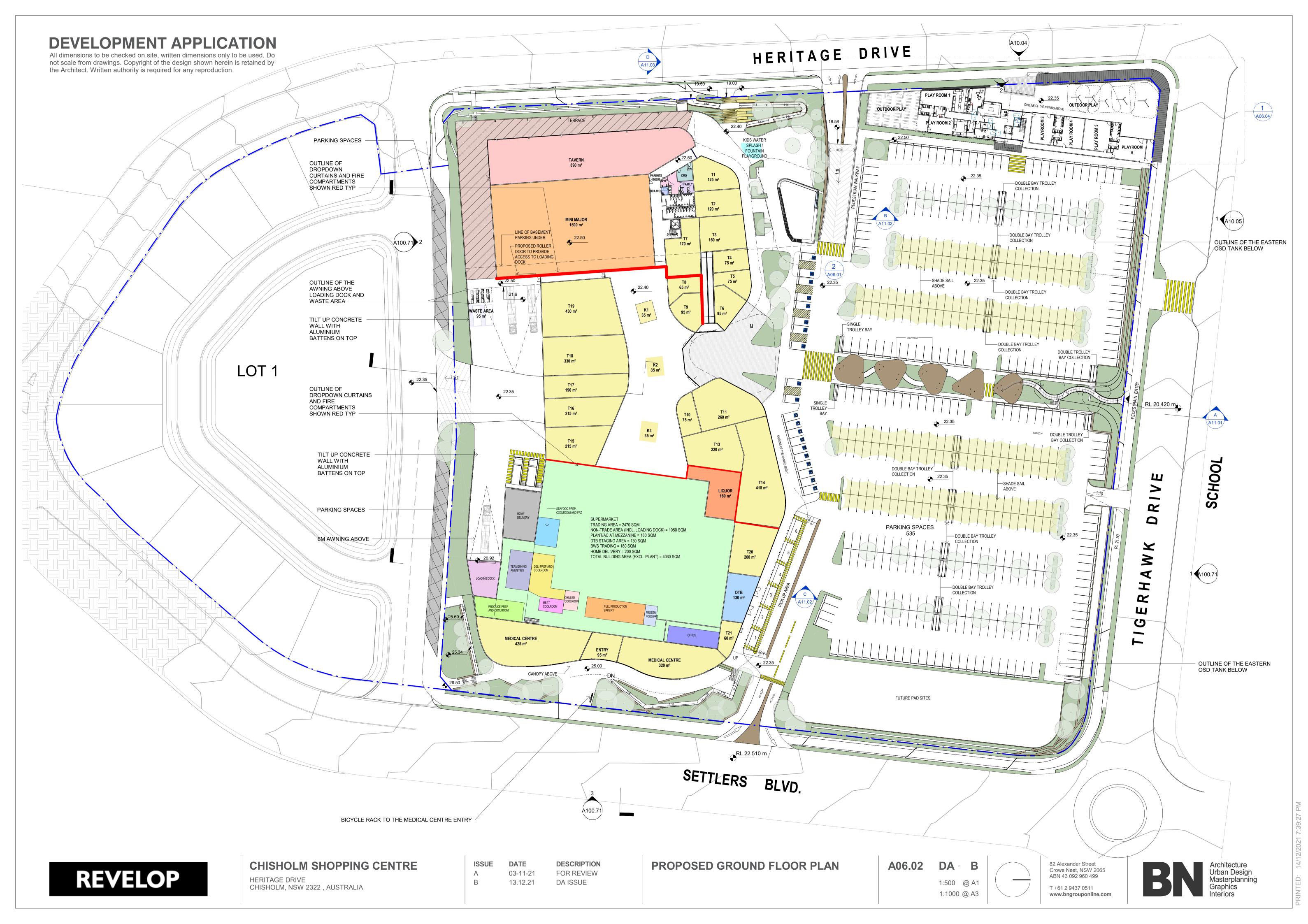
In view of the foregoing, the subject Proposed Shopping Centre proposal at 20 Heritage Drive, Chisholm (as depicted in **Annexure A**) is fully supportable in terms of its traffic and parking impacts. The following outcomes of this traffic impact assessment are relevant to note:

- The proposal includes the provision of 661 on-site car parking spaces and an additional 21 car parking spaces located along the New Link Road, which front the site. Council's DCP requires the provision of 763 car parking spaces, resulting in a shortfall of 102 spaces when not considering the parking located on the New Link Road.
- With consideration to parking profiles for gymnasiums, shopping centres and taverns
 / pubs, the proposed development would operationally demand up to 644 car parking
 spaces based upon Council's DCP.
- Adopting the TfNSW parking rates for shopping centres and gymnasiums, the proposed development requires the provision of 617 car parking spaces. The proposed development provides 661 on-site car parking spaces resulting in a surplus of 44 car parking spaces.
- With consideration to parking profiles for gymnasiums, shopping centres and taverns
 / pubs, the proposed development would operationally demand 497 car parking
 spaces based upon TfNSW parking rates.
- In view of the above, the provision of 661 on-site car parking spaces accommodates the anticipated parking demand of the site. The TfNSW parking rates are the more appropriate rates for the subject site, as they consider parking demands associated with multiple land uses (i.e. shopping centres) rather than assessing each component of the site in isolation, which reflects the parking rates within the Council DCP.
- Council's DCP requires the provision of 40 staff and 33 visitor bicycle parking spaces.
 It is recommended this form part of a condition of consent, as there is sufficient room on-site to provide these end of trip facilities. Council's DCP does not require the provision of motorcycle parking facilities.
- The parking areas of the site have been assessed against the relevant sections of AS2890.1:2004, AS2890.2:2018 and AS2890.6:2009 and have been found to satisfy the objectives of each standard with any required changes outlined in Annexure D, which also shows relevant swept path testing.

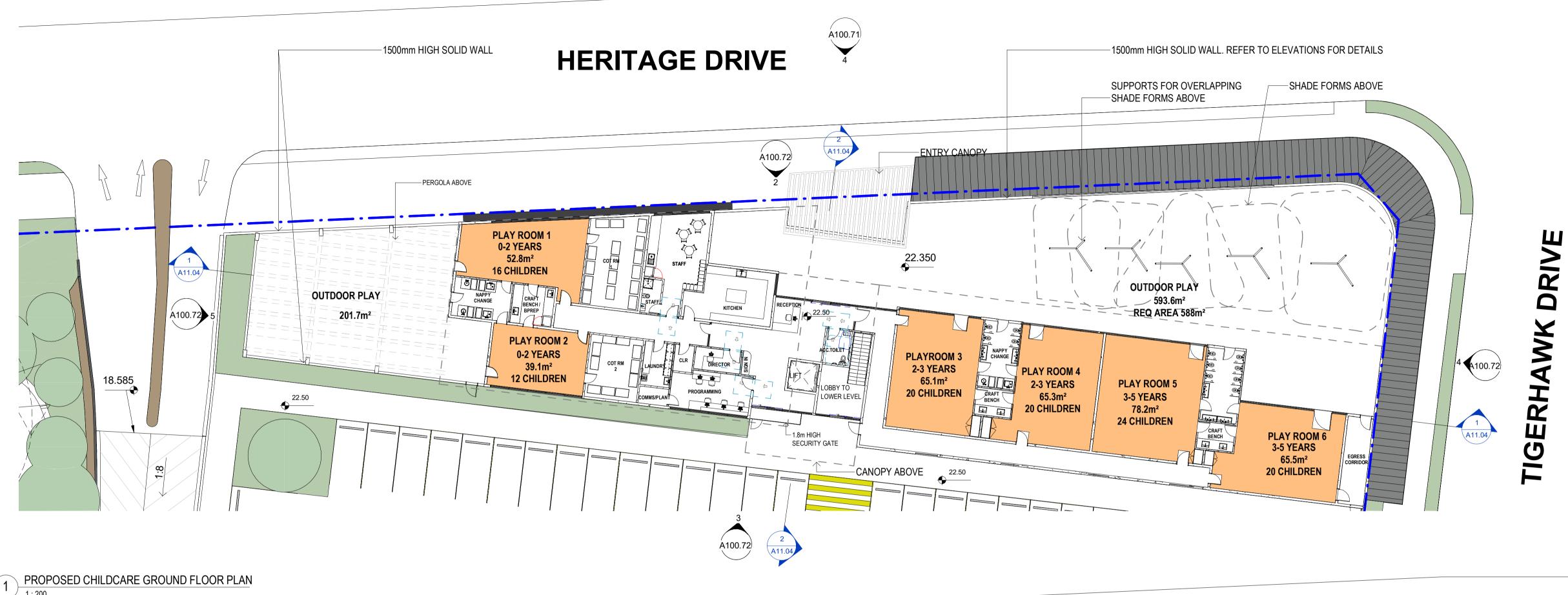

- The traffic generation of the proposed development has been estimated to be some 598, 1,121 and 1,189 two-way vehicle trips during the AM (301, 297 out), PM (558 in, 563 out) and midday weekday (597 in, 592 out) respectively. The impacts of the traffic generation have been modelled using SIDRA INTERSECTION 9.0, indicating that there will be no detrimental impact to the performance of the assessed intersections as a result of the generated traffic.
- A signalised intersection warrant assessment has been undertaken for the intersection of Heritage Drive / Tigerhawk Drive and indicates that a signalised intersection does not meet the TfNSW warrants.
- To provide pedestrian connectivity to the west of the site and to ensure the safety of
 pedestrians crossing Heritage Drive, it is recommended that as part of the proposed
 development a pedestrian refuge be provided to the south of the proposed driveway
 on Heritage Drive. Discussions should be held with Council as to the preferred
 location of the refuge.


ANNEXURE A: PROPOSED PLANS (3 SHEETS)

DEVELOPMENT APPLICATION


All dimensions to be checked on site, written dimensions only to be used. Do not scale from drawings. Copyright of the design shown herein is retained by the Architect. Written authority is required for any reproduction.

PROPOSED BASEMENT FLOOR PLAN
1:500



2 TYP. ACCESSIBLE PARKING BAY DETAIL 1:100

DEVELOPMENT APPLICATION

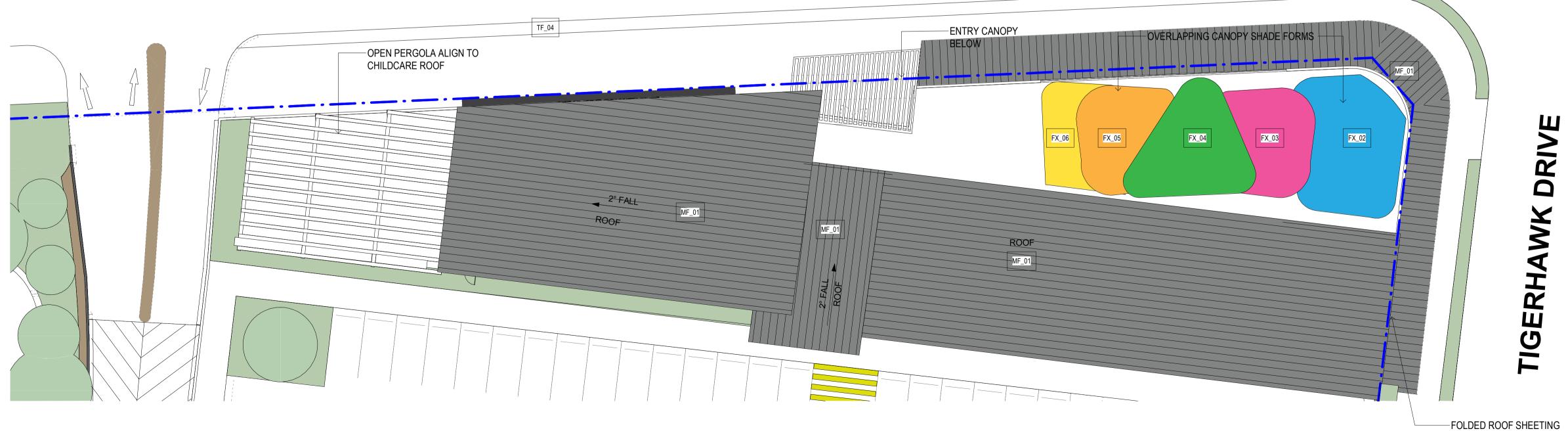
All dimensions to be checked on site, written dimensions only to be used. Do not scale from drawings. Copyright of the design shown herein is retained by the Architect. Written authority is required for any reproduction.

ROOM AGE GROUP NO. OF CHILDREN RM AREA UNEMCUMBERED MIN 3.25M² PER CHILD REQUIRED STAFF PLAYROOM 01 0-2 16 52.8 3.3 4 PLAYROOM 02 0-2 12 39.1 3.25 3 PLAYROOM 03 2-3 20 65.1 3.25 4 PLAYROOM 04 2-3 20 65.3 3.26 4 PLAYROOM 05 3-5 24 78.2 3.25 2.4 PLAYROOM 06 3-5 20 65.5 3.27 2					1	1
PLAYROOM 02 0-2 12 39.1 3.25 3 PLAYROOM 03 2-3 20 65.1 3.25 4 PLAYROOM 04 2-3 20 65.3 3.26 4 PLAYROOM 05 3-5 24 78.2 3.25 2.4	ROOM					,
PLAYROOM 03 2-3 20 65.1 3.25 4 PLAYROOM 04 2-3 20 65.3 3.26 4 PLAYROOM 05 3-5 24 78.2 3.25 2.4	PLAYROOM 01	0-2	16	52.8	3.3	4
PLAYROOM 04 2-3 20 65.3 3.26 4 PLAYROOM 05 3-5 24 78.2 3.25 2.4	PLAYROOM 02	0-2	12	39.1	3.25	3
PLAYROOM 05 3-5 24 78.2 3.25 2.4	PLAYROOM 03	2-3	20	65.1	3.25	4
	PLAYROOM 04	2-3	20	65.3	3.26	4
PLAYROOM 06 3-5 20 65.5 3.27 2	PLAYROOM 05	3-5	24	78.2	3.25	2.4
	PLAYROOM 06	3-5	20	65.5	3.27	2

ADDITIONAL STA	FF
RECEPTION + ADMIN	2
DIRECTOR	1
TOTAL STAFF	22.4

R SPACE
364
366

E
789
795.3


JUNIOR TOILE	T
DOCS (1 PER 15)	7
NO PROVIDED	11

NAPPY CHANGE	i
1/10 CHILD < 3	4.8
NO PROVIDED	6

NOTE:

- BCA STATES THAT IF THE CENTRE ACCOMMODATES CHILDREN UNDER THE AGE OF 3 THEY MUST INCLUDE A DEDICATED BENCH
- TYPE BABY BATH UNENCUMBERED SPACE EXCLUDES WALLS, COLUMNS, CRAFT BENCHES AND STORES)

HERITAGE DRIVE

PROPOSED CHILDCARE ROOF PLAN

1:200

REVELOP

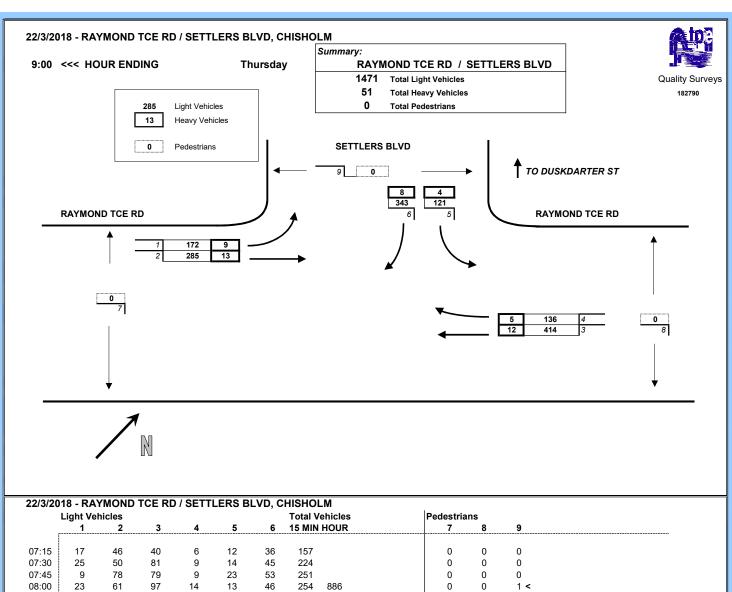
CHISHOLM SHOPPING CENTRE

HERITAGE DRIVE CHISHOLM, NSW 2322, AUSTRALIA

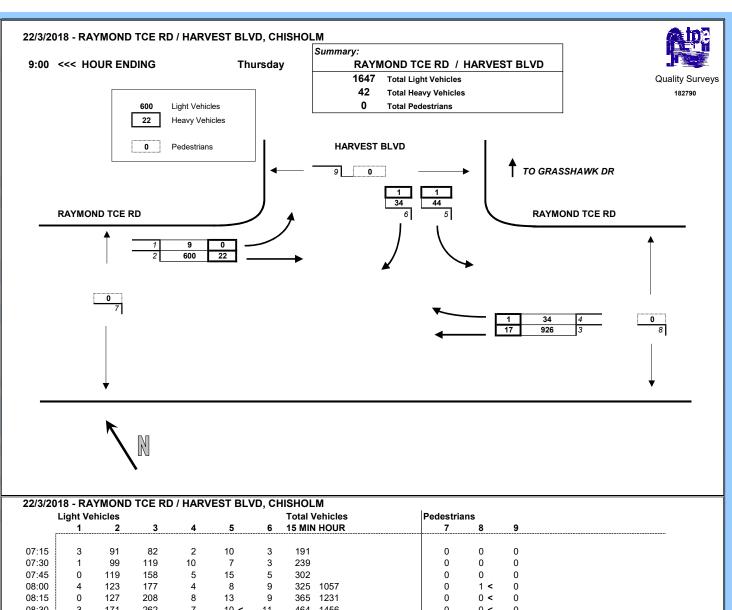
DESCRIPTION 13.12.21 DA ISSUE

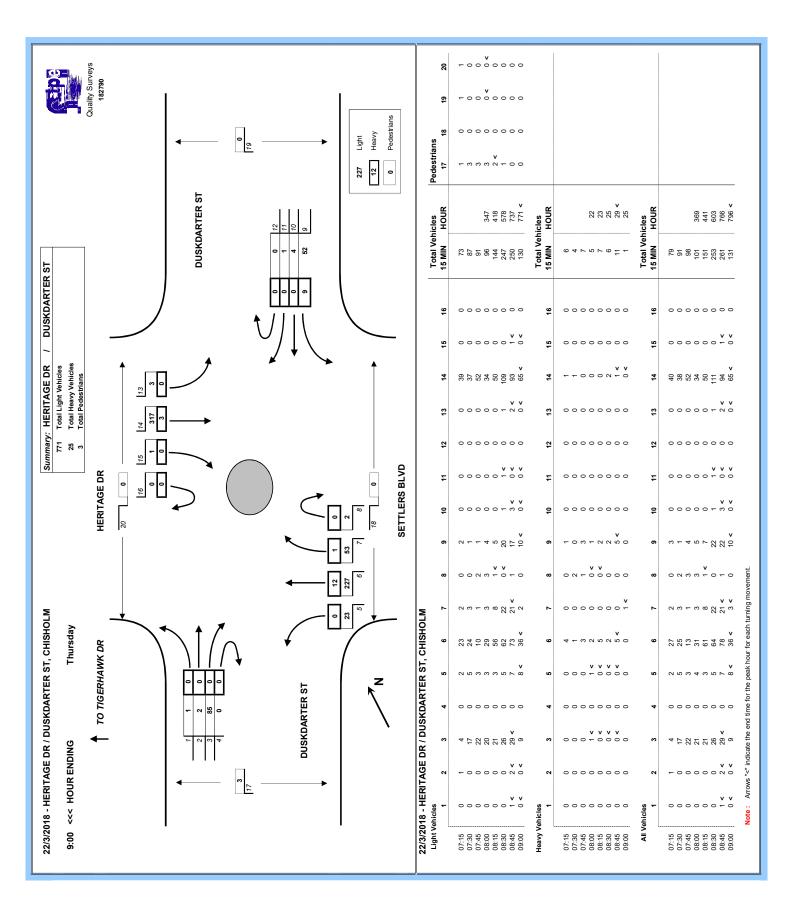
PROPOSED CHILDCARE PLAN

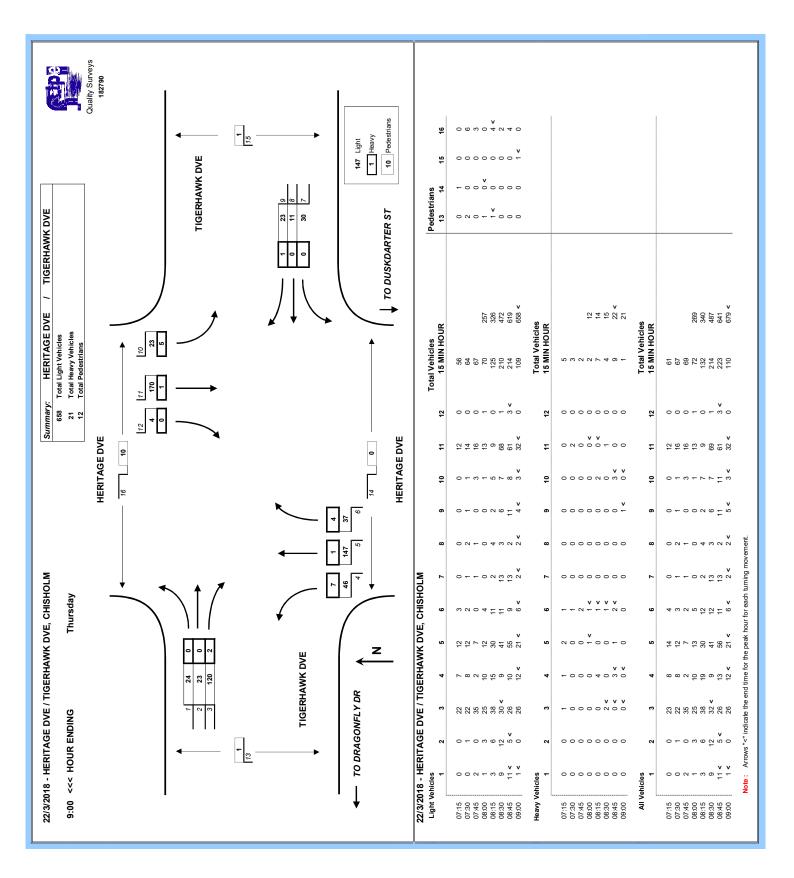
A06.04

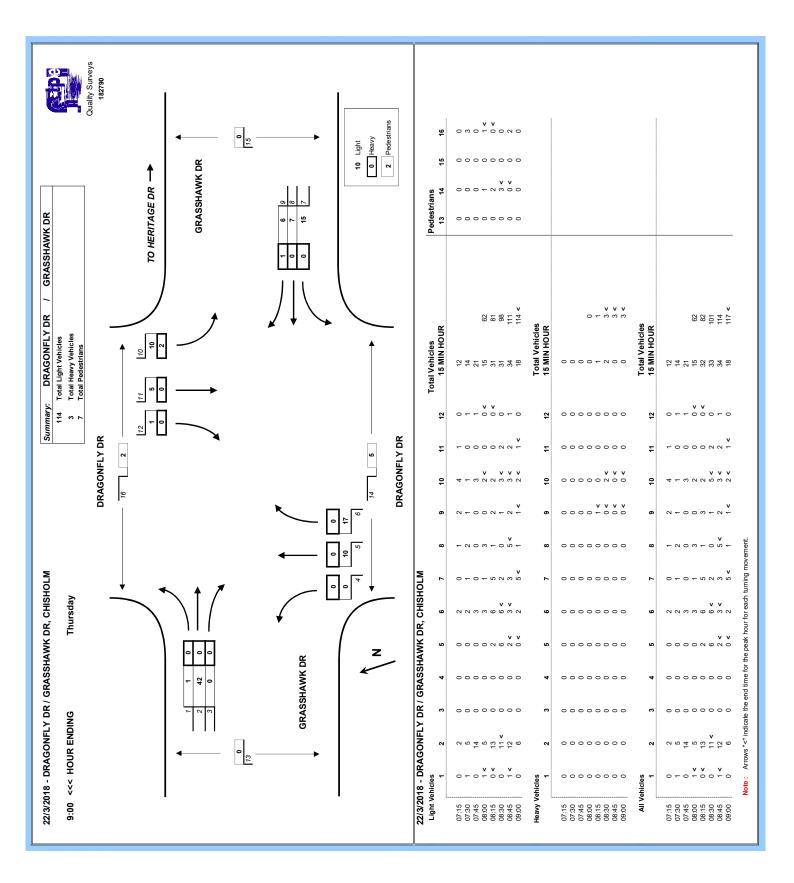

1:200 @ A1

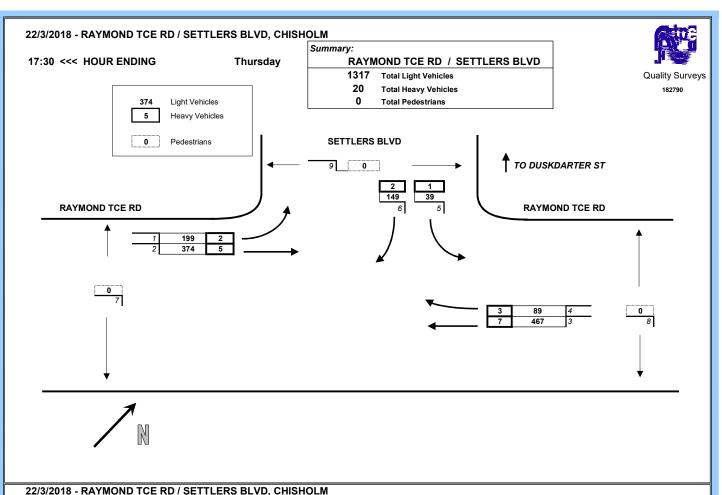
1:400 @ A3


82 Alexander Street Crows Nest, NSW 2065 ABN 43 092 960 499 T +61 2 9437 0511 www.bngrouponline.com

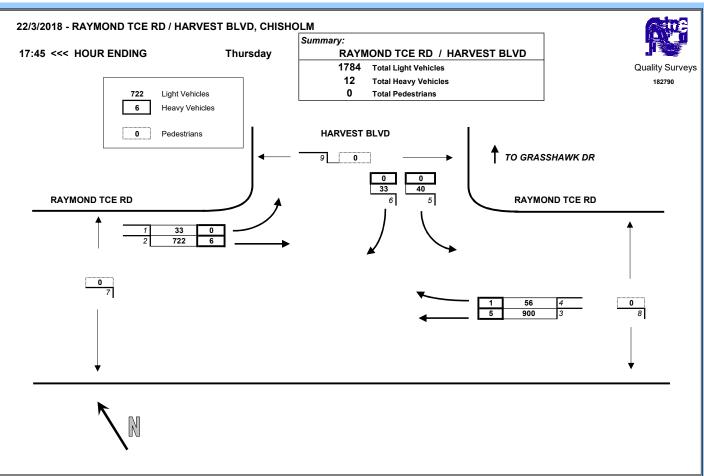

ANNEXURE B: TRAFFIC SURVEY DATA (15 SHEETS)

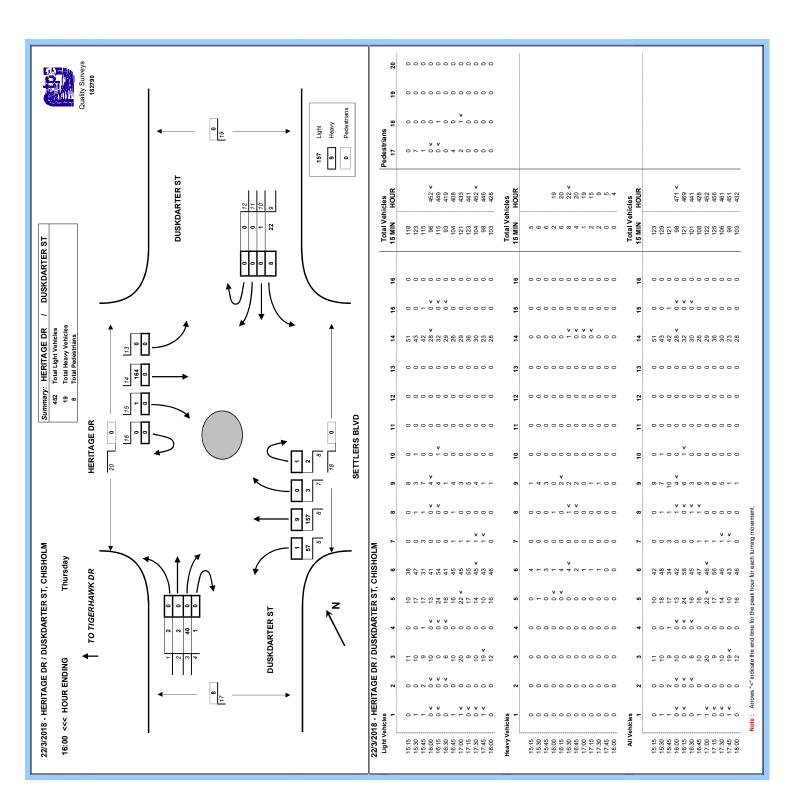


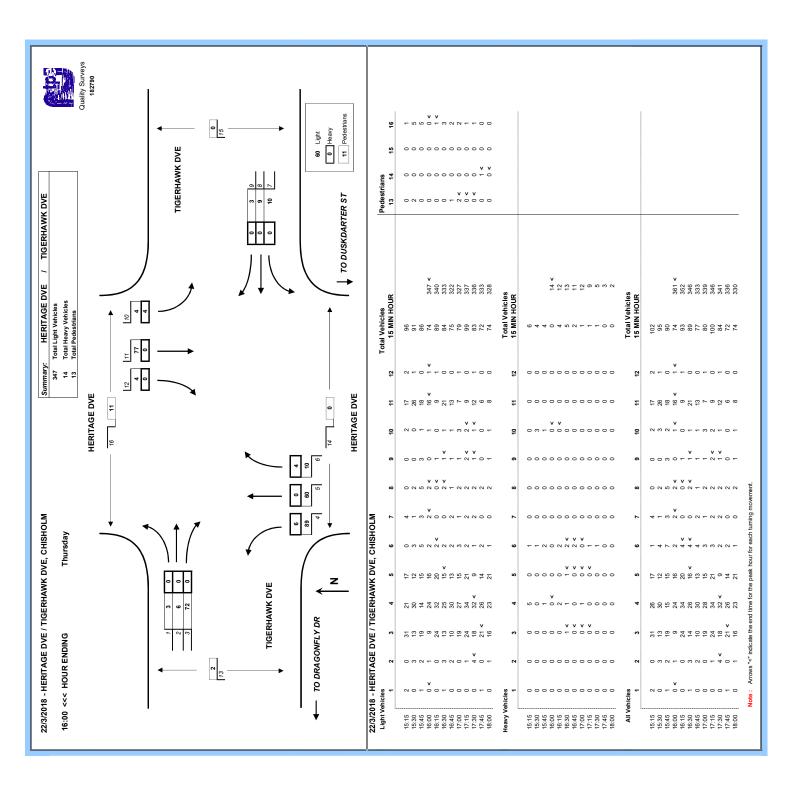

22/3/20)18 - RAY	MOND	TCE RD	/ SETTL	ERS B	LVD, CI	HISHO	LM				
	Light Veh	icles					Total \	/ehicles	Pedestria	ıns		
	1	2	3	4	5	6	15 MIN	HOUR	 7	8	9	
07:15	17	46	40	6	12	36	157		0	0	0	
07:30	25	50	81	9	14	45	224		0	0	0	
07:45	9	78	79	9	23	53	251		0	0	0	
08:00	23	61	97	14	13	46	254	886	0	0	1 <	
08:15	43	73	104	28	20	61	329		0	0	0 <	
08:30	46	71	113	44	32	111	417	1251	0	0	0 <	
08:45	48	65	96	53 <	46	106	414	1414	0	0	0 <	
09:00	35 <	76 <	101 <	11	23 <	65 <	311	1471 <	0	0	0	
	Heavy Vel	hicles						/ehicles				
	1	2	3	4	5	6	15 MIN	I HOUR	 			
						_	_					
07:15	4	1	1	1	1	0	8					
07:30	1	0	1	1	0	4	7					
07:45	1	0	3	2	1	5	12					
08:00	2	3	0	1	2	0	8	35				
08:15	4	1	2	1	1	1 <	10	37				
08:30	1	4	1	1	1	2	10	40				
08:45	2 <	2	2	3 <	2 <	5	16	44				
09:00	2 <	6 <	7 <	0	0	0	15	51 <				
	All Vehicle		•		_	•		/ehicles				
	, <u>1</u>	2	3	4	5	6	15 WIIN	HOUR	 			
07:15	21	47	41	7	13	36	165					
07:30	26	50	82	10	14	49	231					
07:45	10	78	82	11	24	58	263					
08:00	25	64	97	15	15	46	262	921				
08:15	47	74	106	29	21	62	339	1095				
08:30	47	7 . 75	114	45	33	113	427	1291				
00.00	50	67	98	56 <	33 48	111		1458				
08·4F	: 50				23 <	65 <		1522 <				
08:45 09:00	37 <	82 <	108 <	11								

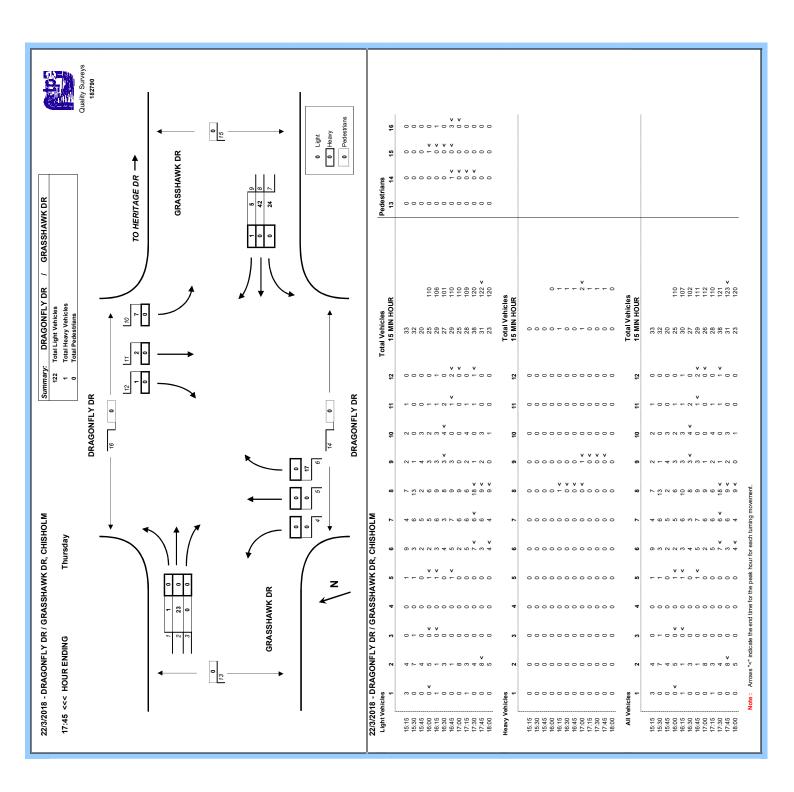


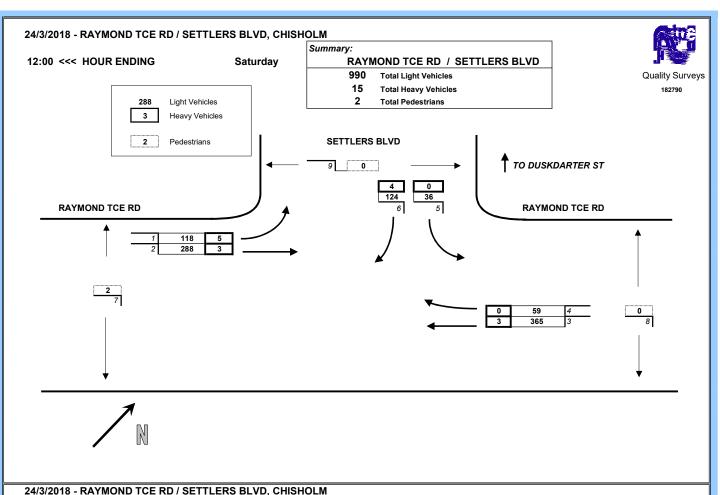
	Light Vehicles						Total \	/ehicles	Pedestria	ns		
	1	2	3	4	5	6	15 MIN	I HOUR	 7	8	9	
07:15	3	91	82	2	10	3	191		0	0	0	
07:30	1	99	119	10	7	3	239		0	0	0	
07:45	0	119	158	5	15	5	302		0	0	0	
08:00	4	123	177	4	8	9	325		0	1 <	0	
08:15	0	127	208	8	13	9	365		0	0 <	0	
08:30	3	171	262	7	10 <	11	464	1456	0	0 <	0	
08:45	1	145	240	9	13	8 <	416		0	0 <	0	
09:00	5 <	157 <	216 <	10 <	8	6	402	1647 <	0	0	0	
	Heavy Ve	hicles					Total \	/ehicles				
	1	2	3	4	5	6		HOUR				
07:15	0	4	3	0	0	0	7					
07:30	0	3	7	1	0	0	11					
07:45	0	4	7	0	0	0	11					
08:00	0	4	2 <	0 <	1 <	0	7	36				
08:15	0	2	2	0 <	0 <	0	4	33				
08:30	0	5	2	1 <	0 <	0	8	30				
08:45	0	6	4	0 <	0 <	1 <	11	30				
09:00	0	9 <	9	0 <	1 <	0 <	19	42 <				
	All Vehicl	es					Total \	/ehicles				
	1	2	3	4	5	6		HOUR				
07:15	3	95	85	2	10	3	198					
07:30	1	102	126	11	7	3	250					
07:45	0	123	165	5	15	5	313					
08:00	4	127	179	4	9	9	332					
08:15	0	129	210	8	13	9	369					
08:30	3	176	264	8	10 <	11	472					
08:45	1	151	244	9	13	9 <	427	1600				
09:00	5 <	166 <	225 <	10 <	9	6	421	1689 <				



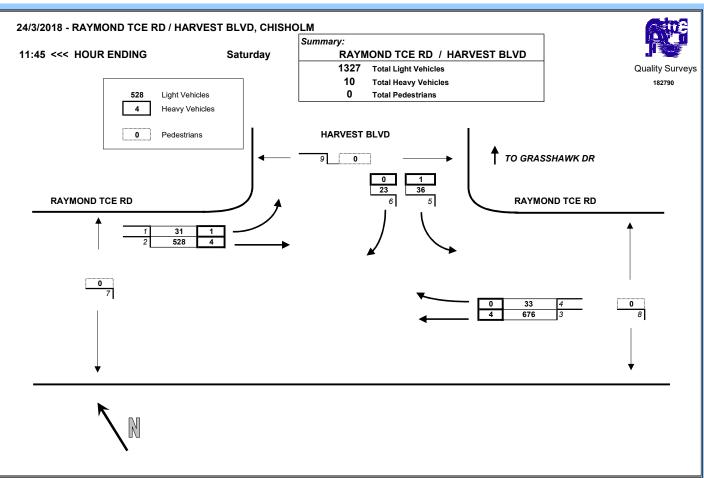


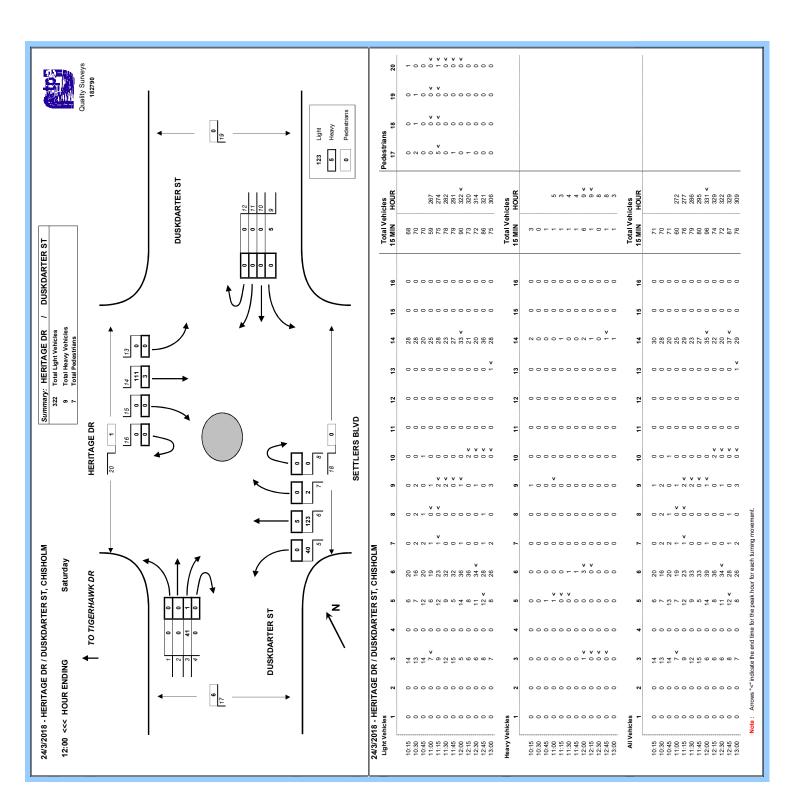


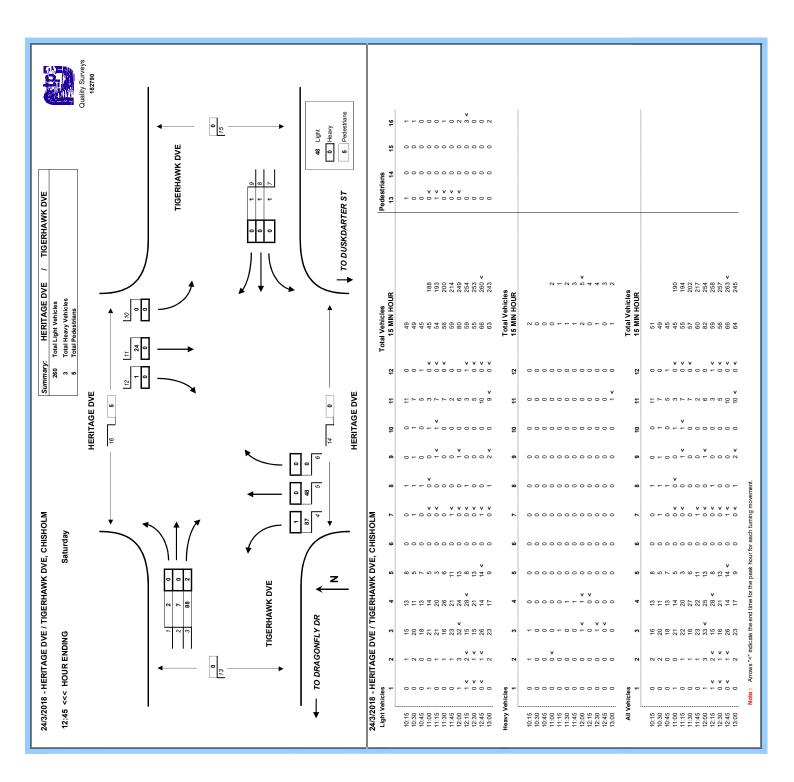

Light Vehicles				Total Vehicles						
	1	2	3	4	5	6	15 MIN			
Γ										
5:15	36	76	70	16	19	56	273			
5:30	47	104	81	21	9	52	314			
5:45	34	102	105	23	12	50	326			
6:00	51	107	105	18	9 <	34 <				
6:15	57	89	80	27	11	36		1264		
6:30	28	105 <	111	26	7	32	309	1259		
6:45	51	95	101	20	10	35	312			
7:00	44	103	104	26 <	9	33	319	1240		
7:15	54	80	130	25	10	42	341	1281		
7:30	50 <	96	132	18	10	39	345	1317 <		
7:45	34	94	110 <	20	8	35	301	1306		
3:00	48	66	94	21	8	32	269	1256		
•										
H	Heavy Ve	hicles					Total Ve			
	11	2	3	4	5	6	15 MIN	HOUR		
5:15	1	1	1	3	1	0	7			
5:30	2	3	3	0	2	2	12			
5:45	1	1	4	2	1	2	11			
6:00	2	3	2 <	0 <	0	1	8	38		
6:15	4	1	0	0	2 <	0	7	38		
6:30	4 <	3	1	2	2 <	3 <		41 <		
6:45	1 <	2 <	3	1	0	2 <	9	39		
7:00	0	1	2	1	0	0	4	35		
7:15	1	1	1	0	1	0	4	32		
7:30	0	1	1	1	0	0	3	20		
7:45	0	1	0	0	0	1	2	13		
8:00	0	1	2	0	0	0	3	12		
,	All Vehic				_	Total Vehicles 6 15 MIN HOUR				
r	1	2	3	4	5	6	15 MIN	HOUR		
E.4E	27	77	74	10	20	EC	200			
5:15	37	77 107	71	19	20	56 54	280			
5:30	49 35	107	84	21	11 12	54 52	326			
5:45	35	103	109	25	13	52 35 <	337 332	1075		
6:00	53	110	107	18	9 <					
6:15	61	90	80	27	13	36		1302		
6:30	32	108 <	112	28	9	35		1300		
6:45	52	97	104	21	10	37		1284		
	44	104	106	27 <	9	33		1275		
7:00	55	81	131	25	11	42		1313		
7:15			1.7.7	19	10	39		1337 <		
7:15 7:30	50 <	97	133		_					
7:15	50 < 34 48	97 95 67	110 < 96	20 21	8 8	36 32	303 272	1319		

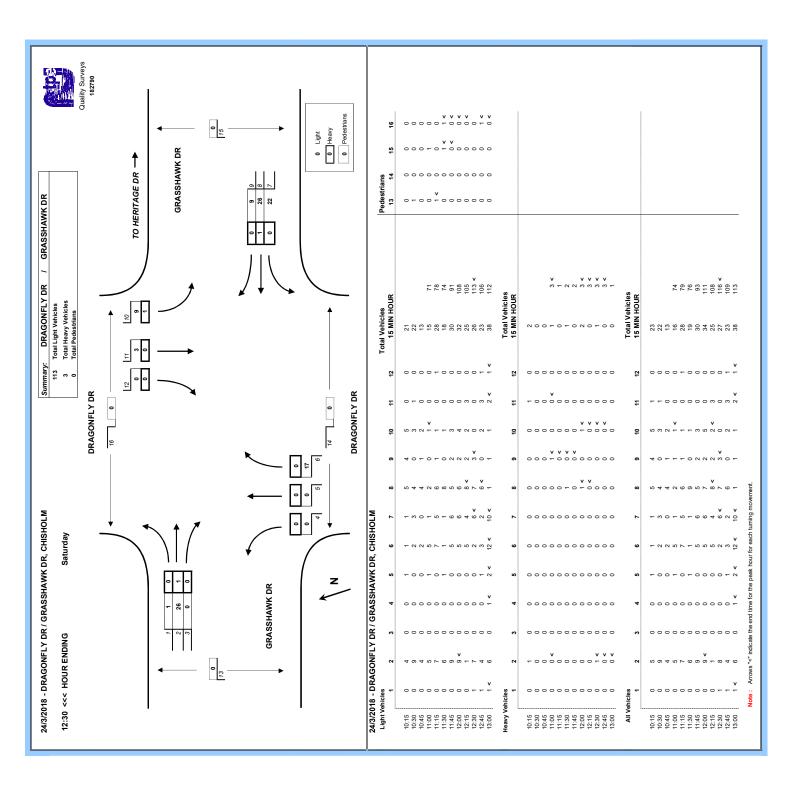


	Light Veh						Total Ve			Pedestrians					
-	1	2	3	4	5	6	15 MIN F	HOUR	7	8	9				
45	40	450	400	-	0	-	070			0	0				
5:15	13	159	180	5	8	5	370		0	0	0				
5:30	9	197	179	12	7	10	414		0	0	0				
5:45	9	170	218	9	8	4	418	1000	0	0	0				
6:00	7 <	203	199	6	5	7		1629	0	1 <	0				
6:15	11	178	186	16	10	4		1664	0	0 <	0				
6:30	9	209	212	17	9	20	476 1		0	0 <	0				
6:45	4	182 <	194	9	14	3		1714	0	0 <	0				
7:00	5	180	186	13	7	9		1687	0	0	0				
7:15	11	165	251	17 <	11	7 <		1744	0	0	0				
7:30	7	213	232	15	13 <	15		1763	0	0	0				
7:45	10	164	231	11 <	9	2		1784 <	0	0	0				
8:00	5	130	203 <	9	8	10	365 1	1749	0	0	0				
	Heavy Ve	hialaa					Total Ve	hielee							
	пеаvy ve 1	2	3	4	5	6	15 MIN F								
Γ	<u>'</u>	<u>_</u>	<u>-</u>	-	<u>.</u>		13 MIIN F	100K							
5:15	0	4	3	0	0	0	7								
5:30	0	3	4	0	0	0	7								
5:45	0	2	8	0	1	0	11								
6:00	0	4	3 <	0	0	0	7	32							
6:15	0	6	1	0	0	0	7	32							
6:30	0	8	3	1	0	0	12	37 <							
6:45	0	3 <	2	0	2 <	0	7	33							
7:00	0	1	1	0	0 <	0	2	28							
7:15	0	2	1	1 <	0 <	0	4	25							
7:30	0	1	1	0	0 <	0	2	15							
7:45	0	2	2	0	0	0	4	12							
8:00	0	3	2	0	0	0	5	15							
0.00	U	3	2	U	U	U	3	13							
	All Vehicles						Total Ve	hicles							
	1	2	3	4	5	6	15 MIN H								
Γ															
5:15	13	163	183	5	8	5	377								
5:30	9	200	183	12	7	10	421								
5:45	9	172	226	9	9	4	429								
6:00	7 <	207	202	6	5	7	434 1	1661							
6:15	11	184	187	16	10	4	412 1	1696							
6:30	9	217	215	18	9	20	488 1	1763							
6:45	4	185 <	196	9	16	3	413 1	1747							
7:00	5	181	187	13	7	9	402 1	1715							
7:15	11	167	252	18 <	11	7 <	466 1	1769							
	7	214	233	15	13 <	15	497 1	1778							
7:30		166	233	11	9	2	431 1	1796 <							
7:30 7:45	10	100													








L	18 - RAY Light Veh						Total \	ehicles	Pedestrian	s		
_	1	2	3	4	5	6	15 MIN		7	8	9	
٢			<u>-</u>		-				 			
:15	24	58	76	4	4	38	204		0	0	0	
0:30	22	69	96	4	13	35	239		Ö	0	0	
0:45	27	62	89	10	3	34	225		0	0	0	
1:00	19	70	78	7	7	31 <	212	880	0	0	0	
1:15	27	65	95	15	10	29	241	917	0	0	0	
1:30	27	88	95 97	17	11	29 26	266	944	0	0	0	
1:45	23	65	93	11	10 <	32	234	953	0	0	0	
2:00	41	70	80 <	16 <	5	37	249	990 <	2 <	0	0	
2:15	40	64	92	8	6	25	235	984	0 <	0	0	
2:30	37	76	76	16	4	26	235	953	0 <	0	0	
2:45	29 <	80 <	96	13	7	35	260	979	0 <	0	0	
3:00	28	63	83	8	11	30	223	953	0	0	0	
_												
ŀ	Heavy Ve		_		_	_		ehicles				
r-	1	2	3	4	5	6	15 MIN	HOUR	 <u> </u>			
		_	_	_			-					
0:15	0	2	0	0	0	1	3					
0:30	0	0	2	0	0	2	4					
0:45	1	0	3	0	0	0	4					
1:00	1	1	0 <	0	0	0	2	13				
1:15	0	0	0 <	0	0	1	1	11				
1:30	1	1	1	0	0	0	3	10				
1:45	1	1	1	0	0	0	3	9				
2:00	3 <	1	1	0	0	3 <	8	15				
2:15	0 <	1	1	0	0	1 <	3	17				
2:30	0	2 <	2 <	0	0	0 <	4	18 <				
2:45	0	0	1 <	0	1 <	0 <	2	17				
3:00	0	0	0	0	0 <	1	1	10				
-	All Vehicl							ehicles				
	1	2	3	4	5	6	15 MIN	HOUR	 			
0:15	24	60	76	4	4	39	207					
0:30	22	69	98	4	13	37	243					
0:45	28	62	92	10	3	34	229					
1:00	20	71	78	7	7	31 <	214	893				
1:15	27	65	95	15	10	30	242	928				
1:30	28	89	98	17	11	26	269	954				
1:45	24	66	94	11	10 <	32	237	962				
2:00	44	71	81 <	16 <	5	40	257	1005 <				
2:15	40	65	93	8	6	26	238	1001				
2:30	37	78	78	16	4	26	239	971				
	29 <	80 <	97	13	8	35	262	996				
2:45												
2:45 3:00	28	63	83	8	11	31	224	963				

			TCE RD	/ HARV	EST BL	VD, CI								
L	Light Veh							ehicles/	Pedestrians					
· ·	11	2	3	4	5	6	15 MIN	HOUR	 7	8	9			
	_				_	_			_	_	_			
:15	8	116	160	9	7	9	309		0	0	0			
:30	5	141	173	8	7	6	340		0	0	0			
:45	5	127	150	6	5	8	301		0	0	0			
:00	11	114	172	9	13	4	323	1273	0	0	0			
15	4	129	173	9	8	9	332	1296	0	0	0			
30	4	147	161	10	9	7	338	1294	0	0	0			
45	12	138	170 <	5	6	3		1327 <	0	0	0			
:00	13	133	144	6	14 <	7		1321	0	0	0			
:15	5	142	159	12	2	3	323	1312	0	0	0			
:30	8 <	149 <	153	9	11	12		1316	0	0	1 <			
:45	2	133	149	11 <	8	9 <		1294	0	0	0 <			
:00	11	132	174	5	11	5	338	1315	0	0	0 <			
	laasse Va	bialaa					Tatal	/ahialaa						
ŀ	Heavy Ve 1	nicles 2	3	4	5	6		/ehicles I HOUR						
Γ		<u>_</u>				<u>v</u>	13 141114	11001	 					
15	1	1	0	0	0	0	2							
30	0	0	3	0	0	0	3							
45	0	1	3	0	0	0	4							
:00	1 <	1	1	0	0	0	3	12						
15	0	0	1 <	0	0	0	1	11						
30	0	1	1	0	1 <	0	3	11						
:45	0	2	1	0	0 <	0	3	10						
:00	0	1	1	1	0 <	0	3	10						
:15	0	2 <	4	1	0 <	0	7	16						
:30	0	1 <	2 <	1 <	0	0	4	17 <						
:45	0	0	1 <	0 <	1 <	0	2	16						
:00	0	1	0	0	0 <	0	1	14						
		_												
,	All Vehic		•		-	•		/ehicles						
Г	1	2	3	4	5	6	15 WIIN	HOUR	 L					
15	9	117	160	9	7	9	311							
30	5	141	176	8	7	6	343							
45	5	128	153	6	5	8	305							
00	12	115	173	9	13	4	326	1285						
15	4	129	173	9	8	9	333	1307						
30	4	148	162	10	10	7	341	1307						
:45	12	140	171 <	5	6	3	337	1337 <						
:00	13	134	145	7	14 <	7		1331						
15	5	144	163	13	2	3	330	1328						
:30	8 <	150 <	155	10	11	12	346	1333						
:45	2	133	150	11 <	9	9 <		1310						
:00	11	133	174	5	11	5	339	1329						
00		100	117	J	• • •	J	003	1020						
N	Note: Arr	ows "<" ind	licate the er	nd time for t	he peak ho	our for ea	ch turning	g movement						
							`	-						

ANNEXURE C: SIDRA RESULTS (45 SHEETS)

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018] AM (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace Existing [2018] AM Peak

Vehic	cle Mo	vemer	nt Perf	ormanc	е									
Mov ID	Turn	INF VOLU [Total	JMES	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	oad (E)										
5	T1	426	12	448	2.8	0.252	12.1	LOS A	5.4	38.5	0.59	0.49	0.59	50.5
6	R2	141	5	148	3.5	* 0.437	37.6	LOS C	5.3	38.3	0.93	0.79	0.93	36.4
Appro	ach	567	17	597	3.0	0.437	18.4	LOS B	5.4	38.5	0.67	0.57	0.67	46.0
North:	Settle	ers Boul	levarde	(N)										
7	L2	125	4	132	3.2	0.380	27.2	LOS B	7.0	50.4	0.80	0.79	0.80	40.8
9	R2	351	8	369	2.3	* 0.461	29.3	LOS C	8.4	59.8	0.84	0.80	0.84	40.1
Appro	ach	476	12	501	2.5	0.461	28.7	LOS C	8.4	59.8	0.83	0.79	0.83	40.3
West:	Raym	ond Te	rrace R	oad (W)										
10	L2	181	9	191	5.0	0.106	6.0	LOS A	0.0	0.0	0.00	0.53	0.00	54.7
11	T1	298	13	314	4.4	* 0.461	27.4	LOS B	7.4	53.6	0.88	0.72	0.88	41.4
Appro	ach	479	22	504	4.6	0.461	19.3	LOS B	7.4	53.6	0.54	0.64	0.54	45.7
All Ve	hicles	1522	51	1602	3.4	0.461	21.9	LOS B	8.4	59.8	0.68	0.66	0.68	44.0

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018] PM (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace Existing [2018]

PM Peak

	nann D	0.457												
Vehic	cle Mc	vemer	nt Perf	ormanc	е									
Mov ID	Turn	INP VOLU [Total	JMES	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	ad (E)										
5	T1	474	7	499	1.5	0.219	6.4	LOS A	4.3	30.6	0.43	0.36	0.43	54.6
6	R2	92	3	97	3.3	* 0.328	38.7	LOS C	3.5	25.0	0.93	0.77	0.93	36.0
Appro	ach	566	10	596	1.8	0.328	11.6	LOS A	4.3	30.6	0.51	0.43	0.51	50.4
North	: Settle	ers Boul	evarde	(N)										
7	L2	40	1	42	2.5	0.269	36.0	LOS C	3.3	23.1	0.89	0.76	0.89	37.2
9	R2	151	2	159	1.3	* 0.327	37.3	LOS C	3.7	26.3	0.91	0.77	0.91	36.8
Appro	ach	191	3	201	1.6	0.327	37.0	LOS C	3.7	26.3	0.90	0.77	0.90	36.9
West:	Raym	ond Te	rrace R	oad (W)										
10	L2	201	2	212	1.0	0.115	5.8	LOS A	0.0	0.0	0.00	0.53	0.00	54.9
11	T1	379	5	399	1.3	* 0.348	17.1	LOS B	7.5	52.8	0.71	0.59	0.71	47.0
Appro	ach	580	7	611	1.2	0.348	13.2	LOS A	7.5	52.8	0.46	0.57	0.46	49.5
All Ve	hicles	1337	20	1407	1.5	0.348	15.9	LOS B	7.5	52.8	0.55	0.54	0.55	47.5

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018] Weekend (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace

Existing [2018] Weekend Peak

Vehi	cle Mo	vemer	t Perf	ormanc	Α									
Mov ID		INP VOLU [Total	UT JMES	DEM <i>A</i> FLO\ [Total	AND VS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective a	Aver. No. Cycles	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	oad (E)										
5	T1	368	3	387	8.0	0.173	6.5	LOS A	3.3	23.6	0.43	0.36	0.43	54.5
6	R2	59	0	62	0.0	* 0.243	40.0	LOS C	2.3	15.8	0.93	0.75	0.93	35.6
Appr	oach	427	3	449	0.7	0.243	11.1	LOS A	3.3	23.6	0.50	0.41	0.50	50.8
North	n: Settle	rs Boul	evarde	(N)										
7	L2	36	0	38	0.0	0.217	34.6	LOS C	2.7	19.4	0.86	0.75	0.86	37.8
9	R2	128	4	135	3.1	* 0.263	35.9	LOS C	3.1	22.1	0.88	0.76	0.88	37.3
Appr	oach	164	4	173	2.4	0.263	35.6	LOS C	3.1	22.1	0.88	0.76	0.88	37.4
West	: Raym	ond Te	rrace R	oad (W)										
10	L2	123	5	129	4.1	0.072	5.8	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	291	3	306	1.0	* 0.259	15.7	LOS B	5.4	37.9	0.67	0.55	0.67	47.8
Appr	oach	414	8	436	1.9	0.259	12.8	LOS A	5.4	37.9	0.47	0.54	0.47	49.7
All V	ehicles	1005	15	1058	1.5	0.263	15.8	LOS B	5.4	37.9	0.55	0.52	0.55	47.6

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018] AM (Site Folder: Existing 2018 Volumes)]

Harvest Boulevarde / Raymond Terrace

Existing [2018]

AM Peak

Vehic	ole Me	vemer	t Parfe	ormanc										
Mov ID	Turn	INP VOLU Total	UT IMES	DEMA FLOV	ND VS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist 1	Prop. Que	Effective A	Aver. No. Cycles S	
			veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	ad (E)										
5	T1	929	3	978	0.3	0.359	6.0	LOS A	7.6	53.0	0.43	0.38	0.43	55.3
6	R2	35	1	37	2.9	* 0.270	45.9	LOS D	1.5	10.5	0.98	0.72	0.98	33.6
Appro	ach	964	4	1015	0.4	0.359	7.4	LOS A	7.6	53.0	0.45	0.39	0.45	54.1
North	: Harve	est Boul	evarde	(N)										
7	L2	45	1	47	2.2	0.086	28.3	LOS B	1.3	9.5	0.75	0.71	0.75	40.6
9	R2	35	1	37	2.9	* 0.162	40.6	LOS C	1.3	9.6	0.93	0.72	0.93	35.2
Appro	ach	80	2	84	2.5	0.162	33.6	LOS C	1.3	9.6	0.83	0.72	0.83	38.1
West:	Raym	ond Te	race R	oad (W)										
10	L2	9	0	9	0.0	0.235	15.5	LOS B	4.9	35.5	0.55	0.48	0.55	50.2
11	T1	622	22	655	3.5	* 0.399	11.0	LOS A	9.4	67.5	0.59	0.52	0.59	51.0
Appro	ach	631	22	664	3.5	0.399	11.1	LOS A	9.4	67.5	0.59	0.52	0.59	51.0
All Ve	hicles	1675	28	1763	1.7	0.399	10.1	LOS A	9.4	67.5	0.52	0.46	0.52	51.8

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018] PM (Site Folder: Existing 2018 Volumes)]

Harvest Boulevarde / Raymond Terrace Existing [2018]

PM Peak

Vehic	cle Mo	vemer	nt Perf	ormanc	е									
Mov ID	Turn	INP VOLU [Total	IMES	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	oad (E)										
5	T1	905	5	953	0.6	0.350	5.9	LOS A	7.3	51.3	0.43	0.38	0.43	55.4
6	R2	57	1	60	1.8	* 0.436	46.7	LOS D	2.4	17.2	0.99	0.75	0.99	33.4
Appro	ach	962	6	1013	0.6	0.436	8.3	LOS A	7.3	51.3	0.46	0.40	0.46	53.3
North:	Harve	est Boul	evarde	(N)										
7	L2	40	0	42	0.0	0.076	28.4	LOS B	1.2	8.3	0.75	0.71	0.75	40.7
9	R2	33	0	35	0.0	* 0.150	40.4	LOS C	1.3	8.8	0.92	0.72	0.92	35.3
Appro	ach	73	0	77	0.0	0.150	33.8	LOS C	1.3	8.8	0.83	0.71	0.83	38.1
West:	Raym	ond Te	rrace R	oad (W)										
10	L2	33	0	35	0.0	0.279	15.8	LOS B	6.1	42.9	0.57	0.52	0.57	49.7
11	T1	728	6	766	8.0	* 0.474	11.6	LOS A	11.9	84.2	0.62	0.56	0.62	50.5
Appro	ach	761	6	801	8.0	0.474	11.8	LOS A	11.9	84.2	0.62	0.55	0.62	50.5
All Ve	hicles	1796	12	1891	0.7	0.474	10.8	LOS A	11.9	84.2	0.54	0.48	0.54	51.2

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018] Weekend (Site Folder: Existing 2018 Volumes)]

Harvest Boulevarde / Raymond Terrace

Existing [2018] Weekend Peak

Vehic	cle Mo	vemer	nt Perf	ormano	:e									
Mov ID	Turn	INP VOLU [Total	JMES	DEM/ FLO\ [Total	WS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	ond Ter	race Ro	oad (E)										
5	T1	680	4	716	0.6	0.263	5.1	LOS A	5.1	35.6	0.39	0.34	0.39	55.7
6	R2	37	4	39	10.8	* 0.301	46.3	LOS D	1.6	11.9	0.98	0.73	0.98	33.4
Appro	ach	717	8	755	1.1	0.301	7.3	LOS A	5.1	35.6	0.42	0.36	0.42	53.8
North:	Harve	est Boul	evarde	(N)										
7	L2	37	1	39	2.7	0.071	28.0	LOS B	1.1	7.8	0.75	0.71	0.75	40.7
9	R2	23	0	24	0.0	* 0.104	40.1	LOS C	0.9	6.1	0.92	0.71	0.92	35.5
Appro	ach	60	1	63	1.7	0.104	32.6	LOS C	1.1	7.8	0.81	0.71	0.81	38.5
West:	Raym	ond Te	rrace R	oad (W))									
10	L2	32	1	34	3.1	0.207	15.3	LOS B	4.3	30.3	0.54	0.50	0.54	49.8
11	T1	532	4	560	8.0	* 0.351	10.7	LOS A	8.1	57.2	0.58	0.51	0.58	51.0
Appro	ach	564	5	594	0.9	0.351	10.9	LOS A	8.1	57.2	0.58	0.51	0.58	51.0
All Ve	hicles	1341	14	1412	1.0	0.351	9.9	LOS A	8.1	57.2	0.50	0.44	0.50	51.7

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018] AM (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace Existing [2018] AM Peak

Site Category: (None)
Roundabout

Roun	aabca													
Vehic	cle Mo	vemen	t Perfo	ormanc	е									
Mov ID	Turn	INP VOLU [Total		DEM/ FLO	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Settle	ers Boul	evarde	(S)										
1	L2	23	0	24	0.0	0.018	3.7	LOS A	0.1	0.7	0.05	0.42	0.05	56.3
2	T1	239	12	252	5.0	0.167	3.6	LOS A	1.0	7.4	0.05	0.41	0.05	57.3
3	R2	54	1	57	1.9	0.167	9.2	LOS A	1.0	7.4	0.05	0.41	0.05	57.7
Appro	ach	316	13	333	4.1	0.167	4.5	LOS A	1.0	7.4	0.05	0.41	0.05	57.3
East:	Settler	s Boule	varde (E)										
4	L2	61	9	64	14.8	0.051	5.4	LOS A	0.3	2.3	0.50	0.53	0.50	54.1
5	T1	4	0	4	0.0	0.006	5.5	LOS A	0.0	0.2	0.51	0.49	0.51	55.0
6	R2	1	0	1	0.0	0.006	11.1	LOS B	0.0	0.2	0.51	0.49	0.51	55.4
Appro	ach	66	9	69	13.6	0.051	5.5	LOS A	0.3	2.3	0.50	0.53	0.50	54.2
North	: Herita	ige Driv	e (N)											
7	L2	3	0	3	0.0	0.250	4.2	LOS A	1.5	10.6	0.35	0.42	0.35	54.8
8	T1	320	3	337	0.9	0.250	4.4	LOS A	1.5	10.6	0.35	0.42	0.35	56.5
9	R2	1	0	1	0.0	0.250	9.9	LOS A	1.5	10.6	0.35	0.42	0.35	56.9
Appro	ach	324	3	341	0.9	0.250	4.4	LOS A	1.5	10.6	0.35	0.42	0.35	56.5
West:	Dusko	larter St	reet (W	/)										
10	L2	1	0	1	0.0	0.077	4.7	LOS A	0.4	2.7	0.42	0.64	0.42	51.2
11	T1	2	0	2	0.0	0.077	4.9	LOS A	0.4	2.7	0.42	0.64	0.42	52.6
12	R2	85	0	89	0.0	0.077	10.5	LOS B	0.4	2.7	0.42	0.64	0.42	52.9
Appro	ach	88	0	93	0.0	0.077	10.3	LOS B	0.4	2.7	0.42	0.64	0.42	52.9
All Ve	hicles	794	25	836	3.1	0.250	5.2	LOS A	1.5	10.6	0.25	0.45	0.25	56.2

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018] PM (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace Existing [2018] PM Peak

Site Category: (None)

Roundabout

rtouri	aaboa	•												
Vehic	le Mo	vemen	t Perfo	rmanc	е									
Mov ID	Turn	INP VOLU [Total	IMES	DEM FLO [Total	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Settle	ers Boul	evarde	(S)										
1	L2	58	1	61	1.7	0.043	3.7	LOS A	0.2	1.5	0.03	0.43	0.03	56.3
2	T1	166	9	175	5.4	0.096	3.6	LOS A	0.5	3.7	0.03	0.35	0.03	58.2
3	R2	3	0	3	0.0	0.096	9.2	LOS A	0.5	3.7	0.03	0.35	0.03	58.7
Appro	ach	227	10	239	4.4	0.096	3.7	LOS A	0.5	3.7	0.03	0.37	0.03	57.7
East:	Settler	s Boule	varde (l	E)										
4	L2	30	8	32	26.7	0.023	4.7	LOS A	0.1	1.0	0.34	0.45	0.34	54.4
5	T1	1	0	1	0.0	0.002	4.5	LOS A	0.0	0.1	0.36	0.49	0.36	54.7
6	R2	1	0	1	0.0	0.002	10.2	LOS B	0.0	0.1	0.36	0.49	0.36	55.1
Appro	ach	32	8	34	25.0	0.023	4.8	LOS A	0.1	1.0	0.34	0.46	0.34	54.5
North:	Herita	ge Driv	e (N)											
7	L2	1	0	1	0.0	0.118	3.6	LOS A	0.6	4.5	0.17	0.35	0.17	55.8
8	T1	167	3	176	1.8	0.118	3.8	LOS A	0.6	4.5	0.17	0.35	0.17	57.5
9	R2	1	0	1	0.0	0.118	9.4	LOS A	0.6	4.5	0.17	0.35	0.17	58.0
Appro	ach	169	3	178	1.8	0.118	3.8	LOS A	0.6	4.5	0.17	0.35	0.17	57.5
West:	Dusko	larter St	reet (W	/)										
10	L2	2	0	2	0.0	0.035	4.1	LOS A	0.2	1.2	0.31	0.59	0.31	51.8
11	T1	2	0	2	0.0	0.035	4.2	LOS A	0.2	1.2	0.31	0.59	0.31	53.3
12	R2	40	0	42	0.0	0.035	9.9	LOS A	0.2	1.2	0.31	0.59	0.31	53.6
Appro	ach	44	0	46	0.0	0.035	9.4	LOS A	0.2	1.2	0.31	0.59	0.31	53.5
All Ve	hicles	472	21	497	4.4	0.118	4.3	LOS A	0.6	4.5	0.13	0.39	0.13	57.0

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018] Weekend (Site Folder: Existing 2018 Volumes)]

Settlers Boulevarde / Raymond Terrace Existing [2018] Weekend Peak Site Category: (None) Roundabout

Rour	ndabout	t												
Vehi	cle Mo	vemen	t Perfo	rmance	,									
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEMA FLO\ [Total	WS HV]	Deg. Satn	Aver. Delay	Level of Service	OF Q [Veh.	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Speed
04	0-41-	veh/h			%	v/c	sec		veh	m				km/h
	n: Settle			` '										
1	L2	40	0	42	0.0	0.030	3.6	LOS A	0.1	1.0	0.03	0.43	0.03	56.3
2	T1	128	5	135	3.9	0.074	3.6	LOS A	0.4	2.7	0.03	0.35	0.03	58.3
3	R2	2	0	2	0.0	0.074	9.2	LOS A	0.4	2.7	0.03	0.35	0.03	58.7
Appro	oach	170	5	179	2.9	0.074	3.6	LOS A	0.4	2.7	0.03	0.37	0.03	57.8
East:	Settlers	s Boule	/arde (I	Ξ)										
4	L2	5	0	5	0.0	0.003	4.1	LOS A	0.0	0.1	0.27	0.41	0.27	55.4
5	T1	1	0	1	0.0	0.002	4.2	LOS A	0.0	0.1	0.30	0.49	0.30	55.0
6	R2	1	0	1	0.0	0.002	9.8	LOS A	0.0	0.1	0.30	0.49	0.30	55.3
Appro	oach	7	0	7	0.0	0.003	4.9	LOS A	0.0	0.1	0.28	0.43	0.28	55.3
North	: Herita	ge Drive	e (N)											
7	L2	1	0	1	0.0	0.083	3.6	LOS A	0.4	3.0	0.16	0.35	0.16	55.8
8	T1	114	3	120	2.6	0.083	3.8	LOS A	0.4	3.0	0.16	0.35	0.16	57.5
9	R2	1	0	1	0.0	0.083	9.4	LOS A	0.4	3.0	0.16	0.35	0.16	58.0
Appro	oach	116	3	122	2.6	0.083	3.8	LOS A	0.4	3.0	0.16	0.35	0.16	57.5
West	: Duskd	arter St	reet (W	')										
10	L2	1	0	1	0.0	0.035	3.9	LOS A	0.2	1.1	0.27	0.59	0.27	51.7
11	T1	1	0	1	0.0	0.035	4.0	LOS A	0.2	1.1	0.27	0.59	0.27	53.2
12	R2	42	1	44	2.4	0.035	9.7	LOS A	0.2	1.1	0.27	0.59	0.27	53.5
Appro	oach	44	1	46	2.3	0.035	9.5	LOS A	0.2	1.1	0.27	0.59	0.27	53.4
All Ve	ehicles	337	9	355	2.7	0.083	4.5	LOS A	0.4	3.0	0.11	0.39	0.11	57.0

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018] AM (Site Folder: Existing 2018 Volumes)]

Heritage Drive / Tigerhawk Existing [2018] AM Peak Site Category: (None) Give-Way (Two-Way)

Mov	le Mo	INP VOLU	UT	ormance DEMA										
	Turn	VOLU		DEMA	ALID									
		[Total	HV]	FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective / Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South:	Herita	age Driv	re (S)											
1	L2	53	7	56	13.2	0.145	6.1	LOS A	0.4	3.1	0.17	0.21	0.17	55.3
2	T1	148	1	156	0.7	0.145	0.3	LOS A	0.4	3.1	0.17	0.21	0.17	57.5
3	R2	41	4	43	9.8	0.145	6.4	LOS A	0.4	3.1	0.17	0.21	0.17	54.9
Approa	ach	242	12	255	5.0	0.145	2.6	NA	0.4	3.1	0.17	0.21	0.17	56.5
East: T	Γigerh	awk Dri	ve (E)											
4	L2	30	0	32	0.0	0.074	6.1	LOS A	0.3	1.9	0.34	0.62	0.34	52.6
5	T1	11	0	12	0.0	0.074	6.3	LOS A	0.3	1.9	0.34	0.62	0.34	52.7
6	R2	24	1	25	4.2	0.074	8.2	LOS A	0.3	1.9	0.34	0.62	0.34	51.9
Approa	ach	65	1	68	1.5	0.074	6.9	LOS A	0.3	1.9	0.34	0.62	0.34	52.3
North:	Herita	age Driv	e (N)											
7	L2	28	5	29	17.9	0.113	5.8	LOS A	0.0	0.3	0.02	0.09	0.02	56.7
8	T1	171	1	180	0.6	0.113	0.0	LOS A	0.0	0.3	0.02	0.09	0.02	59.2
9	R2	4	0	4	0.0	0.113	6.2	LOS A	0.0	0.3	0.02	0.09	0.02	57.0
Approa	ach	203	6	214	3.0	0.113	0.9	NA	0.0	0.3	0.02	0.09	0.02	58.8
West:	Tigerh	nawk Dr	ive (W)											
10	L2	24	0	25	0.0	0.234	6.1	LOS A	0.9	6.2	0.44	0.72	0.44	51.8
11	T1	23	0	24	0.0	0.234	6.5	LOS A	0.9	6.2	0.44	0.72	0.44	51.9
12	R2	122	2	128	1.6	0.234	8.6	LOS A	0.9	6.2	0.44	0.72	0.44	51.2
Approa	ach	169	2	178	1.2	0.234	8.0	LOS A	0.9	6.2	0.44	0.72	0.44	51.4
All Veh	nicles	679	21	715	3.1	0.234	3.9	NA	0.9	6.2	0.21	0.34	0.21	55.4

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018] PM (Site Folder: Existing 2018 Volumes)]

Heritage Drive / Tigerhawk Existing [2018] PM Peak

Oive	vvay (1 000-00	ay)											
Vehic	cle Mo	vemen	t Perfo	ormance	Э									
Mov ID	Turn	INP VOLU [Total		DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Herit	age Driv	/e (S)											
1	L2	95	6	100	6.3	0.103	5.7	LOS A	0.2	1.4	0.07	0.36	0.07	54.8
2	T1	60	0	63	0.0	0.103	0.1	LOS A	0.2	1.4	0.07	0.36	0.07	56.5
3	R2	16	6	17	37.5	0.103	6.3	LOS A	0.2	1.4	0.07	0.36	0.07	52.8
Appro	ach	171	12	180	7.0	0.103	3.8	NA	0.2	1.4	0.07	0.36	0.07	55.2
East:	Tigerh	awk Dri	ve (E)											
4	L2	10	0	11	0.0	0.019	5.8	LOS A	0.1	0.5	0.20	0.54	0.20	53.5
5	T1	9	0	9	0.0	0.019	5.2	LOS A	0.1	0.5	0.20	0.54	0.20	53.6
6	R2	3	0	3	0.0	0.019	6.3	LOS A	0.1	0.5	0.20	0.54	0.20	53.0
Appro	ach	22	0	23	0.0	0.019	5.6	LOS A	0.1	0.5	0.20	0.54	0.20	53.5
North	: Herita	age Driv	e (N)											
7	L2	8	4	8	50.0	0.050	6.3	LOS A	0.0	0.3	0.04	0.08	0.04	55.3
8	T1	77	0	81	0.0	0.050	0.0	LOS A	0.0	0.3	0.04	0.08	0.04	59.3
9	R2	4	0	4	0.0	0.050	6.0	LOS A	0.0	0.3	0.04	0.08	0.04	57.1
Appro	ach	89	4	94	4.5	0.050	0.9	NA	0.0	0.3	0.04	0.08	0.04	58.9
West:	Tigerl	nawk Dr	ive (W)											
10	L2	3	0	3	0.0	0.098	5.7	LOS A	0.3	2.4	0.31	0.62	0.31	52.8
11	T1	6	0	6	0.0	0.098	5.1	LOS A	0.3	2.4	0.31	0.62	0.31	53.0
12	R2	74	2	78	2.7	0.098	6.8	LOS A	0.3	2.4	0.31	0.62	0.31	52.2
Appro	ach	83	2	87	2.4	0.098	6.6	LOS A	0.3	2.4	0.31	0.62	0.31	52.2
All Ve	hicles	365	18	384	4.9	0.103	3.8	NA	0.3	2.4	0.12	0.36	0.12	55.2

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018] Weekend (Site Folder: Existing 2018 Volumes)]

Heritage Drive / Tigerhawk Existing [2018] Weekend Peak Site Category: (None) Give-Way (Two-Way)

0.110	vvay (1 000-00	uy)											
Vehic	cle Mo	vemen	t Perfo	ormanc	е									
Mov ID	Turn	INP VOLU [Total		DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Herita	age Driv	/e (S)											
1	L2	88	1	93	1.1	0.077	5.6	LOS A	0.0	0.1	0.00	0.38	0.00	55.1
2	T1	48	0	51	0.0	0.077	0.0	LOS A	0.0	0.1	0.00	0.38	0.00	56.7
3	R2	1	0	1	0.0	0.077	5.5	LOS A	0.0	0.1	0.00	0.38	0.00	54.6
Appro	ach	137	1	144	0.7	0.077	3.6	NA	0.0	0.1	0.00	0.38	0.00	55.7
East:	Tigerh	awk Dri	ve (E)											
4	L2	1	0	1	0.0	0.003	5.6	LOS A	0.0	0.1	0.10	0.54	0.10	53.7
5	T1	1	0	1	0.0	0.003	4.7	LOS A	0.0	0.1	0.10	0.54	0.10	53.9
6	R2	1	0	1	0.0	0.003	5.8	LOS A	0.0	0.1	0.10	0.54	0.10	53.2
Appro	ach	3	0	3	0.0	0.003	5.4	LOS A	0.0	0.1	0.10	0.54	0.10	53.6
North:	: Herita	age Driv	e (N)											
7	L2	1	0	1	0.0	0.014	5.8	LOS A	0.0	0.1	0.03	0.05	0.03	57.9
8	T1	24	0	25	0.0	0.014	0.0	LOS A	0.0	0.1	0.03	0.05	0.03	59.5
9	R2	1	0	1	0.0	0.014	5.8	LOS A	0.0	0.1	0.03	0.05	0.03	57.2
Appro	ach	26	0	27	0.0	0.014	0.5	NA	0.0	0.1	0.03	0.05	0.03	59.3
West:	Tigerh	nawk Dr	ive (W)											
10	L2	2	0	2	0.0	0.104	5.7	LOS A	0.4	2.6	0.23	0.58	0.23	53.1
11	T1	7	0	7	0.0	0.104	4.6	LOS A	0.4	2.6	0.23	0.58	0.23	53.3
12	R2	90	2	95	2.2	0.104	6.1	LOS A	0.4	2.6	0.23	0.58	0.23	52.5
Appro	ach	99	2	104	2.0	0.104	6.0	LOS A	0.4	2.6	0.23	0.58	0.23	52.5
All Ve	hicles	265	3	279	1.1	0.104	4.2	NA	0.4	2.6	0.09	0.43	0.09	54.8

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018] AM (Site Folder: Existing 2018 Volumes)]

Grasshawk Drive / Dragonfly Drive Existing [2018] AM Peak Site Category: (None) Give-Way (Two-Way)

Vehi		vemen		ormance	e _									
Mov ID	_	INP VOLU	UT IMES	DEMA FLO	AND WS	Deg. Satn	Aver. Delay	Level of Service	QUI	ACK OF EUE	Prop. Que	Effective Stop Rate	- Aver. No. Cycles S	
		[Total	HV]	[Total					[Veh.	Dist]				
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	h: Drago	onfly Dr	ive (S)											
1	L2	1	0	1	0.0	0.016	5.6	LOS A	0.1	0.5	0.07	0.37	0.07	55.0
2	T1	10	0	11	0.0	0.016	0.0	LOS A	0.1	0.5	0.07	0.37	0.07	56.5
3	R2	17	0	18	0.0	0.016	5.5	LOS A	0.1	0.5	0.07	0.37	0.07	54.5
Appr	oach	28	0	29	0.0	0.016	3.6	NA	0.1	0.5	0.07	0.37	0.07	55.2
East:	Grassh	nawk Di	rive (E)											
4	L2	15	0	16	0.0	0.023	5.6	LOS A	0.1	0.6	0.03	0.56	0.03	53.8
5	T1	7	0	7	0.0	0.023	4.3	LOS A	0.1	0.6	0.03	0.56	0.03	54.0
6	R2	7	1	7	14.3	0.023	6.0	LOS A	0.1	0.6	0.03	0.56	0.03	52.6
Appr	oach	29	1	31	3.4	0.023	5.4	LOS A	0.1	0.6	0.03	0.56	0.03	53.5
North	n: Drago	onfly Dri	ve (N)											
7	L2	12	2	13	16.7	0.011	5.7	LOS A	0.0	0.1	0.01	0.42	0.01	54.2
8	T1	5	0	5	0.0	0.011	0.0	LOS A	0.0	0.1	0.01	0.42	0.01	56.4
9	R2	1	0	1	0.0	0.011	5.5	LOS A	0.0	0.1	0.01	0.42	0.01	54.4
Appr	oach	18	2	19	11.1	0.011	4.1	NA	0.0	0.1	0.01	0.42	0.01	54.8
West	t: Grass	hawk D	rive (W)										
10	L2	1	0	1	0.0	0.036	5.6	LOS A	0.1	0.9	0.12	0.51	0.12	54.3
11	T1	42	0	44	0.0	0.036	4.3	LOS A	0.1	0.9	0.12	0.51	0.12	54.5
12	R2	1	0	1	0.0	0.036	5.7	LOS A	0.1	0.9	0.12	0.51	0.12	53.8
Appr	oach	44	0	46	0.0	0.036	4.4	LOS A	0.1	0.9	0.12	0.51	0.12	54.5
All V	ehicles	119	3	125	2.5	0.036	4.4	NA	0.1	0.9	0.07	0.48	0.07	54.5

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018] PM (Site Folder: Existing 2018 Volumes)]

Grasshawk Drive / Dragonfly Drive Existing [2018] PM Peak

0.170	vvay (1 000-00	шу)											
Vehic	cle Mc	vemen	t Perfo	ormanc	е									
Mov ID	Turn	INP VOLU [Total		DEMA FLOV [Total		Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective / Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Drag	onfly Dr	ive (S)											
1	L2	1	0	1	0.0	0.011	5.6	LOS A	0.1	0.4	0.06	0.54	0.06	53.7
2	T1	1	0	1	0.0	0.011	0.0	LOS A	0.1	0.4	0.06	0.54	0.06	55.1
3	R2	17	0	18	0.0	0.011	5.5	LOS A	0.1	0.4	0.06	0.54	0.06	53.2
Appro	ach	19	0	20	0.0	0.011	5.2	NA	0.1	0.4	0.06	0.54	0.06	53.3
East:	Grassl	nawk Dr	rive (E)											
4	L2	24	0	25	0.0	0.056	5.5	LOS A	0.2	1.5	0.02	0.55	0.02	54.2
5	T1	42	0	44	0.0	0.056	4.2	LOS A	0.2	1.5	0.02	0.55	0.02	54.4
6	R2	6	1	6	16.7	0.056	5.9	LOS A	0.2	1.5	0.02	0.55	0.02	52.9
Appro	ach	72	1	76	1.4	0.056	4.8	LOS A	0.2	1.5	0.02	0.55	0.02	54.2
North	: Drago	onfly Dri	ve (N)											
7	L2	9	2	9	22.2	0.008	5.8	LOS A	0.0	0.1	0.00	0.48	0.00	53.5
8	T1	2	0	2	0.0	0.008	0.0	LOS A	0.0	0.1	0.00	0.48	0.00	55.9
9	R2	1	0	1	0.0	0.008	5.5	LOS A	0.0	0.1	0.00	0.48	0.00	54.0
Appro	ach	12	2	13	16.7	0.008	4.8	NA	0.0	0.1	0.00	0.48	0.00	53.9
West:	Grass	hawk D	rive (W)										
10	L2	1	0	1	0.0	0.020	5.5	LOS A	0.1	0.5	0.04	0.52	0.04	54.5
11	T1	23	0	24	0.0	0.020	4.2	LOS A	0.1	0.5	0.04	0.52	0.04	54.7
12	R2	1	0	1	0.0	0.020	5.8	LOS A	0.1	0.5	0.04	0.52	0.04	54.0
Appro	ach	25	0	26	0.0	0.020	4.4	LOS A	0.1	0.5	0.04	0.52	0.04	54.6
All Ve	hicles	128	3	135	2.3	0.056	4.8	NA	0.2	1.5	0.03	0.53	0.03	54.1

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018] Weekend (Site Folder: Existing 2018 Volumes)]

Grasshawk Drive / Dragonfly Drive Existing [2018] Weekend Peak Site Category: (None) Give-Way (Two-Way)

Give-	vvay (I WO-VV	ay)											
Vehic	cle Mo	vemen	t Perfo	ormanc	е									
Mov ID	Turn	INP VOLU [Total	IMES	DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service		ACK OF EUE Dist]	Prop. Que	Effective / Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Drago	onfly Dr	ive (S)											
1	L2	1	0	1	0.0	0.011	5.6	LOS A	0.1	0.4	0.06	0.54	0.06	53.7
2	T1	1	0	1	0.0	0.011	0.0	LOS A	0.1	0.4	0.06	0.54	0.06	55.1
3	R2	17	0	18	0.0	0.011	5.5	LOS A	0.1	0.4	0.06	0.54	0.06	53.2
Appro	ach	19	0	20	0.0	0.011	5.2	NA	0.1	0.4	0.06	0.54	0.06	53.3
East:	Grassh	nawk Dr	ive (E)											
4	L2	22	0	23	0.0	0.045	5.6	LOS A	0.2	1.2	0.02	0.55	0.02	54.1
5	T1	27	1	28	3.7	0.045	4.3	LOS A	0.2	1.2	0.02	0.55	0.02	54.1
6	R2	9	0	9	0.0	0.045	5.7	LOS A	0.2	1.2	0.02	0.55	0.02	53.5
Appro	ach	58	1	61	1.7	0.045	5.0	LOS A	0.2	1.2	0.02	0.55	0.02	54.0
North	: Drago	nfly Dri	ve (N)											
7	L2	10	1	11	10.0	0.008	5.7	LOS A	0.0	0.1	0.00	0.46	0.00	54.2
8	T1	3	0	3	0.0	0.008	0.0	LOS A	0.0	0.1	0.00	0.46	0.00	56.1
9	R2	1	0	1	0.0	0.008	5.5	LOS A	0.0	0.1	0.00	0.46	0.00	54.1
Appro	ach	14	1	15	7.1	0.008	4.4	NA	0.0	0.1	0.00	0.46	0.00	54.6
West:	Grassl	hawk D	rive (W)										
10	L2	1	0	1	0.0	0.024	5.5	LOS A	0.1	0.6	0.05	0.52	0.05	54.5
11	T1	27	1	28	3.7	0.024	4.3	LOS A	0.1	0.6	0.05	0.52	0.05	54.5
12	R2	1	0	1	0.0	0.024	5.8	LOS A	0.1	0.6	0.05	0.52	0.05	54.0
Appro	ach	29	1	31	3.4	0.024	4.4	LOS A	0.1	0.6	0.05	0.52	0.05	54.5
All Ve	hicles	120	3	126	2.5	0.045	4.8	NA	0.2	1.2	0.03	0.53	0.03	54.1

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential

AM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

Vehic	le Mo	vemen	t Perfo	rmance	Э									
Mov ID	Turn	INP VOLU [Total	JMES	DEMA FLOV [Total	VS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	ond Terr	ace Ro	ad (E)										
5	T1	782	12	823	1.5	0.522	19.2	LOS B	12.8	90.5	0.75	0.65	0.75	47.1
6	R2	145	5	153	3.4	* 0.674	44.6	LOS D	6.1	44.3	1.00	0.84	1.10	34.0
Appro	ach	927	17	976	1.8	0.674	23.2	LOS B	12.8	90.5	0.79	0.68	0.81	44.5
North:	Settle	rs Boule	evarde ((N)										
7	L2	174	4	183	2.3	0.540	26.2	LOS B	11.8	84.1	0.82	0.81	0.82	41.4
9	R2	629	8	662	1.3	* 0.655	29.2	LOS C	14.8	104.7	0.86	0.83	0.86	40.8
Appro	ach	803	12	845	1.5	0.655	28.5	LOS C	14.8	104.7	0.85	0.83	0.85	40.9
West:	Raym	ond Ter	race Ro	ad (W)										
10	L2	259	9	273	3.5	0.150	6.0	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	417	13	439	3.1	* 0.640	28.8	LOS C	10.9	78.4	0.92	0.76	0.92	40.9
Appro	ach	676	22	712	3.3	0.640	20.1	LOS B	10.9	78.4	0.57	0.67	0.57	45.3
All Vel	hicles	2406	51	2533	2.1	0.674	24.1	LOS B	14.8	104.7	0.75	0.73	0.75	43.4

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential

PM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

Vehic	le Mo	vemen	t Perfo	rmance	9									
Mov ID	Turn	INP VOLU [Total		DEMA FLOV [Total	VS	Deg. Satn	Aver. Delay	Level of Service	OF C	BACK UEUE Dist]	Prop. Que	Effective A	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terr	ace Ro	ad (E)										
5	T1	576	7	606	1.2	0.251	5.5	LOS A	4.9	34.4	0.40	0.34	0.40	55.5
6	R2	110	3	116	2.7	* 0.636	46.0	LOS D	4.7	33.7	1.00	0.82	1.09	33.6
Appro	ach	686	10	722	1.5	0.636	12.0	LOS A	4.9	34.4	0.49	0.42	0.51	50.3
North:	Settle	rs Boule	evarde ((N)										
7	L2	54	1	57	1.9	0.501	41.7	LOS C	5.3	37.3	0.96	0.79	0.96	35.6
9	R2	227	2	239	0.9	* 0.607	42.1	LOS C	6.0	42.2	0.98	0.81	1.00	35.2
Appro	ach	281	3	296	1.1	0.607	42.0	LOS C	6.0	42.2	0.97	0.80	0.99	35.3
West:	Raym	ond Ter	race Ro	ad (W)										
10	L2	543	2	572	0.4	0.309	6.0	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	851	5	896	0.6	* 0.627	14.6	LOS B	17.5	122.9	0.72	0.64	0.72	48.7
Appro	ach	1394	7	1467	0.5	0.627	11.3	LOS A	17.5	122.9	0.44	0.59	0.44	51.0
All Ve	hicles	2361	20	2485	8.0	0.636	15.1	LOS B	17.5	122.9	0.52	0.57	0.53	48.2

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential Weekend Peak

Vehic	le Mo	vemen	t Perfo	rmance)									
Mov ID	Turn	INP VOLU [Total	JMES	DEMA FLOV [Total	٧S	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE . Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terra	ace Roa	ad (E)										
5	T1	527	3	555	0.6	0.262	8.5	LOS A	5.6	39.4	0.50	0.43	0.50	53.1
6	R2	66	0	69	0.0	* 0.428	45.4	LOS D	2.8	19.3	0.99	0.76	0.99	33.8
Appro	ach	593	3	624	0.5	0.428	12.6	LOS A	5.6	39.4	0.55	0.46	0.55	49.9
North:	Settle	rs Boule	varde (N)										
7	L2	58	0	61	0.0	0.343	33.3	LOS C	5.0	35.2	0.86	0.78	0.86	38.4
9	R2	250	4	263	1.6	* 0.416	34.5	LOS C	5.9	41.7	0.89	0.79	0.89	37.9
Appro	ach	308	4	324	1.3	0.416	34.3	LOS C	5.9	41.7	0.88	0.79	0.88	38.0
West:	Raymo	ond Teri	race Ro	ad (W)										
10	L2	260	5	274	1.9	0.149	5.8	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	484	3	509	0.6	* 0.417	16.3	LOS B	9.5	67.1	0.71	0.60	0.71	47.5
Appro	ach	744	8	783	1.1	0.417	12.6	LOS A	9.5	67.1	0.46	0.58	0.46	49.8
All Vel	hicles	1645	15	1732	0.9	0.428	16.7	LOS B	9.5	67.1	0.57	0.57	0.57	47.1

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Harvest Boulevarde / Raymond Terrace Existing [2018] + Residential

AM Peak

Vehic	le Mo	vemen	t Perfo	rmance	;									
Mov ID	Turn	INF VOLU [Total	JMES	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terr	ace Roa	ad (E)										
5	T1	1366	3	1438	0.2	0.527	8.7	LOS A	13.2	92.7	0.51	0.47	0.51	54.5
6	R2	49	1	52	2.0	* 0.376	46.4	LOS D	2.1	14.7	0.99	0.74	0.99	33.5
Appro	ach	1415	4	1489	0.3	0.527	10.0	LOS A	13.2	92.7	0.53	0.48	0.53	53.4
North:	Harve	st Boule	evarde ((N)										
7	L2	106	1	112	0.9	0.202	29.7	LOS C	3.3	23.1	0.78	0.75	0.78	40.2
9	R2	56	1	59	1.8	* 0.257	41.1	LOS C	2.2	15.5	0.94	0.75	0.94	35.1
Appro	ach	162	2	171	1.2	0.257	33.6	LOS C	3.3	23.1	0.84	0.75	0.84	38.3
West:	Raymo	ond Ter	race Ro	ad (W)										
10	L2	15	0	16	0.0	0.285	15.8	LOS B	6.2	44.4	0.57	0.50	0.57	49.9
11	T1	754	22	794	2.9	* 0.484	11.8	LOS A	12.2	87.3	0.63	0.55	0.63	50.5
Appro	ach	769	22	809	2.9	0.484	11.9	LOS A	12.2	87.3	0.63	0.55	0.63	50.5
All Vel	hicles	2346	28	2469	1.2	0.527	12.3	LOS A	13.2	92.7	0.58	0.52	0.58	51.0

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Harvest Boulevarde / Raymond Terrace

Existing [2018] + Residential

PM Peak

Vehic	le Mo	vemen	t Perfo	rmance	е									
Mov ID	Turn	INP VOLU [Total		DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF C	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	nd Terr	ace Ro	ad (E)										
5	T1	1025	5	1079	0.5	0.380	6.4	LOS A	9.7	67.8	0.40	0.36	0.40	55.2
6	R2	120	1	126	8.0	* 0.760	58.6	LOS E	6.6	46.6	1.00	0.88	1.21	30.1
Appro	ach	1145	6	1205	0.5	0.760	11.9	LOS A	9.7	67.8	0.47	0.42	0.49	50.7
North:	Harve	st Boule	evarde	(N)										
7	L2	57	0	60	0.0	0.108	37.8	LOS C	2.1	14.8	0.76	0.73	0.76	38.4
9	R2	38	0	40	0.0	* 0.179	49.4	LOS D	1.8	12.7	0.93	0.73	0.93	32.5
Appro	ach	95	0	100	0.0	0.179	42.5	LOS C	2.1	14.8	0.83	0.73	0.83	35.8
West:	Raymo	ond Ter	race Ro	ad (W)										
10	L2	60	0	63	0.0	0.473	18.5	LOS B	14.8	103.9	0.62	0.58	0.62	48.0
11	T1	1304	6	1373	0.5	* 0.803	18.0	LOS B	34.7	243.9	0.77	0.72	0.78	47.2
Appro	ach	1364	6	1436	0.4	0.803	18.0	LOS B	34.7	243.9	0.77	0.71	0.77	47.2
All Ve	hicles	2604	12	2741	0.5	0.803	16.2	LOS B	34.7	243.9	0.64	0.58	0.65	48.1

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Harvest Boulevarde / Raymond Terrace

Existing [2018] + Residential Weekend Peak

		- · - · <i>j</i> /												
Vehic	le Mo	vemen	t Perfo	rmance	,									
Mov ID	Turn	INF VOLU [Total		DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East:	Raymo	nd Terr	ace Roa	ad (E)										
5	T1	873	4	919	0.5	0.338	5.8	LOS A	7.0	48.9	0.42	0.37	0.42	55.4
6	R2	62	4	65	6.5	* 0.490	47.1	LOS D	2.7	19.6	1.00	0.75	1.00	33.2
Appro	ach	935	8	984	0.9	0.490	8.5	LOS A	7.0	48.9	0.46	0.40	0.46	53.1
North:	Harve	st Boule	evarde (N)										
7	L2	64	1	67	1.6	0.122	29.0	LOS C	1.9	13.6	0.76	0.73	0.76	40.5
9	R2	32	0	34	0.0	* 0.145	40.4	LOS C	1.2	8.5	0.92	0.72	0.92	35.4
Appro	ach	96	1	101	1.0	0.145	32.8	LOS C	1.9	13.6	0.81	0.73	0.81	38.6
West:	Raymo	ond Ter	race Ro	ad (W)										
10	L2	43	1	45	2.3	0.295	15.9	LOS B	6.5	45.9	0.57	0.53	0.57	49.5
11	T1	763	4	803	0.5	* 0.501	11.9	LOS A	12.9	91.0	0.64	0.57	0.64	50.3
Appro	ach	806	5	848	0.6	0.501	12.1	LOS A	12.9	91.0	0.63	0.57	0.63	50.3
All Ve	hicles	1837	14	1934	8.0	0.501	11.4	LOS A	12.9	91.0	0.55	0.49	0.55	50.8

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential AM Peak Site Category: (None)

Roundabout

rtouri	aabou	•												
Vehic	le Mo	vemen	t Perfo	rmance	:									
Mov ID	Turn		PUT JMES HV]	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Settle	rs Boule	evarde ((S)										
1	L2	23	0	24	0.0	0.018	3.7	LOS A	0.1	0.7	0.05	0.42	0.05	56.3
2	T1	239	12	252	5.0	0.212	3.6	LOS A	1.4	9.8	0.05	0.47	0.05	56.4
3	R2	136	1	143	0.7	0.212	9.2	LOS A	1.4	9.8	0.05	0.47	0.05	56.9
Appro	ach	398	13	419	3.3	0.212	5.5	LOS A	1.4	9.8	0.05	0.47	0.05	56.6
East:	Settlers	s Boule	/arde (E	≣)										
4	L2	388	9	408	2.3	0.305	5.7	LOS A	2.1	15.0	0.59	0.61	0.59	54.1
5	T1	4	0	4	0.0	0.006	5.5	LOS A	0.0	0.2	0.52	0.49	0.52	55.0
6	R2	1	0	1	0.0	0.006	11.1	LOS B	0.0	0.2	0.52	0.49	0.52	55.3
Appro	ach	393	9	414	2.3	0.305	5.7	LOS A	2.1	15.0	0.59	0.61	0.59	54.1
North:	Herita	ge Drive	e (N)											
7	L2	3	0	3	0.0	0.271	4.8	LOS A	1.6	11.4	0.44	0.46	0.44	54.4
8	T1	320	3	337	0.9	0.271	4.9	LOS A	1.6	11.4	0.44	0.46	0.44	56.0
9	R2	1	0	1	0.0	0.271	10.3	LOS B	1.6	11.4	0.44	0.46	0.44	56.4
Appro	ach	324	3	341	0.9	0.271	5.0	LOS A	1.6	11.4	0.44	0.46	0.44	56.0
West:	Duskd	arter St	reet (W)										
10	L2	1	0	1	0.0	0.082	5.1	LOS A	0.4	2.9	0.48	0.66	0.48	51.0
11	T1	2	0	2	0.0	0.082	5.4	LOS A	0.4	2.9	0.48	0.66	0.48	52.4
12	R2	85	0	89	0.0	0.082	10.9	LOS B	0.4	2.9	0.48	0.66	0.48	52.7
Appro	ach	88	0	93	0.0	0.082	10.7	LOS B	0.4	2.9	0.48	0.66	0.48	52.7
All Ve	hicles	1203	25	1266	2.1	0.305	5.8	LOS A	2.1	15.0	0.36	0.53	0.36	55.3

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential PM Peak

Site Category: (None)

Roundabout

Nound	Jabout	•												
Vehic	le Mo	vement	Perfo	rmance)									
Mov ID	Turn	INF VOLU [Total		DEM/ FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South:	Settle	rs Boule	evarde ((S)										
1	L2	58	1	61	1.7	0.045	3.7	LOS A	0.2	1.6	0.03	0.42	0.03	56.3
2	T1	166	9	175	5.4	0.294	3.6	LOS A	1.9	13.6	0.04	0.58	0.04	55.1
3	R2	363	0	382	0.0	0.294	9.2	LOS A	1.9	13.6	0.04	0.58	0.04	55.5
Appro	ach	587	10	618	1.7	0.294	7.1	LOS A	1.9	13.6	0.04	0.56	0.04	55.4
East: S	Settlers	Boulev	arde (E	Ξ)										
4	L2	120	8	126	6.7	0.086	4.4	LOS A	0.5	3.5	0.37	0.47	0.37	54.8
5	T1	1	0	1	0.0	0.002	4.5	LOS A	0.0	0.1	0.38	0.49	0.38	54.6
6	R2	1	0	1	0.0	0.002	10.2	LOS B	0.0	0.1	0.38	0.49	0.38	55.0
Appro	ach	122	8	128	6.6	0.086	4.5	LOS A	0.5	3.5	0.37	0.47	0.37	54.8
North:	Herita	ge Drive	e (N)											
7	L2	1	0	1	0.0	0.161	6.0	LOS A	0.9	6.2	0.52	0.55	0.52	53.9
8	T1	167	3	176	1.8	0.161	5.6	LOS A	0.9	6.2	0.52	0.55	0.52	55.6
9	R2	1	0	1	0.0	0.161	11.2	LOS B	0.9	6.2	0.52	0.55	0.52	56.0
Appro	ach	169	3	178	1.8	0.161	5.7	LOS A	0.9	6.2	0.52	0.55	0.52	55.6
West:	Duskda	arter Stı	eet (W))										
10	L2	2	0	2	0.0	0.045	5.9	LOS A	0.2	1.7	0.55	0.67	0.55	51.0
11	T1	2	0	2	0.0	0.045	6.6	LOS A	0.2	1.7	0.55	0.67	0.55	52.4
12	R2	40	0	42	0.0	0.045	11.7	LOS B	0.2	1.7	0.55	0.67	0.55	52.7
Appro	ach	44	0	46	0.0	0.045	11.2	LOS B	0.2	1.7	0.55	0.67	0.55	52.7
All Vel	nicles	922	21	971	2.3	0.294	6.7	LOS A	1.9	13.6	0.19	0.55	0.19	55.2

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential Weekend Peak Site Category: (None)

	dabout	iy. (1901 :	10)											
Vehic	cle Mo	vement	Perfo	rmance										
Mov ID	Turn -	INF VOLU [Total veh/h		DEMA FLO\ [Total veh/h	NS	Deg. Satn v/c	Aver. Delay sec	Level of Service	OF Q	BACK UEUE Dist] m	Prop. Que	Effective A	Aver. No. Cycles S	
South	: Settle	rs Boule	evarde (S)										
1	L2 T1	40 128	0 5	42 135	0.0 3.9	0.031 0.153	3.6 3.6	LOS A LOS A	0.1 0.8	1.0 6.0	0.03 0.03	0.42 0.54	0.03 0.03	56.3 55.8
3	R2	146	0	154	0.0	0.153	9.2	LOS A	8.0	6.0	0.03	0.54	0.03	56.2
Appro		314	5	331	1.6	0.153	6.2	LOS A	8.0	6.0	0.03	0.52	0.03	56.0
East:	Settlers	Boulev	arde (E	()										
4	L2	149	0	157	0.0	0.098	4.2	LOS A	0.5	3.7	0.30	0.45	0.30	55.3
5	T1	1	0	1	0.0	0.002	4.3	LOS A	0.0	0.1	0.32	0.49	0.32	54.9
6	R2	11	0	1	0.0	0.002	9.9	LOS A	0.0	0.1	0.32	0.49	0.32	55.2
Appro	ach	151	0	159	0.0	0.098	4.2	LOS A	0.5	3.7	0.30	0.45	0.30	55.3
North:	: Herita	ge Drive	(N)											
7	L2	1	0	1	0.0	0.096	4.4	LOS A	0.5	3.4	0.34	0.42	0.34	54.8
8	T1	114	3	120	2.6	0.096	4.5	LOS A	0.5	3.4	0.34	0.42	0.34	56.5
9	R2	1	0	1	0.0	0.096	10.0	LOS A	0.5	3.4	0.34	0.42	0.34	56.9
Appro	ach	116	3	122	2.6	0.096	4.5	LOS A	0.5	3.4	0.34	0.42	0.34	56.5
West:	Duskd	arter Stı	eet (W)											
10	L2	1	0	1	0.0	0.038	4.5	LOS A	0.2	1.3	0.40	0.62	0.40	51.3
11	T1	1	0	1	0.0	0.038	4.9	LOS A	0.2	1.3	0.40	0.62	0.40	52.8
12	R2	42	1	44	2.4	0.038	10.4	LOS B	0.2	1.3	0.40	0.62	0.40	53.0
Appro	ach	44	1	46	2.3	0.038	10.1	LOS B	0.2	1.3	0.40	0.62	0.40	53.0
All Ve	hicles	625	9	658	1.4	0.153	5.7	LOS A	8.0	6.0	0.18	0.49	0.18	55.7

 ∇ Site: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Heritage Drive / Tigerhawk Existing [2018] + Residential AM Peak

Give-	vvay (l wo-wa	y)											
Vehic	le Mo	vement	Perfo	rmance)									
Mov ID	Turn	INP VOLU [Total		DEM/ FLO' [Total	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	Aver. Speed
	_	veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
South	: Herita	ge Drive	e (S)											
1	L2	53	7	56	13.2	0.145	6.1	LOS A	0.4	3.1	0.17	0.21	0.17	55.3
2	T1	148	1	156	0.7	0.145	0.3	LOS A	0.4	3.1	0.17	0.21	0.17	57.5
3	R2	41	4	43	9.8	0.145	6.4	LOS A	0.4	3.1	0.17	0.21	0.17	54.9
Appro	ach	242	12	255	5.0	0.145	2.6	NA	0.4	3.1	0.17	0.21	0.17	56.5
East:	Tigerha	awk Driv	e (E)											
4	L2	30	0	32	0.0	0.074	6.1	LOS A	0.3	1.9	0.34	0.62	0.34	52.6
5	T1	11	0	12	0.0	0.074	6.3	LOS A	0.3	1.9	0.34	0.62	0.34	52.7
6	R2	24	1	25	4.2	0.074	8.2	LOS A	0.3	1.9	0.34	0.62	0.34	51.9
Appro	ach	65	1	68	1.5	0.074	6.9	LOS A	0.3	1.9	0.34	0.62	0.34	52.3
North:	Herita	ge Drive	e (N)											
7	L2	28	5	29	17.9	0.113	5.8	LOS A	0.0	0.3	0.02	0.09	0.02	56.7
8	T1	171	1	180	0.6	0.113	0.0	LOS A	0.0	0.3	0.02	0.09	0.02	59.2
9	R2	4	0	4	0.0	0.113	6.2	LOS A	0.0	0.3	0.02	0.09	0.02	57.0
Appro	ach	203	6	214	3.0	0.113	0.9	NA	0.0	0.3	0.02	0.09	0.02	58.8
West:	Tigerh	awk Driv	ve (W)											
10	L2	24	0	25	0.0	0.234	6.1	LOS A	0.9	6.2	0.44	0.72	0.44	51.8
11	T1	23	0	24	0.0	0.234	6.5	LOS A	0.9	6.2	0.44	0.72	0.44	51.9
12	R2	122	2	128	1.6	0.234	8.6	LOS A	0.9	6.2	0.44	0.72	0.44	51.2
Appro	ach	169	2	178	1.2	0.234	8.0	LOS A	0.9	6.2	0.44	0.72	0.44	51.4
All Ve	hicles	679	21	715	3.1	0.234	3.9	NA	0.9	6.2	0.21	0.34	0.21	55.4

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Heritage Drive / Tigerhawk Existing [2018] + Residential PM Peak

way (I	wo-wa	.y)											
le Mov	vement	Perfo	rmance)									
Turn	VOLU	IMES	FLO'	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	UEUE	Prop. Que	Effective / Stop Rate	Aver. No. Cycles S	Aver. Speed
	veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
Herita	ge Drive	e (S)											
L2	95	6	100	6.3	0.103	5.7	LOS A	0.2	1.4	0.07	0.36	0.07	54.8
T1	60	0	63	0.0	0.103	0.1	LOS A	0.2	1.4	0.07	0.36	0.07	56.5
R2	16	6	17	37.5	0.103	6.3	LOS A	0.2	1.4	0.07	0.36	0.07	52.8
ach	171	12	180	7.0	0.103	3.8	NA	0.2	1.4	0.07	0.36	0.07	55.2
Γigerha	wk Driv	e (E)											
L2	10	0	11	0.0	0.019	5.8	LOS A	0.1	0.5	0.20	0.54	0.20	53.5
T1	9	0	9	0.0	0.019	5.2	LOS A	0.1	0.5	0.20	0.54	0.20	53.6
R2	3	0	3	0.0	0.019	6.3	LOS A	0.1	0.5	0.20	0.54	0.20	53.0
ach	22	0	23	0.0	0.019	5.6	LOS A	0.1	0.5	0.20	0.54	0.20	53.5
Herita	ge Drive	(N)											
L2	8	4	8	50.0	0.050	6.3	LOS A	0.0	0.3	0.04	0.08	0.04	55.3
T1	77	0	81	0.0	0.050	0.0	LOS A	0.0	0.3	0.04	0.08	0.04	59.3
R2	4	0	4	0.0	0.050	6.0	LOS A	0.0	0.3	0.04	0.08	0.04	57.1
ach	89	4	94	4.5	0.050	0.9	NA	0.0	0.3	0.04	0.08	0.04	58.9
Tigerha	awk Driv	/e (W)											
L2	3	0	3	0.0	0.098	5.7	LOS A	0.3	2.4	0.31	0.62	0.31	52.8
T1	6	0	6	0.0	0.098	5.1	LOS A	0.3	2.4	0.31	0.62	0.31	53.0
R2	74	2	78	2.7	0.098	6.8	LOS A	0.3	2.4	0.31	0.62	0.31	52.2
ach	83	2	87	2.4	0.098	6.6	LOS A	0.3	2.4	0.31	0.62	0.31	52.2
nicles	365	18	384	4.9	0.103	3.8	NA	0.3	2.4	0.12	0.36	0.12	55.2
	Turn Herita L2 T1 R2 ach Figerha L2 T1 R2 ach Herita L2 T1 R2 ach Tigerha L2 T1 R2 ach Tigerha L2 T1 R2 ach	In the image is a second representation In the image is a second rep	Turn	In the image	In In In In In In In In	Turn VOLUMES FLOWS Satn Voh/h Veh/h Veh/	Turn VOLUMES FLOWS Total HV Veh/h Veh/h	Turn	Turn	Turn	Note	Note	

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Heritage Drive / Tigerhawk Existing [2018] + Residential Weekend Peak

		WO VV	<u> </u>											
Vehic	le Mo			rmance										
Mov ID	Turn	INP VOLU [Total		DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
South	: Herita	ge Drive	e (S)											
1	L2	88	1	93	1.1	0.077	5.6	LOS A	0.0	0.1	0.00	0.38	0.00	55.1
2	T1	48	0	51	0.0	0.077	0.0	LOS A	0.0	0.1	0.00	0.38	0.00	56.7
3	R2	1	0	1	0.0	0.077	5.5	LOS A	0.0	0.1	0.00	0.38	0.00	54.6
Appro	ach	137	1	144	0.7	0.077	3.6	NA	0.0	0.1	0.00	0.38	0.00	55.7
East:	Tigerha	wk Driv	e (E)											
4	L2	1	0	1	0.0	0.003	5.6	LOS A	0.0	0.1	0.10	0.54	0.10	53.7
5	T1	1	0	1	0.0	0.003	4.7	LOS A	0.0	0.1	0.10	0.54	0.10	53.9
6	R2	1	0	1	0.0	0.003	5.8	LOS A	0.0	0.1	0.10	0.54	0.10	53.2
Appro	ach	3	0	3	0.0	0.003	5.4	LOS A	0.0	0.1	0.10	0.54	0.10	53.6
North:	Herita	ge Drive	e (N)											
7	L2	1	0	1	0.0	0.014	5.8	LOS A	0.0	0.1	0.03	0.05	0.03	57.9
8	T1	24	0	25	0.0	0.014	0.0	LOS A	0.0	0.1	0.03	0.05	0.03	59.5
9	R2	1	0	1	0.0	0.014	5.8	LOS A	0.0	0.1	0.03	0.05	0.03	57.2
Appro	ach	26	0	27	0.0	0.014	0.5	NA	0.0	0.1	0.03	0.05	0.03	59.3
West:	Tigerh	awk Driv	ve (W)											
10	L2	2	0	2	0.0	0.104	5.7	LOS A	0.4	2.6	0.23	0.58	0.23	53.1
11	T1	7	0	7	0.0	0.104	4.6	LOS A	0.4	2.6	0.23	0.58	0.23	53.3
12	R2	90	2	95	2.2	0.104	6.1	LOS A	0.4	2.6	0.23	0.58	0.23	52.5
Appro	ach	99	2	104	2.0	0.104	6.0	LOS A	0.4	2.6	0.23	0.58	0.23	52.5
All Ve	hicles	265	3	279	1.1	0.104	4.2	NA	0.4	2.6	0.09	0.43	0.09	54.8

 ∇ Site: 101 [Grasshawk Drive / Dragonfly Drive EX [2018+ Residential] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Grasshawk Drive / Dragonfly Drive Existing [2018] + Residential AM Peak

Give-	vvay (ı	wo-vva	.y)											
Vehic	le Mo	vement	Perfo	rmance	;									
Mov ID	Turn	INP VOLU [Total		DEM/ FLO' [Total	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective / Stop Rate	Aver. No. Cycles S	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Drago	nfly Driv	/e (S)											
1	L2	1	0	1	0.0	0.028	5.8	LOS A	0.1	0.7	0.15	0.22	0.15	56.0
2	T1	30	0	32	0.0	0.028	0.2	LOS A	0.1	0.7	0.15	0.22	0.15	57.5
3	R2	17	0	18	0.0	0.028	5.7	LOS A	0.1	0.7	0.15	0.22	0.15	55.4
Appro	ach	48	0	51	0.0	0.028	2.3	NA	0.1	0.7	0.15	0.22	0.15	56.7
East:	Grassh	awk Dri	ve (E)											
4	L2	15	0	16	0.0	0.025	5.8	LOS A	0.1	0.7	0.20	0.54	0.20	53.3
5	T1	7	0	7	0.0	0.025	4.7	LOS A	0.1	0.7	0.20	0.54	0.20	53.5
6	R2	7	1	7	14.3	0.025	6.6	LOS A	0.1	0.7	0.20	0.54	0.20	52.1
Appro	ach	29	1	31	3.4	0.025	5.7	LOS A	0.1	0.7	0.20	0.54	0.20	53.1
North:	Drago	nfly Driv	e (N)											
7	L2	12	2	13	16.7	0.055	5.7	LOS A	0.0	0.1	0.00	0.08	0.00	56.9
8	T1	87	0	92	0.0	0.055	0.0	LOS A	0.0	0.1	0.00	0.08	0.00	59.4
9	R2	1	0	1	0.0	0.055	5.5	LOS A	0.0	0.1	0.00	0.08	0.00	57.2
Appro	ach	100	2	105	2.0	0.055	0.7	NA	0.0	0.1	0.00	0.08	0.00	59.1
West:	Grassh	nawk Dr	ive (W)											
10	L2	1	0	1	0.0	0.040	5.6	LOS A	0.1	1.0	0.23	0.52	0.23	54.0
11	T1	42	0	44	0.0	0.040	4.7	LOS A	0.1	1.0	0.23	0.52	0.23	54.2
12	R2	1	0	1	0.0	0.040	6.2	LOS A	0.1	1.0	0.23	0.52	0.23	53.5
Appro	ach	44	0	46	0.0	0.040	4.8	LOS A	0.1	1.0	0.23	0.52	0.23	54.1
All Ve	hicles	221	3	233	1.4	0.055	2.5	NA	0.1	1.0	0.11	0.26	0.11	56.7

 ∇ Site: 101 [Grasshawk Drive / Dragonfly Drive EX [2018 + Residential] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Grasshawk Drive / Dragonfly Drive Existing [2018] + Residential PM Peak

Site Category: (None)

Give-	Way (⅂	wo-Wa	y)											
Vehic	le Mo	vement	Perfo	rmance	;									
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h	WS	Deg. Satn v/c	Aver. Delay sec	Level of Service	OF Q	BACK UEUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
South	: Drago	nfly Driv	/e (S)											
1 2 3	L2 T1 R2	1 91 17	0 0 0	1 96 18	0.0 0.0 0.0	0.060 0.060 0.060	5.6 0.0 5.5	LOS A LOS A LOS A	0.1 0.1 0.1	0.8 0.8 0.8	0.04 0.04 0.04	0.10 0.10 0.10	0.04 0.04 0.04	57.4 59.0 56.8
Appro		109	0	115	0.0	0.060	0.9	NA	0.1	0.8	0.04	0.10	0.04	58.6
East:	Grassh	awk Dri	ve (E)											
4 5 6	L2 T1 R2	24 42 6	0 0 1	25 44 6	0.0 0.0 16.7	0.061 0.061 0.061	5.6 4.7 6.6	LOS A LOS A LOS A	0.2 0.2 0.2	1.6 1.6 1.6	0.11 0.11 0.11	0.54 0.54 0.54	0.11 0.11 0.11	53.9 54.1 52.6
Appro	ach	72	1	76	1.4	0.061	5.2	LOS A	0.2	1.6	0.11	0.54	0.11	53.9
North:	Drago	nfly Driv	e (N)											
7 8 9	L2 T1 R2	9 24 1	2 0 0	9 25 1	22.2 0.0 0.0	0.019 0.019 0.019	5.8 0.0 5.7	LOS A LOS A LOS A	0.0 0.0 0.0	0.1 0.1 0.1	0.02 0.02 0.02	0.17 0.17 0.17	0.02 0.02 0.02	56.0 58.6 56.4
Appro	ach	34	2	36	5.9	0.019	1.7	NA	0.0	0.1	0.02	0.17	0.02	57.8
West:	Grassl	nawk Dri	ive (W)											
10 11 12	L2 T1 R2	1 23 1	0 0 0	1 24 1	0.0 0.0 0.0	0.023 0.023 0.023	5.8 4.7 6.4	LOS A LOS A	0.1 0.1 0.1	0.6 0.6 0.6	0.24 0.24 0.24	0.52 0.52 0.52	0.24 0.24 0.24	53.9 54.1 53.4
Appro All Ve		25 240	3	26 253	1.3	0.023	4.8 2.7	LOS A	0.1	1.6	0.24	0.52	0.24	54.1 56.5

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018 + Residential] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield)]

Grasshawk Drive / Dragonfly Drive Existing [2018] + Residential Weekend Peak Site Category: (None) Give-Way (Two-Way)

Total HV Total HV Veh/h	
Mov Turn VOLUMES FLOWS Sath Delay Service OF QUEUE Veh. Dist Veh Move Move North: Dragonfly Drive (S)	
South: Dragonfly Drive (S) 1	o. Aver. esSpeed
1	km/h
2 T1 37 0 39 0.0 0.031 0.1 LOS A 0.1 0.7 0.09 0.19 0 3 R2 17 0 18 0.0 0.031 5.6 LOS A 0.1 0.7 0.09 0.19 0 Approach 55 0 58 0.0 0.031 1.9 NA 0.1 0.7 0.09 0.19 0 East: Grasshawk Drive (E) 4 L2 22 0 23 0.0 0.048 5.7 LOS A 0.2 1.3 0.14 0.54 0.54 0.6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0.6 R2 9 0 9 0.0 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0.0 Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0.0 North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0.8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0.9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 0.13 0.0 0.10 0.1	
3 R2 17 0 18 0.0 0.031 5.6 LOS A 0.1 0.7 0.09 0.19 0 Approach 55 0 58 0.0 0.031 1.9 NA 0.1 0.7 0.09 0.19 0 East: Grasshawk Drive (E) 4 L2 22 0 23 0.0 0.048 5.7 LOS A 0.2 1.3 0.14 0.54 0 5 T1 27 1 28 3.7 0.048 4.6 LOS A 0.2 1.3 0.14 0.54 0 6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0 Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0 North: Dragonfly Drive (N) 7 L2 10 1 11 <	9 56.4
Approach 55 0 58 0.0 0.031 1.9 NA 0.1 0.7 0.09 0.19 0 East: Grasshawk Drive (E) 4 L2 22 0 23 0.0 0.048 5.7 LOS A 0.2 1.3 0.14 0.54 0. 5 T1 27 1 28 3.7 0.048 4.6 LOS A 0.2 1.3 0.14 0.54 0. 6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0. Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0. North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0. 8 T1 40 0 42 0.0	9 57.9
East: Grasshawk Drive (E) 4	09 55.8
4 L2 22 0 23 0.0 0.048 5.7 LOS A 0.2 1.3 0.14 0.54 0.55 T1 27 1 28 3.7 0.048 4.6 LOS A 0.2 1.3 0.14 0.54 0.56 0.6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0.54 0.6 R2 9 0 9 0.0 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0.54 0.0 North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0.8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0.9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0.0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.0 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	09 57.2
5 T1 27 1 28 3.7 0.048 4.6 LOS A 0.2 1.3 0.14 0.54 0 6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0 Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0 North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0 8 T1 40 0 42 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0 9 R2 1 0 1 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0 Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0	
6 R2 9 0 9 0.0 0.048 6.1 LOS A 0.2 1.3 0.14 0.54 0. Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0. North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0.8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0.9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0. Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.	14 53.7
Approach 58 1 61 1.7 0.048 5.2 LOS A 0.2 1.3 0.14 0.54 0 North: Dragonfly Drive (N) 7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0. 8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0. 9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0. Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0	14 53.7
North: Dragonfly Drive (N) 7	14 53.2
7 L2 10 1 11 10.0 0.028 5.7 LOS A 0.0 0.1 0.01 0.13 0.8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0.9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0.13 0.14 0.00 0.15 1 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0.14 0.01 0.15 0.15 0.15 0.15 0.15 0.15 0.15	14 53.6
8 T1 40 0 42 0.0 0.028 0.0 LOS A 0.0 0.1 0.01 0.13 0.9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0. Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0	
9 R2 1 0 1 0.0 0.028 5.6 LOS A 0.0 0.1 0.01 0.13 0. Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0	01 56.8
Approach 51 1 54 2.0 0.028 1.2 NA 0.0 0.1 0.01 0.13 0	01 58.9
· · ·	01 56.7
Wast: Grasshawk Drive (M)	01 58.4
vvest. Glassilawk Dlive (vv)	
10 L2 1 0 1 0.0 0.026 5.6 LOS A 0.1 0.7 0.19 0.51 0.	19 54.1
11 T1 27 1 28 3.7 0.026 4.6 LOS A 0.1 0.7 0.19 0.51 0.	19 54.1
12 R2 1 0 1 0.0 0.026 6.1 LOS A 0.1 0.7 0.19 0.51 0.	19 53.5
Approach 29 1 31 3.4 0.026 4.7 LOS A 0.1 0.7 0.19 0.51 0	19 54.1
All Vehicles 193 3 203 1.6 0.048 3.1 NA 0.2 1.3 0.10 0.33 0	10 55.9

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential + Development] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018] + Residential + Development AM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

	iuiii De													
Vehic	le Mo	vemen	t Perfo	rmance	Э									
Mov ID	Turn	INP VOLU [Total	IMES	DEMA FLOV [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF C	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terr	ace Ro	ad (E)										
5	T1	782	12	823	1.5	0.508	18.7	LOS B	12.5	88.3	0.73	0.64	0.73	47.6
6	R2	199	5	209	2.5	* 0.707	42.6	LOS D	8.3	59.5	1.00	0.86	1.10	34.7
Appro	ach	981	17	1033	1.7	0.707	23.5	LOS B	12.5	88.3	0.79	0.68	0.81	44.3
North:	Settle	rs Boule	varde ((N)										
7	L2	228	4	240	1.8	0.602	26.9	LOS B	13.5	95.9	0.85	0.83	0.85	41.1
9	R2	647	8	681	1.2	* 0.730	31.2	LOS C	17.1	121.2	0.90	0.86	0.93	39.9
Appro	ach	875	12	921	1.4	0.730	30.0	LOS C	17.1	121.2	0.89	0.85	0.91	40.2
West:	Raymo	ond Teri	race Ro	ad (W)										
10	L2	277	9	292	3.2	0.161	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	417	13	439	3.1	* 0.711	31.7	LOS C	11.6	83.6	0.95	0.82	0.99	39.6
Appro	ach	694	22	731	3.2	0.711	21.5	LOS B	11.6	83.6	0.57	0.70	0.60	44.6
All Vel	hicles	2550	51	2684	2.0	0.730	25.2	LOS B	17.1	121.2	0.76	0.75	0.78	42.9

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential + Development] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development PM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

Vehic	le Mo	vemen	t Perfo	rmance	.									
Mov ID	Turn	INF VOLU [Total		DEMA FLOV [Total	VS	Deg. Satn	Aver. Delay	Level of Service	OF C	BACK QUEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terr	ace Ro	ad (E)										
5	T1	576	7	606	1.2	0.256	6.0	LOS A	5.1	35.8	0.41	0.36	0.41	55.2
6	R2	213	3	224	1.4	* 0.750	43.7	LOS D	9.1	64.7	1.00	0.89	1.16	34.3
Appro	ach	789	10	831	1.3	0.750	16.2	LOS B	9.1	64.7	0.57	0.50	0.61	47.4
North:	Settle	rs Boule	evarde ((N)										
7	L2	158	1	166	0.6	0.615	39.4	LOS C	8.6	60.6	0.96	0.82	0.96	36.6
9	R2	262	2	276	8.0	* 0.746	43.0	LOS D	8.6	60.6	0.99	0.87	1.11	34.9
Appro	ach	420	3	442	0.7	0.746	41.7	LOS C	8.6	60.6	0.98	0.85	1.05	35.5
West:	Raymo	ond Ter	race Ro	ad (W)										
10	L2	577	2	607	0.3	0.328	6.3	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	851	5	896	0.6	* 0.734	19.8	LOS B	20.5	144.2	0.83	0.74	0.84	45.7
Appro	ach	1428	7	1503	0.5	0.734	14.3	LOS A	20.5	144.2	0.50	0.65	0.50	49.0
All Vel	hicles	2637	20	2776	8.0	0.750	19.2	LOS B	20.5	144.2	0.59	0.64	0.62	45.8

Site: 101 [Settlers Boulevarde / Raymond Terrace EX [2018 + Residential + Development] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development Weekend Peak

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

		··~ <i>,</i> /												
Vehic	cle Mo	vemen	t Perfo	rmance										
Mov ID	Turn			DEMA FLOV [Total	٧S	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	
	_	veh/h	veh/h	veh/h	%	v/c	sec		veh	m			_	km/h
East:	Raymo	nd Terr	ace Roa	ad (E)										
5	T1	527	3	555	0.6	0.268	9.1	LOS A	5.8	40.7	0.51	0.44	0.51	52.7
6	R2	178	0	187	0.0	* 0.538	38.3	LOS C	6.8	47.9	0.95	0.81	0.95	36.2
Appro	ach	705	3	742	0.4	0.538	16.5	LOS B	6.8	47.9	0.62	0.53	0.62	47.3
North	: Settle	rs Boule	evarde (N)										
7	L2	170	0	179	0.0	0.443	30.3	LOS C	7.8	54.8	0.85	0.80	0.85	39.7
9	R2	287	4	302	1.4	* 0.537	34.1	LOS C	8.2	58.2	0.91	0.81	0.91	38.0
Appro	ach	457	4	481	0.9	0.537	32.7	LOS C	8.2	58.2	0.88	0.81	0.88	38.6
West:	Raymo	ond Teri	race Ro	ad (W)										
10	L2	267	5	281	1.9	0.153	6.0	LOS A	0.0	0.0	0.00	0.53	0.00	54.8
11	T1	484	3	509	0.6	* 0.562	23.7	LOS B	11.6	81.5	0.85	0.72	0.85	43.3
Appro	ach	751	8	791	1.1	0.562	17.4	LOS B	11.6	81.5	0.55	0.65	0.55	46.9
All Ve	hicles	1913	15	2014	8.0	0.562	20.7	LOS B	11.6	81.5	0.66	0.64	0.66	44.7

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential + Development] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Harvest Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development AM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

		-,												
Vehic	le Mo	vemen	: Perfo	rmance	•									
Mov ID	Turn	INF VOLU [Total	JMES	DEMA FLOV [Total	٧S	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: I	Raymo	nd Terr	ace Roa	ad (E)										
5	T1	1366	3	1438	0.2	0.527	9.1	LOS A	13.2	92.7	0.51	0.47	0.51	54.5
6	R2	49	1	52	2.0	* 0.376	46.4	LOS D	2.1	14.7	0.99	0.74	0.99	33.5
Appro	ach	1415	4	1489	0.3	0.527	10.4	LOS A	13.2	92.7	0.53	0.48	0.53	53.4
North:	Harve	st Boule	evarde (N)										
7	L2	106	1	112	0.9	0.202	29.7	LOS C	3.3	23.1	0.78	0.75	0.78	40.2
9	R2	92	1	97	1.1	* 0.420	42.1	LOS C	3.7	25.9	0.97	0.77	0.97	34.8
Appro	ach	198	2	208	1.0	0.420	35.5	LOS C	3.7	25.9	0.87	0.76	0.87	37.5
West:	Raymo	ond Teri	race Ro	ad (W)										
10	L2	52	0	55	0.0	0.299	15.9	LOS B	6.5	46.8	0.57	0.54	0.57	49.4
11	T1	754	22	794	2.9	* 0.508	12.0	LOS A	13.0	93.3	0.64	0.58	0.64	50.2
Appro	ach	806	22	848	2.7	0.508	12.3	LOS A	13.0	93.3	0.64	0.57	0.64	50.2
All Vel	hicles	2419	28	2546	1.2	0.527	13.0	LOS A	13.2	93.3	0.59	0.53	0.59	50.5

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential + Development] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Harvest Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development

PM Peak

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Optimum Cycle Time -

rn VOLI [Total veh/h	PUT JMES	DEMA FLOV [Total	ND VS	Deg. Satn	Aver.	Level of	95%	BACK				
rn VOLI [Total veh/h	JMES HV]	FLOV [Total	VS		Aver.	I evel of	95%	BACK				
	veh/h			Salli	Delay	Service		UEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
mand Tari		veh/h	%	v/c	sec		veh	m				km/h
nona ren	ace Ro	ad (E)										
1025	5	1079	0.5	0.372	6.5	LOS A	10.0	70.1	0.38	0.34	0.38	55.3
2 120	1	126	8.0	* 0.753	63.1	LOS E	7.2	50.7	1.00	0.87	1.18	29.1
1145	6	1205	0.5	0.753	12.5	LOS A	10.0	70.1	0.45	0.40	0.46	50.5
vest Boul	evarde ((N)										
2 57	0	60	0.0	0.111	41.5	LOS C	2.3	16.4	0.77	0.73	0.77	37.0
2 107	0	113	0.0	* 0.513	56.3	LOS D	5.9	41.2	0.98	0.79	0.98	30.6
164	0	173	0.0	0.513	51.2	LOS D	5.9	41.2	0.91	0.77	0.91	32.6
mond Ter	race Ro	ad (W)										
2 129	0	136	0.0	0.481	18.7	LOS B	16.5	115.8	0.61	0.60	0.61	47.4
1 1304	6	1373	0.5	* 0.817	18.4	LOS B	39.6	278.6	0.78	0.73	0.78	46.8
1433	6	1508	0.4	0.817	18.4	LOS B	39.6	278.6	0.76	0.72	0.76	46.8
es 2742	12	2886	0.4	0.817	17.9	LOS B	39.6	278.6	0.64	0.59	0.65	47.0
	2 120 1145 vest Bould 2 57 2 107 164 rmond Ter 2 129 1 1304 1433	2 120 1 1145 6 vest Boulevarde (2 57 0 2 107 0 164 0 mond Terrace Ro 2 129 0 1 1304 6 1433 6	2 120 1 126 1145 6 1205 vest Boulevarde (N) 2 57 0 60 2 107 0 113 164 0 173 mond Terrace Road (W) 2 129 0 136 1 1304 6 1373 1433 6 1508	2 120 1 126 0.8 1145 6 1205 0.5 vest Boulevarde (N) 2 57 0 60 0.0 2 107 0 113 0.0 164 0 173 0.0 mond Terrace Road (W) 2 129 0 136 0.0 1 1304 6 1373 0.5 1433 6 1508 0.4	2 120 1 126 0.8 0.753 1145 6 1205 0.5 0.753 vest Boulevarde (N) 2 57 0 60 0.0 0.111 2 107 0 113 0.0 * 0.513 164 0 173 0.0 0.513 mond Terrace Road (W) 2 129 0 136 0.0 0.481 1 1304 6 1373 0.5 * 0.817 1433 6 1508 0.4 0.817	2 120 1 126 0.8	2 120 1 126 0.8	2 120 1 126 0.8	2 120 1 126 0.8	2 120 1 126 0.8	2 120 1 126 0.8	2 120 1 126 0.8

Site: 101 [Harvest Boulevarde / Raymond Terrace EX [2018 + Residential + Development] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Harvest Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development Weekend Peak

Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time -

Mov		vement INP		rmance	•									
	_	IND												
ID	Turn	VOLU [Total	IMES	DEMA FLOV [Total	VS	Deg. Satn	Aver. Delay	Level of Service	OF C	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	ver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
East: R	Raymo	nd Terra	ace Roa	ad (E)										
5	T1	873	4	919	0.5	0.338	6.0	LOS A	7.0	48.9	0.42	0.37	0.42	55.4
6	R2	62	4	65	6.5	* 0.490	47.1	LOS D	2.7	19.6	1.00	0.75	1.00	33.2
Approa	ach	935	8	984	0.9	0.490	8.7	LOS A	7.0	48.9	0.46	0.40	0.46	53.1
North:	Harve	st Boule	evarde ((N)										
7	L2	64	1	67	1.6	0.122	29.1	LOS C	1.9	13.6	0.76	0.73	0.76	40.5
9	R2	106	0	112	0.0	* 0.481	42.4	LOS C	4.3	29.9	0.97	0.78	0.97	34.7
Approa	ach	170	1	179	0.6	0.481	37.4	LOS C	4.3	29.9	0.89	0.76	0.89	36.7
West: F	Raymo	ond Terr	race Ro	ad (W)										
10	L2	118	1	124	8.0	0.324	16.1	LOS B	7.2	50.8	0.58	0.60	0.58	48.6
11	T1	763	4	803	0.5	* 0.550	12.3	LOS A	14.8	103.7	0.66	0.61	0.66	49.8
Approa	ach	881	5	927	0.6	0.550	12.8	LOS A	14.8	103.7	0.65	0.61	0.65	49.6
All Veh	nicles	1986	14	2091	0.7	0.550	13.0	LOS A	14.8	103.7	0.58	0.52	0.58	49.6

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential + Development] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development AM Peak Site Category: (None) Roundabout

Vehic	cle Mo	vement	Perfo	rmance										
Mov	Turn	INF VOLU		DEMA FLO\		Deg.	Aver.	Level of		BACK UEUE	Prop.		Aver. No.	
ID	1 4111	[Total	HV]	[Total		Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	Cycles	Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Settle	rs Boule	evarde ((S)										
1	L2	23	0	24	0.0	0.018	3.7	LOS A	0.1	0.7	0.05	0.42	0.05	56.3
2	T1	239	12	252	5.0	0.262	3.6	LOS A	1.8	12.9	0.06	0.51	0.06	55.8
3	R2	227	1	239	0.4	0.262	9.2	LOS A	1.8	12.9	0.06	0.51	0.06	56.3
Appro	ach	489	13	515	2.7	0.262	6.2	LOS A	1.8	12.9	0.06	0.51	0.06	56.1
East:	Settlers	s Boulev	arde (E	:)										
4	L2	434	9	457	2.1	0.355	6.0	LOS A	2.6	18.6	0.66	0.65	0.66	53.9
5	T1	4	0	4	0.0	0.006	5.7	LOS A	0.0	0.2	0.55	0.50	0.55	54.8
6	R2	1	0	1	0.0	0.006	11.3	LOS B	0.0	0.2	0.55	0.50	0.55	55.1
Appro	ach	439	9	462	2.1	0.355	6.0	LOS A	2.6	18.6	0.66	0.65	0.66	53.9
North	: Herita	ge Drive	e (N)											
7	L2	3	0	3	0.0	0.329	5.6	LOS A	2.0	14.4	0.53	0.52	0.53	53.9
8	T1	363	3	382	8.0	0.329	5.6	LOS A	2.0	14.4	0.53	0.52	0.53	55.5
9	R2	1	0	1	0.0	0.329	11.0	LOS B	2.0	14.4	0.53	0.52	0.53	55.9
Appro	ach	367	3	386	8.0	0.329	5.6	LOS A	2.0	14.4	0.53	0.52	0.53	55.5
West:	Duskd	arter St	eet (W))										
10	L2	1	0	1	0.0	0.087	5.6	LOS A	0.5	3.2	0.54	0.68	0.54	50.8
11	T1	2	0	2	0.0	0.087	6.1	LOS A	0.5	3.2	0.54	0.68	0.54	52.2
12	R2	85	0	89	0.0	0.087	11.4	LOS B	0.5	3.2	0.54	0.68	0.54	52.6
Appro	ach	88	0	93	0.0	0.087	11.2	LOS B	0.5	3.2	0.54	0.68	0.54	52.5
All Ve	hicles	1383	25	1456	1.8	0.355	6.3	LOS A	2.6	18.6	0.40	0.57	0.40	55.0

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential + Development] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development PM Peak Site Category: (None)

Roundabout

Vehic	le Mo			rmance	;									
Mov ID	Turn	INP VOLL	IMES	DEMA FLO\	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE	Prop. Que	Effective /	Aver. No. Cycles S	
		[Total	HV]	[Total						Dist]				`
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South:	Settle	rs Boule	evarde (S)										
1	L2	58	1	61	1.7	0.045	3.7	LOS A	0.2	1.6	0.03	0.42	0.03	56.3
2	T1	166	9	175	5.4	0.387	3.6	LOS A	2.9	20.5	0.04	0.59	0.04	54.7
3	R2	533	0	561	0.0	0.387	9.2	LOS A	2.9	20.5	0.04	0.59	0.04	55.2
Approa	ach	757	10	797	1.3	0.387	7.5	LOS A	2.9	20.5	0.04	0.58	0.04	55.1
East: S	Settlers	Boulev	arde (E)										
4	L2	209	8	220	3.8	0.157	4.8	LOS A	1.0	7.1	0.48	0.53	0.48	54.5
5	T1	1	0	1	0.0	0.002	4.9	LOS A	0.0	0.1	0.46	0.50	0.46	54.3
6	R2	1	0	1	0.0	0.002	10.5	LOS B	0.0	0.1	0.46	0.50	0.46	54.7
Approa	ach	211	8	222	3.8	0.157	4.8	LOS A	1.0	7.1	0.48	0.53	0.48	54.5
North:	Herita	ge Drive	e (N)											
7	L2	1	0	1	0.0	0.269	7.8	LOS A	1.6	11.5	0.65	0.67	0.65	53.3
8	T1	250	3	263	1.2	0.269	7.0	LOS A	1.6	11.5	0.65	0.67	0.65	54.9
9	R2	1	0	1	0.0	0.269	12.5	LOS B	1.6	11.5	0.65	0.67	0.65	55.2
Approa	ach	252	3	265	1.2	0.269	7.0	LOS A	1.6	11.5	0.65	0.67	0.65	54.9
West:	Duskda	arter Str	eet (W)											
10	L2	2	0	2	0.0	0.051	7.2	LOS A	0.3	2.0	0.65	0.70	0.65	50.2
11	T1	2	0	2	0.0	0.051	8.4	LOS A	0.3	2.0	0.65	0.70	0.65	51.6
12	R2	40	0	42	0.0	0.051	13.0	LOS B	0.3	2.0	0.65	0.70	0.65	51.9
Approa		44	0	46	0.0	0.051	12.5	LOS B	0.3	2.0	0.65	0.70	0.65	51.8
, thbio	u011	77	U	70	0.0	0.001	12.0	LOGB	0.0	2.0	0.00	0.70	0.00	51.0
All Vel	nicles	1264	21	1331	1.7	0.387	7.2	LOS A	2.9	20.5	0.26	0.59	0.26	54.9

♥Site: 101 [Settlers Boulevarde / Heritage Drive / Duskdarter EX [2018 + Residential + Developme] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Settlers Boulevarde / Raymond Terrace Existing [2018]+ Residential + Development Weekend Peak Site Category: (None) Roundabout

Roun	dabout	[
Vehic	le Mo	vement	Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles S	Aver. Speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Settle	rs Boule	varde ((S)										
1	L2	40	0	42	0.0	0.031	3.6	LOS A	0.2	1.1	0.03	0.42	0.03	56.3
2	T1	128	5	135	3.9	0.254	3.6	LOS A	1.6	11.3	0.03	0.58	0.03	54.9
3	R2	331	0	348	0.0	0.254	9.2	LOS A	1.6	11.3	0.03	0.58	0.03	55.4
Appro	ach	499	5	525	1.0	0.254	7.3	LOS A	1.6	11.3	0.03	0.57	0.03	55.3
East:	Settlers	s Boulev	arde (E	Ξ)										
4	L2	244	0	257	0.0	0.172	4.6	LOS A	1.0	7.3	0.43	0.51	0.43	54.8
5	T1	1	0	1	0.0	0.002	4.7	LOS A	0.0	0.1	0.41	0.50	0.41	54.5
6	R2	1	0	1	0.0	0.002	10.3	LOS B	0.0	0.1	0.41	0.50	0.41	54.9
Appro	ach	246	0	259	0.0	0.172	4.6	LOS A	1.0	7.3	0.43	0.51	0.43	54.8
North:	Herita	ge Drive	(N)											
7	L2	1	0	1	0.0	0.191	5.8	LOS A	1.1	7.5	0.51	0.53	0.51	54.0
8	T1	203	3	214	1.5	0.191	5.5	LOS A	1.1	7.5	0.51	0.53	0.51	55.6
9	R2	1	0	1	0.0	0.191	11.0	LOS B	1.1	7.5	0.51	0.53	0.51	56.0
Appro	ach	205	3	216	1.5	0.191	5.5	LOS A	1.1	7.5	0.51	0.53	0.51	55.6
West:	Duskd	arter Str	eet (W))										
10	L2	1	0	1	0.0	0.044	5.5	LOS A	0.2	1.6	0.51	0.66	0.51	50.9
11	T1	1	0	1	0.0	0.044	6.1	LOS A	0.2	1.6	0.51	0.66	0.51	52.4
12	R2	42	1	44	2.4	0.044	11.3	LOS B	0.2	1.6	0.51	0.66	0.51	52.6
Appro	ach	44	1	46	2.3	0.044	11.1	LOS B	0.2	1.6	0.51	0.66	0.51	52.6
All Ve	hicles	994	9	1046	0.9	0.254	6.4	LOS A	1.6	11.3	0.25	0.55	0.25	55.1

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential + Development] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Heritage Drive / Tigerhawk Existing [2018]+ Residential + Development AM Peak

Vehic	le Mo	vement	Perfo	rmance	;									
Mov ID	Turn	INF VOLU		DEM/ FLO	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist 1	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Herita	ge Driv	e (S)											
1	L2	161	7	169	4.3	0.207	5.9	LOS A	0.5	3.6	0.15	0.30	0.15	54.9
2	T1	148	1	156	0.7	0.207	0.3	LOS A	0.5	3.6	0.15	0.30	0.15	56.5
3	R2	41	4	43	9.8	0.207	6.6	LOS A	0.5	3.6	0.15	0.30	0.15	54.1
Appro	ach	350	12	368	3.4	0.207	3.6	NA	0.5	3.6	0.15	0.30	0.15	55.5
East:	Tigerha	wk Driv	re (E)											
4	L2	30	0	32	0.0	0.078	6.2	LOS A	0.3	2.0	0.37	0.64	0.37	52.3
5	T1	11	0	12	0.0	0.078	7.4	LOS A	0.3	2.0	0.37	0.64	0.37	52.5
6	R2	24	1	25	4.2	0.078	8.5	LOS A	0.3	2.0	0.37	0.64	0.37	51.6
Appro	ach	65	1	68	1.5	0.078	7.2	LOS A	0.3	2.0	0.37	0.64	0.37	52.1
North:	Herita	ge Drive	e (N)											
7	L2	28	5	29	17.9	0.128	5.9	LOS A	0.0	0.4	0.03	0.08	0.03	56.8
8	T1	197	1	207	0.5	0.128	0.0	LOS A	0.0	0.4	0.03	0.08	0.03	59.2
9	R2	4	0	4	0.0	0.128	6.7	LOS A	0.0	0.4	0.03	0.08	0.03	57.0
Appro	ach	229	6	241	2.6	0.128	0.9	NA	0.0	0.4	0.03	0.08	0.03	58.9
West:	Tigerh	awk Dri	ve (W)											
10	L2	24	0	25	0.0	0.443	7.2	LOS A	2.4	16.8	0.56	0.88	0.78	49.9
11	T1	23	0	24	0.0	0.443	8.7	LOS A	2.4	16.8	0.56	0.88	0.78	50.1
12	R2	231	2	243	0.9	0.443	11.1	LOS B	2.4	16.8	0.56	0.88	0.78	49.4
Appro	ach	278	2	293	0.7	0.443	10.5	LOS B	2.4	16.8	0.56	0.88	0.78	49.5
All Vel	hicles	922	21	971	2.3	0.443	5.3	NA	2.4	16.8	0.26	0.44	0.32	54.1

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential + Development] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Heritage Drive / Tigerhawk Existing [2018]+ Residential + Development PM Peak

Vehic	le Mo	vement	Perfo	rmance	;									
Mov ID	Turn	INF VOLU [Total		DEM/ FLO	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Herita	ge Driv	e (S)											
1	L2	303	6	319	2.0	0.222	5.6	LOS A	0.2	1.7	0.05	0.47	0.05	54.1
2	T1	60	0	63	0.0	0.222	0.2	LOS A	0.2	1.7	0.05	0.47	0.05	55.6
3	R2	16	6	17	37.5	0.222	6.7	LOS A	0.2	1.7	0.05	0.47	0.05	52.0
Appro	ach	379	12	399	3.2	0.222	4.8	NA	0.2	1.7	0.05	0.47	0.05	54.2
East:	Tigerha	awk Driv	e (E)											
4	L2	10	0	11	0.0	0.023	5.9	LOS A	0.1	0.6	0.28	0.57	0.28	53.0
5	T1	9	0	9	0.0	0.023	6.8	LOS A	0.1	0.6	0.28	0.57	0.28	53.1
6	R2	3	0	3	0.0	0.023	6.6	LOS A	0.1	0.6	0.28	0.57	0.28	52.5
Appro	ach	22	0	23	0.0	0.023	6.4	LOS A	0.1	0.6	0.28	0.57	0.28	53.0
North:	Herita	ge Drive	e (N)											
7	L2	8	4	8	50.0	0.078	6.6	LOS A	0.0	0.3	0.04	0.05	0.04	55.5
8	T1	127	0	134	0.0	0.078	0.1	LOS A	0.0	0.3	0.04	0.05	0.04	59.5
9	R2	4	0	4	0.0	0.078	6.9	LOS A	0.0	0.3	0.04	0.05	0.04	57.3
Appro	ach	139	4	146	2.9	0.078	0.6	NA	0.0	0.3	0.04	0.05	0.04	59.2
West:	Tigerh	awk Dri	ve (W)											
10	L2	3	0	3	0.0	0.412	6.4	LOS A	2.2	15.3	0.52	0.84	0.66	50.9
11	T1	6	0	6	0.0	0.412	7.2	LOS A	2.2	15.3	0.52	0.84	0.66	51.0
12	R2	280	2	295	0.7	0.412	9.2	LOS A	2.2	15.3	0.52	0.84	0.66	50.4
Appro	ach	289	2	304	0.7	0.412	9.2	LOS A	2.2	15.3	0.52	0.84	0.66	50.4
All Vel	hicles	829	18	873	2.2	0.412	5.7	NA	2.2	15.3	0.22	0.53	0.27	53.5

VSite: 101 [Heritage Drive / Tigerhawk Drive EX [2018 + Residential + Development] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Heritage Drive / Tigerhawk Existing [2018]+ Residential + Development Weekend Peak Site Category: (None) Give-Way (Two-Way)

Vehic	le Mo	vement	Perfo	rmance										
Mov ID	Turn	INF VOLU [Total	PUT JMES HV]	DEMA FLOV [Total	VS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. CyclesS	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Herita	ge Drive	e (S)											
1	L2	310	1	326	0.3	0.203	5.5	LOS A	0.0	0.1	0.00	0.50	0.00	54.2
2	T1	48	0	51	0.0	0.203	0.0	LOS A	0.0	0.1	0.00	0.50	0.00	55.6
3	R2	1	0	1	0.0	0.203	5.7	LOS A	0.0	0.1	0.00	0.50	0.00	53.7
Appro	ach	359	1	378	0.3	0.203	4.8	NA	0.0	0.1	0.00	0.50	0.00	54.4
East:	Tigerha	awk Driv	e (E)											
4	L2	1	0	1	0.0	0.003	5.8	LOS A	0.0	0.1	0.20	0.54	0.20	53.3
5	T1	1	0	1	0.0	0.003	6.1	LOS A	0.0	0.1	0.20	0.54	0.20	53.4
6	R2	1	0	1	0.0	0.003	6.0	LOS A	0.0	0.1	0.20	0.54	0.20	52.7
Appro	ach	3	0	3	0.0	0.003	6.0	LOS A	0.0	0.1	0.20	0.54	0.20	53.1
North:	Herita	ge Drive	e (N)											
7	L2	1	0	1	0.0	0.044	6.3	LOS A	0.0	0.1	0.02	0.02	0.02	58.2
8	T1	78	0	82	0.0	0.044	0.0	LOS A	0.0	0.1	0.02	0.02	0.02	59.8
9	R2	1	0	1	0.0	0.044	6.8	LOS A	0.0	0.1	0.02	0.02	0.02	57.5
Appro	ach	80	0	84	0.0	0.044	0.2	NA	0.0	0.1	0.02	0.02	0.02	59.7
West:	Tigerh	awk Dri	ve (W)											
10	L2	2	0	2	0.0	0.412	6.2	LOS A	2.2	15.6	0.47	0.76	0.56	51.6
11	T1	7	0	7	0.0	0.412	6.4	LOS A	2.2	15.6	0.47	0.76	0.56	51.8
12	R2	314	2	331	0.6	0.412	8.2	LOS A	2.2	15.6	0.47	0.76	0.56	51.1
Appro	ach	323	2	340	0.6	0.412	8.2	LOS A	2.2	15.6	0.47	0.76	0.56	51.1
All Ve	hicles	765	3	805	0.4	0.412	5.7	NA	2.2	15.6	0.20	0.56	0.24	53.4

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018+ Residential + Development] AM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

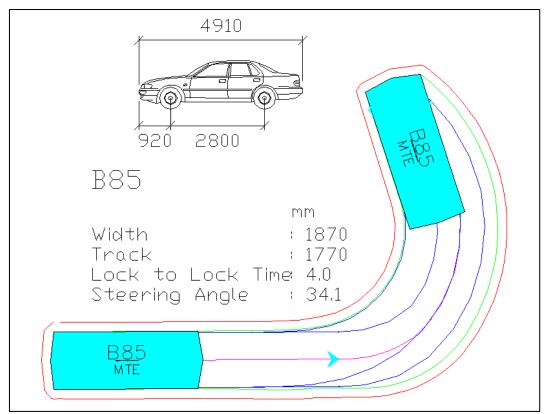
Grasshawk Drive / Dragonfly Drive Existing [2018]+ Residential + Development AM Peak Site Category: (None)

Vehic	le Mo	vement	Perfo	rmance										
Mov	INPUT VOLUMES		UT	DEM/ FLO	AND	Deg.	Aver.	Level of		BACK UEUE	Prop.		Aver. No.	
ID			HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	CyclesS	speed
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Drago	nfly Driv	ve (S)											
1	L2	1	0	1	0.0	0.098	5.9	LOS A	0.5	3.3	0.22	0.46	0.22	53.9
2	T1	30	0	32	0.0	0.098	0.3	LOS A	0.5	3.3	0.22	0.46	0.22	55.2
3	R2	126	0	133	0.0	0.098	5.8	LOS A	0.5	3.3	0.22	0.46	0.22	53.3
Appro	ach	157	0	165	0.0	0.098	4.7	NA	0.5	3.3	0.22	0.46	0.22	53.7
East:	Grassh	awk Dri	ve (E)											
4	L2	123	0	129	0.0	0.102	5.8	LOS A	0.4	3.0	0.19	0.55	0.19	53.1
5	T1	7	0	7	0.0	0.102	5.3	LOS A	0.4	3.0	0.19	0.55	0.19	53.2
6	R2	7	1	7	14.3	0.102	7.6	LOS A	0.4	3.0	0.19	0.55	0.19	51.9
Appro	ach	137	1	144	0.7	0.102	5.9	LOS A	0.4	3.0	0.19	0.55	0.19	53.0
North:	Drago	nfly Driv	e (N)											
7	L2	12	2	13	16.7	0.055	5.7	LOS A	0.0	0.1	0.00	0.08	0.00	56.9
8	T1	87	0	92	0.0	0.055	0.0	LOS A	0.0	0.1	0.00	0.08	0.00	59.4
9	R2	1	0	1	0.0	0.055	5.5	LOS A	0.0	0.1	0.00	0.08	0.00	57.2
Appro	ach	100	2	105	2.0	0.055	0.7	NA	0.0	0.1	0.00	0.08	0.00	59.1
West:	Grassh	nawk Dr	ive (W)											
10	L2	1	0	1	0.0	0.045	5.6	LOS A	0.2	1.1	0.30	0.56	0.30	53.8
11	T1	42	0	44	0.0	0.045	5.2	LOS A	0.2	1.1	0.30	0.56	0.30	53.9
12	R2	1	0	1	0.0	0.045	7.6	LOS A	0.2	1.1	0.30	0.56	0.30	53.3
Appro	ach	44	0	46	0.0	0.045	5.3	LOS A	0.2	1.1	0.30	0.56	0.30	53.9
All Ve	hicles	438	3	461	0.7	0.102	4.2	NA	0.5	3.3	0.17	0.41	0.17	54.6

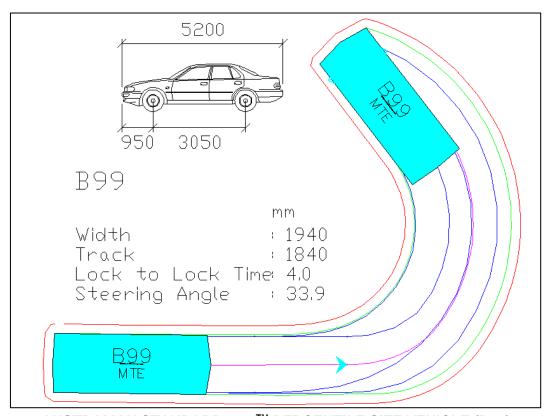
VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018 + Residential + Development] PM (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Grasshawk Drive / Dragonfly Drive Existing [2018]+ Residential + Development PM Peak Site Category: (None)

Vehic	cle Mo	vemen	t Perfo	rmance	;									
Mov	Turn	VOLU	PUT JMES	DEM/ FLO	WS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE	Prop. Que	Effective A	Aver. No. Cycles S	
		[Total		[Total						Dist]				
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m				km/h
South	: Drago	onfly Dri	ve (S)											
1	L2	1	0	1	0.0	0.216	6.5	LOS A	1.2	8.1	0.39	0.45	0.39	53.8
2	T1	91	0	96	0.0	0.216	0.9	LOS A	1.2	8.1	0.39	0.45	0.39	55.1
3	R2	223	0	235	0.0	0.216	6.4	LOS A	1.2	8.1	0.39	0.45	0.39	53.2
Appro	ach	315	0	332	0.0	0.216	4.9	NA	1.2	8.1	0.39	0.45	0.39	53.8
East:	Grassh	awk Dri	ve (E)											
4	L2	24	0	25	0.0	0.080	5.6	LOS A	0.3	2.1	0.11	0.56	0.11	53.0
5	T1	42	0	44	0.0	0.080	6.4	LOS A	0.3	2.1	0.11	0.56	0.11	53.1
6	R2	6	1	6	16.7	0.080	9.4	LOS A	0.3	2.1	0.11	0.56	0.11	51.7
Appro	ach	72	1	76	1.4	0.080	6.4	LOS A	0.3	2.1	0.11	0.56	0.11	52.9
North	: Drago	nfly Driv	/e (N)											
7	L2	217	2	228	0.9	0.137	5.6	LOS A	0.0	0.1	0.00	0.52	0.00	54.0
8	T1	24	0	25	0.0	0.137	0.0	LOS A	0.0	0.1	0.00	0.52	0.00	55.4
9	R2	1	0	1	0.0	0.137	5.8	LOS A	0.0	0.1	0.00	0.52	0.00	53.5
Appro	ach	242	2	255	8.0	0.137	5.0	NA	0.0	0.1	0.00	0.52	0.00	54.2
West:	Grassl	hawk Dr	rive (W)											
10	L2	1	0	1	0.0	0.036	5.8	LOS A	0.1	0.9	0.45	0.66	0.45	52.5
11	T1	23	0	24	0.0	0.036	7.0	LOS A	0.1	0.9	0.45	0.66	0.45	52.6
12	R2	1	0	1	0.0	0.036	7.8	LOS A	0.1	0.9	0.45	0.66	0.45	52.0
Appro	ach	25	0	26	0.0	0.036	7.0	LOS A	0.1	0.9	0.45	0.66	0.45	52.6
All Ve	hicles	654	3	688	0.5	0.216	5.2	NA	1.2	8.1	0.22	0.49	0.22	53.8

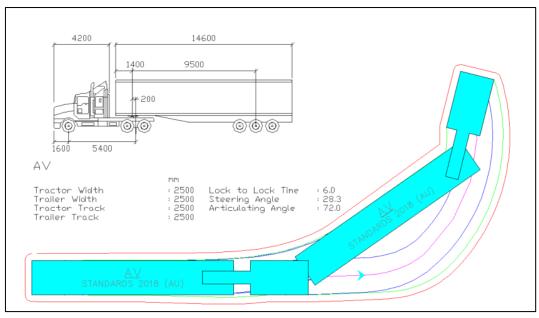

VSite: 101 [Grasshawk Drive / Dragonfly Drive EX [2018 + Residential + Development] Weekend (Site Folder: Existing 2018 Volumes + Thorton North Residential Yield + Development)]

Grasshawk Drive / Dragonfly Drive Existing [2018]+ Residential + Development Weekend Peak Site Category: (None) Give-Way (Two-Way)


Vehic	cle Mo	vement	Perfor	rmance										
Mov ID	Turn	INF VOLU Total	PUT JMES HV 1	DEMA FLO\ [Total	NS	Deg. Satn	Aver. Delay	Level of Service	OF Q	BACK UEUE Dist 1	Prop. Que	Effective A	Aver. No. Cycles S	
		veh/h	veh/h	veh/h	%	v/c	sec		veh	m m				km/h
Courth	. Drogo			VG11/11	/0	V/C	360		VEII	- '''				KIII/II
	_	onfly Driv	` '		0.0	0.005		1004	4.0		0.40	0.55	0.40	50.0
1	L2	1	0	1	0.0	0.205	6.7	LOS A	1.0	7.3	0.42	0.55	0.42	53.0
2	T1	37	0	39	0.0	0.205	1.1	LOS A	1.0	7.3	0.42	0.55	0.42	54.4
3	R2	241	0	254	0.0	0.205	6.6	LOS A	1.0	7.3	0.42	0.55	0.42	52.5
Appro	ach	279	0	294	0.0	0.205	5.8	NA	1.0	7.3	0.42	0.55	0.42	52.8
East:	Grassh	awk Dri	ve (E)											
4	L2	22	0	23	0.0	0.064	5.7	LOS A	0.2	1.6	0.15	0.57	0.15	52.9
5	T1	27	1	28	3.7	0.064	6.4	LOS A	0.2	1.6	0.15	0.57	0.15	52.9
6	R2	9	0	9	0.0	0.064	8.4	LOS A	0.2	1.6	0.15	0.57	0.15	52.4
Appro	ach	58	1	61	1.7	0.064	6.4	LOS A	0.2	1.6	0.15	0.57	0.15	52.8
North	: Drago	nfly Driv	/e (N)											
7	L2	232	1	244	0.4	0.154	5.5	LOS A	0.0	0.1	0.00	0.50	0.00	54.2
8	T1	40	0	42	0.0	0.154	0.0	LOS A	0.0	0.1	0.00	0.50	0.00	55.7
9	R2	1	0	1	0.0	0.154	5.6	LOS A	0.0	0.1	0.00	0.50	0.00	53.7
Appro	ach	273	1	287	0.4	0.154	4.7	NA	0.0	0.1	0.00	0.50	0.00	54.5
West:	Grassl	hawk Dr	rive (W)											
10	L2	1	0	1	0.0	0.042	5.6	LOS A	0.1	1.0	0.40	0.65	0.40	52.4
11	T1	27	1	28	3.7	0.042	7.1	LOS A	0.1	1.0	0.40	0.65	0.40	52.4
12	R2	1	0	1	0.0	0.042	7.5	LOS A	0.1	1.0	0.40	0.65	0.40	51.9
Appro	ach	29	1	31	3.4	0.042	7.1	LOS A	0.1	1.0	0.40	0.65	0.40	52.4
All Ve	hicles	639	3	673	0.5	0.205	5.5	NA	1.0	7.3	0.21	0.53	0.21	53.5

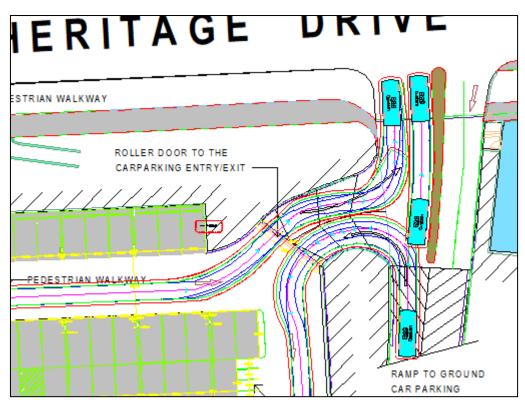
ANNEXURE D: SWEPT PATH TESTING (11 SHEETS)

AUSTRALIAN STANDARD 85TH PERCENTILE SIZE VEHICLE (B85)



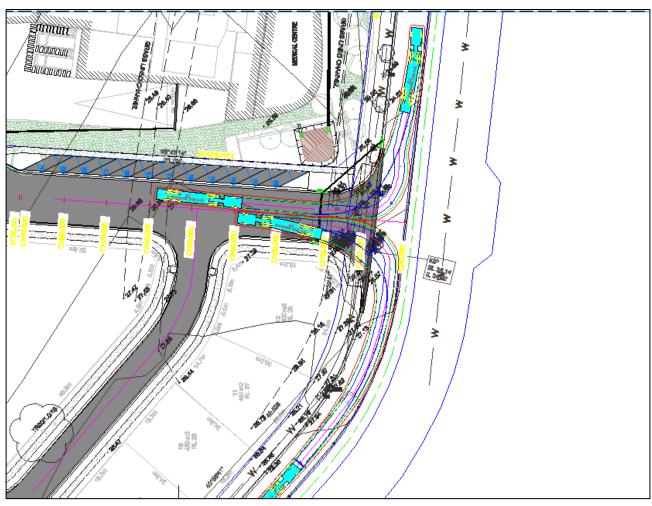
AUSTRALIAN STANDARD 99.8TH PERCENTILE SIZE VEHICLE (B99)

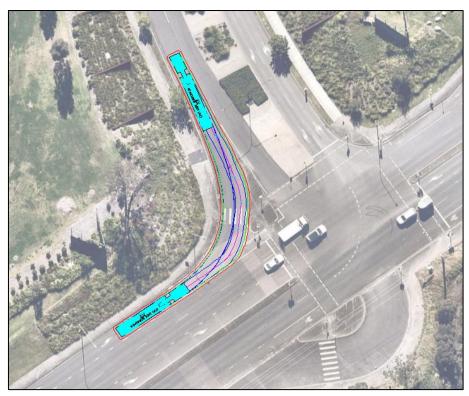
Blue – Tyre Path

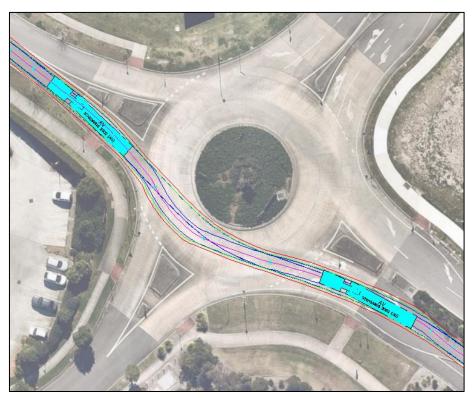

Green – Vehicle Body

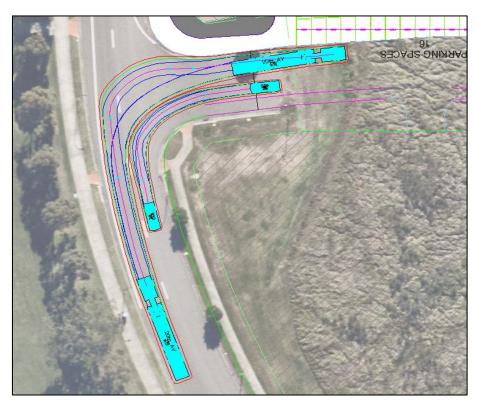
Red – 300mm Clearance

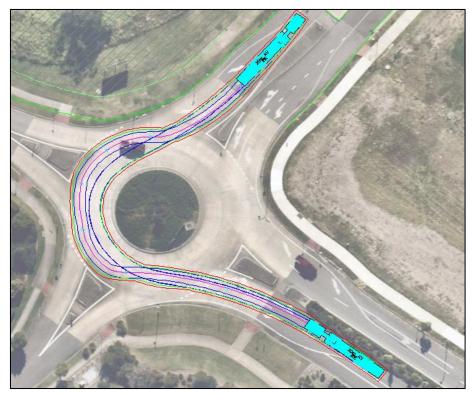
AUSTRALIAN STANDARD ARTICULATED VEHICLE (AV)

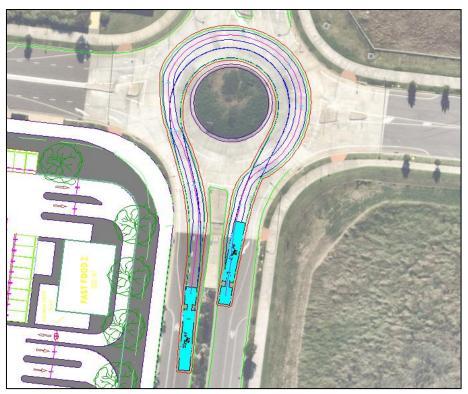

Blue – Tyre Path Green – Vehicle Body Red – 500mm Clearance

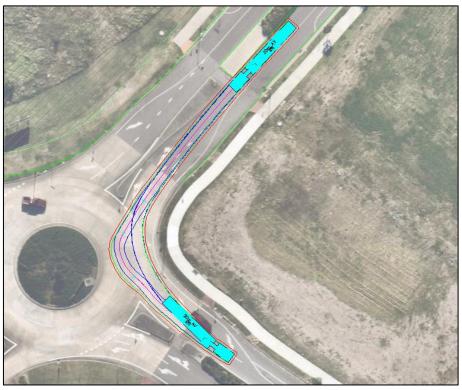

B99 passing B99 into the basement Successful

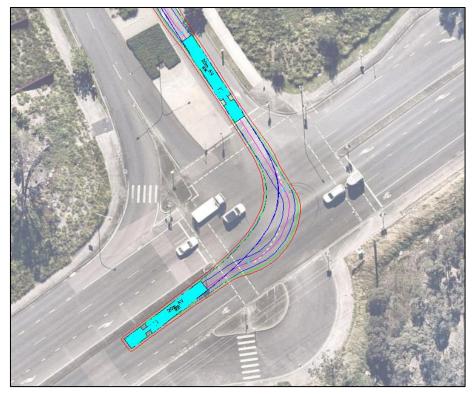

B99 circulation through the direct to boot pick-up area Successful

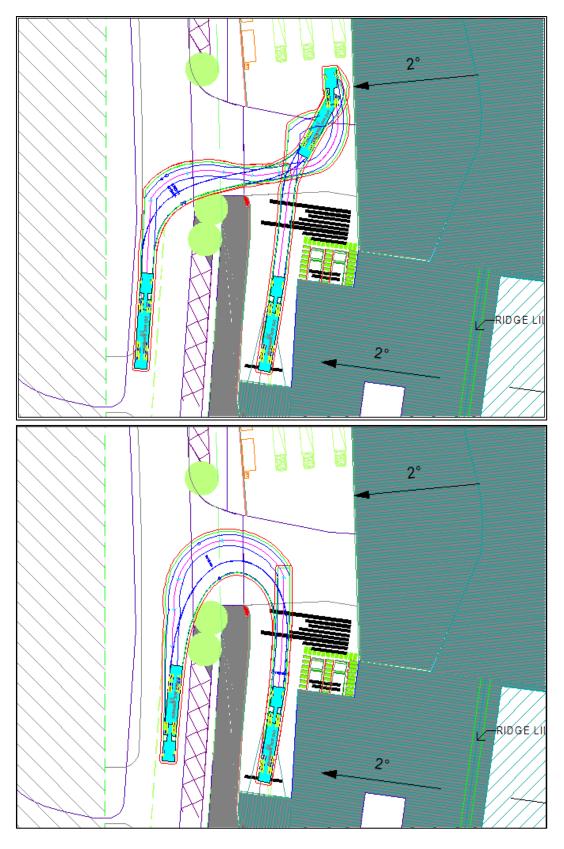

AV into and out of New Link Road from Settlers Boulevard Successful

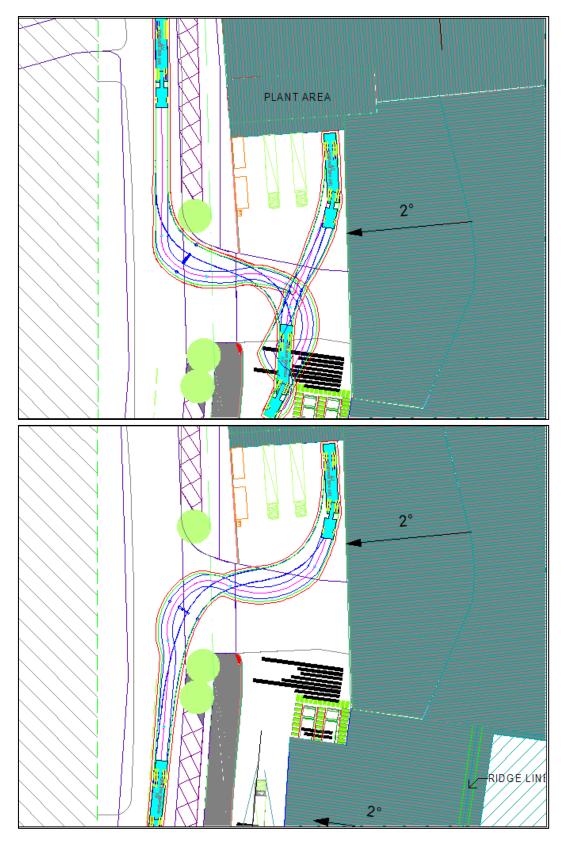

Entry Route – AV Left Turn Into Settlers Boulevard From Raymond Terrace Drive Successful


Entry Route – AV Through The Roundabout Onto Hertiage Drive Successful


Entry Route – AV Right Turn Into Proposed Road From Heritage Drive (Including Two-Way Passing With B99) Successful


Entry Route – AV Right Turn Into Settlers Boulevard Successful


Exit Route – AV U-Turn On Settlers Boulevard / Tigerhawk Drive Successful


Exit Route – AV Left Turn Into Settlers Boulevard Successful

Exit Route – AV Right Turn Into Raymond Terrace Drive From Settlers Boulevard
Successful

AV Entry and exit from New Link Road
Successful

AV Entry and exit from New Link Road
Successful